

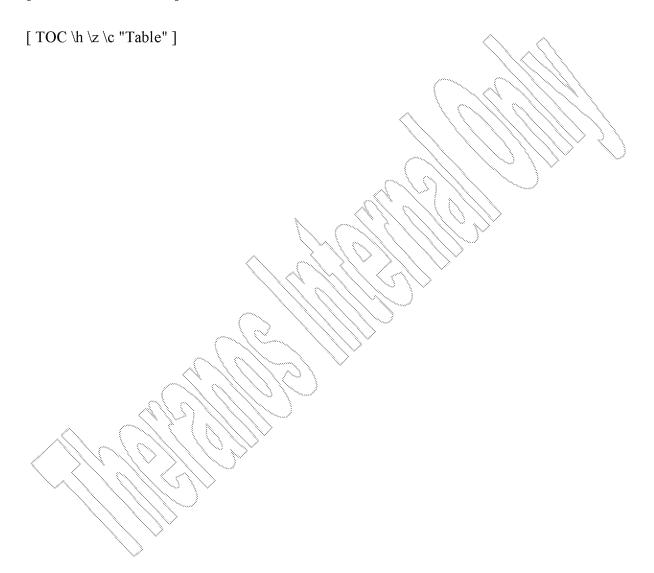
# Methadone Assay Development Report

Theranos, Inc.

February 21, 2013

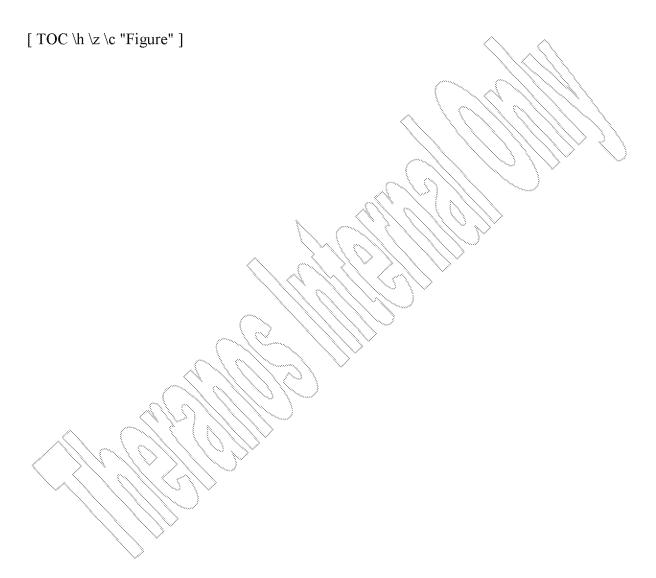
Prepared by: Sharada Sivaraman

This Development Report contains Theranos Confidential Information and is being provided under the parties' Mutual Confidentiality Agreement. Any further dissemination, use or disclosure of the Report, in whole or in part, is strictly prohibited.




# TABLE OF CONTENTS






# 





## LIST OF FIGURES





### 1. ASSAY INFORMATION[ TC "ASSAY INFORMATION" \F C \L "2" ]

# 1.1 Assay Specifications [TC "Assay Specifications" \f C\\\"3"]

This assay is designed to detect methadone in human serum, plasma and urine. The assay has a reportable range of 40 to 1000 ng/mL. For urine samples the cut off is established at 300 ng/mL and for serum/plasma samples the cutoff is 40 ng/ml. The methadone assay is calibrated using the Certified Reference Material (±)-Methadone (Cat#M-007) from Cerilliant

## 1.1.1 Reference Assays [TC "Reference Assays and Standards" \C\I "3"]

The reference assay available for the urine matrix is the Siemen Advia Methadone 2 (MDN 2).

#### 1.1.2 Materials and Methods [TC "Materials and Methods" \f C \l "1" ]

The capture surface is made up of a stack comprising avidin, biotin-labeled goat anti-mouse secondary antibody and an anti-methadone antibody. The sample is diluted and combined with the tracer enzyme labeled methadone conjugate. This mixture is incubated on the capture surface for 10 minutes. After the incubation, the surface is washed and substrate is incubated on the surface for 10 minutes, and then the resulting chemiluminescence is read in Relative Light Units (RLU).

Table (SEO Table) ARABIC 1: Materials

| August 1 August 1 August 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                         |             |
|----------------------------------------------------------------|-------------------------|-------------|
| Name                                                           | Supplier                | Catalog #   |
| (±)-Methadone                                                  | Cerilliant              | M-007       |
| Goat Anti mouse secondary Antibody                             | Pierce                  | 31805       |
| Mouse monoclonal Anti-Methadone                                | Lifespan Biosciences    | LS-C72467   |
| Methadone-Alk Phos Conjugate" A"                               | Theranos                |             |
| Carbonate-bicarbonate buffer                                   | Sigma                   | C3041       |
| Low BSA Blocking Buffer                                        | Sigma (BSA, Fraction V, | A3059-500G  |
| (0.03% BSA in TBS, 0.05% Sodium Azide)                         | 99% Pure)               |             |
| Alkaline Phosphatase Substrate                                 | Theranos                | T-ALKP-SB01 |



### 2. ASSAY DEVELOPMENT TC "ASSAY OPTIMIZATION" \F C \L "2" |

# 1.2 Antibody-Conjugate Binding Screen (MTP) [ TC "Detection Antibody Conjugate Verification" \f C \l "1" ]

30 anti-methadone antibodies (Table 2 and Table 3) were commercially available and ordered. All 30 antibodies were coated on a 384 well microtitre plate (MTP) at 10,1,01 and 0 ug/mL and tested for binding to the commercial Methadone-HRP conjugate at a dilution of 1,1000 from the stock in Stabilzyme Noble (HRP small molecule conjugate stabilizer). The data are summarized in Table 4 and 5. 10 out of the 30 antibodies (#s 1, 2, 10, 11, 12 16, 18 22, 23 and 26) showed binding affinities to the commercial methadone HRP conjugate. All 10 antibodies were chosen for further evaluation on the competitive format on the Theranos system.

Table [ SEQ Table \\* ARABIC ]: Antibody Information

| Ab# | Vendor                  | Cat #          | Clone # | Description                         |
|-----|-------------------------|----------------|---------|-------------------------------------|
| 1   | biorbyt                 | orb24614 <     | BID902  | Monoclonal Antibody to Methadone    |
| 2   | biorbyt                 | orb24615       | BID905  | Monoclonal Antibody to<br>Methadone |
| 3   | mybiosource             | MBS530781      | M610245 | Monoclonal Antibody to Methadone    |
| 4   | mybiosource             | MBS530516      | M081030 | Monoclonal Antibody to<br>Methadone |
| 5   | mybiosource             | MBS310801      | B658M   | Monoclonal Antibody to Methadone    |
| 6   | Arista Biologicals      | ABMTD-<br>0401 | clone 1 | Monoclonal Antibody to Methadone    |
| 7   | Lifespan<br>biosciences | L\$-C72465     | Mab     | Monoclonal Antibody to<br>Methadone |
| 8   | Lifespan<br>biosciences | LS-C56380      | sheep   | Sheep polyclonal against methadone  |
| 9   | Lifespan<br>biosciènces | LS-C55835      | Met 7F5 | Monoclonal Antibody to<br>Methadone |
| 10  | Lifespan biosciences    | LS-C56379      | Met 2A7 | Monoclonal Antibody to Methadone    |
| 11  | Lifespan<br>biosciences | LS-C72466      |         | Monoclonal Antibody to<br>Methadone |
| 12  | Lifespan<br>biosciences | LS-C72467      |         | Monoclonal Antibody to Methadone    |
| 13  | Lifespan<br>biosciences | LS-C130728     |         | Monoclonal Antibody to<br>Methadone |
| 14  | Lifespan<br>biosciences | LS-C130729     |         | Monoclonal Antibody to Methadone    |
| 15  | Lifespan<br>biosciences | LS-C130732     |         | Monoclonal Antibody to Methadone    |



#### Table [ SEQ Table \\* ARABIC ]: Antibody Information (contnd.)

| Ab# | Vendor                                  | Cat #                                   | Clone #          | Description            |
|-----|-----------------------------------------|-----------------------------------------|------------------|------------------------|
|     |                                         |                                         |                  | Monoclonal Antibody to |
| 16  | ARP                                     | 13-2029                                 |                  | Methadone              |
|     | *************************************** | *************************************** |                  | Monoclonal Antibody to |
| 17  | Us biol                                 | M3010-02                                | 4A144            | Methadone              |
|     |                                         |                                         |                  | Monoclonal Antibody to |
| 18  | Us biol                                 | M3010-03                                | 1.BB.906         | Methadone              |
|     |                                         |                                         |                  | Monoclonal Antibody to |
| 19  | Us biol                                 | M3010-03A                               | 9L467            | Methadone              |
|     |                                         |                                         |                  | Monoclonal Antibody to |
| 20  | Us biol                                 | M3010-03B                               | 9L468            | Methadone              |
|     |                                         | P11-99-08M-                             |                  | Monoclonal Antibody to |
| 21  | East coast Bio                          | P                                       |                  | Methadone              |
|     |                                         | P11-99-05M-                             |                  | Monoclonal Antibody to |
| 22  | East coast Bio                          | P                                       |                  | Methadone              |
|     |                                         | P11-99-09M-                             |                  | Monoclonal Antibody to |
| 23  | East coast Bio                          | P                                       | ξ                | Methadone              |
|     |                                         | 1                                       |                  | Monoclonal Antibody to |
| 24  | Calbioreagents                          | M199                                    |                  | Methadone \            |
|     |                                         |                                         |                  | Monoclonal Antibody to |
| 25  | Calbioreagents                          | M263                                    |                  | Methadone              |
|     |                                         | /\                                      | K \              | Monoclonal Antibody to |
| 26  | Biospacific                             | A53140174P                              |                  | Methadone              |
|     |                                         |                                         | 1,000            | Monoclonal Antibody to |
| 27  | Biospacific                             | A53141503P                              | 7/(2)            | Methadone              |
|     |                                         |                                         |                  | Monoclonal Antibody to |
| 28  | Biospacific (                           | A53143501P                              |                  | Methadone              |
|     |                                         |                                         | $\triangleright$ | Monoclonal Antibody to |
| 29^ | Biospacific                             | A53144501P                              |                  | Methadone              |
|     |                                         |                                         |                  | Monoclonal Antibody to |
| `30 | Biospacific \                           | A53151146P                              |                  | Methadone              |



