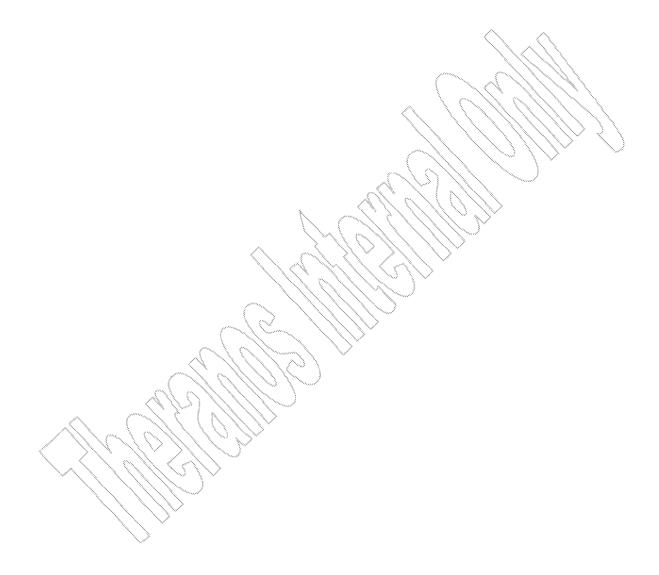


Free Triiodothyronine (fT3) Assay Development Report

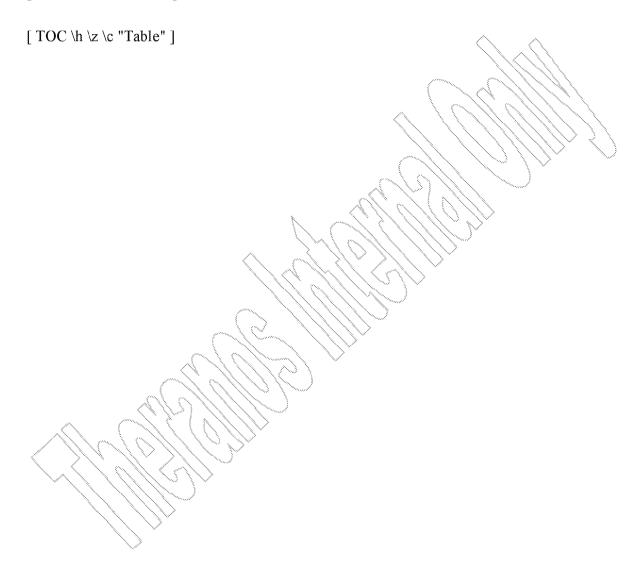
Theranos, Inc.

April 15, 2011

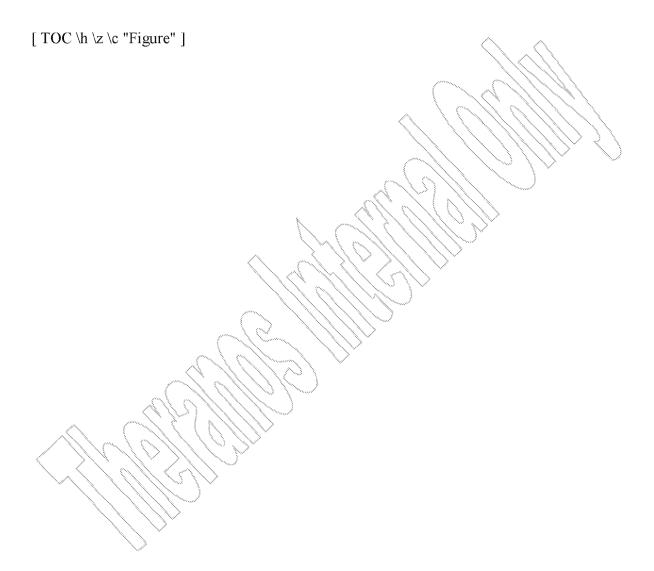

Prepared by: Sheena Menezes

This Development Report contains Theranos Confidential Information and is being provided under the parties' Mutual Confidentiality Agreement. Any further dissemination, use or disclosure of the Report, in whole or in part, is strictly prohibited.

THERANOS CONFIDENTIAL Page [PAGE]


TABLE OF CONTENTS

THERANOS CONFIDENTIAL Page [PAGE]


[TOC $\$ "1-3" $\$ \h $\$ \z $\$ \u]LIST OF TABLES :

THERANOS CONFIDENTIAL Page [PAGE]

LIST OF FIGURES

THERANOS CONFIDENTIAL Page [PAGE]

1 ASSAY INFORMATION TC "ASSAY INFORMATION" \F C \L "2" |

1.1 Assay Specifications TC "Assay Specifications" \f C\\\"3\"\\

This assay is designed to detect free Triiodothyronine (T3) in human whole blood (automatically processed into plasma by the Theranos system), plasma and serum. The assay has a reportable normal range of 2 pg/ml to 50 pg/ml.

1.1.1 Reference Assays [TC "Reference Assays and Standards"\f C\\"3"]

The following commercial ELISA kit has been used in house for comparison: -US Biological (Cat #T8425-06)

1.1.2 Materials and methods

[TC "Materials and Methods" \f C\l\'1\'\]

In this competitive assay format, the fT3 in the sample competes with T3-AP for binding to the anti-T3 antibody. Briefly, an anti-rabbit antibody serves as the capture surface for the competitive ELISA. Alkaline Phosphatase-labeled triiodothyronine (T3-AP) serves as the tracer. The mixture of sample, Rabbit Anti-T3 Antibody and T3-AP is incubated with the capture surface for 5 minutes followed by six wash steps. Then the alkaline phosphatase substrate is incubated with the capture surface for 5 minutes. The resulting chemiluminescence is read in Relative Light Units (RLU).

The key materials that were used for this assay are listed in Table 1.

THERANOS CONFIDENTIAL Page [PAGE]

Table [SEQ Table * ARABIC]: Materials

NT.	c 1:	
Name	Supplier	Catalog #
Triiodothyronine	Sigma	T2877
Goat Anti-Rabbit IgG (Fc)	Pierce	31216
Triiodothyronine Alkaline Phosphatase Conjugate	Fitzgerald	65-IT25
Backup product: Triiodothyronine AP conjugate	USBiological	T8425-15
Phospho Glo Substrate	KPL	55-60-04
Low BSA Blocking Buffer	Sigma	A3059-500G
(0.03% BSA (Fraction V, 99% Pure) in TBS, 0.05% Sodium Azide)		
Carbonate-bicarbonate buffer	Sigma	C3041
Thyroid Hormone Depleted Serum (Calibrator Matrix)	Sunny Lab	SF509-2

THERANOS CONFIDENTIAL Page [PAGE]

Table [SEQ Table * ARABIC]: List of Antibodies-Set 1

Antibody#	Vendor	Catalog #	Clone #
1	US Biological	T8425-01	1. B .174
2	US Biological	T8425-01B	3H285
3	US Biological	T8425-01C	3H286
4	US Biological	T8425-10A	9F323
5	US Biological	T8425-01G	9D742
6	US Biological	T8425-07D	10 B 2497
7	US Biological	T8425-07E	10B2498
8	US Biological	T8425-13A	10g222
9	US Biological	T8425-02	1.B.175
10	My Biosource	MBS310605	ME.124
11	My Biosource	MB\$310706	∑3A6
12	My Biosource	_MB\$31,1698 < _\\\	027-10237
13	My Biosource	MBS311697	291-13121
14	Leinco technologies	TJ05	170
15	Roche	10907332103	N/A

