

SUPPLEMENTARY MATERIAL

Critical Review of Potential Adverse Health Effects of Fluoride in Drinking Water

Prepared for:

Health Canada

25 March 2023

Trial Ex. 133.0001

Table of Contents

Section 1. Literature search for human and animal Studies	6
Strategy	6
Summary of output	6
Bibliographic database search terms and output	7
Grey Literature (18 sources)	59
Section 2. Excluded human studies (with reasons for exclusion)	61
Section 3. Data abstraction and risk of bias assessment - human studies	355
Mercado 2023 [1]	355
Tang 2023 [2]	360
Ahmad 2022 [3]	368
Feng 2022 ^[4]	373
García-Escobar 2022 [5]	378
Goodman 2022 [6]	382
Gupta 2022 [7]	391
Ibarluzea 2022 [8]	394
Kaur 2022 ^[9]	411
Marques 2022 [10]	416
McLaren 2022 [11]	419
Rani 2022 [12]	426
Saeed 2022 [13]	429
Tawfik 2022 [14]	436
Thilakarathne 2022 ^[15]	439
Al-Omoush 2021 [16]	442

Ayele 2021 [17]	447
Cao 2021 ^[18]	453
Dong 2021 [19]	456
Du 2021 [20]	461
Farmus 2021 ^[21]	466
Fernandes 2021 ^[22]	475
Helte 2021 [23]	479
James 2021 [24]	485
Meghe 2021 [25]	491
Meng 2021 [26]	495
Mohd Nor 2021 [27]	500
Rojanaworarit 2021 ^[28]	507
Sharma 2021 [29]	513
Silva 2021 [30]	517
Tkachenko 2021 [31]	520
Wang 2021 ^[32]	524
Yani 2021 ^[33]	534
Yu 2021 ^[34]	538
Zhao 2021 ^[35]	549
Bai 2020 [36]	553
Cui 2020 [37]	561
Das 2020 [38]	566
Fernandes 2020 [39]	570
Godebo 2020 [40]	574
Kim 2020 [41]	578

Krishna 2020 [42]	585
Lee 2020 [43]	590
Nanayakkara 2020 [44]	594
Russ 2020 [45]	599
Stangvaltaite-Mouhat 2020 [46]	605
Sun 2020 [47]	611
Till 2020 [48]	617
Wang 2020 [49]	623
An 2019 [50]	630
Crnosija 2019 [51]	636
Fernando 2019 [52]	642
Jimenez-Cordova 2019 [53]	646
Jimenez-Cordova 2019a [54]	651
Khanoranga 2019 [55]	655
Liu 2019 [56]	659
Malin 2019 [57]	665
Malin 2019a [58]	670
Pei 2019 [59]	675
Riddle 2019 [60]	680
Shaik 2019 [61]	687
Soto-Barreras 2019 [62]	691
Zhang 2019 [63]	697
Zhou 2019 [64]	701
Zhou 2019a [65]	707
Bashash 2018 [66]	719

	Cui 2018 [67]	. 727
	Jimenez-Cordova 2018 [68]	. 733
	Kumar, V 2018 [69]	. 740
	Kumar, S 2018 [70]	. 745
	Malin 2018 [71]	. 750
	Mohd Nor 2018 [27]	. 755
	Mustafa 2018 [72]	. 765
	Oweis 2018 [73]	. 771
	Quadri 2018 [74]	. 806
	Rathore 2018 [75]	. 811
	Shruthi 2018 [76]	. 816
	Yu 2018 [77]	. 822
	Arulkumar 2017 [78]	. 833
	Bashash 2017 [79]	. 839
	Chauhan 2017 [80]	. 849
	Stephenson 2017 [81]	. 852
	Verma 2017 [82]	. 855
	Cardenas-Gonzalez 2016 [83]	. 860
	de Moura 2016 [84]	. 865
	Heck 2016 [85]	. 870
	Kousik 2016 [86]	. 875
	Sabokseir 2016 [87]	. 881
	Xiang 2016 [88]	. 886
S	ection 4. Excluded animal studies (with reasons for exclusion)	. 892
S	ection 5. Literature search for in-vitro studies	1174

Strategy	1174
Summary of output	1174
Bibliographic database search terms and output	1175
Section 6. Weight of evidence using Bradford Hill considerations fo	r causality 1195
Reducing IQ scores	1195
Thyroid dysfunction	1215
Kidney dysfunction	1224
Nanayakkara 2020 [44]	1224
Nanayakkara 2020 [44]	1228
Sex hormones	1232
References	1237

Section 1. Literature search for human and animal Studies

Strategy

Search	Are there any health risks to exposure to fluoride in water?			
Question				
Major	1. Fluoride/fluo	oridation	_	
Concept	2. Water			
S	3. Outcomes: o	cancer, bone/skeletal toxicity, development	al/reproductive	
	toxicity, end	ocrine toxicity (including thyroid effects), in	nmunotoxicity,	
	genotoxicity and all other potential adverse effects			
Search	Concept 1	Concept 2	Concept 3	
Terms	Fluorides,	Water, drinking water, tap water, well	Adverse events,	
	fluorine,	water, spring water, mineral water,	reactions, health	
	flurine, fluride,	carbonated water, community water,	risks, individual	
	fluoridation rivers, lakes, ponds, streams, water outcomes		outcomes	
		supply, water sources, water resources,		
		water quality, water treatment		

Summary of output

Searched databases	Publication s	Level of selection of publications
Medline	295	3 concepts (2016-current)
EMBASE	591	3 concepts (2016-current)
PubMed	214	3 concepts (2016-current)
CINAHL	18	3 concepts (2016-current)
Toxline	215	3 concepts (2016-current)
PAIS index	178	FI + water
Health Technology Assessment	3	FI + water

Cochrane Library (Willey)	0	FI + water
Cochrane Database of Systematic Reviews	28	FI + water (2016-current)
Cochrane Central Register of Controlled	34	FI + water (2016-current)
Trials		
Trials, WHO	104	FI (completed, with results)
Trials, EU	7	FI (completed, with results)
Trials, ISRCTN	18	FI (completed, with results)
Trials, USA	161	FI (completed, with results)
Trials, UK	0	FI (all)
Trials, Canada	10	FI (all)
Grey Literature (18 databases)	339	
Background	18	
TOTAL - before deduplication	2,233	
TOTAL – after deduplication	1,639	

Bibliographic database search terms and output

Medline Ovid ¹

Concept	#	Medline query	Results
Fluoride	1	exp Fluorides/	36,671
	2	exp Fluoridation/	5,807
	3	fluorid*.tw.	46,815
	4	fluorin*.tw.	24,699
	5	flurin*.tw.	6
	6	flurid*.tw.	232
	7	or/1-6	83,947
Water	8	Water/	153,755
	9	water.tw.	748,212
	10	Drinking Water/	7,719

¹ MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Concept	#	Medline query	Results
	11	drinking water.tw.	47,159
	12	exp Fresh Water/	62,271
	13	fresh water*.tw.	6,372
	14	freshwater*.tw.	34,209
	15	exp Mineral Waters/	4,263
	16	mineral water*.tw.	3,217
	17	exp Carbonated Water/	55
	18	carbonated water*.tw.	140
	19	exp Water Quality/	5,886
	20	(water adj3 quality).tw.	21,935
	21	exp Water Resources/	779
	22	(water* adj3 resource*).tw.	5,689
	23	Water Supply/	32,288
	24	(water adj3 supply).tw.	8,648
	25	(water* adj3 course*).tw.	524
	26	watercourse*.tw.	617
	27	exp Rivers/	25,532
	28	river*.tw.	61,402
	29	exp Lakes/	8,576
	30	lake*.tw.	37,378
	31	exp Ponds/	1,384
	32	pond*.tw.	16,113
	33	exp Groundwater/	9,100
	34	groundwater*.tw.	18,480
	35	ground water*.tw.	3,463
	36	Water Wells/	703
	37	water well*.tw.	501
	38	(water* adj3 course*).tw.	524
	39	watercourse*.tw.	617

Concept	#	Medline query	Results
	40	exp Natural Springs/	2,026
	41	natural spring*.tw.	101
	42	exp Hot Springs/	1,851
	43	hot spring*.tw.	2,056
	44	hotspring*.tw.	21
	45	spring water*.tw.	939
	46	springwater*.tw.	22
	47	(water* adj3 reservoir*).tw.	3,162
	48	stream*.tw.	65,949
	49	brook*.tw.	6,086
	50	creek*.tw.	3,148
	51	rivulet*.tw.	83
	52	rill*.tw.	120
	53	runnel*.tw.	23
	54	community water.tw.	523
	55	water fluoridation.tw.	1,267
	56	community water fluoridation.tw.	204
	57	CWF.tw.	121
	58	or/8-57	957,393
Outcomes	59	exp Fluoride Poisoning/	1,046
	60	(fluoride adj3 poisoning).tw.	121
	61	exp Bone Diseases/	492,641
	62	cancer*.tw.	1,705,562
	63	exp Neoplasms/	3,270,255
	64	neoplas*.tw.	255,862
	65	malignan*.tw.	556,683
	66	tumor*.tw.	1,397,806
	67	tumour*.tw.	264,641
	68	sarcoma*.tw.	93,670

25 March 2023

Concept	#	Medline query	Results
	69	carcinoma*.tw.	641,006
	70	tumor*.tw.	1,397,806
	71	(bone* adj3 disease*).tw.	24,734
	72	exp Bone Development/	60,998
	73	(bone* adj3 develop*).tw.	13,828
	74	exp Fractures, Bone/	180,742
	75	(bone* adj3 fracture*).tw.	20,569
	76	(bone* adj3 injur*).tw.	3,795
	77	(skelet* adj3 fluorosis).tw.	395
	78	(skelet* adj3 toxicit*).tw.	226
	79	exp Bone Neoplasms/	124,454
	80	(bone* adj3 cancer*).tw.	8,270
	81	(bone* adj3 neoplasm*).tw.	1,101
	82	(bone* adj3 tumor*).tw.	15,408
	83	(bone* adj3 tumour*).tw.	3,350
	84	(skelet* adj3 cancer*).tw.	680
	85	(skelet* adj3 neoplasm*).tw.	156
	86	(skelet* adj3 tumor*).tw.	1,057
	87	(skelet* adj3 tumour*).tw.	224
	88	exp Endocrine System Diseases/	963,395
	89	(endocrin* adj3 diseas*).tw.	5,078
	90	(endocrin* adj3 disorder*).tw.	6,324
	91	(endocrin* adj3 disturbance*).tw.	1,103
	92	(endocrin* adj3 disruption*).tw.	2,393
	93	(endocrin* adj3 dysfunction*).tw.	1,913
	94	endocrinopath*.tw.	3,522
	95	(hormon* adj3 disease*).tw.	3,312
	96	(hormon* adj3 disorder*).tw.	1,860
	97	(hormon* adj3 disruption*).tw.	506