**Table [ SEQ Table \\* ARABIC ]:** Antibody-Conjugate Binding Screen with Randox HRP Conjugate

|            | Conju      |             | ndox M        | ethado | ne HR     | P Conjugate                            |         |      |     |
|------------|------------|-------------|---------------|--------|-----------|----------------------------------------|---------|------|-----|
| Ab#        | [Ab] ug/mL | Mean        | CV%           | S/B    | Ab#       | [Ab] ug/mL                             | Mean    | CV%  | S/B |
| 1          | 10         | 612344      | 0.1           | 221    | 10        | 10                                     | 1142326 | 0.2  | 404 |
|            | 1          | 14033       | 12.7          |        |           | 1                                      | 6029    | 15.7 |     |
|            | 0.1        | 3570        | 5.5           |        |           | 0.1                                    | 3709    | 14.2 |     |
|            | 0          | 2771        | 12.7          |        |           | 0 \                                    | 2826    | 27.8 |     |
| 2          | 10         | 919190      | 2.5           | 407    | 11        | 10                                     | 833687  | 6.8  | 290 |
|            | 1          | 11439       | 3.5           |        |           | 1-1                                    | 60525   | 20.6 | 1   |
|            | 0.1        | 2641        | 2.9           |        |           | 0.1                                    | 6210    | 11.4 |     |
|            | 0          | 2260        | 16.6          |        |           |                                        | 2874    | 7.2  |     |
| 3          | 10         | 2535        | 3.4           | A      | 12        | 10                                     | 1127097 | 12.9 | 313 |
|            | 1          | 1568        | 1.1           |        | $\sqrt{}$ |                                        | 37299   | 9.7  |     |
|            | 0.1        | 1488        | 16.6          |        | / //      | \_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 4813    | 10.7 |     |
|            | 0          | 1795        | 6.8           |        |           |                                        | 3601    | 4.3  |     |
| 4          | 10         | 4035        | 20.6          | 3      | 13\       | 10                                     | 10104   | 4.6  | 4   |
|            | 1          | 2147        | 19.3          |        |           | 1                                      | 2369    | 7.7  |     |
|            | 0.1        | 2107        | <b>\34</b> .7 |        |           | 0.1                                    | 2814    | 0.9  |     |
|            | 0          | 1557        | 14.6          |        |           | 0                                      | 2768    | 4.5  |     |
| 5          | 10         | 4695        | 7.3           | (2)    | 14        | 10                                     | 1886    | 1.1  | 1   |
|            |            | 2992        | 7.1           |        |           | 1                                      | 2266    | 4.2  |     |
|            | 0.1        | 3119        | 11,3          |        |           | 0.1                                    | 1832    | 16.6 |     |
|            | // ~0/ (^) | 2742        | <u>}3</u> ,9  |        |           | 0                                      | 2371    | 20.2 |     |
| <b>₹</b> 6 | 10         | <b>4522</b> | 6.7           | 1      | 15        | 10                                     | 2249    | 6.8  | 1   |
|            | 1////      | 3877        | 32.7          |        |           | 1                                      | 2062    | 15.2 |     |
|            | 0.1        | 3624        | 20.6          |        |           | 0.1                                    | 2257    | 4.5  |     |
|            | \0\\\      | 3593        | 33.3          |        |           | 0                                      | 2739    | 4.5  |     |
| 7          | 10\>       | 2658        | 9.1           | 1      | 16        | 10                                     | 666174  | 7.5  | 230 |
|            | 1          | 2714        | 0.2           |        |           | 1                                      | 4562    | 16.2 |     |
|            | 0.1        | 2593        | 8.9           |        |           | 0.1                                    | 4123    | 2.4  |     |
|            | 0          | 2903        | 6.7           |        |           | 0                                      | 2898    | 16.1 |     |
| 8          | 10         | 98172       | 2             | 42     | 17        | 10                                     | 2831    | 4.7  | 1   |
|            | 1          | 28441       | 3.9           |        |           | 1                                      | 2851    | 0.5  |     |
|            | 0.1        | 2573        | 15.6          |        |           | 0.1                                    | 2878    | 0.5  |     |
|            | 0          | 2338        | 5.8           |        |           | 0                                      | 3164    | 2.1  |     |
| 9          | 10         | 41971       | 5.3           | 21     | 18        | 10                                     | 658926  | 8.3  | 170 |
|            | 1          | 2170        | 3             |        |           | 1                                      | 27631   | 8.4  |     |
|            | 0.1        | 1516        | 32.6          |        |           | 0.1                                    | 4511    | 11.6 |     |
|            | 0          | 1961        | 3.1           |        |           | 0                                      | 3868    | 10   |     |



**Table [ SEQ Table \\* ARABIC ]:** Antibody-Conjugate Binding Screen with Randox HRP Conjugate

|          |            | Rane    | dox Metl | hadon        | e HRP                   | Conjugate    |        |         |     |
|----------|------------|---------|----------|--------------|-------------------------|--------------|--------|---------|-----|
| Ab#      | [Ab] ug/mL | Mean    | CV%      | S/B          | Ab#                     | [Ab] ug/mL   | Mean   | CV%     | S/B |
| 19       | 10         | 13072   | 1.2      | 3            | 25                      | 10           | 3117   | 3.1     | \1  |
|          | 1          | 3329    | 9.8      |              |                         | 1 /          | 3109   | 0.1     |     |
|          | 0.1        | 3640    | 1.6      |              |                         | 0.1          | 2411   | 9.6     |     |
|          | 0          | 3796    | 2.7      |              |                         | 0<           | 2764   | 6,2     |     |
| 20       | 10         | 5249    | 5.8      | 2            | 26                      | 10           | 721392 | 0.1     | 283 |
|          | 1          | 2304    | 0.5      |              |                         | 1            | 16663  | ે 3.8 📐 | >~  |
|          | 0.1        | 2419    | 12.8     |              |                         | 0.1/         | 3231   | <u></u> |     |
|          | 0          | 3013    | 0.1      |              |                         | 0            | 2546   | 12.3    |     |
| 21       | 10         | 334679  | 29.1     | 162          | 27,                     | 10           | 2961   | 10.7    | 1   |
|          | 1          | 5963    | 0.3      | /            |                         |              | 2535   | 3.6     |     |
|          | 0.1        | 2306    | 1,3      | . (^         | $\langle \cdot \rangle$ | 0.1          | > 2297 | 7.1     |     |
|          | 0          | 2069    | 1.8      |              |                         |              | 2320   | 7.5     |     |
| 22       | 10         | 1878476 | 3.3      | 809          | 28                      | 10           | 2634   | 8.1     | 1   |
|          | 1          | 116465  | 11.3     |              |                         | 1            | 2673   | 14.3    |     |
|          | 0.1        | 10680   | 63       | and the same |                         | <b>)</b> 0.1 | 2416   | 2.6     |     |
|          | 0          | 2323    | 25       |              |                         | 0            | 2668   | 6.4     |     |
| 23       | 10         | 1024954 | 5.4      | 379          | 29                      | 10           | 10759  | 7.1     | 4   |
|          | 1 /        | 24932   | 10.1     | . )          |                         | 1            | 2984   | 4.5     |     |
|          | 0.1        | 3688    | 2,7      |              |                         | 0.1          | 2902   | 16.7    |     |
|          |            | 2702    | 6.8      |              |                         | 0            | 2827   | 14.3    |     |
| 24       | 10         | 25623   | 2.1      | 7            | 30                      | 10           | 3912   | 1       | 1   |
| $\vdash$ |            | 5115    | 15.4     |              |                         | 1            | 3372   | 0.6     |     |
|          | 0,1        | 3833    | 22       |              |                         | 0.1          | 3446   | 13.9    |     |
|          | 6///       | > 3900  | 18.1     |              |                         | 0            | 3792   | 22.1    |     |



#### 1.3 Competitive Assay Screen (Theranos 3.0 System)

The ten anti-methadone monoclonal antibodies were evaluated for their performance in the competitive format by coating the capture surface with an avidin-biotin labeled goat anti-mouse secondary antibody combination. Following this each of the unlabeled anti-methadone antibodies were mixed into the sample along with the Theranos methadone AP conjugate at a 1:10 sample dilution and tested for response in a competitive assay using BioRad urine toxicology controls. Antibody 12 and 23 showed a dose response in the competitive assay and were chosen for further evaluation. Data summarized in Table 6.