Table [SEQ Table | ARABIC]: List of Antibodies-Set 2

Antibody#	Vendor	Catalog #	Clone#
16	US biological	T8425-01E	4A142
$1 \times 1 \times \times$	US biological	T8425-10	Rabbit Pab
18	US biological	T8425-12	Sheep Pab
19	US biological	T8425-11	Goat Pab
20	US biological	T8425-07A	Sheep Pab
21	Calbioreagents	P139	Rabbit Pab
22	Biospacific	A23010067P	MAb
23	Biospacific	A23070131P	MAb
24	Biospacific	A23020067P	MAb
25	Biospacific	D19020131G	Goat PAb
26	Diasource	53.163.06	MO11
27	Acris	AM09291PU-N	S-191
28	Acris	AM09292PU-N	218
29	Acris	AM05502PU-N	3T50 (BGN/09/1250)
30	Immunodiagnostik	A1036.1	Rabbit PAb

2 ASSAY DEVELOPMENT [TC "ASSAY OPTIMIZATION" \F C \L "2"]

2.1 Antibody Screening on MTP- Set 1

The initial screen of fT3 antibodies was performed during the Total T3 assay development.

These were performed on Nunc 384 microtiter (MTP) plates. Antibodies were screened to determine ability to bind to T3-AP and to observe any modulation in the presence of the T3 analyte (Table 2, Table 3). MTP plates were directly coated with antibodies in carbonate-bicarbonate buffer at the following concentrations (10 ug/ml, 1 ug/ml and 0.1 ug/ml). A mixture containing T3-AP (1:10K dilution from stock) and T3 analyte (0 ng/mL or 5 ng/mL) in low BSA buffer was added to these wells. This mixture was incubated for 10 minutes followed by three wash steps. Alkaline phosphatase substrate was subsequently added for 10 minutes and the resulting chemiluminescence was read in Relative Light Units (RLU). Most of the antibodies screened showed strong ability to bind T3-AP. Low dose modulation was observed in presence of 5 ng/mL of T3 (comparing RLU data with no T3 analyte added). Modulation to unbound or Free T3 is determined. Antibody #2 and #3 were eliminated for further testing on the Theranos system due to lack of binding to the T3-APLTC "Detection Antibody Conjugate Verification" \f

Table [SEQ Table * ARABIC]: Antibody Screen (MTP) Set 1

Antibody ID	[Ab] ug/mL	Mean RLU 0 ng/mL T3	Mean RLU 5 ng/mL T3	Modulation to Free T3
	10.0	36656	15427	2.4
	1,0	2675	1599	1.7
	0.1	777	280	2.8
2	10.0	119	83	1.4
	1.0	83	79	1.1
~	0.1	81	79	1.0
3	10.0	95	110	0.9
	1.0	87	126	0.7
	0.1	105	81	1.3
4	10.0	219371	185611	1.2
	1.0	14153	3362	4.2
	0.1	1005	260	3.9
5	10.0	253030	155303	1.6
	1.0	38514	11741	3.3
	0.1	2948	803	3.7

THERANOS CONFIDENTIAL Page [PAGE]

		NA DET	NA DELL	Modulation
Antibody ID	[Ab] ug/mL	Mean RLU 0 ng/mL T3	Mean RLU 5 ng/mL\T3	to Free T3
6	10.0	3168	1035	3.1
	1.0	186	148	1,3
	0.1	91	103	0.9
7	10.0	141215	67,161	2.1
	1.0	12554	2832	4.4
	0.1	1532	325	4.7
8	10.0	131481	79473	1.7
	1.0	11228	4565	2.5
	0.1	1351	471	2.9
9	10.0	186169	149284	1.2
	1.0	5885	1952	3.0
	0,1	281	201	1.4
10	10.0	61090	34185	1.8
	(//1/0////)	5130	2203	2.3
	0.1	539	296	1.8
	10.0	203908	202068	1.0
	3.0	18990	6500	2.9
	0.1	1300	440	3.0
12	10.0	162099	112591	1.4
	1.0	16988	6541	2.6
	0.1	1074	349	3.1
13	10.0	148146	82210	1.8
	1.0	14946	4118	3.6
	0.1	495	225	2.2

Antibody Screen (MTP) Set 1 (continued)

THERANOS CONFIDENTIAL Page [PAGE]

2.2 Competitive Assay Screen on the Theranos System

To determine the optimal capture antibody for T3 on the Theranos 3.0 system, screening was performed. Final total T3 conditions after protocol included a 10 fold sample dilution of the serum calibrators in Low BSA assay buffer (0.03% BSA in TBS). A mixture containing 1 ug/ml antibody and 50 ug/ml of 8-ANS was added to the diluted sample. A dilution of 1.100K (from stock) of T3-AP was loaded in the cartridge. Out of all the 15 antibodies screened Antibody #1 was selected as the best antibody based on modulation and was used for further optimization.

Table [SEQ Table * ARABIC]: Competitive Assay Screen on the Theranos System

		Mean		
Antibody #	[TT3], ng/mL	RLU	CV%	Modulation
1	10.0	35000	2:6	3.3
	2.5	72821	8.1	
	0.5	72626	10,7	
	0	114398	19.0	
2	10.0	84204	7.8	1.1
	2.5	90956	9.4	
	05///	93975	× 2.9	
		93979	2.8	
3	10.0	85276	7.5	1.0
	2.5	> 93606	4.5	
	(0.5, 5)	81789	13.3	
	<u> </u>	88121	10.8	
4 \ \ \	10.0	2166	9.6	1.0
	2.5	2255	6.4	
	0.5	2418	2.6	
	0	2219	6.1	
5	10.0	62072	8.0	1.3
	2.5	65980	14.9	
Vertex	0.5	72085	11.3	
	0	79911	3.6	
6	10.0	102731	9.4	0.8
	2.5	92715	4.8	
	0.5	96665	3.5	
	0	84362	12.9	

THERANOS CONFIDENTIAL Page [PAGE]

Competitive Assay Screen on the Theranos System (continued)

Antibody #	[TT3], ng/mL	Mean RLU	CV%	Modulation
7	10.0	101560	7.0	1.0
	2.5	98667	5.0	
	0.5	101429	4.5	
	0	100639	3.9	
8	10.0	80644	9.0	1.4
	2.5	109676	9.2	
	0.5	124547	4.3	
	0	111519	9.7	
9	10.0	82229	12.2	1,2
	2.5	87611	<u> </u>	
	0.5	95167	2.4	
	0 <	95916	7.9	
10	10.0	70493	2.4	\searrow 1.0
	2.5	72241	11.3	J.
	0.5	81087	4.0	
	0	69038	Ŷ 4.4	
11	160///	82229	12.2	1.2
	2.5	87611	5.5	
	0.5	95167	2.4	
		95916	7.9	
12	0.91	70493	2.4	1.0
	(2.5)	72241	11.3	
	0.5	81087	4.0	
	0	69038	4.4	
13	> 10.0	108617	2.4	0.9
`	2.5	100646	15.0	
	0.5	83378	36.5	
	0	92694	4.8	
14	10.0	62083	5.5	1.0
	2.5	59180	19.9	
	0.5	65210	1.7	
	0	64292	13.5	
15	10.0	101657	4.6	1.1
	2.5	120733	8.8	
	0.5	89696	3.1	
	0	108095	2.5	

THERANOS CONFIDENTIAL Page [PAGE]

2.3 Antibody 1: Titration of Reagents

To improve modulation of the TT3 assay with antibody #1, both antibody and T3-AP levels were titrated systematically on the Theranos system (Table 5). Final optimized loading levels of T3-AP were determined to be 1:10K dilution from stock while the antibody loading concentration was 100ng/ml. Both T3-AP and antibody get diluted an additional 10 fold during the assay protocol run.