Concept	#	Medline query	Results
	98	(hormon* adj3 dysfunction*).tw.	893
	99	(hormon* adj3 imbalance*).tw.	1,285
	100	exp Thyroid Diseases/	145,756
	101	(thyroid* adj3 diseas*).tw.	18,323
	102	(thyroid* adj3 disorder*).tw.	4,827
	103	(thyroid* adj3 dysfunction*).tw.	5,515
	104	(thyroid* adj3 abnormalit*).tw.	1,697
	105	(thyroid* adj3 anomal*).tw.	171
	106	Neurodevelopmental Disorders/	1,867
	107	(neurodevelopment* adj3 disorder*).tw.	9,811
	108	(neurodevelopment* adj3 diseas*).tw.	936
	109	exp Developmental Disabilities/	19,663
	110	(development* adj3 disabilit*).tw.	7,213
	111	(development* adj3 dela*).tw.	25,513
	112	(development* adj3 abnormalit*).tw.	7,736
	113	Intellectual Disability/	54,031
	114	(intellectual adj3 disabilit*).tw.	17,201
	115	(intellectual adj3 dysfunction*).tw.	156
	116	(intellectual adj3 impairment*).tw.	1,880
	117	exp Neurocognitive Disorders/	247,000
	118	neurocognitive disorder*.tw.	2,171
	119	exp cognition disorders/	90,921
	120	(cogniti* adj3 disorder*).tw.	9,248
	121	(cogniti* adj3 disease*).tw.	6,696
	122	exp Cognitive Dysfunction/	15,133
	123	(cogniti* adj3 dysfunction*).tw.	16,461
	124	Immune System Diseases/	12,177
	125	immunotoxic*.tw.	3,937
	126	immunopath*.tw.	16,870

Concept	#	Medline query	Results
	127	(immun* adj3 disease*).tw.	47,361
	128	(immun* adj3 disorder*).tw.	14,597
	129	(immun* adj3 dysfunction*).tw.	7,378
	130	(immun* adj3 dysregulation*).tw.	4,671
	131	Hypersensitivity/	48,076
	132	Hypersensitivity, Delayed/	18,978
	133	Hypersensitivity, Immediate/	12,492
	134	hypersensitivit*.tw.	60,456
	135	genotoxic*.tw.	32,443
	136	exp male urogenital diseases/	1,108,660
	137	exp Female Urogenital Diseases/	1,224,494
	138	(urogen* adj3 disease*).tw.	602
	139	(urogen* adj3 disorder*).tw.	211
	140	(genitourinary adj3 disease*).tw.	617
	141	(genitourinary adj3 disorder*).tw.	233
	142	(male adj3 genit*).tw.	5,723
	143	(female adj3 genit*).tw.	12,463
	144	(health adj3 hazard*).tw.	11,187
	145	(health adj3 risk*).tw.	56,982
	146	or/59-145	6,674,313
Fluoride + water	147	7 and 58	12,883
Fluoride +	148	7 and 58 and 146	1,372
water +			
outcomes			
2016 -	149	limit 148 to yr="2016 -Current"	295
current			
Reviews only	150	limit 149 to (meta analysis or "review" or "scientific	28
		integrity review" or "systematic review" or	

Concept	#	Medline query	Results
		systematic reviews as topic)	

EMBASE ²

Concept	#	EMBASE query	Results
Fluoride	1	exp fluoride/	35,562
	2	exp fluoridation/	6,256
	3	fluorid*.tw.	55,488
	4	fluorin*.tw.	29,336
	5	flurin*.tw.	21
	6	flurid*.tw.	209
	7	or/1-6	91,990
Water	8	water/	317,883
	9	water.tw.	949,249
	10	drinking water/	51,062
	11	drinking water.tw.	65,801
	12	exp tap water/	8,446
	13	tap water.tw.	13,667
	14	tapwater.tw.	240
	15	exp fresh water/	23,207
	16	fresh water*.tw.	8,517
	17	freshwater*.tw.	37,613
	18	water quality/	41,343
	19	water quality.tw.	27,273
	20	water treatment/	19,840
	21	water treatment.tw.	15,241
	22	exp water supply/	40,847
	23	(water adj3 supply*).tw.	12,420
	24	(water* adj3 resource*).tw.	7,716
	25	(water* adj3 reservoir*).tw.	4,029
	26	(water* adj3 course*).tw.	836
	27	watercourse*.tw.	935

² Embase: Excerpta Medica Database Guide

Concept #	EMBASE query	Results
28	exp river/	30,610
29	river*.tw.	78,325
30	exp lake/	15,700
31	lake*.tw.	47,036
32	exp pond/	4,829
33	pond*.tw.	20,683
34	exp ground water/	26,252
35	ground water*.tw.	6,199
36	groundwater*.tw.	24,734
37	exp well water/	2,975
38	(water adj3 well*).tw.	11,793
39	exp mineral water/	5,338
40	mineral water*.tw.	3,986
41	exp carbonated water/	130
42	carbonated water*.tw.	191
43	exp natural spring/	242
44	natural spring*.tw.	143
45	exp thermal spring/	2,971
46	hot spring*.tw.	2,377
47	hotspring*.tw.	31
48	spring water*.tw.	1,353
49	springwater*.tw.	34
50	exp "stream (river)"/	4,325
51	stream*.tw.	94,825
52	brook*.tw.	8,456
53	creek*.tw.	3,927
54	rivulet*.tw.	90
55	rill*.tw.	232
56	runnel*.tw.	32
57	community water.tw.	646

Concept	#	EMBASE query	Results
	58	water fluoridation.tw.	1,412
	59	or/8-58	1,221,777
Outcomes	60	exp fluorosis/	3,316
	61	fluoride intoxication.tw.	193
	62	fluoride poisoning.tw.	173
	63	fluoridosis.tw.	1
	64	exp neoplasm/	4,779,286
	65	exp malignant neoplasm/	3,584,172
	66	neoplas*.tw.	367,025
	67	cancer*.tw.	2,481,147
	68	malignan*.tw.	834,120
	69	carcinoma*.tw.	912,502
	70	sarcoma*.tw.	132,200
	71	tumor*.tw.	1,962,716
	72	tumour*.tw.	426,488
	73	exp bone disease/	1,204,429
	74	(bone* adj3 diseas*).tw.	37,645
	75	(bone* adj3 disorder*).tw.	9,155
	76	(skelet* adj3 disease*).tw.	5,669
	77	(skelet* adj3 disorder*).tw.	4,132
	78	exp bone injury/	324,785
	79	(bone* adj3 injur*).tw.	5,259
	80	(bone* adj3 damage*).tw.	5,463
	81	(bone* adj3 fracture*).tw.	29,849
	82	(bone* adj3 trauma).tw.	1,545
	83	(skelet* adj3 injur*).tw.	3,537
	84	(skelet* adj3 damage*).tw.	1,753
	85	(skelet* adj3 fracture*).tw.	1,880
	86	(skelet* adj3 trauma).tw.	781
	87	exp bone development/	111,099

Concept #	EMBASE query	Results
88	(bone* adj3 develop*).tw.	19,862
89	osteogenesis.tw.	25,397
90	(skelet* adj3 develop*).tw.	10,605
91	skeletogenesis.tw.	963
92	exp bone cancer/	101,542
93	(bone* adj3 cancer*).tw.	12,509
94	(bone* adj3 tumor*).tw.	21,086
95	(bone* adj3 tumour*).tw.	5,398
96	(bone* adj3 neoplasm*).tw.	1,538
97	osteosarcoma*.tw.	29,630
98	(skelet* adj3 cancer*).tw.	1,014
99	(skelet* adj3 tumor*).tw.	1,422
100	(skelet* adj3 tumour*).tw.	378
101	(skelet* adj3 neoplasm*).tw.	205
102	exp endocrine disease/	2,152,614
103	(endocrin* adj3 disease*).tw.	7,901
104	(endocrin* adj3 disorder*).tw.	10,179
105	(endocrin* adj3 disturbance*).tw.	2,684
106	(endocrin* adj3 dysfunction*).tw.	3,058
107	(endocrin* adj3 disruption*).tw.	2,901
108	endocrinopath*.tw.	5,698
109	(hormon* adj3 disorder*).tw.	2,821
110	(hormon* adj3 disruption*).tw.	609
111	(hormon* adj3 dysfunction*).tw.	1,433
112	(hormon* adj3 imbalance*).tw.	2,125
113	thyroid disease/	31,956
114	(thyroid* adj3 disease*).tw.	27,151
115	(thyroid* adj3 disorder*).tw.	7,659
116	(thyroid* adj3 abnormalit*).tw.	2,621
117	(thyroid* adj3 anomal*).tw.	262

Concept #	EMBASE query	Results
118	3 (thyroid* adj3 dysfunction*).tw.	8,785
119	exp mental disease/	2,280,520
120) (mental adj3 disease*).tw.	8,547
12′	(mental adj3 disorder*).tw.	58,262
122	2 (mental adj3 disturbance*).tw.	3,494
123	3 (mental adj3 illness*).tw.	41,522
124	(neurodevelopment* adj3 disorder*).tw.	13,066
125	6 (neuropsychiatric adj3 disorder*).tw.	13,872
126	6 (psych* adj3 disease*).tw.	21,908
127	(psych* adj3 disorder*).tw.	103,146
128	3 (psych* adj3 disturbance*).tw.	10,811
129) (psych* adj3 illness*).tw.	22,244
130	exp developmental disorder/	44,227
13′	(development* adj3 disorder*).tw.	31,349
132	2 (development* adj3 disease*).tw.	69,819
133	3 (development* adj3 disabilit*).tw.	9,938
134	l (development* adj3 dela*).tw.	36,568
135	(development* adj3 abnormalit*).tw.	10,461
136	exp intellectual impairment/	528,459
137	(intellectual adj3 impairment*).tw.	2,773
138	3 (intellectual adj3 disabilit*).tw.	25,169
139	(intellectual adj3 dysfunction*).tw.	196
140	exp cognitive defect/	485,131
14	(cogniti* adj3 defect*).tw.	1,217
142	2 (cogniti* adj3 disorder*).tw.	14,749
143	3 (cogniti* adj3 deficit*).tw.	37,950
144	l (cogniti* adj3 disabilit*).tw.	4,447
145	5 (cogniti* adj3 impairment*).tw.	104,619
146	6 (cogniti* adj3 dysfunction*).tw.	25,318
147	exp immunopathology/	1,861,146

Concept	#	EMBASE query	Results
	148	immunopath*.tw.	21,949
	149	(immun* adj3 disease*).tw.	66,959
	150	(immun* adj3 disorder*).tw.	21,255
	151	(immun* adj3 dysfunction*).tw.	10,633
	152	(immun* adj3 dysregulation*).tw.	7,542
	153	exp hypersensitivity/	667,780
	154	hypersensitivit*.tw.	86,607
	155	exp genotoxicity/	32,891
	156	genotoxic*.tw.	40,197
	157	exp urogenital tract disease/	2,543,465
	158	(urogenital adj3 disease*).tw.	861
	159	(urogenital adj3 disorder*).tw.	340
	160	(genitourinary adj3 disease*).tw.	868
	161	(genitourinary adj3 disorder*).tw.	311
	162	(male adj3 genit*).tw.	6,960
	163	(female adj3 genit*).tw.	16,842
	164	exp health hazard/	551,767
	165	(health adj3 hazard*).tw.	14,826
	166	(health adj3 risk*).tw.	70,092
	167	or/60-166	12,825,673
Fluoride + water	168	7 and 59	16,549
Fluoride + water +			3,175
outcomes	169	7 and 59 and 167	
2016 - current	170	limit 169 to yr="2016 -Current"	591
Reviews only	171		52