Table [ SEQ Table \\* ARABIC ]: Competitive Assay Screen (Theranos System)

| .x. et lo x c | DEC THOIC ! | 1.8.8.81.8.2.2.3 | 1. 00.   | iip cut             | ( C 1 x 5 5 cc y | Derech (Theran | og og <del>otte</del> r | ***      | 1 1  |
|---------------|-------------|------------------|----------|---------------------|------------------|----------------|-------------------------|----------|------|
| Ab#           | [Methadone] | Inter-C          | artridge | S/B                 | Ab#              | [Methadone]    | Inter-C                 | artridge | S/B  |
|               | ng/ml       | Mean             | CV%      |                     |                  | ng/ml          | Mean                    | CV%      |      |
| 1             | 750         | 1627             | 8.8      | 1.9                 | 18               | 750            | 1611-                   | 14.5     | 4.6  |
|               | 375         | 1751             | 3        |                     |                  | 3.75           | 1558                    | 21.4     |      |
|               | 225         | 1696             | 10.6     | 1                   |                  | 225            | ∑1758                   | 5.9      |      |
|               | 0           | 3166             | 57.6     |                     |                  |                | 7382                    | 1.7      |      |
| 2             | 750         | 1150             | 4.8      | 1.6                 | 21               | 750            | 1172                    | 1.7      | 6.5  |
|               | 375         | 1281             | 6        |                     |                  | 375            | 1512                    | 10       |      |
|               | 225         | 1358             | 4.3      |                     |                  | 225            | 1417                    | 0        |      |
|               | 0           | 1854             | 30.5     |                     |                  | 0              | 7567                    | 2.7      |      |
| 10            | 750         | 1012             | 0.6      | 1.0                 | 22               | 750            | 1399                    | 24.4     | 1.2  |
|               | 375         | 903              | 0.2      | $\supset \setminus$ |                  | 375            | 2950                    | 14.4     |      |
|               | 225         | 1309 🤇           | 3.9      |                     |                  | 225            | 2616                    | 2.9      |      |
|               | 0           | 969              | 19.5     |                     |                  | 0              | 1613                    | 2        |      |
| 11,<          | 750         | 1309             | 28.5     | 6.2                 | 23               | 750            | 1340                    | 2        | 12.8 |
| [/ N          | 375         | 1182             | 12.9     |                     |                  | 375            | 1375                    | 4.9      |      |
|               | 225         | 1178             | 33.2     |                     |                  | 225            | 1507                    | 3.1      |      |
|               | 6///        | 8168             | 6.2      |                     |                  | 0              | 17196                   | 3.8      |      |
| 12            | 750         | > 1610           | 9.4      | 12.0                |                  |                |                         |          |      |
|               | 3.75        | 1554             | 22.2     |                     |                  |                |                         |          |      |
|               | 225         | 1625             | 5.4      |                     |                  |                |                         |          |      |
|               | 0           | 19306            | 7.5      |                     |                  |                |                         |          |      |



#### 1.4 Test coating formats

Three different coating formats were tested: (i) Anti-mouse secondary antibody direct coat followed by anti-methadone antibody, (ii) Avidin followed by biotin labeled anti-mouse secondary antibody followed by anti-methadone antibody and (iii) Avidin followed by biotin labeled anti-methadone antibody. These three methods were compared to mixing the secondary antibody in solution in a homogenous competitive assay. The best dose reposnse was seen when the anti-methadone antoibody was placed in solution, followed by coating method 2 and 1 on the surface. In order to simplify the assay format for easier multiplexing in the drugs screening panels method 2 was finalized as the coating format. Ab#12 was chosen as the capture antibody for further optimization. Ab#23 would be a candidate backup. The Theranos methadone AP conjugate was used at a 1:50,000 fold dilution for each of these evaluations. The calibrators used were methadone buffer calibrators. Results are summarized in Table 7 and Table 8 for Ab 12 and Ab23 respectively.



Table [ SEQ Table \\* ARABIC ]: Results of different coating formats for Ab#12

| Ab#12       |          | Metho   | d 1  |       | Method 2 |              |            |       | Method 3  |         |     |       | Ab in solution |         |     |       |
|-------------|----------|---------|------|-------|----------|--------------|------------|-------|-----------|---------|-----|-------|----------------|---------|-----|-------|
| [Methadone] | Inter-Ca | rtridge | S/B  | Modn. | Inter-Ca | rtridge      | S/B        | Modn. | Inter-Car | rtridge | S/B | Modn. | Inter-Ca       | rtridge | S/B | Modn. |
| ng/ml       | Mean     | CV%     |      |       | Mean     | CV%          |            |       | Mean      | CV%     |     |       | Mean           | CV%     |     |       |
|             |          |         |      |       |          |              | Janes, and |       |           |         |     |       |                |         |     |       |
| 1000.0      | 45227    | 2       | 24   | 1.6   | 55758    | 1            | 28         | 1.8   | 545121    | 26      | 3   | 1.1   | 13724          | 3       | 81  | 1.3   |
| 750         | 71001    | 28      | 15.2 | 1.6   | 100701   | 0:6          | 15         | 1.5   | 581249    | 1       | 2.5 | 1.7   | 18255          | 41      | 61  | 1.4   |
| 300         | 111488   | 15      | 9.7  | 1.9   | 153881   | 1.2          | 10         | 2.1   | 983907    | ≥ 1/5 \ | 1.5 | 1.2   | 24727          | 14      | 45  | 1.7   |
| 150.0       | 211901   | 3       | 5.1  | 2.2   | 315733   | 10           | 4.9        | 2.0   | 1220005   | 17      | 1.2 | 1.2   | 42462          | 6       | 26  | 3.2   |
| 40          | 473674   | 6       | 2.3  | 2.3   | 635690   | 13           | 2.4        | 2.4   | 1522390   | 7       | 1.0 | 1.0   | 134880         | 15      | 8   | 8.3   |
| 0           | 1081825  | 17      | 1.0  | 0.0   | 1540450  | ( <u>)</u> 2 | 1.0        | 0.0   | 1469616   | 4       | 1.0 | 0.0   | 1116511        | 88      | 1   | 0.0   |

## Table [ SEQ Table \\* ARABIC ]: Results of different coating formats for Ab#23

| Ab#23       |             | Method | 1(\ |                       |           | Metho   | d 2 |       |           | Metho   | d 3 |       |          | Ab in so | lution |       |
|-------------|-------------|--------|-----|-----------------------|-----------|---------|-----|-------|-----------|---------|-----|-------|----------|----------|--------|-------|
| [Methadone] | Inter-Cartr | ridge  | S/B | Modn.                 | Inter-Car | tridge  | S/B | Modn. | Inter-Car | rtridge | S/B | Modn. | Inter-Ca | rtridge  | S/B    | Modn. |
| ng/ml       | Mean        | CV%    |     |                       | Mean      | CV%     |     |       | Mean      | CV%     |     |       | Mean     | CV%      |        |       |
|             |             |        |     |                       |           | <i></i> |     |       |           |         |     |       |          |          |        |       |
| 1000.0      | 144390      | 1(     | 10  | 1.2                   | 61243     | 4       | 25  | 1.3   | 760869    | 18.1    | 2.4 | 1.2   | 14542    | 10       | 66     | 1.0   |
| 750         | 178623      | (26)   | 8/  | 2,1                   | √78846    | 8.6     | 19  | 2.0   | 893426    | 1       | 2.0 | 1.5   | 15177    | 25       | 63     | 2.0   |
| 300         | 369240      | 14     | 4.1 | $\langle 1.1 \rangle$ | 154814    | 0.0     | 10  | 2.1   | 1305123   | 6       | 1.4 | 1.3   | 30083    | 4        | 32     | 1.9   |
| 150.0       | 418647      | 33     | 3.6 | 2.8                   | 324526    | 13      | 4.6 | 2.0   | 1647503   | 3       | 1.1 | 1.1   | 56741    | 1        | 17     | 2.6   |
| 40          | 1169743     | 14     | 1.3 | 1.3                   | 646341    | 23      | 2.3 | 2.3   | 1818245   | 4       | 1.0 | 1.0   | 147214   | 36       | 7      | 6.5   |
|             | 1504821     | 12     | 1.0 | 0.0                   | 1506272   | 3       | 1.0 | 0.0   | 1811938   | 3.5     | 1   |       | 958826   | 13       | 1      | 0.0   |



## 1.5 Checkerboard titration of Primary antibody on surface and methadone AP conjugate

Ab#12 was coated following method 2 outlined in section 1.4 at 10, 25, 50 and 100 ng/mL. The dose response and point to point modulation were tested at several combinations of the capture antibody and the tracer, Theranos methadone AP as outlined in Table 9. The highest S/B and modulation was seen at the lowest capture antibody concentration of 10 ng/mL and a dilution of 1:50,000 of the Theranos methadone AP conjugate.