Table [SEQ Table * ARABIC]: Titration of antibody and T3-AP levels

T3-AP Dilution				10/	
from Neat		[TT3],	Holos)
In Cartridge	[Ab], ng/ml	ng/mL	Mean RLU	CV%	Modulation
1:1000	1000	10	222656	3.8	4.2
		1	612862	2.4	
		0	929052	2.3	
	100	10	20093	6.9	4.5
		1	81545	2.0	
		0	90664	8.7	
	10	10	2214	7.3	4.6
		1	7586	11.7	
		0	10098	17.2	
1:10K	1000	10	29380	12.6	9.2
		1	180511	9.6	
		0	271452	12.0	
	100	10	2908	5.1	12.9
		1	22304	4.3	
		0	37401	15.7	
	10	10	527	6.6	7.0
		1	1998	3.3	
\		0	3792	7.7	
1:100K	1000	10	6659	8.7	6.0
		1	26034	4.5	
		0	40386	3.7	
	100	10	961	6.7	6.0
		1	2862	13.5	
		0	5343	11.2	
	10	10	194	5.2	3.0
		1	361	1.3	
		0	585	12.5	

THERANOS CONFIDENTIAL Page [PAGE]

2.4 Antibody 1: Optimizing Tip Coating Buffers

Super block buffer is an albumin free buffer which has shown to be effective by increasing signal to background noise in some cases. However, for this Total T3 assay on the Theranos system, regular blocking buffer (3% BSA) seemed to give the best modulation compared to the Super block buffer when used as a blocking buffer for coating.

Table [SEQ Table * ARABIC]: Tip Coating Buffer

		Mean		
Type of Buffer	[TT3], ng/ml	RLU	CV%	Modulation
3% BSA	10.0	2903	4.5	15.5
	5.0	6482	8.7	H OHO
	2.5	12753	(4)2, \	
	1.0	22822	3.0	
	0.5	33770	4,5	
	0.25	33587	6.9	.) ~
	0.1	39458	14.1	
	0	<u> </u>	6.9	
Super Block	10.0	4827	7.2	8.4
	5.0	8771	4.1	
	2.5	15372	0.6	
	1.0	25411	9.1	
	()()(),5()()()	28966	2.1	
		36106	8.3	
	(1.9)	36071	8.6	
	0	40762	18.1	

THERANOS CONFIDENTIAL Page [PAGE]

2.5 Antibody 1: Cross Reactivity and Interference

To test cross reactivity and interference, 7 different substances that could potentially cross react or interfere with T3 were tested. The test levels chosen for each test substance were three times higher than the highest level present/administered to a patient. There was significant cross reactivity with thyroxine (T4) and some cross reactivity with 3,5-Diiodo-L-thyronine (T2). Some over-recovery in the presence of sodium salicylate is acceptable as the CDC states that anti-inflammatory substances such as this are known to interfere with equilibrium levels of total T3 and free T3 as they play similar roles to displace T3 from its binding proteins. However the level of cross reactivity with T4 and T2 was considered unacceptable and antibody screening was resumed.

Table | SEQ Table * ARABIC |: Antibody 1 Cross Reactivity and Interference

	[Test	7777	Back Calc	ulated Con	centration
	Substance],	[TT3],	Mean Conc,	Conc	
Test Substance	ng/ml	ng/ml	ng/ml	CV%	%Recovery
Control		10	10.0	6.6	100
		\\5\\\	4.9	2.5	97
			2.3	1.9	115
		1.5	1.3	6.2	84
			1.1	19.7	112
		0.8	0.7	7.9	91
		0.4	0.4	9.6	109
		0	0.3	1.2	-
3,3',5' Triiodothyronine	1.5	10	11.1	18.6	111
(Reverse T3)	Y	5	5.4	12.6	108
		1	1.1	1.4	106
		0	0.3	13.3	-
Thyroxine (T4)	900	10	OORH	OORH	-
		5	12.7	2.8	254
		1	7.5	6.2	750
		0	7.5	5.2	-
3'-Iodo -L-tyrosine	30	10	12.4	5.6	124
		5	6.3	3.2	127
		1	1.0	19.8	104
		0	0.5	22.9	
3,5-Diiodo-L-thyronine	30	10	10.1	1.5	101
(T2)		5	6.1	17.6	122
		1	1.5	8.3	148
		0	0.8	23.0	-

THERANOS CONFIDENTIAL Page [PAGE]

Antibody 1 Cross Reactivity and Interference (continued)

			Back Calcul	lated Conce	entration
Test Substance	[Test Substance], ng/ml	[TT3], ng/ml	Mean Conc, ng/ml	Conc CV%	%Recovery
Sodium salicyate	400000	10	11.5	2.3	115
		5	$\sqrt{\chi_1}$	6.8	141
		1	1.4	25,2	138
		0	0.5	21.1	<u>-</u> ~
Phenylbutazone	300000	10	1124	6.1	114
		5 <	6.2	4.5	124
	ļ ,	1(~)	(\ \ 0,9 \ \ \)	2.5	89
		//0//	0.3	11.1	-
Diphenylhydantoin	300	10	(2,7)	8.5	127
		5	6.1	0.4	122
		$1/\sqrt{1}$	1.0	15.9	100
		0	<i>○</i> 0.4	16.9	-

2.6 Competitive Assay Screen on the Theranos System: Set 2

Due to major challenges of finding a T3 antibody such as insufficient modulation and high cross reactivity with T4, new antibodies were purchased and screened for both modulation and cross reactivity with T4. For screening cross reactivity purposes, % RLU difference from the control was calculated, differences of |20%| and below were considered ideal.

Antibody #1 was included as a control. Antibodies #26, #27 and #28 did not bind to the T3-AP (data not shown). Antibody #24 was the best in terms of modulation and low percent difference while Antibody# 30 and #26 are possible back up antibodies for this assay.

THERANOS CONFIDENTIAL Page [PAGE]

Table [SEQ Table * ARABIC]: Competitive Assay Screen on the Theranos System-Set 2

	Control				Spiked w	ith 900 ng/	mL T4	
Antibody	[TT3]	Mean			[TT3]	Mean		% Difference
#	ng/mL	RLU	CV%	Modulation	ng/mL	<u>RLU</u> ⊜	CV%	from CTL
1	10	1661	7.2	12	10	1251	\ 19\\	-25
	5	3330	2.1		5	2105	3.6	-37
	2	5968	1.4		-	\ <u>`</u> }\('	1 // /	<u> </u>
	1	9858	12.7		1\	5299	12.4	-46
	0	19864	0.7		0//	7342	5.9	-63
15	10	13763	2.8	6.6	10~	9723	8.3	· -29
	2	39855	1.2		2.	17643	√2.1) "	-56
	0.8	73450	18.8		M -//		-	-
	0.4	74578	7		(0.4)	29786	> 2.7	-60
	0	90690	8.4		(0//	37616	2.5	-59
16	10	13970	17,4	8//	10	8976	9.3	-36
	2	61121	8.5		[(-2\\	[~] 27408	9.7	-55
	0.8	81590	9.3		[X-) Y	-	-	-
	0.4	98914	12,9		0.4	50499	7.3	-4 9
	0	111433	(9,9)		> 0	53904	2.9	-52
17	10	863	4.1	7.6	10	728	10.4	-16
	2	2870	4.3		2	1284	16.5	-55
	0.8	3843	5.2		-	-	-	-
	0.4	5054	2.7)	0.4	1905	7.8	-62
	0	6553	(1.8)		0	2300	8.2	-65
18	10	439	9.2	4	10	390	6.2	-11
	2	>>950	∑ 0.4		2	652	2.7	-31
	0.8	1094	0.5		-	-	-	-
	0,4	1451	7.4		0.4	811	10.8	-44
	(0)	<u> </u>	14.5		0	928	10.2	-47
19	10	464	6.6	4.6	10	486.8	13.3	-5
	2	1107	3		2	839	6.5	-24
	0.8	1522	12.9		-	-	-	-
	0.4	1925	11		0.4	985	5.1	-49
	0	2137	9.9		0	1095	9.4	- 49
20	10	11421	12.9	9.7	10	7647	1.3	-33
	2	34111	9		2	25037	8.6	-27
	0.8	80675	5.4		-	-	-	-
	0.4	77320	8.5		0.4	33267	11.3	-57
	0	111223	3.4		0	39265	13.2	-65