PubMed

Concept	#	Pubmed Query	Results
Fluoride	1	fluoride[MeSH Terms]	36,648
	2	fluoridation[MeSH Terms]	5,806
	3	fluorid*[Text Word]	62,000
	4	fluorin*[Text Word]	38,116
	5	flurin*[Text Word]	6
	6	flurid*[Text Word]	248
	7	(((((((fluoride[MeSH Terms]) OR fluoridation[MeSH	97,663
		Terms]) OR fluorid*[Text Word]) OR fluorin*[Text Word])	
		OR flurin*[Text Word]) OR flurid*[Text Word])))	
Water	8	water[MeSH Terms]	172,538
	9	water[Text Word]	929,227
	10	drinking water[MeSH Terms]	7,746
	11	drinking water[Text Word]	49,377
	12	tap water[MeSH Terms]	2,551
	13	tap water[Text Word]	10,337
	14	fresh water[MeSH Terms]	62,169
	15	fresh water*[Text Word]	34,531
	16	freshwater*[Text Word]	34,861
	17	water quality[MeSH Terms]	5,869
	18	water qualit*[Text Word]	21,220
	19	water treatment[MeSH Terms]	31,226
	20	water treatment*[Text Word]	10,810
	21	water supply[MeSH Terms]	32,795
	22	water supply[Text Word]	36,524
	23	water resource[MeSH Terms]	767
	24	water resource*[Text Word]	5,510
	25	water reservoir*[Text Word]	1,443
	26	water course[Text Word]	61

Concept	#	Pubmed Query	Results
	27	watercourse*[Text Word]	618
	28	river[MeSH Terms]	25,486
	29	river*[Text Word]	67,451
	30	lake[MeSH Terms]	8,549
	31	lake*[Text Word]	38,201
	32	pond[MeSH Terms]	1,379
	33	pond*[Text Word]	16,095
	34	ground water[MeSH Terms]	9,078
	35	ground water*[Text Word]	3,472
	36	groundwater*[Text Word]	20,109
	37	water well[MeSH Terms]	700
	38	water well*[Text Word]	1,061
	39	mineral water[MeSH Terms]	4,261
	40	mineral water*[Text Word]	5,495
	41	carbonated water[MeSH Terms]	55
	42	carbonated water*[Text Word]	168
	43	natural spring[MeSH Terms]	2,024
	44	natural spring*[Text Word]	263
	45	thermal spring*[Text Word]	302
	46	hot spring[MeSH Terms]	1,850
	47	hot spring*[Text Word]	2,520
	48	hotspring*[Text Word]	21
	49	spring water[MeSH Terms]	1,637
	50	spring water*[Text Word]	926
	51	springwater*[Text Word]	23
	52	stream[MeSH Terms]	25,486
	53	stream*[Text Word]	66,641
	54	brook*[Text Word]	6,169
	55	creek*[Text Word]	3,168

Concept	#	Pubmed Query	Results
	56	rivulet*[Text Word]	84
	57	rill*[Text Word]	125
	58	runnel*[Text Word]	23
	59	community water[MeSH Terms]	2,748
	60	community water*[Text Word]	514
	61	community water fluoridation[MeSH Terms]	967
	62	water fluoridation*[Text Word]	1,269
	63	community water fluoridation[Text Word]	204
	64	((((((((((((((((((((((((((((((((((((((1,062,076
		Terms]) OR water[Text Word]) OR drinking water[MeSH	
		Terms]) OR drinking water[Text Word]) OR tap	
		water[MeSH Terms]) OR tap water[Text Word]) OR fresh	
		water[MeSH Terms]) OR fresh water*[Text Word]) OR	
		freshwater*[Text Word]) OR water quality[MeSH Terms])	
		OR water qualit*[Text Word]) OR water treatment[MeSH	
		Terms]) OR water treatment*[Text Word]) OR water	
		supply[MeSH Terms]) OR water supply[Text Word]) OR	
		water resource[MeSH Terms]) OR water resource*[Text	
		Word]) OR water reservoir*[Text Word]) OR water	
		course[Text Word]) OR watercourse*[Text Word]) OR	
		river[MeSH Terms]) OR river*[Text Word]) OR	
		lake[MeSH Terms]) OR lake*[Text Word]) OR	
		pond[MeSH Terms]) OR pond*[Text Word]) OR ground	
		water[MeSH Terms]) OR ground water*[Text Word]) OR	
		groundwater*[Text Word]) OR water well[MeSH Terms])	

OR water well*[Text Word]) OR mineral water[MeSH

Terms]) OR mineral water*[Text Word]) OR carbonated

water[MeSH Terms]) OR carbonated water*[Text Word])

OR natural spring[MeSH Terms]) OR natural spring*[Text

Concept	#	Pubmed Query	Results
		Word]) OR thermal spring*[Text Word]) OR hot	
		spring[MeSH Terms]) OR hot spring*[Text Word]) OR	
		hotspring*[Text Word]) OR spring water[MeSH Terms])	
		OR spring water*[Text Word]) OR springwater*[Text	
		Word]) OR stream[MeSH Terms]) OR stream*[Text	
		Word]) OR brook*[Text Word]) OR creek*[Text Word])	
		OR rivulet*[Text Word]) OR rill*[Text Word]) OR	
		runnel*[Text Word]) OR community water[MeSH Terms])	
		OR community water*[Text Word]) OR community water	
		fluoridation[MeSH Terms]) OR community water	
		fluoridation[Text Word]) OR water fluoridation*[Text	
		Word]	
Outcomes	65	((((((((((((((((((((((((((((((((((((((5,037,262
		Word]) OR neoplasm[MeSH Terms]) OR neoplas*[Text	
		Word]) OR malignancy[MeSH Terms]) OR	
		malignan*[Text Word]) OR carcinoma[MeSH Terms]) OR	
		carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR	
		sarco*[Text Word]) OR tumor[MeSH Terms]) OR	
		tumor*[Text Word]) OR tumour[MeSH Terms]) OR	
		tumour*[Text Word])) OR	
		((((((((((((((((((((((((((((((((((((((
		OR bone disease*[Text Word]) OR bone disorder*[Text	
		Word]) OR bone injur*[Text Word]) OR bone	
		fracture[MeSH Terms]) OR bone* fracture*[Text Word])	
		OR bone* trauma*[Text Word]) OR bone* damage*[Text	
		Word]) OR skelet* disease*[Text Word]) OR skelet*	
		disorder*[Text Word]) OR skelet* injur*[Text Word]) OR	
		skelet* fracture*[Text Word]) OR skelet* trauma*[Text	
		Word]) OR skelet* damage*[Text Word]) OR bone	
		neoplasm[MeSH Terms]) OR bone* neoplas*[Text	

Word]) OR bone cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone* tumor*[Text Word]) OR bone* tumour*[Text Word]) OR osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone development[MeSH Terms]) OR bone* development[Text Word]) OR osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR skelet* development[Text Word]) OR skeletogenesis[Text Terms]) OR endocrin* disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text Word]) OR endocrin* dysfunction*[Text Word]) OR endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR hormon* disorder*[Text Word]) OR hormon* disturbance*[Text Word]) OR hormon* disruption*[Text Word]) OR hormon* dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text Word]) OR thyroid* disorder*[Text Word]) OR thyroid* abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid* dysfunction*[Text disorders[MeSH Terms]) OR mental disorder*[Text Word]) OR mental disease*[Text Word]) OR mental disturbance*[Text Word]) OR mental illness*[Text Word]) OR neurodevelopment* disease*[Text Word]) OR

neurodevelopment* disorder*[Text Word]) OR neurodevelopment* disabilit*[Text Word]) OR neurodevelopment* dela*[Text Word]) OR ((developmental disorder, speech or language[MeSH Terms]))) OR developmental disorders of scholastic skills[MeSH Terms]) OR development* disorder*[Text Word]) OR developmental disability[MeSH Terms]) OR development* disabilit*[Text Word]) OR developmental delay disorder[MeSH Terms]) OR development* dela*[Text Word]) OR development* abnormalit*[Text Word]) OR development* impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH Terms]) OR intellectual aphasia*[Text Word]) OR intellectual impairment*[Text Word]) OR intellectual dysfunction*[Text Word]) OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms]) OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti* impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti* defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti* disabilit*[Text Word]) OR cogniti* dysfunction*[Text Word])) OR immunologic* disease*[Text Word]) OR immunologic* disorder*[Text Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic* dysregulat*[Text Word]) OR immediate hypersensitivity[MeSH Terms]) OR delayed

Concept	#	Pubmed Query	Results
		hypersensitivity[MeSH Terms]) OR hypersensitivit*[Text	
		Word]) OR immunopath*[Text Word]) OR	
		genotoxic*[Text Word]) OR male urogenital	
		disease[MeSH Terms]) OR female urogenital	
		disease[MeSH Terms]) OR urogenit* disease*[Text	
		Word]) OR urogenit* disorder*[Text Word]) OR male	
		genitourinary disease[MeSH Terms]) OR female	
		genitourinary disease[MeSH Terms]) OR genitourin*	
		disease*[Text Word]) OR genitourin* disorder*[Text	
		Word]) OR health risk appraisal[MeSH Terms]) OR	
		health risk*[Text Word]) OR health hazard*[Text Word])))	
FI + water	66	((((((((((((((((((((((((((((((((((((((14,336
		fluorid*[Text Word]) OR fluorin*[Text Word]) OR flurin*[Text Word])	·
		OR flurid*[Text Word])))))) AND	
		((((((((((((((((((((((((((((((((((((((
		water[Text Word]) OR drinking water[MeSH Terms]) OR drinking	
		water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text	
		Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word])	
		OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR	
		water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR	
		water treatment*[Text Word]) OR water supply[MeSH Terms]) OR	
		water supply[Text Word]) OR water resource[MeSH Terms]) OR	
		water resource*[Text Word]) OR water reservoir*[Text Word]) OR	
		water course[Text Word]) OR watercourse*[Text Word]) OR	
		river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms])	
		OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text	
		Word]) OR ground water[MeSH Terms]) OR ground water*[Text	
		Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms])	
		OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR	
		mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR	
		carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR	
		natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot	
		spring[MeSH Terms]) OR hot spring*[Text Word]) OR	