Table [ SEQ Table \\* ARABIC ]: Checkerboard titration

|             |                              |        | 10 ng/       | mL             |      | 25 ng/ml      |       | 50 ng/mL |                                         |              |     | 100 ng/m |      |          |         |     |      |
|-------------|------------------------------|--------|--------------|----------------|------|---------------|-------|----------|-----------------------------------------|--------------|-----|----------|------|----------|---------|-----|------|
| [Methadone] | Theranos                     | _      | er-<br>ridge | S/B M          | Iod. | Inte<br>Cartr | 7 7 X | S/B      | Mod.                                    | Int<br>Carti |     | S/B      | Mod. | Inter-Ca | rtridge | S/B | Mod. |
| ng/ml       | Methadone<br>AP<br>conjugate | Mean   | CV%          | <u> </u>       |      | Mean          | CV%   |          | *************************************** | Mean         | CV% |          |      | Mean     | CV%     |     |      |
| 1000.0      |                              | 3388   | 39           | 87             | 3.2  | 9172          | 24    | 62       | 2.3                                     | -            |     |          |      |          |         |     |      |
| 300         | 1:25,000                     | 10732  | Sq.          | 27             | 4.3  | 21170         | 22    | 27       | 6.9                                     |              | nd  |          |      |          | nd      |     |      |
| 40.0        |                              | 46095  | 30           | 6              | 5.4  | 146618        | 33    | 4        | 3.9                                     |              |     |          |      |          |         |     |      |
| 0           |                              | 294392 | 17 \         | 1/1/           | 0.0  | 572913        | 1     | 0        | 0.0                                     |              |     |          |      |          |         |     |      |
| 1000.0      |                              | 1719   | (~)          | 151            | 4:4  | 7344          | 12    | 60       | 2.4                                     | 13148        | 16  | 57       | 2.6  | 27499    | 13      | 40  | 1.3  |
| 300         | 1:50,000                     | 7511   | 12           | 35             | 4,5  | 17725         | 0     | 25       | 3.7                                     | 34215        | 7   | 22       | 5.6  | 36745    | 8       | 30  | 9.0  |
| 40.0        |                              | 33601  | 2            | <b>8</b>       | 7.7  | 65827         | 11    | 7        | 6.7                                     | 190895       | 14  | 4        | 3.9  | 330078   | 18      | 3   | 3.4  |
| 0           |                              | 259714 | 20           | $\searrow 1$ ( | 0.0  | 440991        | 38    | 1        | 0.0                                     | 753361       | 25  | 0        | 0.0  | 1107867  | 3       | 1   | 0.0  |
| 1000.0      |                              |        |              |                |      |               |       |          |                                         | 1870         | 14  | 63       | 2.0  | 1490     | 53      | 68  | 2.3  |
| 300         | 1:500,000                    |        | nd           |                |      |               | nd    |          |                                         | 3679         | 2   | 32       | 5.8  | 3465     | 16      | 29  | 8.0  |
| 40.0        |                              | No V   | >            |                |      |               |       |          |                                         | 21482        | 33  | 5        | 5,5  | 27868    | 18      | 4   | 3.6  |
|             |                              |        |              |                |      |               |       |          |                                         | 117593       | 18  | 1        | 0.0  | 101308   | 19      | 1   | 0.0  |



#### 1.6 Comparison of two Theranos Methadone AP conjugates

Two versions of the methadone AP conjugates were tested to check which one provided the best S/B and overall modulation in the assay in its currently optimized form. Conjugate A had a F/P ratio of 3.8 and conjugate B had a F/P ratio of 7.0. Two working concentrations of the each conjugate at 1:50,000 and 1:100,000 were tested. The concentration of the anti-methadone antibody was 10 ng/mL on the surface. Methadone assay buffer calibrators were used and the overall sample dilution as kept at 25 –fold. Data are summarized in Table 10. Conjugate A provided the best overall modulation and S/B at both the above working concentrations. This conjugate was finalized for the rest of the assay optimization:

Table [ SEQ Table \\* ARABIC ]: Comparison of two Theranos Methadone AP conjugates

| Conjugate A          | 1                     | :50,000 d                | ilutior   | ı 🔪        | 1:               | 100,000 (      | lilutio  | Y          |
|----------------------|-----------------------|--------------------------|-----------|------------|------------------|----------------|----------|------------|
| [Methadone]<br>ng/ml | Inter-Ca<br>Mean      | rtridge<br>CV%           | S/B       | Modn.      | Inter-Ca<br>Mean | rtridge<br>CV% | S/B      | Modn.      |
| 1000.0               | 707                   | 37                       | 148       | 2.4        | 480              | 12             | 121      | 2.3        |
| 300                  | 1693                  | 12                       | 62        | 10.4       | 1106             | 28             | 53       | 6.0        |
| 40.0                 | 17659                 |                          | 6/        | 5,9        | 6625             | 18             | 9        | 8.8        |
| 0                    | 104720                | $\bigcirc$ 15 $\bigcirc$ | 1         | (0.0       | 58137            | 34             | 1        | 0.0        |
| Conjugate B          | 1                     | :50,000 d                | ilutior   | )<br>1     | 1:               | 100,000 d      | lilutio  | 1          |
| [Methadone]          | Inter-Ca              | rtridge                  | S/B       | Modn.      | Inter-Ca         | rtridge        | S/B      | Modn.      |
| ng/ml                | Mean                  | CV%                      |           |            | Mean             | CV%            |          |            |
|                      |                       |                          |           |            |                  |                |          |            |
| 4000.0               | 1394                  | 21                       | 105       | 2.4        | 1195             | 7              | 87       | 1.8        |
| 300<br>300           | 1394<br>3376          |                          | 105<br>43 | 2.4<br>7.7 | 1195<br>2137     | 7<br>5         | 87<br>48 | 1.8<br>6.6 |
| / / /                | 1394<br>3376<br>26063 | )                        |           |            |                  | •              |          |            |

## 1.7 Effect of sample dilution using different matrices

The Theranos Methadone assay needs to be able to detect methadone in serum, plasma and urine. The target cut off for serum /plasma is 40 ng/ml and for urine matrix is 300 ng/ml. Given the different matrices that will be sampled and cutoff requirements for each matrix, the effect of sample dilution was tested individually in buffer, plasma and urine matrices. The goal of the experiment was to find a sample dilution factor that would nullify any matrix effects thereby enabling the use of a single matrix (example, buffer) for calibration. Data are summarized in Table 11. Sample dilutions of 25-fold, 50-fold and 100-fold were tested. The modulation and S/B at 100 fold sample dilution was still high enough so this was picked as the final sample dilution. All three matrices performed equally in the assay at this condition so the assay buffer matrix was finalized for calibration purposes.



Table [ SEQ Table \\* ARABIC ]: Effect of sample dilution using different matrices

|             |        | 25x sample dilution |     |      | n                         | 50x            | sample         | dilutio | n 💉      |               | sample | diluti | on   |
|-------------|--------|---------------------|-----|------|---------------------------|----------------|----------------|---------|----------|---------------|--------|--------|------|
| [Methadone] | Matrix | Inte<br>Carti       |     | S/B  | Mod.                      | Inte<br>Cartri | 7              | S/B     | Mod.     | Inte<br>Cartr | 1      | S/B    | Mod. |
| ng/ml       |        | Mean                | CV% |      |                           | Mean <         | CV%            |         |          | Mean          | CV%    |        |      |
| 1000.0      |        | 1719                | 0   | 151  | 4.4                       | 2495           | 6              | 66      | 2.7      | 5022          | 26     | 36     | 2.9  |
| 300         | Buffer | 7511                | 21  | 35   | 4.5                       | 6753           | (9)            | 24      | 5.5      | 14775         | 32     | 12     | 5.0  |
| 40.0        |        | 33601               | 2   | 8    | 7.7                       | 37384          | 37             | 4       | 4.4      | 74369         | 4      | 2      | 2.4  |
| 0           |        | 259714              | 20  | 1 \  | √0.0                      | 163735         | 16             | 1       | <u> </u> | 180179        | 11     | 1      |      |
| 1000.0      |        | 1783                | 21  | 123  | >2.8                      | 3067           | 14             | ST.     | 2.5      | 5032          | 6      | 41     | 2.4  |
| 300         | Urine  | 5079                | 1   | 43.( | $\searrow$ 5,1 $\nearrow$ | 7515           | $\sqrt{2}$     | 29      | 7.3      | 11880         | 9      | 17     | 5.5  |
| 40.0        |        | 25678               | 2   | Q\   | 8,5                       | 54974          | M              | 4       | 4.0      | 65211         | 20     | 3      | 3.1  |
| 0           |        | 219022              | 38  | N.   |                           | 219727         | <sup>1</sup> 9 | 1       |          | 205402        | 2      | 1      |      |
| 1000.0      |        | 1592                | 38  | 152  | 2.5                       | 3277           | 33             | 67      | 2.4      | 4708          | 3      | 59     | 2.6  |
| 300         | Serum  | 4000                | 23  | 60   | 4.6                       | 6211           | 37             | 35      | 7.1      | 12292         | 5      | 23     | 5.7  |
| 40.0        |        | 18471               |     | 13   | 13.1                      | 44218          | 2              | 5       | 6.4      | 70023         | 20     | 4      | 4.0  |
| 0           |        | 241466              | 12  | ) Y  |                           | 284337         | 4              | 1       |          | 227129        | 8      | 1      |      |



#### 1.8 Effect of conjugate stabilizer

The Methadone AP conjugate was formulated in 3 different AP conjugate stabilizer and the dose response was evaluated as shown in Table 12. The Theranos Small Moleculae AP Conjugate Stabilizer showed the best modulation between the top two calibrator levels. It was finalized as the AP conjugate stabilizer.

Table [ SEQ Table \\* ARABIC ]: Effect of conjugate stabilizer

|             |               | nos Sma |       |       | StabilZyme Biostab |           |          |          |     |       |
|-------------|---------------|---------|-------|-------|--------------------|-----------|----------|----------|-----|-------|
| [Methadone] | Into<br>Cartı |         | S/B   | Modn. | Inter-Cartridge    | S/B Modn. | Inter-Ca | ırtridge | S/B | Modn. |
| ng/ml       | Mean          | CV%     |       |       | Mean CV%           |           | Mean     | CV%      |     |       |
| 1000.0      | 5022          | 26      | 36    | 2.9   | 8677.              | 46 1,8    | 5229     | 3        | 49  | 2.4   |
| 300         | 14775         | 32      | 12    | 5.0   | 15318 19           | 26 7.6    | 12537    | 1        | 21  | 6.5   |
| 40.0        | 74369         | 4       | 2.4 ⟨ | ∕ 2.4 | 116137 > 45 \      | 3.4       | 81290    | 20       | 3   | 3.2   |
| 0           | 180179        | 11      | 1     |       | 395703 \ 18 \      | ्रे       | 258621   | 16       | 1   |       |

#### 1.9 Effect of reagent incubation time

Shorter incubation times were tested compared to the original condition of 10 minute sample mixture and substrate incubations. Five minute and 2, 1 minute incubation times were tested. The overall dose reposnse was slightly lower at shorter incubation times and the relative counts were also low. The control condition of 10x10 reagent incubation times was finalized.