	Control					Spiked with	1 900ng/n	nl T4
						-		%
Antibody	[TT3]	Mean			[TT3]	Mean		Difference
#	ng/mL	RLU	CV%	Modulation	ng/mL	RLU	CV%	from CTL
21	10	18258	4.5	2.1	10	15939	5.5	-13
	2	22523	7.9		2	18387	2.7	-18
	0.8	28293	17.6		- (~-		<u> </u>
	0.4	36510	11.2		0.4	20230	13.6	___\45
	0	38849	4.6		<0	27234	14.8	-30
22	10	33710	9.3	6.6	10	33067	14.2	S
	2	67576	4		2	\103 5 93\) 10//>	-21
	0.8	130915	4.1		0.6		<u> </u>	-
	0.4	190517	20.2	/ ₂	0.4	124003	8.8	-45
	0	222975	16.7		0//	121619>	17.3	-45
23	10	5205	9.2	5.1				
	2	23002	3.5		2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6.4	-33
	0.8	28946	12.9			· -	-	-
	0.4	38697	9.2		0.4	24539	5.0	-37
	0	37862	2.9) 0	26589	20.7	-30
24	10	8427	2.6	9,4	10	8729	2.9	4
	2	33295	18/8	\ \>\	2	25360	3.5	-24
	0.8	52923	\\8.6\		-	-	-	-
	0.4	68141	7.6		0.4	46253	1.9	-32
	0 🚫	78968	5.9	<u> </u>	0	57046	6.0	-28
25	(10	388	17:6	4.9	10	373	11.5	-4
	\\2\\\\	952	9.7		2	841	4.6	-12
 	0.8	/1369	14.8		-	-	-	-
	0,4	1806	5.8		0.4	1203	16.1	-33
	0//	1904	8.4		0	1237	16.8	-35
26	/10/	16225	7.1	12.1	10	11895	2.6	-27
	2	88834	1.6		2	59382	9.9	-33
	0.8	137688	4.5		-	-	-	-
	0.4	167417	13.2		0.4	106163	2.0	-44
	0	196894	3.1		0	130531	6.2	-40
30	10	2086	2	8.2	10	1665	9.0	-20
	2	8132	6.3		2	5674	3.9	-30
	0.8	11445	14.6		-	-	-	-
	0.4	12668	9.3		0.4	9226	4.9	-27
	0	17096	16.8		0	10882	3.4	-36

2.7 Alkaline Phosphatase Stabilizer

Antibody #24 was selected as the best antibody in terms of modulation and low cross reactivity with T4. Two commercial stabilizers were tested as the T3-AP conjugate diluents: Stabilizer AP and Biostab. An in-house AP stabilizer was also tested. This stabilizer consisted of 0.1mM Zn²⁺ and 5mM Mg²⁺ in Low BSA buffer (0.03% BSA). The in-house AP Stabilizer provided the best modulation and was chosen as the final condition.

Table [SEQ Table * ARABIC]: Alkaline Phosphatase Stabilizer

		C:	ignal (RL	TI	Rack-Cale	ulated Co	nc (ng/mL)
	[TT3],	Mean	_		100 1 1/1 /	/ · · · · · · · · · · · · · · · · · · ·	nc (ng/m12) %
AP Stabilizer	ng/ml	RLU	CV%	Mod.	Mean	CV %	Recovery
Control (Low	10.0	12115	11.9	9.7	9.1	3.0	91
BSA Buffer	5.0	22726	14.6		6.2	14.2	125
	2.0	55578	(11.7		1.7	25.3	85
	0.8	80271	4.5		0.7	11.2	92
	0.4	95182	6.2		0.5	16.2	120
	0.0	117233	5.7		0.3	15.5	
Stabilzyme AP	10.0	13454	2:6	6.6	10.3	5.1	103
	/5 :0\	24423	√3. j		5.0	2.9	100
	\\2.0\\\	52466	13.2		2.2	7.3	111
	0.8	63432>	7.9		0.7	37.8	85
	0.4	67319	13.2		0.6	56.4	141
	0.0	89444	2.6		0.1	17.3	
Biostab	(0.01	12285	4.4	8.0	9.4	1.7	94
	5.0	23296	6.1		5.9	6.3	118
	2.0	55124	5.0		1.6	9.5	81
	0.8	73944	10.6		0.9	25.5	112
	0.4	99833	4.2		0.4	10.5	105
	0.0	98739	11.1		0.4	28.5	
In House AP	10.0	12110	5.6	8.2	10.5	8.8	105
Stabilizer	5.0	22983	6.0		5.0	5.5	100
	2.0	47182	8.5		2.3	13.0	113
	0.8	80354	14.3		0.9	22.2	113
	0.4	90280	12.7		0.4	19.9	93
	0.0	107809	4.5		0.2	18.2	

THERANOS CONFIDENTIAL Page [PAGE]

2.8 Evaluating Ab24 for the Free T3 Assay Format

Different incubation protocols and incubation times were tested for Antibody 24 in the fT3 assay format. Final conditions after protocol run included a 1:5 sample dilution, 1 ng/ml of antibody #24, and 1:200K dilution(from stock) of T3-AP. Sample mixture-substrate incubation times of 10-10 minutes (control condition) and 5-5 minutes were tested. Modulation was better with the 5 minute reagent incubations and will be used from here after.

		Sign	al (RLU)	Concentration	(pg/ml)
Protocol	[fT3], pg/ml	Mean RLU	CV%	Mod _	Mean Conc. [fT3],pg/ml	Conc CV%
10,10	50.0	1888	5.7	8,5	50.2	6.0
	30.0	3128	14.0		30.9	12.8
	20.0	4708	8.6		19.7	11.4
	10.0	6950	10.8	7/ /> />	10:8	21.3
	5.0	10485	4.9		3.9	14.5
	2.0	11897	4.6		2.6	14.6
	1.0	15436	2.5		1.0	10.9
	0.0	15962	1.9		1.2	
5,5	50.0	788	1,8	≥9.2	50.6	2.5
	30.0	1232	13.7		30.9	13.6
	20.0	1928	5.8		19.4	6.6
	(10.0	2933	² 2.6		10.8	4.6
	3,0	4115	2.8		5.2	7.4
	2.0	5884	4.9		1.6	17.5
	\\\\\\.(\s\)	<u> 6275</u>	4.1		1.2	16.8
	0.0	7239	6.0			

2.9 Evaluation of clinical set with the different antibodies

Clinical samples were evaluated with Antibody 24 for the free T3 assay format. There were two outliers and correlation was poor. Backup TT3 antibodies were then tested for modulation and evaluated with clinical samples. Out of these, Antibody # 20 and Antibody #30 showed good modulation and fair sensitivity under these conditions. The clinical correlation was best for Antibody 30 and was selected for further optimizations. The antibodies were screened at the 5-5 minute incubation time. Conditions after protocol run included a 1:5 sample dilution and a 1:200K dilution (from stock) of T3-AP. Loading concentration of antibody 20 was 1:1M dilution from stock while antibody 30 was 1:10K (from a 1:100 fold diluted stock).