#	Pubmed Query	Results
	hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring	
	water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH	
	Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR	
	creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR	
	runnel*[Text Word]) OR community water[MeSH Terms]) OR	
	community water*[Text Word]) OR community water	
	fluoridation[MeSH Terms]) OR community water fluoridation[Text	
	Word]) OR water fluoridation*[Text Word]))	
67	((((((((((((((((((((((((((((((((((((((766
	fluorid*[Text Word]) OR fluorin*[Text Word]) OR flurin*[Text Word])	
	OR flurid*[Text Word])))))) AND	
	((((((((((((((((((((((((((((((((((((((
	water[Text Word]) OR drinking water[MeSH Terms]) OR drinking	
	water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text	
	Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word])	
	OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR	
	water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR	
	water treatment*[Text Word]) OR water supply[MeSH Terms]) OR	
	water supply[Text Word]) OR water resource[MeSH Terms]) OR	
	water resource*[Text Word]) OR water reservoir*[Text Word]) OR	
	water course[Text Word]) OR watercourse*[Text Word]) OR	
	river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms])	
	OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text	
	Word]) OR ground water[MeSH Terms]) OR ground water*[Text	
	Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms])	
	OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR	
	mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR	
	carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR	
	natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot	
	spring[MeSH Terms]) OR hot spring*[Text Word]) OR	
	hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring	
	water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH	
	Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR	
	creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR	
	runnel*[Text Word]) OR community water[MeSH Terms]) OR	
	community water*[Text Word]) OR community water	
		hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR creek*[Text Word]) OR creek*[Text Word]) OR community water[MeSH Terms]) OR community water*[Text Word]) OR community water fluoridation[Text Word]) OR water fluoridation*[Text Word])) 67 (((((((((((((((((((((((((((((((((((

fluoridation[MeSH Terms]) OR community water fluoridation[Text Word]) OR water fluoridation*[Text Word]))) AND neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR malignancy[MeSH Terms]) OR malignan*[Text Word]) OR carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumor[MeSH Terms]) OR tumor*[Text Word]) OR tumour[MeSH Terms]) OR disease[MeSH Terms]) OR bone disease*[Text Word]) OR bone disorder*[Text Word]) OR bone injur*[Text Word]) OR bone fracture[MeSH Terms]) OR bone* fracture*[Text Word]) OR bone* trauma*[Text Word]) OR bone* damage*[Text Word]) OR skelet* disease*[Text Word]) OR skelet* disorder*[Text Word]) OR skelet* injur*[Text Word]) OR skelet* fracture*[Text Word]) OR skelet* trauma*[Text Word]) OR skelet* damage*[Text Word]) OR bone neoplasm[MeSH Terms]) OR bone* neoplas*[Text Word]) OR bone cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone* tumor*[Text Word]) OR bone* tumour*[Text Word]) OR osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone development[MeSH Terms]) OR bone* development[Text Word]) OR osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR skelet* development[Text Word]) OR skeletogenesis[Text Word])) disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text Word]) OR endocrin* dysfunction*[Text Word]) OR endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR hormon* disorder*[Text Word]) OR hormon* disturbance*[Text Word]) OR hormon* disruption*[Text Word]) OR hormon* dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text Word]) OR thyroid* disorder*[Text Word]) OR thyroid*

abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid* disorders[MeSH Terms]) OR mental disorder*[Text Word]) OR mental disease*[Text Word]) OR mental disturbance*[Text Word]) OR mental illness*[Text Word]) OR neurodevelopment* disease*[Text Word]) OR neurodevelopment* disorder*[Text Word]) OR neurodevelopment* disabilit*[Text Word]) OR neurodevelopment* dela*[Text Word]) OR ((developmental disorder, speech or language[MeSH Terms]))) OR developmental disorders of scholastic skills[MeSH Terms]) OR development* disorder*[Text Word]) OR developmental disability[MeSH Terms]) OR development* disabilit*[Text Word]) OR developmental delay disorder[MeSH Terms]) OR development* dela*[Text Word]) OR development* abnormalit*[Text Word]) OR development* impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH Terms]) OR intellectual aphasia*[Text Word]) OR intellectual impairment*[Text Word]) OR intellectual dysfunction*[Text Word]) OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms]) OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti* impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti* defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti* disabilit*[Text Word]) OR cogniti* dysfunction*[Text Word])) OR immunologic* disease*[Text Word]) OR immunologic* disorder*[Text Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic* dysregulat*[Text Word]) OR immediate hypersensitivity[MeSH Terms]) OR delayed hypersensitivity[MeSH Terms]) OR hypersensitivit*[Text Word]) OR immunopath*[Text Word]) OR genotoxic*[Text Word]) OR male urogenital disease[MeSH Terms]) OR female urogenital disease[MeSH Terms]) OR urogenit* disease*[Text Word]) OR urogenit* disorder*[Text Word]) OR male genitourinary disease[MeSH Terms]) OR female genitourinary disease[MeSH Terms]) OR genitourin* disease*[Text Word]) OR genitourin* disorder*[Text Word]) OR health risk appraisal[MeSH

Concept	#	Pubmed Query	Results
		Terms]) OR health risk*[Text Word]) OR health hazard*[Text	
		Word])))))	
2016 -	68	Search ((((((((((((((((((((((((((((((((((((214
current		Terms]) OR fluorid*[Text Word]) OR fluorin*[Text Word]) OR	
		flurin*[Text Word]) OR flurid*[Text Word])))))) AND	
		((((((((((((((((((((((((((((((((((((((
		water[Text Word]) OR drinking water[MeSH Terms]) OR drinking	
		water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text	
		Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word])	
		OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR	
		water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR	
		water treatment*[Text Word]) OR water supply[MeSH Terms]) OR	
		water supply[Text Word]) OR water resource[MeSH Terms]) OR	
		water resource*[Text Word]) OR water reservoir*[Text Word]) OR	
		water course[Text Word]) OR watercourse*[Text Word]) OR	
		river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms])	
		OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text	
		Word]) OR ground water[MeSH Terms]) OR ground water*[Text	
		Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms])	
		OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR	
		mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR	
		carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR	
		natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot	
		spring[MeSH Terms]) OR hot spring*[Text Word]) OR	
		hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring	
		water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH	
		Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR	
		creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR	
		runnel*[Text Word]) OR community water[MeSH Terms]) OR	
		community water*[Text Word]) OR community water	
		fluoridation[MeSH Terms]) OR community water fluoridation[Text	
		Word]) OR water fluoridation*[Text Word]))) AND	
		((((((((((((((((((((((((((((((((((((((
		neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR	
		malignancy[MeSH Terms]) OR malignan*[Text Word]) OR	
		carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR	

sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumor[MeSH Terms]) OR tumor*[Text Word]) OR tumour[MeSH Terms]) OR disease[MeSH Terms]) OR bone disease*[Text Word]) OR bone disorder*[Text Word]) OR bone injur*[Text Word]) OR bone fracture[MeSH Terms]) OR bone* fracture*[Text Word]) OR bone* trauma*[Text Word]) OR bone* damage*[Text Word]) OR skelet* disease*[Text Word]) OR skelet* disorder*[Text Word]) OR skelet* injur*[Text Word]) OR skelet* fracture*[Text Word]) OR skelet* trauma*[Text Word]) OR skelet* damage*[Text Word]) OR bone neoplasm[MeSH Terms]) OR bone* neoplas*[Text Word]) OR bone cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone* tumor*[Text Word]) OR bone* tumour*[Text Word]) OR osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone development[MeSH Terms]) OR bone* development[Text Word]) OR osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR skelet* development[Text Word]) OR skeletogenesis[Text Word])) disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text Word]) OR endocrin* dysfunction*[Text Word]) OR endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR hormon* disorder*[Text Word]) OR hormon* disturbance*[Text Word]) OR hormon* disruption*[Text Word]) OR hormon* dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text Word]) OR thyroid* disorder*[Text Word]) OR thyroid* abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid* disorders[MeSH Terms]) OR mental disorder*[Text Word]) OR mental disease*[Text Word]) OR mental disturbance*[Text Word]) OR mental illness*[Text Word]) OR neurodevelopment* disease*[Text Word]) OR neurodevelopment* disorder*[Text Word])

OR neurodevelopment* disabilit*[Text Word]) OR neurodevelopment* dela*[Text Word]) OR ((developmental disorder, speech or language[MeSH Terms]))) OR developmental disorders of scholastic skills[MeSH Terms]) OR development* disorder*[Text Word]) OR developmental disability[MeSH Terms]) OR development* disabilit*[Text Word]) OR developmental delay disorder[MeSH Terms]) OR development* dela*[Text Word]) OR development* abnormalit*[Text Word]) OR development* impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH Terms]) OR intellectual aphasia*[Text Word]) OR intellectual impairment*[Text Word]) OR intellectual dysfunction*[Text Word]) OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms]) OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti* impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti* defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti* disabilit*[Text Word]) OR cogniti* dysfunction*[Text Word])) OR immunologic* disease*[Text Word]) OR immunologic* disorder*[Text Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic* dysregulat*[Text Word]) OR immediate hypersensitivity[MeSH Terms]) OR delayed hypersensitivity[MeSH Terms]) OR hypersensitivit*[Text Word]) OR immunopath*[Text Word]) OR genotoxic*[Text Word]) OR male urogenital disease[MeSH Terms]) OR female urogenital disease[MeSH Terms]) OR urogenit* disease*[Text Word]) OR urogenit* disorder*[Text Word]) OR male genitourinary disease[MeSH Terms]) OR female genitourinary disease[MeSH Terms]) OR genitourin* disease*[Text Word]) OR genitourin* disorder*[Text Word]) OR health risk appraisal[MeSH Terms]) OR health risk*[Text Word]) OR health hazard*[Text Word])))))) AND ("2016"[Date - Publication] : "2020"[Date -Publication])

69 Limit 68 to (meta analysis or "review" or "scientific integrity review" or "systematic review" or systematic reviews as topic)

19

CINAHL³

Concept	#	Cinahl query	Results
Fluoride	1	fluoride	5,449
	2	fluoride in water	1,142

 $^{^{\}rm 3}$ Cumulative Index to Nursing and Allied Health Literature

Concept	#	Cinahl query	Results
	3	water fluoridation or fluoridation of water or fluoride treatment	1,552
		or fluoride in water	
	4	fluoridation or fluoride or fluoridated	6,246
	5	TX water fluorid* OR TX fluorid* OR TX fluorin* OR TX flurin*	8,118
		OR TX flurid*	
	6	S1 OR S2 OR S3 OR S4 OR S5	8,118
Water	7	drinking water OR tap water	112
	8	TX drinking water OR TX tap water	26
	9	drinking water quality OR drinking water treatment OR	11,746
		drinking water safety	
	10	TX drinking water quality OR TX drinking water treatment OR	711
		TX drinking water safety	
	11	ground water OR water wells OR river OR lake OR pond	6,317
	12	TX ground water OR TX water wells OR TX river OR TX lake	49,341
		OR TX pond	
	13	mineral water OR carbonated water OR spring water OR hot	645
		springs	
	14	TX mineral water OR TX carbonated water OR TX spring	991
		water OR TX hot springs	
	15	S7 S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14	50,317
Outcomes	16	fluorosis	687
	17	fluoride toxicity	28
	18	bone disease	11,078
	19	TX bone* disease*	12,465
	20	bone disorder	1,335
	21	TX bone* disorder*	1,576
	22	skeletal disease	757
	23	TX skelet* disease*	954
	24	skeletal disorders	542
	25	TX skelet* disorder*	641