Table | SEQ Table | \* ARABIC | Effect of reagent incubation time

|             |               | 10'x1 | 0,  |       | 5'x5' |              |     | 2'x1' |             |              |     |       |
|-------------|---------------|-------|-----|-------|-------|--------------|-----|-------|-------------|--------------|-----|-------|
| [Methadone] | Inte<br>Cartr | 3     | S/B | Modn. | ł     | er-<br>ridge | S/B | Modn. | Int<br>Cart | er-<br>ridge | S/B | Modn. |
| ng/ml       | Mean          | CV%   |     |       | Mean  | CV%          |     |       | Mean        | CV%          |     |       |
| 1000.0      | 5022          | 26    | 36  | 2.9   | 1435  | 4            | 18  | 2.1   | 262         | 9            | 25  | 2.2   |
| 300         | 14775         | 32    | 12  | 5.0   | 3038  | 10           | 8   | 6.4   | 581         | 11           | 11  | 4.6   |
| 40.0        | 74369         | 4     | 2.4 | 2.4   | 19380 | 11           | 1.3 | 1.3   | 2647        | 6            | 3   | 2.5   |
| 0           | 180179        | 11    | 1   |       | 25205 | 31           | 1   |       | 6659        | 11           | 1   |       |



#### 1.10 Determination of LLOQ and ULOQ and comparison of matrices

Methadone was spiked into assay buffer, normal serum and normal urine to construct 8 point standard curves. Table 14 describes the assay buffer calibration curve details and the calibration parameters are summarized in Table 15. Figure 1 shows the calibration curve plot with the curve fit. The target LLOQ and ULOQ of 40 ng/ml and 1000 ng/mL were met and the accuracies and precision were within the FDA criteria.

Table [ SEQ Table \\* ARABIC ]: Assay buffer calibration for Methadone assay

Conc =  $b3 * (((b2 - b1) / (RLU - b1)) - 1) ^ (1 / b4)$ 

| [Methadone] | R       | LU              | S/B | Mod.                  | Concen    | g/ml    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|-------------|---------|-----------------|-----|-----------------------|-----------|---------|----------------------------------------|
| ng/ml       | Inter-C | Inter-Cartridge |     |                       | Inter-Ca  | rtridge | Recovery                               |
|             | Mean    | CV%             |     |                       | Mean      | CV%     |                                        |
| 1000        | 4303    | 6.2             | 51  | 1:1                   | 1008      | 7.9     | 101                                    |
| 750         | 4863    | 3.5             | 45  | 1.9                   | 867       | 4.0     | ) 116                                  |
| 500         | 9295    | 16.0            | 23  | 1:2                   | 410       | 18.4    | 82                                     |
| 300         | 11022   | 13.4            | 20  | 2,1                   | 329       | 15.6    | 110                                    |
| 150         | 22804   | 26.0            | 10  | 2.3                   | 143       | 25.0    | 95                                     |
| 40          | 51577   | 15.8            | 4.2 | 1.8                   | <b>45</b> | 23.4    | 113                                    |
| 20          | 93241   | 6.0             | 2.3 | 2.3                   | √ 17      | 16.3    | 86                                     |
| 0           | 218020  | 35.9            | 1   | $\langle 0.0 \rangle$ | OORL      |         |                                        |

Table [ SEQ Table \* ARABIC ]: Calibration curve parameters

| LLOQ 40                                          | ng/mL                                                     |
|--------------------------------------------------|-----------------------------------------------------------|
| ULØQ \ 1000                                      | ng/mL                                                     |
| LLOQ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\         |                                                           |
| accuracy \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   | $\langle \langle \langle \langle \rangle \rangle \rangle$ |
| LLOQ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\          | 0/0                                                       |
| precision \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ |                                                           |
| ULOQ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\        | > %                                                       |
| accuracy                                         | , ,0                                                      |
|                                                  | %                                                         |
| precision 7.9                                    | <b>70</b>                                                 |

Using the buffer based calibration curves the recoveries for a spiked methadone urine and normal serum curves were computed. These results are summarized in Tables 16 and 17. In both cases the back calculated concentrations were within 20% of nominal. The Theranos assay will be a qualitative assay. For urine, results > and = 300 ng/mL would be positive (shaded in red) and < 300 ng/ml would be negative (shaded in green). For serum samples, results of 40 ng/mL and greater would be positive (shaded in red) and < 40 ng/ml would indicate a negative result (shaded in green). It is clear from this exercise that a buffer based calibration could be applied to calculate results in both serum and urine matrix.



Figure [ SEQ Figure \\* ARABIC ]: Methadone Standard Curve in Assay Buffer

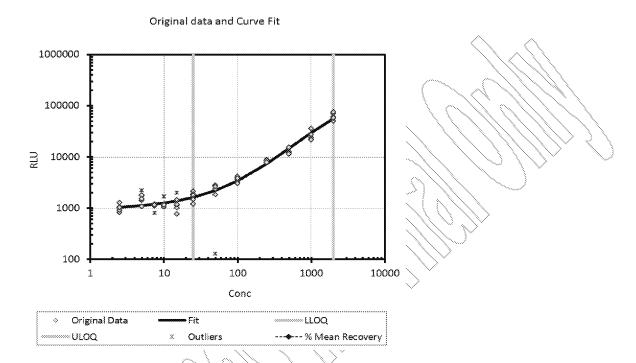
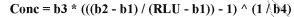



Table [ SEQ Table \\* ARABIC ]: Methadone spiked urine standard curve


| [Methadone] | RL       | U                                     | S/B  | Mod. | Conc.           | ng/ml | %        | Theranos |
|-------------|----------|---------------------------------------|------|------|-----------------|-------|----------|----------|
| ng/ml       | Inter-Ca | rtridge                               |      | ``   | Inter-Cartridge |       | Recovery | Result   |
|             | Mean     | CV%                                   |      |      | Mean            | CV%   |          |          |
| 1000        | 3913     | 10.1                                  | ) 60 | 1.4  | 1150            | 12.7  | 115      | Pos      |
| 750         | 5474     | S\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 43   | 1.7  | 747             | 9.9   | 100      | Pos      |
| 500         | 9237     | 10.7                                  | 26   | 1.2  | 403             | 15.5  | 81       | Pos      |
| 300         | 10938    | 19.0                                  | 22   | 2.1  | 340             | 23.1  | 113      | Pos      |
| 150         | 23260    | 3.9                                   | 10   | 2.5  | 129             | 3.6   | 86       | Neg      |
| 40          | 58546    | 14.6                                  | 4.0  | 1.9  | 38              | 22.3  | 94       | Neg      |
| 20          | 114129   | 34.2                                  | 2.1  | 2.1  | OORL            |       |          | Neg      |
| 0           | 236347   | 6.1                                   | 1    | 0.0  | OORL            |       |          | Neg      |

Conc =  $b3 * (((b2 - b1) / (RLU - b1)) - 1) ^ (1/b4)$ 



Table [ SEQ Table \\* ARABIC ]: Methadone spiked serum standard curve

| [Methadone] | RL                      | ⁄U   | S/B | Mod. | Conc.               | ng/ml | %        | Theranos |
|-------------|-------------------------|------|-----|------|---------------------|-------|----------|----------|
| ng/ml       | Inter-<br>yml Cartridge |      |     |      | Inter-<br>Cartridge |       | Recovery | Result   |
|             | Mean                    | CV%  |     |      | Mean                | CV%   |          |          |
| 1000        | 5113                    | 13.8 | 40  | 1.1  | 830                 | 17.6  | 83       | Pos      |
| 750         | 5867                    | 24.0 | 35  | 1.6  | 730                 | 22.5  | 97       | Pos      |
| 500         | 9306                    | 9.2  | 22  | 1.4  | 402                 | 7.8   | 80\ (    | Pos      |
| 300         | 13285                   | 11.2 | 15  | 1.5  | 257                 | 11.3  | 86       | Pos      |
| 150         | 19693                   | 27.2 | 10  | 2.8  | 166                 | 28.0  | МУ       | Pos      |
| 40          | 54901                   | 4.1  | 4   | 2.7  | 39                  | 5.6   | 98       | Pos      |
| 20          | 148612                  | 17.6 | 1   | 1.4  | OORL                |       |          | Neg      |
| 0           | 204396                  | 15.2 | 1   | 0.0  | OORL                |       |          | Neg      |





#### 1.11 Cross reactivity with Methadone analogs

Methadone is predominantly N-demethylated and undergoes spontaneous cyclization to produce 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine(EDDP), which is subsequently N-demethylated to 2-ethyl-5-methyl-3,3-diphenylpyraline (EMDP) (Fig. 2) These two metabolites are devoid of opiate activity. l- $\alpha$ -Acetylmethadol (LAAM) is an analog of methadone, characterized by longer duration of effectiveness when administered every 2 or 3 days. LAAM is sequentially N-demethylated to form l- $\alpha$ -acetyl-N-normethadol (nor-LAAM) and l- $\alpha$ -acetyl-N-N-dinormethadol (dinor-LAAM) (Fig. 2). The Theranos Methadone assay was tested for cross reactivity against EDDP and EMDP. LAAM and its metabolites were not available for testing.

Figure [ SEQ Figure \\* ARABIC ]: Methadone metabolites

The Methadone metabolites EDDP and EMDP were first tested at 1000 ug/mL to see the upper limit of cross reactivity. At this level both analogs tested positive on the Theranos methadone assay. The analogs were then titrated to several levels below 1000 ug/mL to see at which concentration they would test negative for the 300 ng/ml cut off. The data are summarized in Table 18 and Table 19. Concentrations of EMDP and EMDP showing a negative response to the 300 ng/ml cut off were 50 and 100 ug/mL.