THERANOS CONFIDENTIAL Page [PAGE]

Table [SEQ Table * ARABIC]: Standard Curve Data for Antibody 24

	Signal (RLU)			Back calculated(pg/ml)		
Nominal [fT3], pg/mL	Mean RLU	CV%	Mod	Mean Conc. [fT3] pg/ml	CV%	
50.0	1092	10.0	6.2	53.6	18.5	
30.0	1663	2.9		30.6	2.7	
20.0	2620	5.1		19.7	⟨6,3 ⟩	
10.0	3533	4.7		12.0	10,1	
5.0	4977	6.0		4.3	23.5	
2.0	5717	6.3		2.4	29.0	
1.0	6592	7.5		OORL	OORL	
0.0	6768	7.6		OORL	OORL	

Table [SEQ Table * ARABIC]: Antibody 24-Clinical test set

		Signal(RLU)	Back calculated (pg/ml)			Siemens Immulite(CLIA)	
Sample Type	Sample #	Mean RLU	Cy%	Mean Conc. [fT3] pg/ml	CV%	Reported [fT3] pg/ml	
Bioreclamation	L K	4736	6.1	5.2	22.0	1.96	
	(3)	5077	4.0	4.0	15.2	3.8	
<	4	2741	7.9	18.6	10.7	2.86	
	\ \ \ 5 \ \\	3565	4.9	2.7	22.7	4.52	
	6	4825	9.3	5.0	34.4	4.2	
Sunny Lab	(3)	3930	6.8	9.3	18.4	6.68	
	[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3900	12.2	9.7	31.2	6.03	
	\sim \sim \sim	2359	6.8	22.2	7.2	5.92	
	→ 7	4567	6.4	6.0	21.7	7.53	
	8	3968	9.4	9.2	25.2	7.26	
	11	3735	3.2	10.5	7.8	9.77	
	13	3804	3.0	10.1	7.4	9.35	
	14	3668	4.0	11.0	9.4	11.2	
	18	2217	77.3	13.6	7.3	10.8	
	24	3092	5.3	15.5	9.0	11.7	

Figure [SEQ Figure * ARABIC]: Evaluating Antibody 24 with clinical samples

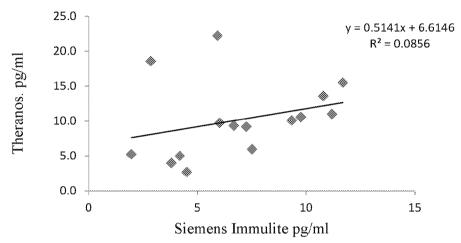


Table [SEQ Table | * ARABIC]: Standard Curve Data for Antibody 20

Nominal	Signal (RDU)			Back Calculated (pg/ml)		
[fT3]	Mean		Modulation	Mean Conc.	CV%	
pg/mi	KLU	<u> </u>	Modulation	[fT3], pg/ml	CV 76	
50	8257	8.1	18.3	52.6	10.4	
30	14903			29.3	1.6	
20	24789	8.1		20.4	5.7	
10	46352	8.9		11.5	11.0	
5	79206	8.5		4.9	16.8	
2	121838	8.4		1.6	26.9	
1	128452	7.4		1.4	23.9	
0	151493	4.1		OORL	OORL	

Table [SEQ Table * ARABIC]: Antibody 20-Clinical test set

		Signal	(RLU)	Back Calculat	ted (pg/ml)	
	Sample	Mean		Mean Conc.		Reported
Sample Type	#	RLU	CV%	[fT3], pg/ml	CV% 🔷	[fT3] pg/ml
Bioreclammation	#4	78387	8.3	5.0	15.8	2.86
	18	105214	3.2	2.4	9.0	3.24
	19	91931	10.3	3.5	26.5	2,99
	20	102566	7.6	2.6	19.0	3.55
	22	68234	5.8	6.5	10.8	3.45
Sunny Lab	1	94725	9.9	3.3	27.0	5.45
	2	110736	7.2	2.1	20.6	5.85
	3	102260	2.9	2.6	7.9	6.68
	4	110073	4.3	2.2	12.5	5.15
	5	90149	1.5	3.6	3,6	6.03
	6	46803	13.2	11,4	≥ 15.7	5.92
	18	55122	12.0	9,2	77.7	10.8
	11	65903	17.7	6.9	19.4	9.77
	19	87462	6.8	3.9	16.0	7.43
	20	63683	13.5	7.4	23.7	7.78
	21 🏑	53867	14.7	9.5	20.5	11
	24	50457	6.3	10.3	8.1	11.7

Figure | SEQ Figure | * ARABIC |: Evaluating Antibody 20 with clinical samples

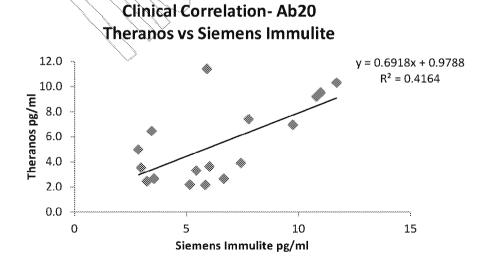


Table [SEQ Table * ARABIC]: Standard Curve Data for Antibody 30

		Signal (RI	LU)	Back Calculated	(pg/ml)
Nominal					
[fT3],	Mean			Mean Conc	
pg/ml	RLU	CV%	Modulation	[fT3],pg/ml	CV%
50	10202	4.4	9.2	52.2	6.4
30	17792	7.0		28.5 <	6.9
20	23725	4.8		21.2	5,2
10	37321	5.6		11.2	10.1
5	53908	7.9		4.9	21.7
2	72001	10.3		1.9	40.8
1	80956	10.9	N	1.2	\\ 5 0.5\\
0	94029	8.1		OORL	OORL

Table [SEQ Table * ARABIC]: Antibody 30-Clinical test set

		Signa	K(RLU)	Back Calculate	d (pg/ml)	
Sample Type	Sample	Mean RLU	Cv%	Mean Conc. pg/ml	CV%	Reported fT3, pg/ml
Biorec	4	70299	4.7	2.0	17.9	2.86
	18	86040	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.9	42.3	3.24
	19	70830	4.9	2.0	18.7	2.99
	20 /	81153	0.8	1.1	3.7	3.55
	22	80946	8.5	1.2	35.8	3.45
Sunny Lab		54681	7.4	4.7	20.1	5.45
	2	77854	4.2	1.3	18.1	5.85
	$\sqrt{3}$	56893	8.5	4.2	25.2	6.68
	4	63644	8.2	3.0	27.4	5.15
	5	51404	2.6	5.5	7.1	6.03
	6	60802	8.1	3.4	23.7	5.92
	18	41072	1.2	9.3	2.5	10.8
	20	53579	8.8	5.0	25.2	7.78
	24	40978	12.2	9.5	24.8	11.7

Figure [SEQ Figure * ARABIC]: Evaluating Antibody 30 with clinical samples

2.10 Ab30-Titration of reagents

To improve modulation of the fT3 assay with antibody #30, both antibody and T3-AP levels were titrated systematically on the Theranos system. Final optimized loading levels of T3-AP was determined to be 1:50K dilution from stock while the antibody loading concentration was 1:10K dilution (from 1:100K diluted stock). These conditions have good modulation between each level especially at the lower fT3 levels. Conditions after protocol run included a 1:5 sample dilution at 5-5 incubation time.