Concept #	Cinahl query	Results
26	bone injury	4,342
27	TX bone* injur*	4,225
28	bone fracture	6,903
29	TX bone* fracture*	7,351
30	TX bone* damage*	788
31	bone trauma	615
32	TX bone* trauma*	1,049
33	TX skelet* injur*	1,799
34	TX skelet* damage*	241
35	TX skelet* fracture*	621
36	skeletal trauma	173
37	TX skelet* trauma*	319
38	bone development	2,675
39	TX bone* development*	3,347
40	osteogenesis	5,604
41	TX osteogen*	6,675
42	TX skelet* develop*	931
43	TX skeletogen*	22
44	bone cancer	8,333
45	TX bone* cancer*	3,117
46	bone tumor	10,075
47	TX bone* tumor*	3,054
48	TX bone* tumour*	768
49	bone neoplasm	10,075
50	TX bone* neoplas*	8,269
51	osteosarcoma	3,482
52	TX osteosarcoma*	3,505
53	osteogenic sarcoma	2,222
54	TX osteogenic sarcoma*	103
55	TX skelet* cancer*	358

Concept	#	Cinahl query	Results
	56	TX skelet* tumor*	251
	57	TX skelet* tumour*	57
	58	TX skelet* neoplas*	35
	59	endocrine disease	1,971
	60	TX endocrin* disease*	4,212
	61	endocrine disorders	1,526
	62	TX endocrin* disorder*	2,260
	63	endocrine disruptors	312
	64	endocrine disrupting chemicals	310
	65	TX endocrin* disrupt*	953
	66	TX endocrin* disturbance*	121
	67	TX endocrin* dysfunction*	315
	68	endocrine pathology	232
	69	TX endocrin* patholo*	391
	70	TX endocrinopath*	465
	71	TX hormon* disease*	1,380
	72	hormone disorders	252
	73	TX hormon* disorder*	544
	74	hormone disruptor	13
	75	TX hormon* disruptor*	28
	76	hormone imbalance	68
	77	TX hormon* imbalance*	204
	78	TX hormon* dysfunction*	269
	79	thyroid disease	4,066
	80	TX thyroid* disease*	4,324
	81	thyroid disorders	2,129
	82	TX thyroid* disorder*	773
	83	thyroid cancer	6,329
	84	TX thyroid* cancer*	4,093
	85	thyroid neoplasms	6,018

Concept #	Cinahl query	Results
86	TX thyroid* neoplas*	5,768
87	thyroid adenoma	4,888
88	TX thyroid* adenoma*	213
89	TX thyroid* abnormalit*	363
90	TX thyroid* anomal*	34
91	thyroid dysfunction	861
92	TX thyroid* dysfunction*	894
93	water fluoridation cancer	7
94	mental disease	74,025
95	TX mental* disease*	5,581
96	mental disorders	74,025
97	TX mental* disorder*	69,886
98	mental illness	74,025
99	TX mental* illness*	24,630
100	mental disabilities	52,583
101	TX mental* disabilit*	4,376
102	mental disturbance	392
103	TX mental* disturbance*	413
104	psychiatric disease	4,405
105	TX psych* disease*	23,501
106	psychiatric disorders	46,279
107	TX psych* disorder*	78,576
108	psychiatric illness	4,405
109	TX psych* illness*	12,623
110	TX psych* disturbance*	1,590
111	TX deveopment* disease*	1
112	developmental disorders	4,344
113	TX development* disorder*	18,045
114	developmental disabilities	11,039
115	TX development* disabilit*	23,179

Concept #	Cinahl query	Results
110	6 developmental delay	3,211
11	7 TX development* dela*	5,733
118	3 TX development* abnormalit*	1,109
119	o intellectual disability	21,791
120	TX intellectual disabilit*	25,228
12	1 intellectual impairment	551
12:	2 TX intellectual impairment*	587
123	3 TX intellectual dysfunction*	46
124	4 cognitive disease	6,663
129	5 TX cogniti* disease*	6,958
120	6 cognitive disorders	22,546
12	7 TX cogniti* disorder*	33,291
128	3 TX cogniti* defect*	128
129	ognitive deficits	23,070
130	TX cogniti* deficit*	6,535
13	1 cognitive disabilities	1,853
133	2 TX cogniti* disabilit*	2,223
13:	3 cognitive impairment	33,788
134	1 TX cogniti* impairment*	24,208
13	5 cognitive dysfunction	21,313
130	5 TX cogniti* dysfunction*	4,332
13	7 TX cogniti* dysregulation*	133
138	3 immune disease	3,588
139	9 TX immun* disease*	24,209
140) immune disorders	1,547
14	1 TX immun* disorder*	3,161
14:	2 immune dysfunction	784
143	3 TX immun* dysfunction*	1,343
14	1 immune dysregulation	671
14	5 TX immun* dysregulation*	765

Concept	#	Cinahl query	Results
	146	immunopathogenesis	410
	147	TX immunopath*	1,626
	148	hypersensitivity	23,866
	149	TX hypersensitiv*	24,399
	150	genotoxicity	597
	151	genotoxic	759
	152	TX genotoxic*	1,150
	153	TX urogenital disease*	893
	154	urogenital disorder	31
	155	TX urogenital disorder*	32
	156	urogenital dysfunction	27
	157	TX urogenital dysfunction*	29
	158	TX genitourinary disease*	224
	159	TX genitourinary disorder*	89
	160	TX genitourinary dysfunction	32
	161	male genitalia	2,351
	162	TX male* genit*	2,315
	163	female genitalia	7,135
	164	TX female* genit*	7,079
	165	health hazards	2,380
	166	TX health hazard*	4,258
	167	health risks	34,021
	168	TX health risk*	40,954
	169	cancer	389,786
	170	TX cancer*	499,978
	171	neoplasm	486,986
	172	TX neoplas*	426,880
	173	malignancy	82,898
	174	malignant	35,357
	175	TX malignan*	64,192

Concept	#	Cinahl query	Results
	176	tumor	486,986
	177	TX tumor*	162,815
	178	tumour	486,986
	179	TX tumour*	26,499
	180	carcinoma	93,540
	181	TX carcino*	105,458
	182	sarcoma	11,749
	183	TX sarcoma*	13,020
	184	S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR	1,088,674
		S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR	
		S31 OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR	
		S38 OR S39 OR S40 OR S41 OR S42 OR S43 OR S44 OR	
		S45 OR S46 OR S47 OR S48 OR S49 OR S50 OR S51 OR	
		S52 OR S53 OR S54 OR S55 OR S56 OR S57 OR S58 OR	
		S59 OR S60 OR S61 OR S62 OR S63 OR S64 OR S65 OR	
		S66 OR S67 OR S68 OR S69 OR S70 OR S71 OR S72 OR	
		S73 OR S74 OR S75 OR S76 OR S77 OR S78 OR S79 OR	
		S80 OR S81 OR S82 OR S83 OR S84 OR S85 OR S86 OR	
		S87 OR S88 OR S89 OR S90 OR S91 OR S92 OR S93 OR	
		S94 OR S95 OR S96 OR S97 OR S98 OR S99 OR S100 OR	
		S101 OR S102 OR S103 OR S104 OR S105 OR S106 OR	
		S107 OR S108 OR S109 OR S110 OR S111 OR S112 OR	
		S113 OR S114 OR S115 OR S116 OR S117 OR S118 OR	
		S119 OR S120 OR S121 OR S122 OR S123 OR S124 OR	
		S125 OR S126 OR S127 OR S128 OR S129 OR S130 OR	
		S131 OR S132 OR S133 OR S134 OR S135 OR S136 OR	
		S137 OR S138 OR S139 OR S140 OR S141 OR S142 OR	
		S143 OR S144 OR S145 OR S146 OR S147 OR S148 OR	
		S149 OR S150 OR S151 OR S152 OR S153 OR S154 OR	
		S155 OR S156 OR S157 OR S158 OR S159 OR S160 OR	

Concept	#	Cinahl query	Results
		S161 OR S162 OR S163 OR S164 OR S165 OR S166 OR	
		S167 OR S168 OR S169 OR S170 OR S171 OR S172 OR	
		S173 OR S174 OR S175 OR S176 OR S177 OR S178 OR	
		S179 OR S180 OR S181 OR S182 OR S183 OR S184S17	
		OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24	
		OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR S31	
		OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38	
		OR S39 OR S40 OR S41 OR S42 OR S43 OR S44 OR S45	
		OR S46 OR S47 OR S48 OR S49 OR S50 OR S51 OR S52	
		OR S53 OR S54 OR S55 OR S56 OR S57 OR S58 OR S59	
		OR S60 OR S61 OR S62 OR S63 OR S64 OR S65 OR S66	
		OR S67 OR S68 OR S69 OR S70 OR S71 OR S72 OR S73	
		OR S74 OR S75 OR S76 OR S77 OR S78 OR S79 OR S80	
		OR S81 OR S82 OR S83 OR S84 OR S85 OR S86 OR S87	
		OR S88Show Less	
	185	DT 2016 OR DT 2017 OR DT 2018 OR DT 2019 OR DT	1,736,713
		2020	
	186	S6 AND S15	168
	187	S6 AND S15 AND S184	87
	188	S6 AND S15 AND S184 AND S185	18
	188	S6 AND S15 AND S184 AND S185	18

Toxnet ⁴

Concept	#	Query	Results
FI	1	((((((((((((((((((((((((((((((((((((((97,663
		OR fluorid*[Text Word]) OR fluorin*[Text Word]) OR	
		flurin*[Text Word]) OR flurid*[Text Word])))	
Water	2	((((((((((((((((((((((((((((((((((((((1,042,045
		Terms]) OR water[Text Word]) OR drinking water[MeSH	
		Terms]) OR drinking water[Text Word]) OR tap	
		water[MeSH Terms]) OR tap water[Text Word]) OR fresh	
		water[MeSH Terms]) OR fresh water*[Text Word]) OR	
		freshwater*[Text Word]) OR water quality[MeSH Terms])	
		OR water qualit*[Text Word]) OR water treatment[MeSH	
		Terms]) OR water treatment*[Text Word]) OR water	
		supply[MeSH Terms]) OR water supply[Text Word]) OR	
		water resource[MeSH Terms]) OR water resource*[Text	
		Word]) OR water reservoir*[Text Word]) OR water	
		course[Text Word]) OR watercourse*[Text Word]) OR	
		river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH	
		Terms]) OR lake*[Text Word]) OR pond[MeSH Terms]) OR	
		pond*[Text Word]) OR ground water[MeSH Terms]) OR	

 $^{^{\}rm 4}$ The toxicology literature database for the National Institutes of Health, USA