Table [ SEQ Table \\* ARABIC ]: Cross reactivity with EMDP

|   | <del></del> | -       |                      |             |          |       |            |          |
|---|-------------|---------|----------------------|-------------|----------|-------|------------|----------|
|   |             |         | RL                   | .U          | Conc.    | ng/mL |            |          |
|   | [EMDP]      | [EMDP]  |                      | Inter-Ca    | artridge |       | %Cross     | Theranos |
|   | ug/ml       | ng/ml   | Mean                 | CV%         | Mean     | CV%   | reactivity | Result   |
|   | 1000        | 1000000 | 1033                 | 1.7         | 7338     | 4.1   | OORH       | Pos      |
|   | 500         | 500000  | 1473                 | 9.1         | 4336     | 7.6   | OORH       | Pos      |
|   | 100         | 100000  | 7042                 | 18.2        | 573      | 23.5  | 0,6        | Pos      |
|   | 50          | 50000   | 12843                | 8.0         | 275      | 10.5  | 0.6        | Neg      |
|   | 5           | 5000    | 85455                | 26.7        | 25       | 39.2  | 0.5        | Neg      |
|   | 1           | 1000    | 132382               | 18.0        | OORL     |       |            | Neg      |
| - | 0           | 0       | 218020 <sub>.3</sub> | <b>35.9</b> | OORL     |       |            | Neg      |

# Table [ SEQ Table \\* ARABIC ]: Cross reactivity with EDDP

|        |             | RI     | <i>l</i> u )\\ | Conc.    | ng/mL |            |          |
|--------|-------------|--------|----------------|----------|-------|------------|----------|
| [EDDP] | [EDDP]      |        | Inter-Ca       | irtridge |       | % Cross    | Theranos |
| ug/ml  | ng/ml       | Mean   | CV%            | Mean     | CV%   | reactivity | Result   |
| 1000   | 1000000     | 2744   | 77.1           | 1866     | 26.9  | 0.2        | Pos      |
| 500    | 500000      | 4242   | 6.7            | 1027     | 8.4   | 0.2        | Pos      |
| 100    | //_00000_// | 11999  | 12.5           | 294      | 14.2  | 0.3        | Neg      |
| 50     | 50000       | 22899  | 10.6           | 131      | 15.1  | 0.3        | Neg      |
| 5      | 5000 )      | 102549 | 0.0            | 14       | 0.3   | 0.3        | Neg      |
|        | 1000        | 177977 | 8.8            | OORL     |       |            | Neg      |
|        | 6/1/1/1/0   | 218020 | 35.9           | OORL     |       |            | Neg      |



# 1.12 Cutoff verification and Cross reactivity with other drugs-of-abuse controls

In order to verify cut offs and calibration commercially available urine drugs-of-abuse controls were tested. All these controls had reported values for methadone. As can be seen from Table 20 there was good correlation between the Theranos results and the reported values of methadone for these controls with recoveries within 20% of the reported values. A separate set of commercially available controls that included several other classes of drugs (amphetamines, cannabinoids, cocaine etc.) were also tested in the assay to check for cross reactivity. The results are presented in Table 21. No cross reactivity was detected against any of these drug panels except the cocaine panel which had high levels of methadone for which the results were positive.

Table [ SEQ Table \\* ARABIC ]: Cut off verification

|                                                  |                    |        | 1/2        |          |       | %        |          |
|--------------------------------------------------|--------------------|--------|------------|----------|-------|----------|----------|
| Control                                          | Reported           | RI     | <u>u V</u> | Conc.    | ng/mL | Recovery | Theranos |
|                                                  | Level of Methadone |        | Inter-Ca   | artridge |       |          | Result   |
|                                                  | ng/ml              | Mean   | CV%        | Mean     | CV%   |          |          |
| BioRad Urine toxicology S1                       | 225                | 17503  | 13.7       | 183      | 17.3  | 81       | Neg      |
| BioRad Urine toxicology S2                       | 375                | 8285   | 11.0       | 453      | 13.8  | 121      | Pos      |
| BioRad Urine toxicology \$3                      | 750                | 5301   | 9.9        | 779      | 11.9  | 104      | Pos      |
| BioRad Urine toxicology Neg BioRad Urine Ctrl Q. | 50                 | 188042 | 15.2       | OORL     |       |          | Neg      |
| Positive                                         | 694                | 5417   | 2.8        | 781      | 6.1   | 113      | Pos      |
| Synerhent controls \$1                           | 207                | 13770  | 4.2        | 242      | 4.8   | 117      | Neg      |
| Synerhent controls \$2                           | 394                | 10170  | 12.3       | 356      | 14.4  | 90       | Pos      |
| Synerhent controls \$3                           | 418                | 8414   | 15.3       | 480      | 21.6  | 115      | Pos      |
| Synerhent controls S4                            | 897                | 4385   | 12.5       | 1073     | 19.1  | 120      | Pos      |
| Synerhent controls S0                            | 0                  | 136689 | 14.2       | OORL     |       |          | Neg      |



Table [SEQ Table \\* ARABIC ]: Cross reactivity with other classes of drugs

|                |                 | pannananananananananananananananananana | -            |                 |             |                      |               |             |             |        |
|----------------|-----------------|-----------------------------------------|--------------|-----------------|-------------|----------------------|---------------|-------------|-------------|--------|
|                | <b></b>         | DOA Levels from Zeptometrix Datasheet   |              |                 |             |                      |               |             |             | os     |
|                | Panel<br>Member | Amphetamines                            | Barbiturates | Benzodiazepines | Cannabinoid | Cocaine              | Oxycodone     | Methadone   | [Methadone] | Result |
| Name of Panel  | #               |                                         |              |                 |             |                      |               |             | ng/mL       |        |
| Amphetamine    | 1               | 5,304 (Pos)                             | Neg (<270)   | Neg (<270)      | Neg (<45)   | Neg<br>(<125)<br>Neg | 1,286(Pos)    | Neg (<270)  | OORL        | Neg    |
|                | 4               | 1,500 (Pos)                             | Neg (<270)   | Neg (<270)      | Neg (<45)   | (<125)<br>Neg        | Neg           | Neg (<270)  | 193         | Neg    |
|                | 6               | 5,118 (Pos)                             | Neg (<270)   | Neg (<270)      | Neg (<45)   | (<125)               | Neg           | Neg (<270)  | 90          | Neg    |
| Benzodiazepine | 9               | Neg (<450)                              | Neg (<270)   | 3,032 (Pos)     | Neg (<45)   | Neg<br>(<125)        | 1,460 (Pos)   | Neg (<270)  | OORL        | Neg    |
| Barbiturate    | 5               | Neg (<450)                              | 1,267(Pos)   | Neg (<270)      | 46(Pos)     | Neg<br>(<125)        | Neg           | Neg (<270)  | 252         | Neg    |
| Oxycodone      | 1               | Neg (<450)                              | Neg (<270)   | Neg (<270)      | Neg (<45)   | Neg<br>(<125)        | 1,316 (Pos)   | Neg (<270)  | OORL        | Neg    |
| Cocaine        | 2               | Neg (<450)                              | Neg (<270)   | Neg (<270)      | Neg (<45)   | 1,468<br>(Pos)       | Neg<br>1, 231 | 1,279 (Pos) | OORH        | Pos    |
|                | 4               | 4,659 (Pos)                             | Neg (<270)   | 3,465 (Pos)     | Neg (<45)   | 721(Pos)             | (Pos)         | 751(pos)    | 756         | Pos    |
|                | 5               | Neg (<450)                              | Neg (<270)   | Neg (<270)      | Neg (<45)   | 903(Pos)<br>1,984    | Neg           | Neg (<270)  | OORL        | Neg    |
|                | 2               | Neg (<450)                              | Neg (<270)   | Neg (<270)      | Neg (<45)   | (Pos)<br>Neg         | Neg           | 1,476 (Pos) | OORH        | Pos    |
|                | ~\10 {~~        | Neg (<450)                              | Neg (<270)   | Neg (<270)      | Neg (<45)   | (<125)               | Neg           | 1,329 (Pos) | OORH        | Pos    |



#### 1.13 Normal Donor Screen

10 normal donor urine samples and 10 normal EDTA plasma samples were screened on the Theranos methadone assay. All 20 samples were OORL (out of range low) and yielded a negative result on the Theranos assay (Table 22 and 23).