Table [SEQ Table * ARABIC]: Antibody 30-Titration of Reagents

		Assigned	Mean		
Antibody 30	T3-AP	[fT3], pg/ml	RLU <	CV%	Modulation
1:100K	1:10K	50	1320	5,9	8.8
		30_	2173	10.4	
		26	2769	8.7	$\setminus \bigvee$
THE PROPERTY OF THE PROPERTY O		10	4779	10.7	
		5	7337	¥2-/	
		[9449	7.0	
			10855	8.1	
THE PROPERTY OF THE PROPERTY O			<u>\11589</u>	11.0	
1:10K	1:50K	50	2481	10.0	10.4
	$\sim l \sim 1$	30	3999	2.5	
		20	6772	6.5	
		(0) 10)	9242	7.9	
	//	<u>\</u> \$	13917	10.8	
		2	20012	3.9	
		1	20488	9.8	
		0	25828	12.1	
1:10K	1:100K	50	1074	9.6	8.6
		30	1608	4.1	
		20	2412	3.0	
		10	3669	7.2	
		5	4850	6.5	
		2	7318	18.6	
		1	7903	12.1	
		0	9192	12.9	

2.11 Antibody #30 – Optimizing Tip coating buffer

Super block buffer is an albumin free buffer which has shown to be effective by increasing signal to background noise in some cases. However, for this Free T3 assay on the Theranos system, regular blocking buffer (3% BSA) seemed to give the best modulation and sensitivity compared

THERANOS CONFIDENTIAL Page [PAGE]

to the Super block buffer when used as a blocking buffer for coating. Final optimized loading levels of T3-AP was determined to be 1:50K dilution from stock while the antibody loading concentration was 1:10K dilution (from 1:100K diluted stock). Conditions after protocol run included a 1:5 sample dilution at 5-5 incubation time.

Table [SEQ Table * ARABIC]: Antibody 30-Optimizing Tip Coating Buffer

Tip Coat Buffer	Assigned	S	Signal (F	RLU)	Concentrat	ion(pg/ml)
		Mean			Mean Conc	
	[fT3] pg/ml	RLU	CV%	Modulation	[ft3] pg/ml	CV%\
Regular 3% BSA	50	2481	10.0	10,4	49.8	12.3
	30	3999	2.5		29.8	2.3
	20	6772	6.5		17.5	7.7
	10	9242	7.9		N.3	13.0
	5	13917	10.8		4.9	27.6
	2 .	_20012	3.9		1.6	13.6
	1	21582	6.4		1.2	24.9
	0	25828	12.1		OORL	OORL
Super Block Buffer	50	2599	6.5	9.3	52.1	9.8
	30	4347	9.7		29.5	8.2
	20	63.65	2.7		21.2	2.6
	10,	10857	7.0		10.4	13.6
	[\ 5	14502	3.8		5.3	10.8
	2	20192	12.2		1.8	54.4
		21361	7.3		1.3	26.0
		24247	10.7		OORL	OORL

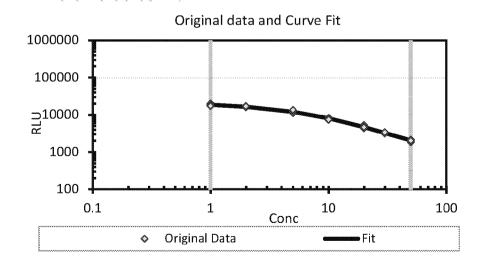
2.12 Antibody #30-Cross Reactivity

To test cross reactivity for antibody 30, substances that could potentially cross react with T3 were tested in Low BSA buffer instead of serum. No cross reactivity was observed with any of the substances tested. CDC states that anti-inflammatory substances such as phenylbutazone are known to interfere with equilibrium levels of total T3 and free T3 as they play similar roles to displace T3 from its binding proteins. Final optimized loading levels of T3-AP were determined to be 1:50K dilution from stock while the antibody loading concentration was 1:10K dilution (from 1:100K diluted stock). Conditions after protocol run included a 1:5 sample dilution at 5-5 incubation time.

THERANOS CONFIDENTIAL Page [PAGE]

Table [SEQ Table * ARABIC]: Antibody 30- Cross Reactivity Data

Analyte	ng/ml	Mean RLU	CV%	
T3	50	407	19.1	
	30	485	4.7	
	20	513	24.7	
	10	968	8.01	
	5	1503	12.1	
	2	3003	14.9	
	1	4156	23.9	
	0	18380	9.4	
3,3',5' Triiodothyronine (rT3)	1.5	18026	4.3	OORL
	_1.0	15364	7.2	OORL
	0.5	18047	<i>3</i> 2.7	OORL
	0.3	14226	14.5	OORL
:	0,1	17851	77.6	OORL
	0.0	20853	10.0	OORL
T2	30-	13559	10.4	OORL
	20	11665	16.7	OORL
	10	15659	14.8	OORL
	5	14186	14.1	OORL
	> 2	18507	4.6	OORL
	0	19949	10.0	OORL
3 iodo tyrosine	30	15599	7.5	OORL
	20	18729	13.6	OORL
	10	18405	14.5	OORL
\rightarrow	5	16296	7.7	OORL
	2	17668	3.4	OORL
	0	19949	10.0	OORL


2.13 Calibration Verification

The Biorad Liquichek controls were tested for the Free T3 Assay. Here, three level serum controls from BioRad (Liquichek Immunoassay Plus) were measured on the Theranos System. These results were compared to those reported by the clinical analyzers. The controls correlate very well with the Siemens Dimension clinical analyzer. Final optimized loading levels of T3-AP were determined to be 1:50K dilution from stock while the antibody loading concentration was 1:10K dilution (from 1:100K diluted stock).

Table [SEQ Table * ARABIC]: Antibody 30-Standard Curve Data with Dexter

	Signal (RLU)			Concentration(pg/ml)			
Assigned			%.	Mean Conc			
[fT3], pg/ml	Mean RLU	CV%	Mod	[fT3], pg/ml	CV%	%Recovery	
50	2037	5.5	8.01	50.2	6.6	100	
30	3236	2.7		30.1	2.9	100	
20	4777	8.4		19.6	9.4	98	
10	7792	5.3		10.7	6.7	107	
5	12154	6.4		5.0	12.2	101	
2	16519	3.1		1.9	13.3	97	
1	18189	5.2	\sim	OORL	OORL	OORL	
0	22022	4,6		OORL	OORL	OORL	

Figure | SEQ Figure | * ARABIC |: Standard curve fit with Dexter

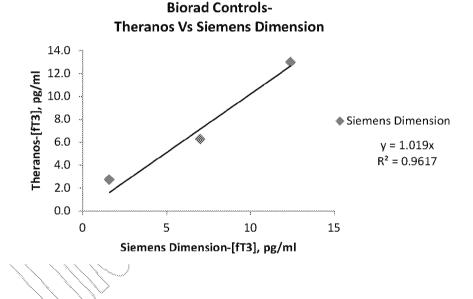

THERANOS CONFIDENTIAL Page [PAGE]