Concept	#	Query	Results
		ground water*[Text Word]) OR groundwater*[Text Word])	
		OR water well[MeSH Terms]) OR water well*[Text Word])	
		OR mineral water[MeSH Terms]) OR mineral water*[Text	
		Word]) OR carbonated water[MeSH Terms]) OR	
		carbonated water*[Text Word]) OR natural spring[MeSH	
		Terms]) OR natural spring*[Text Word]) OR thermal	
		spring*[Text Word]) OR hot spring[MeSH Terms]) OR hot	
		spring*[Text Word]) OR hotspring*[Text Word]) OR spring	
		water[MeSH Terms]) OR spring water*[Text Word]) OR	
		springwater*[Text Word]) OR stream[MeSH Terms]) OR	
		stream*[Text Word]) OR brook*[Text Word]) OR	
		creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text	
		Word]) OR runnel*[Text Word]) OR community	
		water[MeSH Terms]) OR community water*[Text Word])	
		OR community water fluoridation[MeSH Terms]) OR	
		community water fluoridation[Text Word]) OR water	
		fluoridation*[Text Word]	
Outcomes	3	((((((((((((((((((((((((((((((((((((((8,864,251
		OR neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR	
		malignancy[MeSH Terms]) OR malignan*[Text Word]) OR	
		carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR	
		sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR	
		tumor[MeSH Terms]) OR tumor*[Text Word]) OR	
		tumour[MeSH Terms]) OR tumour*[Text Word])) OR	
		((((((((((((((((((((((((((((((((((((((
		OR bone disease*[Text Word]) OR bone disorder*[Text	
		Word]) OR bone injur*[Text Word]) OR bone	
		fracture[MeSH Terms]) OR bone* fracture*[Text Word])	
		OR bone* trauma*[Text Word]) OR bone* damage*[Text	
		Word]) OR skelet* disease*[Text Word]) OR skelet*	

Concept # Query Results

disorder*[Text Word]) OR skelet* injur*[Text Word]) OR skelet* fracture*[Text Word]) OR skelet* trauma*[Text Word]) OR skelet* damage*[Text Word]) OR bone neoplasm[MeSH Terms]) OR bone* neoplas*[Text Word]) OR bone cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone* tumor*[Text Word]) OR bone* tumour*[Text Word]) OR osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone development[MeSH Terms]) OR bone* development[Text Word]) OR osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR skelet* development[Text Word]) OR skeletogenesis[Text Word])) endocrin* disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text Word]) OR endocrin* dysfunction*[Text Word]) OR endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR hormon* disorder*[Text Word]) OR hormon* disturbance*[Text Word]) OR hormon* disruption*[Text Word]) OR hormon* dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text Word]) OR thyroid* disorder*[Text Word]) OR thyroid* abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid* dysfunction*[Text Word])) OR

Concept # Query Results

OR mental disorder*[Text Word]) OR mental disease*[Text Word]) OR mental disturbance*[Text Word]) OR mental illness*[Text Word]) OR neurodevelopment* disease*[Text Word]) OR neurodevelopment* disorder*[Text Word]) OR neurodevelopment* disabilit*[Text Word]) OR neurodevelopment* dela*[Text Word]) OR ((developmental disorder, speech or language[MeSH Terms]))) OR developmental disorders of scholastic skills[MeSH Terms]) OR development* disorder*[Text Word]) OR developmental disability[MeSH Terms]) OR development* disabilit*[Text Word]) OR developmental delay disorder[MeSH Terms]) OR development* dela*[Text Word]) OR development* abnormalit*[Text Word]) OR development* impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH Terms]) OR intellectual aphasia*[Text Word]) OR intellectual impairment*[Text Word]) OR intellectual dysfunction*[Text Word]) OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms]) OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti* impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti* defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti* disabilit*[Text Word]) OR cogniti* disease[MeSH Terms]) OR immunologic* disease*[Text Word]) OR immunologic* disorder*[Text Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic* dysregulat*[Text Word]) OR immediate

Concept	#	Query	Results
		hypersensitivity[MeSH Terms]) OR delayed	
		hypersensitivity[MeSH Terms]) OR hypersensitivit*[Text	
		Word]) OR immunopath*[Text Word]) OR genotoxic*[Text	
		Word]) OR male urogenital disease[MeSH Terms]) OR	
		female urogenital disease[MeSH Terms]) OR urogenit*	
		disease*[Text Word]) OR urogenit* disorder*[Text Word])	
		OR male genitourinary disease[MeSH Terms]) OR female	
		genitourinary disease[MeSH Terms]) OR genitourin*	
		disease*[Text Word]) OR genitourin* disorder*[Text Word])	
		OR health risk appraisal[MeSH Terms]) OR health	
		risk*[Text Word]) OR health hazard*[Text Word])))	
Toxicology	4	tox [subset]	5,639,829
FI + water	5	1 AND 2	14,344
FI + water	6	1 AND 2 AND 3	1,400
+			
outcomes			
FI + water	7	1 AND 2 AND 3 AND 4	940
+			
outcomes			
(toxicology)			
2016-		limit 7 to yr="2016 -Current"	215
current			

PAIS Index

Concept	#	PAIS query	Results
Fluoride	1	su(fluoride) OR su(Fluorides) OR su(fluoridation) OR	223
		su(fluoridation of water) OR su(fluoridation of drinking water)	
Water	2	su(Water) OR su(tap water) OR su(drinking water) OR su(tap	26,939
		water and drinking water) OR su(Water Quality) OR su(water	
		safety) OR su(water treatment)	
	3	su(Ground Water) OR su(water wells) OR su(Rivers) OR su(Lakes)	7,094
		OR su(Ponds) OR su(Water Sources)	
	4	su(mineral water) OR su(carbonated water) OR su(spring water)	223
		OR su(Hot Springs)	
	5	(su(Water) OR su(tap water) OR su(drinking water) OR su(tap	30,512
		water AND drinking water) OR su(Water Quality) OR su(water	
		safety) OR su(water treatment)) OR (su(Ground Water) OR	
		su(water wells) OR su(Rivers) OR su(Lakes) OR su(Ponds) OR	
		su(Water Sources)) OR (su(mineral water) OR su(carbonated	
		water) OR su(spring water) OR su(Hot Springs))	
Fluoride	6	(su(fluoride) OR su(Fluorides) OR su(fluoridation) OR	179
+ water		su(fluoridation of water) OR su(fluoridation of drinking water)) AND	
		((su(Water) OR su(tap water) OR su(drinking water) OR su(tap	

Concept	#	PAIS query	Results
		water AND drinking water) OR su(Water Quality) OR su(water	
		safety) OR su(water treatment)) OR (su(Ground Water) OR	
		su(water wells) OR su(Rivers) OR su(Lakes) OR su(Ponds) OR	
		su(Water Sources)) OR (su(mineral water) OR su(carbonated	
		water) OR su(spring water) OR su(Hot Springs)))	

Health Technology Assessment

Concept	#	Medline query	
			Results
Fluoride	1	exp Fluorides/	4
	2	exp Fluoridation/	2
	3	fluorid*.tw.	11
	4	fluorin*.tw.	1
	5	flurin*.tw.	0
	6	flurid*.tw.	0
	7	or/1-6	12
Water	8	exp Water/	6

	9	drinking water.tw.	1
	10	tap water*.tw.	3
	11	exp water supply/	4
	12	(water* adj3 suppl*).tw.	3
	13	(water* adj3 treatment*).tw.	1
	14	exp Water Purification/	1
	15	(water* adj3 purification).tw.	1
	16	lake*.tw.	7
	17	pond*.tw.	1
	18	ground water*.tw.	0
	19	exp mineral waters/	1
	20	mineral water*.tw.	1
	21	hot spring*.tw.	1
	22	communit* water*.tw.	0
	23	or/8-22	24
Fluoride +	24	7 and 23	3
water			

Cochrane Database of Systematic Reviews (CDSR)

Concept	#	CDSR query	
			Results
Fluoride	1	fluoride.mp. [mp=title, abstract, full text, keywords, caption text]	87
	2	fluoridation.mp. [mp=title, abstract, full text, keywords, caption text]	19
	3	fluorin*.mp. [mp=title, abstract, full text, keywords, caption text]	19
	4	flurin*.mp. [mp=title, abstract, full text, keywords, caption text]	2
	5	flurid*.mp. [mp=title, abstract, full text, keywords, caption text]	2
	6	or/1-5	107
Water	7	water.mp. [mp=title, abstract, full text, keywords, caption text]	1,236
	8	drinking water.mp. [mp=title, abstract, full text, keywords, caption text]	53
	9	tap water.mp. [mp=title, abstract, full text, keywords, caption text]	34
	10	(water adj3 fluorid*).mp. [mp=title, abstract, full text, keywords, caption text]	21
	11	community water*.mp. [mp=title, abstract, full text, keywords, caption text]	4
	12	fresh water.mp. [mp=title, abstract, full text, keywords, caption text]	8
	13	freshwater.mp. [mp=title, abstract, full text, keywords, caption text]	11
	14	ground water.mp. [mp=title, abstract, full text, keywords, caption text]	3
	15	groundwater.mp. [mp=title, abstract, full text, keywords, caption text]	3

Concept	#	CDSR query	
			Results
	16	(water* adj3 well*).mp. [mp=title, abstract, full text,	25
		keywords, caption text]	
	17	mineral water*.mp. [mp=title, abstract, full text, keywords,	12
		caption text]	
	18	carbonated water*.mp. [mp=title, abstract, full text,	2
		keywords, caption text]	
	19	spring water*.mp. [mp=title, abstract, full text, keywords,	1
		caption text]	
	20	(water* adj3 resource*).mp. [mp=title, abstract, full text,	4
		keywords, caption text]	
	21	(water* adj3 source*).mp. [mp=title, abstract, full text,	31
		keywords, caption text]	
	22	(water* adj3 suppl*).mp. [mp=title, abstract, full text,	60
		keywords, caption text]	
	23	river*.mp. [mp=title, abstract, full text, keywords, caption	222
		text]	
	24	lake*.mp. [mp=title, abstract, full text, keywords, caption	87
		text]	
	25	pond*.mp. [mp=title, abstract, full text, keywords, caption	72
		text]	
	26	or/7-25	1,535
Fluoride +	27	6 and 26	46
water			
2016 - current	28	limit 27 to last 5 years	28

Cochrane Central Register of Controlled Trials (CENTRAL)

Concept	#	CENTRAL query	Results
Fluoride	1	exp fluorides/	2,477
	2	exp Fluoridation/	35

Concept	#	CENTRAL query	Results
	3	fluorid*.tw.	4,442
	4	fluorin*.tw.	322
	5	flurin*.tw.	1
	6	flurid*.tw.	8
	7	or/1-6	5,265
Water	8	water/	1,909
	9	exp Drinking Water/	116
	10	drinking water.tw.	756
	11	tap water.tw.	528
	12	tapwater.tw.	5
	13	exp Water Quality/	34
	14	(water adj3 quality).tw.	256
	15	community water.tw.	12
	16	water fluoridation.tw.	17
	17	exp groundwater/	17
	18	groundwater*.tw.	38
	19	ground water*.tw.	10
	20	exp Water Wells/	5
	21	(water* adj3 well*).tw.	238
	22	exp Natural Springs/	10
	23	natural spring*.tw.	7
	24	hot spring*.tw.	29
	25	springwater.tw.	2
	26	spring water*.tw.	46
	27	exp Mineral Waters/	127
	28	minteral water*.tw.	-
	29	exp Carbonated Water/	6
	30	carbonated water*.tw.	43
	31	exp fresh water/	31
	32	fresh water*.tw.	42

Concept	#	CENTRAL query	Results
	33	freshwater*.tw.	47
	34	exp Lakes/	4
	35	lake*.tw.	717
	36	exp Ponds/	-
	37	pond*.tw.	262
	38	exp Rivers/	4
	39	river*.tw.	737
	40	exp water supply/	166
	41	(water* adj3 suppl*).tw.	399
	42	or/8-41	5,743
Fluoride +	43	7 and 42	191
water			
2016 - current	44	limit 43 to yr="2016 -Current"	34