Table [ SEQ Table \\* ARABIC ]: Normal donor urine sample screen

| Urine     | Into<br>Cartr | _    | [Methadone] | Theranos |
|-----------|---------------|------|-------------|----------|
| Sample ID | RLU           |      | ng/mL       | Result   |
|           | Mean          | CV%  |             |          |
| U1        | 203088        | 10.8 | OORL        | Neg      |
| U2        | 162161        | 15.9 | OORL        | Neg      |
| U3        | 145606        | 16.8 | OORL        | Neg      |
| U4        | 201981        | 18.4 | OØRL        | Neg      |
| U5        | 177154        | 11.9 | OORL        | Neg      |
| U6        | 182445        | 33.5 | OORL        | Neg      |
| U7        | 165293        | 19.1 | ØORL \      | Neg      |
| U8        | 214530        | 5.4  | OORL        | Neg      |
| U9        | 227228        | 22.0 | OORL        | Neg      |
| U10       | 191554        | 4.9  | OORL        | Neg      |

Table [ SEQ Table \\* ARABIC ]: Normal donor EDTA plasma sample screen

| EDTA<br>plasma<br>Sample ID | Inte<br>Cartri<br>RL<br>Mean | $\rightarrow$ $\wedge$ | [Methadone]<br>ng/mL | Theranos<br>Result |
|-----------------------------|------------------------------|------------------------|----------------------|--------------------|
| F1 \                        | 202914                       | 8.8                    | OORL                 | Neg                |
| F2                          | 177657                       | 2.3                    | OORL                 | Neg                |
| F3                          | 141508                       | 21.5                   | OORL                 | Neg                |
| F4                          | 163636                       | 4.3                    | OORL                 | Neg                |
| F5                          | 201730                       | 13.6                   | OORL                 | Neg                |
| M22                         | 146175                       | 29.7                   | OORL                 | Neg                |
| M23                         | 195616                       | 19.9                   | OORL                 | Neg                |
| M24                         | 205756                       | 35.1                   | OORL                 | Neg                |
| F16                         | 258448                       | 15.4                   | OORL                 | Neg                |
| F17                         | 228770                       | 20.6                   | OORL                 | Neg                |



#### 1.14 Whole Blood Spike Recovery and Hematocrit effect

Spike recovery in EDTA whole blood and plasma was tested in the Theranos System. In order to determine the hematocrit effect, spiked whole blood was measured on the Theranos System, then plasma prepared from the spiked whole blood was measured and the results were compared. The results indicate that methadone does not concentrate into plasma. The result measured in the plasma is about the same as the one measured in whole blood. Data are summarized in Table 24.

Table [ SEQ Table \\* ARABIC ]: Spike Recovery in Whole Blood and Plasma generated from spiked whole blood

|             |                  | S          | piked | whole blo | ood reco | very                 | No.                    |
|-------------|------------------|------------|-------|-----------|----------|----------------------|------------------------|
| [Methadone] | Into<br>Cartı    | idge       | S/B   | Modn.     | Cart     | ( 1) T m             | 00                     |
| ng/ml       | RLU<br>Maan CV0/ |            |       |           | Co       | nc.                  | Recovery               |
|             | Mean             | CV%        |       |           | Mean     | <u> (() % \</u>      | $\frac{1}{2}$          |
| 1000        | 9320             | 9.0        | 27    | 1.3       | 826      | \\ <sup>9.8</sup> \\ | <b>\</b> \_ <b>8</b> 3 |
| 750         | 11825            | 9.3        | 21    | 1.4       | 633      | 10.8                 | 84                     |
| 500         | 16166            | 9.6        | 16    | 1.2       | 448      | 10.0                 | 90                     |
| 300         | 19877            | 8.8        | -13   | 2.2       | 356      | 9.9                  | 119                    |
| 150         | 42943            | 18,5       | 5.9   | 2.6       | 148      | 19.1                 | 99                     |
| 40          | 109683           | <b>7.4</b> | 2.3   | 1.9       | 37       | 13.9                 | 93                     |
| 20          | 203906           | 15.3       | 1.2   | 1.2       | OORL     |                      |                        |
| 0           | 253549           | 11,8       | 0     | 0.0       | OORL     |                      |                        |

|             | Plasma Generated from Spiked whole blood recovery |            |     |       |                              |     |               |  |  |  |
|-------------|---------------------------------------------------|------------|-----|-------|------------------------------|-----|---------------|--|--|--|
| [Methadone] | RLU                                               |            | S/B | Modn. | Inter-<br>Cartridge<br>Conc. |     | %<br>Recovery |  |  |  |
| 1000        | Mean                                              | <u>CV%</u> | 20  | 1.2   | Mean                         | CV% | 0.4           |  |  |  |
| 1000        | 8313                                              | 4.8        | 38  | 1.2   | 936                          | 5.3 | 94            |  |  |  |
| 750         | 9682                                              | 3.7        | 33  | 1.4   | 785                          | 4.0 | 105           |  |  |  |
| 500         | 13737                                             | 3.7        | 23  | 1.7   | 534                          | 4.1 | 107           |  |  |  |
| 300         | 22938                                             | 8.6        | 14  | 1.7   | 310                          | 8.1 | 103           |  |  |  |
| 150         | 39927                                             | 7.8        | 8   | 2.7   | 158                          | 9.5 | 105           |  |  |  |
| 40          | 108546                                            | 4.9        | 3   | 1.3   | 38                           | 9,6 | 95            |  |  |  |
| 20          | 137463                                            | 25.7       | 2.3 | 2.3   | OORL                         |     |               |  |  |  |
| 0           | 319680                                            | 12.9       | 0   | 0.0   | OORL                         |     |               |  |  |  |

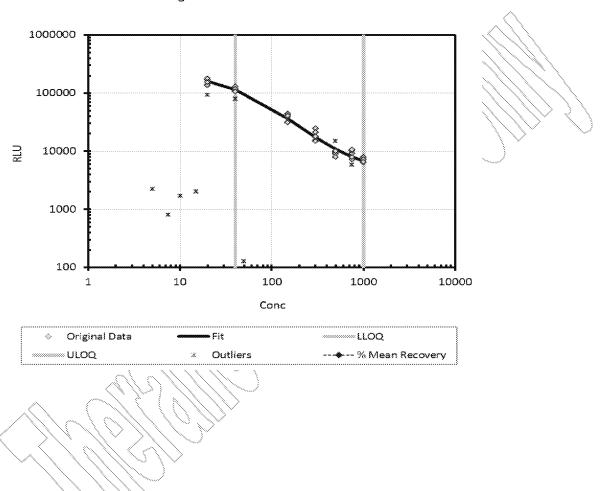


#### 1.15 Final calibration

At this stage of assay development the coating format was changed from Method 2 to Method 1 as described in section 1.4. This constituted a minor change in the presentation of the secondary antibody on the surface. As can be seen from Table 7 the two methods had identical modulation. A new set of reagents was manufactured and was used to produce a calibration curve described in Table 25 and Figure 3. The target LLOQ and ULOQ of 40 and 1000 ng/ml were met. The accuracy and precision data are summarized in Table 26. This lot of reagents was used for the remaining sets of experiments.

Table [ SEQ Table \\* ARABIC ]: Final calibration curve data

| [Methadone] | Inter-Cartridge<br>RLU |        | S/B Modn | Back<br>S/B Modn. calc.Conc. |       |          |  |  |
|-------------|------------------------|--------|----------|------------------------------|-------|----------|--|--|
| ng/ml       | Mean                   | CV%    |          | Mean                         | CV%   | Recovery |  |  |
| 1000        | 7148                   | 9.8    | 34 1,2   | 928                          | 17.6  | > 93     |  |  |
| 750         | 8723                   | 15.4   | 28 1.2   | 701                          | 23,5  | 93       |  |  |
| 500         | 10120                  | 17.9   | 24 1.8   | 582                          | ∑18.6 | 116      |  |  |
| 300         | 18574                  | 20.3   | 13 2.1   | 290                          | 17.5  | 97       |  |  |
| 150         | 38337                  | (15.7) | 6 3.0    | 145                          | 16.0  | 97       |  |  |
| 40          | 115326                 | 9.3    | 2.1 1.3  | <i>)</i> 40                  | 15.2  | 100      |  |  |
| 20          | 151900                 | 12.6   | 1.6 1.6  | OORL                         |       |          |  |  |
| <u>_0</u> _ | 240835                 | 9.1    |          | OORL                         |       |          |  |  |


Table SEQ Table ARABIC Final calibration curve parameters

| Proo > / //    | 40   | ng/mL |
|----------------|------|-------|
| ULOQ           | 1000 | ng/mL |
| LLOQ accuracy  | 100  | %     |
| LLOQ precision | 15.2 | %     |
| ULOQ accuracy  | 93   | %     |
| ULOQ precision | 17.6 | %     |



Figure [ SEQ Figure \\* ARABIC ]: Methadone final calibration curve

Original data and Curve Fit





# 1.16 Interference Test for RF and HAMA positive samples

The Theranos methadone assay was tested for interference from RF positive and HAMA positive samples. 5 samples of each type were tested on the Theranos system. The results for all 10 samples were negative. The data are summarized in Table 27 and Table 28.

Table [ SEQ Table \\* ARABIC ]: RF positive samples

| RF<br>Pos | Inter-Ca | rtridge | 0/0      | Theranos |
|-----------|----------|---------|----------|----------|
| samples   | RL       | U       | Recovery | Result   |
|           | Mean     | CV%     |          |          |
| R1        | 315317   | 13.9    | OORL     | Negative |
| R2        | 377093   | 14.2    | OORL     | Negative |
| R3        | 274733   | 2.5     | OORL     | Negative |
| R4        | 292511   | 3.0     | OORL     | Negative |
| R5        | 379756   | 12.0    | OORL     | Negative |

Table [ SEQ Table \\* ARABIC ] HAMA positive samples

| HAMA<br>Pos | Inter-Ca | rtridge  | %        | Theranos |
|-------------|----------|----------|----------|----------|
| samples     | RL       | <b>U</b> | Recovery | Result   |
|             | Mean     | CV%      |          |          |
| H1          | 358838   | 19.5     | QORL\    | Negative |
| H2          | 344812   | 14.5     | OORL     | Negative |
| Н3          | 306179   | 21.4     | OORL     | Negative |
| H4          | 358458   | 15.5     | OORL     | Negative |
| H5\         | 341186   | 13,1     | OORL     | Negative |



#### 1.17 Interference matrices test

Hemolyzed, lipemic and icteric serum samples were obtained from a commercial source. The recovery of methadone spiked into these potentially interfering matrices was evaluated on the Theranos System (Table 29). The assay did not show any interference from icteric and lipemic samples. The assay showed lower than optimal recoveries (68-86%) with the hemolyzed sample suggesting that grossly hemolyzed samples might interfere with the assay.