Table [SEQ Table * ARABIC]: Biorad Liquichek Controls

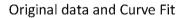
	Reported [fT3] in pg/ml							
Biorad Control	Theranos	Abott Architect	Roche Elecsys (pg/ml)	Siemens Dimension Vista systems Immulite				
Level 1	2.7	2.0	2.05	1.59 2.43				
Level 2	6.3	5.75	6.49	7 7 5.15				
Level 3	13.0	10.1	11.2	7.86				

Figure [SEQ Figure * ARABIC]: Biorad Controls-Theranos Vs. Siemens Dimension

2.14 Clinical Correlation

Serum samples from patients were obtained from both Sunny Labs and Bioreclammation. These samples were run on the Siemens Immulite (In House). These results were compared to those obtained on the Theranos system. A set of clinical samples across the fT3 range were selected to run on the Theranos system for the clinical correlation analysis. Final optimized loading levels of T3-AP were determined to be 1:50K dilution from stock while the antibody loading concentration was 1:10K dilution (from 1:100K diluted stock). This was done at the 5-5 incubation time.

The fT3 values obtained from Siemens Immulite correlated very well to the values obtained from the Theranos System.


THERANOS CONFIDENTIAL Page [PAGE]

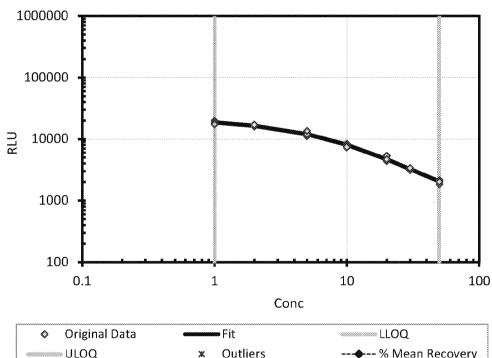


Table [SEQ Table * ARABIC]: Standard Curve Data-Dexter Analyses

	Signal (RLU)			Signal (RLU) Concentration(pg			og/ml)
Assigned [fT3], pg/ml	Mean RLU	CV%	Mod	Mean Conc. [fT3], pg/ml	cv%	%Recovery	
50	2037	5.5	10.8	50.2	6.6	100	
30	3236	2.7		30.1	2.9	100	
20	4777	8.4		19,6	9.4	98	
10	7792	5.3		10.7	6.7	107	
5	12154	6.4		5.0	12.2	101	
2	16519	3.1		1.9	13.3	97	
1	18189	5.2		OORL	OORL	OORL	
0	22022	4.6		OORL	OORL	OORL	

Figure [SEQ Figure * ARABIC \; Standard Curve-Dexter Analyses

ULOQ Outliers --- % Mean Recovery ж

THERANOS CONFIDENTIAL Page [PAGE]

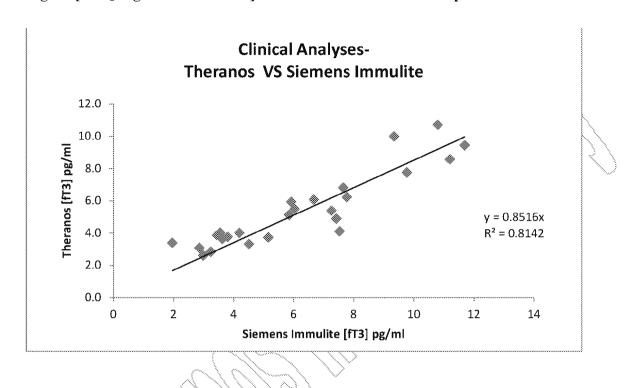
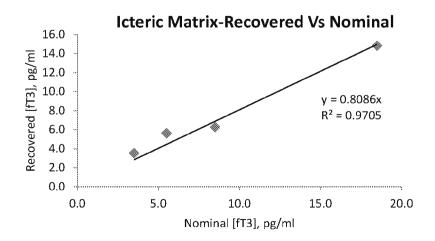


Table [SEQ Table * ARABIC]: Clinical Sample Analyses

			Siemens Immulite,
Sample Type	Sample#	Theranos,[fT3]-pg/ml	[fT3]-pg/ml
Bioreclammation	1	3.4	1.96 🔷 🔷
	2	3.6	3.63
	3	3.7	3.8
	4	3.1	2,86
	5	3.3	4.52
	6	4.0	4.2
	18	2.8	3.24
	19	2.6	2.99
	20	4.0	3.55
	22	3.9	3.45
Sunny Labs	2	5.1	3,85
	3	6.1	6.68
	4	3.7	5.15
	5	5,5	6.03
	6	5.9	5.92
	7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.53
	8 🖯	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.26
	11/		9.77
	13	10.0	9.35
	14	8.6	11.2
	17	6.8	7.66
)8/	10.7	10.8
	(19/	4.9	7.43
	20	6.2	7.78
	24	9.4	11.7

Figure [SEQ Figure * ARABIC]: Clinical Correlation-25 Sample Set


2.15 Interfering Matrix Effects

Spike recovery was tested in grossly lipemic, icteric and hemolyzed serum samples to ascertain whether there may be interference in the assay results when measuring these types of samples. ARUP states that hemolyzed samples are completely unacceptable; however, the recovery for these samples on the Theranos system is good. The signal RLU was calculated to the concentration based on the standard curve and equation listed on Table 22. Final optimized loading levels of T3-AP were determined to be 1:50K dilution from stock while the antibody loading concentration was 1:10K dilution (from 1:100K diluted stock). This was done at the 5-5 incubation time.

Table [SEQ Table * ARABIC]: Spike Recovery in Interefering Matrix

	Nominal					Total Nominal	
	spike	Signal	(RLU)	Recovered	a (173)	plus endogenous	%Recovery
	-	Mean	N	Mean Cond			
Matrix	[fT3], pg/ml	RLU	CV%	pg/ml	CV%	[fT3], pg/ml	
Icteric	0	13885	3.8	3.5/	10.9	3.5	100
	2	11409	9.0	5.6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.5	102
	5	10738	4.8	6.2	9.3	8.5	73
	15	6171	19.2	14.8	24.1	18.5	80
Hemolyzed	0	15531	6.5	2.5	23.3	2.5	99
	2	11367	7.8	5.6	16.0	4.5	125
	5	10937	2.0	6.0	3.8	7.5	80
	(15, ())	6429	8.7	13.7	11.1	17.5	78
Lipemiç		14507	8.3	3.1	24.2	3.1	101
	(() 2 () (12229	4.1	4.8	9.2	5.1	94
	<u></u>	9895	5.0	7.2	8.7	8.1	89
	13.	5699	8.3	15.9	10.2	18.1	88

Figure [SEQ Figure * ARABIC]: Spike Recovery in Icteric Sera

THERANOS CONFIDENTIAL Page [PAGE]