Cochrane Library (Wiley)

Concept	#	Cochrane query	Results
	1	MeSH descriptor: [Fluorides] in all MeSH products	2489
	2	MeSH descriptor: [Fluoridation] explode all trees	38
	3	(fluorid*):ti,ab,kw	4917
	4	#1 OR #2 OR #3	5001
	5	MeSH descriptor: [Drinking Water] explode all trees	125
	6	MeSH descriptor: [Water Quality] explode all trees	35
	7	#5 OR #6	144
	8	MeSH descriptor: [Bone Development] explode all trees	748
	9	MeSH descriptor: [Bone Diseases] explode all trees	12566
	10	MeSH descriptor: [Fractures, Bone] explode all trees	5600
	11	MeSH descriptor: [Bone Neoplasms] explode all trees	1195
	12	MeSH descriptor: [Osteosarcoma] explode all trees	250
		MeSH descriptor: [Endocrine System Diseases] explode	
	13	all trees	38563
	14	MeSH descriptor: [Endocrine Disruptors] explode all trees	8

Concept	#	Cochrane query	Results
	15	MeSH descriptor: [Thyroid Diseases] explode all trees	2024
	16	MeSH descriptor: [Thyroid Dysgenesis] explode all trees	1
	17	MeSH descriptor: [Thyroid Neoplasms] explode all trees	582
		MeSH descriptor: [Neurodevelopmental Disorders]	
	18	explode all trees	7150
	19	MeSH descriptor: [Learning Disorders] explode all trees	587
	20	MeSH descriptor: [Agnosia] explode all trees	84
	21	MeSH descriptor: [Agraphia] explode all trees	11
	23	MeSH descriptor: [Aphasia] explode all trees	384
	24	MeSH descriptor: [Intellectual Disability] explode all trees	1329
		MeSH descriptor: [Neurocognitive Disorders] explode all	
	25	trees	10105
		MeSH descriptor: [Cognitive Dysfunction] explode all	
	26	trees	1120
		MeSH descriptor: [Immune System Diseases] explode all	
	27	trees	54798
	28	MeSH descriptor: [Hypersensitivity] explode all trees	19545
		MeSH descriptor: [Genital Diseases, Male] explode all	
	29	trees	13646
		MeSH descriptor: [Genital Neoplasms, Male] explode all	
	30	trees	5396
	31	MeSH descriptor: [Genitalia, Male] explode all trees	2016
		MeSH descriptor: [Genital Diseases, Female] explode all	
	32	trees	15775
		MeSH descriptor: [Genital Neoplasms, Female] explode	
	33	all trees	5152
	34	MeSH descriptor: [Genitalia, Female] explode all trees	5124
		MeSH descriptor: [Male Urogenital Diseases] explode all	
	35	trees	37705

Concept	#	Cochrane query	Results
		MeSH descriptor: [Female Urogenital Diseases] explode	
	36	all trees	40677
		#8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR	
		#15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21	
		OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR	
		#28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34	
	37	OR #35 OR #36	163780
	38	#4 AND #7	1
	39	#4 AND #7 AND # 37	0

Clinical Trial Registries

Trial Database	Results	Comment
World Health Organization	104	Completed trials, with results
European Union	7	Completed trials, with results
ISRCTN	18	Completed trials, with results
US Clinical Trials	161	Completed trials, with results
UK Clinical Trials gateway	0	
Health Canada	10	Ongoing trials, no results available

Grey Literature (18 sources)

Resource	Results	Strategy
Agency for Healthcare Research and Quality (AHRQ)	0	Fluoride
CAB Direct	239	FI, water and outcomes
Canadian Agency for Drugs and Technologies in Health (CADTH)	0	Fluoride
Canadian Public Documents Collection	30	Fluoride (title or abstract)
Centers for Disease Control and Prevention (CDC)	4	
Centre for Reviews and Dissemination (CRD)	0	Fluoride
Conference Board E-Library	0	Fluoride
Environmental Protection Agency (EPA)	2	
Grey Literature Publishers List - International (The New York Academy of Medicine)	0	Fluoride (title or summary)
Grey literature Report	0	Fluoride
Health Quality Ontario	0	Fluoride
Health Systems Evidence	0	Fluoride
National Cancer Institute	2	
National Institute for Health and Care Excellence (NICE)	0	Fluoride
National Library of Medicine (MedlinePlus)	6	Fluoride
National Institutes of Health	3	
TRIP Database	10	Fluoride and water

Resource	Results	Strategy
World Catalogue (Worldcat)	40	Fluoride and water

Section 2. Excluded human studies (with reasons for exclusion)

(Studies arranged by exclusion level, reason for exclusion, then alphabetically by first author's last name)

Le	Bibliography	Reason for exclusion
vel		
L1	Abouleish, M. Y. Z. (2016). Evaluation of fluoride	Duplicate reference
	levels in bottled water and their contribution to health	
	and teeth problems in the United Arab Emirates Saudi	
	Dental Journal, 28(4), 194-202	
L1	Alarcón-Herrera, M. T., Martin-Alarcon, D.	Duplicate reference
	A.,Gutiérrez, M.,Reynoso-Cuevas, L.,Martín-	
	Domínguez, A.,Olmos-Márquez, M. A.,Bundschuh, J.	
	(2020). Co-occurrence, possible origin, and health-	
	risk assessment of arsenic and fluoride in drinking	
	water sources in Mexico: geographical data	
	visualization Science of the Total Environment,	
	698(#issue#), 134168	
L1	Altine, B., Gai, Y., Han, N., Jiang, Y., Ji, H., Fang,	Duplicate reference
	H.,Niyonkuru, A.,Bakari, K. H.,Rajab Arnous, M.	
	M.,Liu, Q.,Zhang, Y.,Lan, X. (2019). Preclinical	
	Evaluation of a Fluorine-18 (¹⁸ F)-	
	Labeled Phosphatidylinositol 3-Kinase Inhibitor for	
	Breast Cancer Imaging Molecular Pharmaceutics,	
	16(11), 4563-4571	
L1	Angulo, M., Cuitino, E., Molina-Frechero, N., Emilson,	Duplicate reference
	C. G. (2020). The association between the	
	prevalence of dental fluorosis and the socio-economic	
	status and area of residence of 12-year-old students	

Le vel	Bibliography	Reason for exclusion
L1	in Uruguay Acta Odontol Scand, 78(1), 26-30 Arnold, W. H.,Gröger, Ch,Bizhang, M.,Naumova, E. A. (2016). Dentin abrasivity of various desensitizing toothpastes Head & face medicine, 12(#issue#), 16-16	Duplicate reference
L1	Athapattu, B. C. L., Thalgaspitiya, T. W. L. R., Yasaratne, U. L. S., Vithanage, M. (2017). Biocharbased constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka Environmental geochemistry and health, 39(6), 1397-1407	Duplicate reference
L1	Bachanek, Teresa, Hendzel, Barbara, Wolańska, Ewa, Samborski, Dariusz, Jarosz, Zbigniew, Pitura, Karolina Maria, Dzida, Katarzyna, Podymniak, Mariusz, Tymczyna-Borowicz, Barbara, Niewczas, Agata, Shybinskyy, Volodymyr, Zimenkovsky, Andryi (2019). Condition of mineralized tooth tissue in a population of 15-year-old adolescents living in a region of Ukraine with slightly exceeded fluorine concentration in the water Annals of agricultural and environmental medicine: AAEM, 26(4), 623-629	Duplicate reference
L1	Barberio, Amanda M., Hosein, F. Shaun, Quiñonez, Carlos, McLaren, Lindsay (2017). Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation Journal of epidemiology and community health, 71(10), 1019-1025	Duplicate reference

Le	Bibliography	Reason for exclusion
vel	ыынодгартту	Reason for exclusion
L1	Barberio, Amanda M., Quiñonez, Carlos, Hosein, F. Shaun, McLaren, Lindsay (2017). Fluoride exposure and reported learning disability diagnosis among Canadian children: Implications for community water fluoridation Canadian journal of public health = Revue canadienne de sante publique, 108(3), e229-e239	Duplicate reference
L1	Bartos, M., Gumilar, F., Gallegos, C. E., Bras, C., Dominguez, S., Monaco, N., Esandi, M. D. C., Bouzat, C., Cancela, L. M., Minetti, A. (2018). Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the alpha7 nicotinic receptor and oxidative stress Reproductive Toxicology, 81(#issue#), 108-114	Duplicate reference
L1	Bondu, J. D., Selvakumar, R., Fleming, J. J. (2018). Validating a High Performance Liquid Chromatography-Ion Chromatography (HPLC-IC) Method with Conductivity Detection After Chemical Suppression for Water Fluoride Estimation Indian Journal of Clinical Biochemistry, 33(1), 86-90	Duplicate reference
L1	Bouyeure-Petit, A. C., Chastan, M., Edet-Sanson, A., Becker, S., Thureau, S., Houivet, E., Vera, P., Hapdey, S. (2017). Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for ¹⁸ F-FDG-PET-CT: phantom validation, practical implications and patient evaluation British Journal of Radiology, 90(1070),	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	20160549 Broadbent, Jonathan M., Thomson, W. Murray, Ramrakha, Sandhya, Moffitt, Terrie E., Zeng, Jiaxu, Page, Lyndie A. Foster, Poulton, Richie (2015). Community Water Fluoridation and Intelligence: Prospective Study in New Zealand American Journal	Duplicate reference
L1	of Public Health, 105(1), 72-76 Brooks, A., Jackson, I., Scott, P. (2017). Evaluation of metal-protein aggregate radioligand [¹⁸ F]FL2-b by small animal PET imaging and autoradiography in alzheimer's disease, amyotrophic lateral sclerosis, and lewy body dementia Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Duplicate reference
L1	CADTH (2019). Dental and other health outcomes Canadian Agency for Drugs and Technologies in Health. CADTH Rapid Response Reports, 10(#issue#), 23	Duplicate reference
L1	Cardenas-Gonzalez, M.,Osorio-Yanez, C.,Gaspar-Ramirez, O.,Pavkovic, M.,Ochoa-Martinez, A.,Lopez-Ventura, D.,Medeiros, M.,Barbier, O. C.,Perez-Maldonado, I. N.,Sabbisetti, V. S.,Bonventre, J. V.,Vaidya, V. S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1 Environmental Research, 150(#issue#), 653-662	Duplicate reference