Table [ SEQ Table \\* ARABIC ]: Interfering matrices test

| Nominal     |        |      | Lipemic |         |      |          |        |          | Hen   | molyzed |      | !        |        |      | J    | Icteric  |       |            |
|-------------|--------|------|---------|---------|------|----------|--------|----------|-------|---------|------|----------|--------|------|------|----------|-------|------------|
| Spiked      | RL     | .U   | Conc.   | . ng/ml | %    | Therangs | RL     | 'n       | Conc. | ng/ml   | %    | Theranos | RL     | _U   | Conc | c. ng/ml | %     | Theranos   |
| [Methadone] | Mean   | CV%  | Mean    | CV%     | Rec. | Result   | Mean   | CV%      | Mean  | CV%     | Rec. | Result   | Mean   | CV%  | Mean | CV%      | Rec.  | Result     |
| ng/mL       |        |      |         |         |      | <u> </u> |        | <u> </u> |       |         |      | <b>!</b> |        |      |      |          | ,<br> | <u> </u> ' |
| 1000        | 7775   | 6.3  | 812     | 12.4    | 81~  | Positive | 7444   | <u></u>  | 856   | 2.2     | 86   | Positive | 7760   | 11.9 | 816  | 18.8     | 82    | Positive   |
| 300         | 19394  | 4.1  | 270     | ₹3,9    | _90  | Positive | 23528  | 18.5     | 229   | 16.3    | 76   | Positive | 22159  | 9.3  | 239  | 8.1      | 80    | Positive   |
| 40          | 130355 | 11.4 | 33      | 21,4    | 82   | Negative | 142345 | 10.0     | 27    | 22.5    | 68   | Negative | 109674 | 8.7  | 44   | 14.6     | 111   | Positive   |
| 0           | 373575 | 19.8 |         |         | OORL | Negative | 250187 | 16.9     |       |         | OORL | Negative | 321656 | 16.0 |      |          | OORL  | Negative   |



# 1.18 Cross reactivity with more drugs

The following drugs: aspirin, ibuprofen, caffeine, cotinine, chlorpromazine, trimipramine, imipramine and acetaminophen were tested on the assay. None of them displayed any cross reactivity with the assay (Table 30).

Table [ SEQ Table \\* ARABIC ]: Cross reactivity testing with more drugs

| Drugs          | Concentration | centration Inter-Cartridge |      | %        | Theranos |
|----------------|---------------|----------------------------|------|----------|----------|
| Conc tested    | tested, ug/mL | Mean                       | CV%  | Recovery | Result   |
| Acetaminophen  | 1000          | 273372                     | 7.7  | OORL     | Negative |
| Caffeine       | 1000          | 258230                     | 11.2 | OORL     | Negative |
| Ibuprofen      | 1000          | 257519                     | 10.3 | OORL     | Negative |
| Aspirin        | 1000          | 286151                     | 9.2  | OORL     | Negative |
| Cotinine       | 100           | 198263                     | 7.9  | OORL     | Negative |
| Chlorpromazine | 100           | 193872                     | 1.4  | OORL     | Negative |
| Trimipramine   | 100           | 167180                     | 12.9 | OORL     | Negative |
| Imipramine     | 100           | 282711                     | 3.6  | OORL     | Negative |



#### 1.19 Clinical Sample Correlation

Due to the non-availability of samples that were positive for methadone from a commercial source, methadone was spiked into individual urine or plasma samples across the range of the assay above and below the cutoff values for the respective matrices. A set of 20 samples were constructed in this manner for the urine matrix and a similar set was made using plasma/serum. The urine samples were sent to the CLIA lab for testing on the Siemens Advia methadone assay. There was excellent correlation of the back calculated concentrations to the reported values from the Siemens Advia (Table 31). The Theranos assay being a qualitative assay the results (positive or negative) also tracked well. For the plasma/serum samples no predicate was available. The recoveries were within 20% of the nominal spiked concentration for all the samples tested (Tables 32 and 33).

Table [ SEQ Table \\* ARABIC ]: Clinical sample correlation for urine samples

| <b></b>      |               |         |                 |                                        |  |  |  |
|--------------|---------------|---------|-----------------|----------------------------------------|--|--|--|
| Sample<br>ID | CLIA<br>Advia | Theran  | Theranos Result |                                        |  |  |  |
|              | Results       | Mean    |                 | Recovery                               |  |  |  |
|              | ng/ml         | ng/mL   |                 |                                        |  |  |  |
| U1           | 1286          | OORH    | Positive        | OORH                                   |  |  |  |
| U2           | 913           | OORH    | Positive        | OORH                                   |  |  |  |
| U3           | 700           | 898     | Positive        | 128                                    |  |  |  |
| U4           | 671           | 762     | Positive        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |  |  |  |
| U5           | 551           | <u></u> | Positive        | 104                                    |  |  |  |
| U6           | 386           | 416     | Positive        | 108                                    |  |  |  |
| U7           | 289           | 248     | Negative        | 86                                     |  |  |  |
| Ú8\\         | 271           | 284     | Negative        | 105                                    |  |  |  |
| 🤇 U9 👌       | 217           | 216     | Negative        | 100                                    |  |  |  |
| U10\         | 199           | 236     | Negative        | 119                                    |  |  |  |
| U11          | 685           | 727     | Positive        | 106                                    |  |  |  |
| U12          | 587           | 577     | Positive        | 98                                     |  |  |  |
| U13          | 446           | 471     | Positive        | 105                                    |  |  |  |
| U14          | 454           | 370     | Positive        | 81                                     |  |  |  |
| U15          | 406           | 372     | Positive        | 92                                     |  |  |  |
| U16          | 334           | 321     | Positive        | 96                                     |  |  |  |
| U17          | 184           | 196     | Negative        | 107                                    |  |  |  |
| U18          | 157           | 170     | Negative        | 108                                    |  |  |  |
| U19          | 151           | 163     | Negative        | 108                                    |  |  |  |
| U20          | 130           | 91      | Negative        | 70                                     |  |  |  |
| U21          |               | 749     | Positive        | 75                                     |  |  |  |
| U22          |               | 355     | Positive        | 118                                    |  |  |  |



Table [ SEQ Table \\* ARABIC ]: Spike recovery of N=10 EDTA plasma samples

| Sample | Nominal     | Into<br>Carti |              | Inter-<br>Cartridge |        | %        | Theranos<br>Result |
|--------|-------------|---------------|--------------|---------------------|--------|----------|--------------------|
| ID     | [Methadone] | RL            | $\mathbf{U}$ | Conc.               | ng/ml  | Recovery |                    |
|        | ng/ml       | Mean          | CV%          | Mean                | CV%    |          |                    |
| P1     | 1200        | 6684          | 7.9          | 1048                | 13.8   | 87       | Positive           |
| P2     | 950         | 8297          | 11.0         | 742                 | 15.2   | 78       | Positive           |
| Р3     | 700         | 10397         | 8.4          | 534                 | 10.0   | 76       | Positive           |
| P4     | 550         | 12294         | 6.8          | 433                 | 8.1    | 79       | Positive           |
| P5     | 375         | 17688         | 5.4          | 295                 | 5.3    | 79       | Positive           |
| P6     | 225         | 27217         | 10.2         | 198                 | 10.2   | 88       | Positive           |
| P7     | 155         | 41133         | 31.4         | 140                 | 26.4   | (\\90\\  | Positive           |
| P8     | 65          | 88034         | 13.4         | 61\                 | 15.7   | (93)     | Positive           |
| P9     | 40          | 100276        | 2.5          | 50                  | ×3.6 ( | 124      | Positive           |
| P10    | 15          | 172327        | 16.8         |                     | 100    | OORL     | Negative           |

Table [ SEQ Table \\* ARABIC ]: Spike recovery of N=10 EDTA plasma samples

| Sample                                    | Nominal     | Inter-Cartridge |                                        | Inter-Ca      | ırtridge | 0/0      | Theranos |
|-------------------------------------------|-------------|-----------------|----------------------------------------|---------------|----------|----------|----------|
| ID                                        | [Methadone] | RL              | RLU 🗦 🛝                                |               | ng/ml    | Recovery | Result   |
|                                           | ng/ml       | Mean            | CV%                                    | Mean          | CV%      |          |          |
| S1                                        | 1000        | 7565            | 11.4                                   | 852           | 17.2     | 85       | Positive |
| S2                                        | 835         | 8619            | \\\\X\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <i>.</i> 2687 | 10.6     | 82       | Positive |
| S3                                        | 650         | 8382            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 721           | 15.0     | 111      | Positive |
| S4                                        | 425         | 13018           | 22.7                                   | 427           | 22.4     | 100      | Positive |
| S5\\                                      | 250         | 20770           | 23.6                                   | 265           | 26.0     | 106      | Positive |
| $\left  \mathbb{N}_{\mathbf{S}6} \right $ | 7, 100/     | 48983           | 3.1                                    | 113           | 2.9      | 113      | Positive |
| s7\                                       | 75          | 61940           | 9.0                                    | 90            | 9.5      | 120      | Positive |
| S8                                        | 60          | 76236           | 6.3                                    | 71            | 6.9      | 118      | Positive |
| S9                                        | 40          | 126787          | 14.3                                   | 34            | 26.7     | 86       | Negative |
| S10                                       | 35>         | 116431          | 4.1                                    | 39            | 6.8      | 113      | Negative |
| S11                                       | 25          | 136997          | 6.3                                    | 29            | 14.5     | OORL     | Negative |
| S12                                       | 10          | 195638          | 27.0                                   |               |          | OORL     | Negative |