Figure [SEQ Figure * ARABIC]: Spike Recovery in Hemolyzed Sera

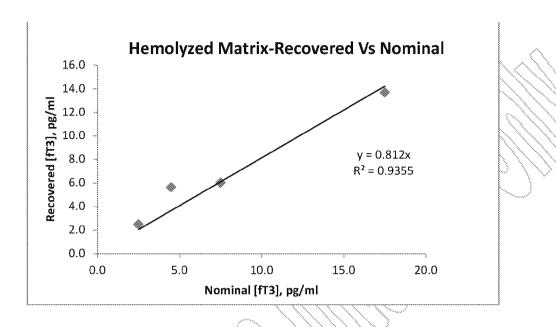
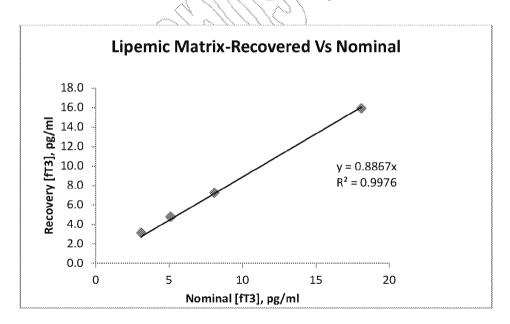
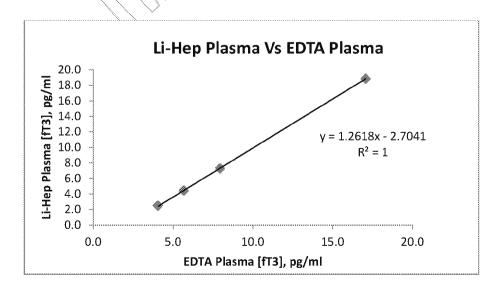



Figure | SEQ Figure * ARABIC |: Spike Recovery in Lipemic Sera


2.16 Effects of Anticoagulant

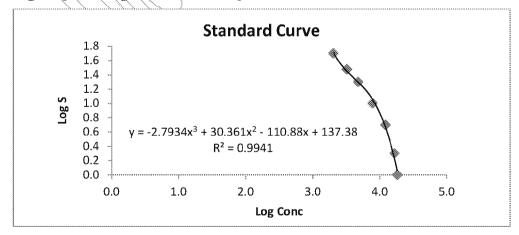
The Theranos System will be able to prepare plasma from both EDTA and lithium-heparintreated blood. Matched plasma samples were prepared from both EDTA tubes and from Li-Hep tubes. The correlation was good indicating either type of anticoagulant would work well for this assay in this system. Final optimized loading levels of T3-AP were determined to be 1:50K dilution from stock while the antibody loading concentration was 1:10K dilution from 1:100K diluted stock). This was done at the 5-5 incubation time.

Table [SEQ Table * ARABIC]: Effect of Anticoagulant

	Nominal Spike Level	Signal (RLU)	Recovere	7- 7 X- N	Total Nominal Spike plus Endogenous	
Anticoagulant	[fT3], pg/ml	Mean RLU	CV%	Mean Conc. pg/ml	CV%	[fT3], pg/ml	% Recovery
Li-Hep Plasma	0	15549	4.4	2,5	15.7	2.5	100
	2	12635	1.9	\}4 .4	4.3	4.5	99
	5 ,	9851	4.1	≥ 7.3	7.1	7.5	98
		4921	ે4.9	18.9	5.8	17.5	108
EDTA Plasma		13189	9.5	4.1	23.6	4.1	100
	2	11297	5.8	5.7	12.0	6.1	94
	3	9358	6.2	8.0	10.1	9.1	88
		5358	6.3	17.1	7.4	19.1	90

Figure [SEQ Figure * ARABIC]: Effect of Anticoagulant

THERANOS CONFIDENTIAL Page [PAGE]


2.17 Matrix Effects: Serum vs Plasma

Theranos System will be capable of testing either serum prepared in the lab or plasma prepared on board from a whole blood sample. Matched Serum and Lithium Heparin Plasma from a 9 normal donors were analyzed. The max, min and average is comparable between both matrices. Spike recovery was also performed with matched serum and plasma samples from one of the donors. Correlation data was good indicating both plasma and serum samples can be used for the assay. Final optimized loading levels of T3-AP were determined to be 150K dilution from stock while the antibody loading concentration was 1:10K dilution (from 1:100K diluted stock). This was done at the 5-5 incubation time.

Table [SEQ Table * ARABIC]: Standard Curve Data

	Signa	al (RLU)	Concentration (pg/ml)			
			Mean Conc			
[fT3], pg/ml	Mean RLU	CV% Mod	[fT3] pg/ml	∠cv%	%Recovery	
50	2037	5.5 10.8	51.2	10.6	102	
30	3236	2.7	27.9	2.7	93	
20	4777	8.4 🖓^	19.6	7.5	98	
10	7792	5.3	11.2	7.9	112	
5	12154	6.4	4.6	16.9	92	
2	16519	(3.1/)/	1.7	11.9	85	
1	18189	5.2	OORL	OORL	OORL	
o	22031	5.9	OORL	OORL	OORL	

Figure | SEQ Figure * ARABIC |: Standard Curve

THERANOS CONFIDENTIAL Page [PAGE]

Table [SEQ Table * ARABIC]: Matrix Effects: Lithium-Heparin Plasma vs Serum Samples

	Serum[fT3],	Plasma
Donor#	pg/ml	[fT3], pg/ml
1	2.9	2.7
2	4	4.7
3	2.3	3.0
4	2.7	2.6
5	3.3	3.4
6	4.1	3.7
7	2.2	2.5
8	2.6	2.1
9	4.4	4.0
Min	2.2	2.1
Max	4.4	4.7
Average	3.2	3.2

Figure [SEQ Figure * ARABIC]: Matched Li-Hep Plasma Samples Vs Serum Samples

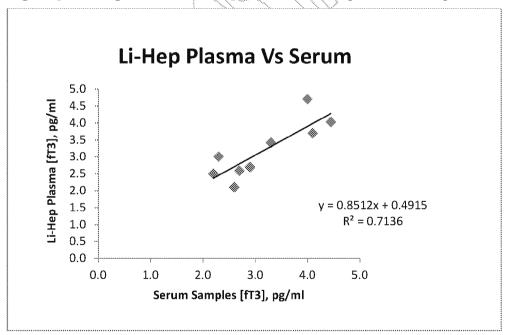
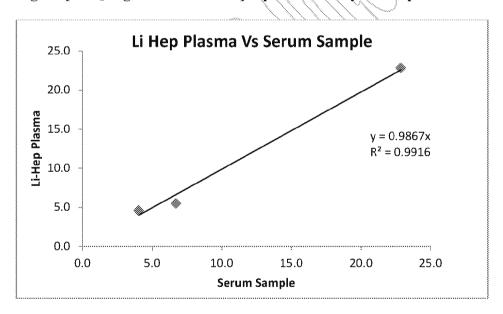



Table [SEQ Table * ARABIC]: Spike Recovery-Li Hep Plasma Vs Serum Sample

	Nominal Spike Level	Signal RLU		Recovered [fT3], pg/ml		Nominal Spike plus Endogenous	%Recovery
Matrix	[fT3] pg/ml	Mean RLU	CV%	Mean Conc	CV%	[fT3], pg/ml	
Serum	0	12761	7.3	4.0	21.8	4.0	100
	2	10376	6.1	6.7	13.4	6.0	111
	15	4020	6.5	22.9	5.7	19.0	120
Li-Hep							\mathcal{S}
Plasma	0	12191	9.8	4.6	24.1	4.6	100
	2	11377	8.2	5.5	19.7	6.6	83
	15	4154	20.4	22.8	18.7	19.6	116

Figure [SEQ Figure * ARABIC]: Spike Recovery- Li-Hep Plasma Vs Serum

2.18 Stability

Stability monitoring is ongoing for the the assay reagents stored at 4°C and protected from light. All reagents used for the standard curve will be evaluated at each time point.

THERANOS CONFIDENTIAL Page [PAGE]