Le	Bibliography	Reason for exclusion
vel		
L1	Cárdenas-González, M.,Osorio-Yáñez, C.,Gaspar-Ramírez, O.,Pavković, M.,Ochoa-Martínez, A.,López-Ventura, D.,Medeiros, M.,Barbier, O. C.,Pérez-Maldonado, I. N.,Sabbisetti, V. S.,Bonventre, J. V.,Vaidya, V. S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1 Environmental research, 150(#issue#), 653-662	Duplicate reference
L1	Cárdenas-González, Mariana, Jacobo Estrada, Tania, Rodríguez-Muñoz, Rafael, Barrera-Chimal, Jonatan, Bobadilla, Norma A., Barbier, Olivier C., Del Razo, Luz M. (2016). Sub-chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin Journal of applied toxicology: JAT, 36(2), 309-319	Duplicate reference
L1	Chaitanya, N. C. S. K., Karunakar, P., Allam, N. S. J., Priya, M. H., Alekhya, B., Nauseen, S. (2018). A systematic analysis on possibility of water fluoridation causing hypothyroidism Indian journal of dental research: official publication of Indian Society for Dental Research, 29(3), 358-363	Duplicate reference
L1	Chi, Donald L. (2014). Caregivers Who Refuse Preventive Care for Their Children: The Relationship Between Immunization and Topical Fluoride Refusal American Journal of Public Health, 104(7), 1327-33	Duplicate reference
L1	Chiba, F. Y., Tsosura, T. V. S., Pereira, R. F., Mattera, M. S. de L. C., Santos, R. M. dos, Marani, F., Garbin, C.	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	A. S., Moimaz, S. A. S., Sumida, D. H. (2019). Mild chronic NaF intake promotes insulin resistance and increase in inflammatory signaling in the white adipose tissue of rats Fluoride, 52(1), 18-28	
L1	Chiotellis, Aristeidis, Sladojevich, Filippo, Mu, Linjing, Müller Herde, Adrienne, Valverde, Ibai E., Tolmachev, Vladimir, Schibli, Roger, Ametamey, Simon M., Mindt, Thomas L. (2016). Novel chemoselective (18)F-radiolabeling of thiol-containing biomolecules under mild aqueous conditions Chemical communications (Cambridge, England), 52(36), 6083- 6086	Duplicate reference
L1	Choubisaa, S. L. (2018). A brief and critical review of endemic hydrofluorosis in Rajasthan, India Fluoride, 51(1), 13-33	Duplicate reference
L1	Collier, T. L., Yokell, D. L., Livni, E., Rice, P. A., Celen, S., Serdons, K., Neelamegam, R., Bormans, G., Harris, D., Walji, A., Hostetler, E. D., Bennacef, I., Vasdev, N. (2017). Automated radiosynthesis of MK-6240 and validation for human use Journal of labelled compounds and radiopharmaceuticals. Conference: 22nd international symposium on radiopharmaceutical sciences, ISRS, 60(#issue#), #Pages#	Duplicate reference
L1	Cooray, T.,Wei, Y.,Zhong, H.,Zheng, L.,Weragoda, S. K.,Weerasooriya, A. R. (2019). Assessment of Groundwater Quality in CKDu Affected Areas of Sri Lanka: Implications for Drinking Water Treatment	Duplicate reference

_		
Le vel	Bibliography	Reason for exclusion
	International Journal of Environmental Research & Public Health [Electronic Resource], 16(10), 14	
L1	Cooray, T.,Wei, Y.,Zhong, H.,Zheng, L.,Weragoda, S. K.,Weerasooriya, R. (2019). Assessment of groundwater quality in CKDu Affected areas of Sri Lanka: Implications for drinking water treatment International Journal of Environmental Research and Public Health, 16 (10) (no pagination)(1698), #Pages#	Duplicate reference
L1	Cotruvo, Joseph A. (2018). Drinking water contaminants guidebook #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Daiwile, A. P., Tarale, P., Sivanesan, S., Naoghare, P. K., Bafana, A., Parmar, D., Kannan, K. (2019). Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis Ecotoxicol Environ Saf, 169(#issue#), 410-417	Duplicate reference
L1	de Cassia Alves Nunes, R.,Chiba, F. Y.,Pereira, A. G.,Pereira, R. F.,de Lima Coutinho Mattera, M. S.,Ervolino, E.,Louzada, M. J. Q.,Buzalaf, M. A. R.,Silva, C. A.,Sumida, D. H. (2016). Effect of Sodium Fluoride on Bone Biomechanical and Histomorphometric Parameters and on Insulin Signaling and Insulin Sensitivity in Ovariectomized Rats Biological Trace Element Research, 173(1), 144-153	Duplicate reference
L1	Dec, K.,Łukomska, A.,Baranowska-Bosiacka,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	I.,Pilutin, A.,Maciejewska, D.,Skonieczna-Żydecka, K.,Derkacz, R.,Goschorska, M.,W (2018). Pre-and postnatal exposition to fluorides induce changes in rats liver morphology by impairment of antioxidant defense mechanisms and COX induction Chemosphere, 211(#issue#), 112-119	
L1	Dec, K.,Łukomska, A.,Maciejewska, D.,Jakubczyk, K.,Baranowska-Bosiacka, I.,Chlubek, D.,W (2017). The influence of fluorine on the disturbances of homeostasis in the central nervous system Biological Trace Element Research, 177(2), 224-234	Duplicate reference
L1	Dian, B. J., Selvakumar, R., Joseph, F. J., Teresa, M. M., Thomas, V. P., Sheshadri, M. S. (2017). Does Vitamin D Deficiency and Renal Dysfunction play a role in the pathogenesis of Fluorotoxic Metabolic Bone Disease (FMBD) Indian Journal of Endocrinology and Metabolism, 21 (7 Supplement 1)(#issue#), 65	Duplicate reference
L1	Enriquez, J. S., Yu, M., Bouley, B. S., Xie, D., Que, E. L. (2018). Copper(ii) complexes for cysteine detection using ¹⁹ F magnetic resonance Dalton transactions (Cambridge, England: 2003), 47(42), 15024-15030	Duplicate reference
L1	Escobar-García, Diana, Mejía-Saavedra, Jesús, Jarquín-Yáñez, Lizet, Molina-Frechero, Nelly, Pozos-Guillén, Amaury (2016). Collagenase 1A2 (COL1A2) gene A/C polymorphism in relation to severity of dental fluorosis Community Dentistry &	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Oral Epidemiology, 44(2), 162-168	
L1	Fallahzadeh, R. A., Miri, M., Taghavi, M., Gholizadeh, A., Anbarani, R., Hosseini-Bandegharaei, A., Ferrante, M., Oliveri Conti, G. (2018). Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water Food Chem Toxicol, 113(#issue#), 314-321	Duplicate reference
L1	Farooqi, A., Sultana, J., Masood, N. (2017). Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications Toxicology & Industrial Health, 33(8), 655-672	Duplicate reference
L1	Fromme, Hermann, Wöckner, Mandy, Roscher, Eike, Völkel, Wolfgang (2017). ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany International journal of hygiene and environmental health, 220(2 Pt B), 455-460	Duplicate reference
L1	Frood, R.,Baren, J.,McDermott, G.,Bottomley, D.,Patel, C.,Scarsbrook, A. (2018). Diagnostic performance of a streamlined ¹⁸ F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria Clinical Radiology, 73(7), 632-639	Duplicate reference
L1	Frood, R.,McDermott, G.,Scarsbrook, A. (2018). Respiratory-gated PET/CT for pulmonary lesion	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	characterisation-promises and problems Br J Radiol, 91(1086), 20170640	
L1	Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., Owusu-Ansah, E. D. J., Tettey, S., Diabene, P. Y., Asimah, S. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana Chemosphere, 233(#issue#), 862-872	Duplicate reference
L1	Ganyaglo, Samuel Y.,Gibrilla, Abass,Teye, Emmanuel M.,Owusu-Ansah, Emmanuel De-Graft Johnson,Tettey, Sampson,Diabene, Perpetual Y.,Asimah, Seyram (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana Chemosphere, 233(#issue#), 862-872	Duplicate reference
L1	Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K. (2018). Source and chemical species characterization of PM <inf>10</inf> and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India Chemosphere, 207(#issue#), 626-636	Duplicate reference
L1	Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K. (2018). Source and chemical species characterization of PM ₁₀ and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India Chemosphere, 207(#issue#),	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	626-636	
L1	Guissouma, W.,Othman, Hakami,Al-Rajab, A. J.,Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia Chemosphere, 177(#issue#), 102-108	Duplicate reference
L1	Hao, Yun-Peng,Liu, Zheng-Yu,Xie, Cheng,Zhou, Lu,Sun, Xun (2016). Novel fluorinated docetaxel analog for anti-hepatoma: Molecular docking and biological evaluation European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences, 88(#issue#), 274-281	Duplicate reference
L1	Hariri, M., Mirvaghefi, A., Farahmand, H., Taghavi, L., Shahabinia, A. R. (2018). In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario) Environmental Toxicology & Pharmacology, 58(#issue#), 59-69	Duplicate reference
L1	Hermenegildo, B.,Ribeiro, C.,Pérez-Álvarez, L.,Vilas, José L.,Learmonth, David A.,Sousa, Rui A.,Martins, P.,Lanceros-Méndez, S. (2019). Hydrogel-based magnetoelectric microenvironments for tissue stimulation Colloids and surfaces. B, Biointerfaces, 181(#issue#), 1041-1047	Duplicate reference
L1	Higashiyama, A., Komori, T., Juri, H., Inada, Y., Azuma, H., Narumi, Y. (2018). Detectability of residual invasive bladder cancer in delayed ¹⁸ F-	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	FDG PET imaging with oral hydration using 500 mL of water and voiding-refilling Annals of Nuclear Medicine, 32(8), 561-567	
L1	Hoover, A. J.,Lazari, M.,Ren, H.,Narayanam, M. K.,Murphy, J. M.,van Dam, R. M.,Hooker, J. M.,Ritter, T. (2016). A Transmetalation Reaction Enables the Synthesis of [¹⁸ F]5-Fluorouracil from [¹⁸ F]Fluoride for Human PET Imaging Organometallics, 35(7), 1008-1014	Duplicate reference
L1	Hu, Yueli,Wu, Boyue,Jin, Qing,Wang, Xueyuan,Li, Yan,Sun, Yuxiu,Huo, Jianzhong,Zhao, Xiaojun (2016). Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells Talanta, 152(#issue#), 504-512	Duplicate reference
L1	lafisco, Michele, Degli Esposti, Lorenzo, Ramírez-Rodríguez, Gloria Belén, Carella, Francesca, Gómez-Morales, Jaime, Ionescu, Andrei Cristian, Brambilla, Eugenio, Tampieri, Anna, Delgado-López, José Manuel (2018). Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization Scientific reports, 8(1), 17016-17016	Duplicate reference
L1	larc Working Group on the Evaluation of Carcinogenic Risk to Humans (2017). Some Chemicals Used as Solvents and in Polymer Manufacture #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	ISRCTN16831120 (2016). A study to investigate the	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	effect of a sensitivity toothpaste in providing relief from tooth sensitivity http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISR CTN16831120., #volume#(#issue#), #Pages#	
L1	Jack, B., Ayson, M., Lewis, S., Irving, A., Agresta, B., Ko, H., Stoklosa, A. (2016). Health Effects of Water Fluoridation: Evidence Evaluation Report. National Health and Medical Research Council, #volume#(#issue#), #Pages#	Duplicate reference
L1	Janka, Z. (2019). [Tracing trace elements in mental functions] Ideggyogy Sz, 72(11-12), 367-379	Duplicate reference
L1	Jeong, J. H., Cho, I. H., Chun, K. A., Kong, E. J., Kwon, S. D., Kim, J. H. (2016). Correlation Between Apparent Diffusion Coefficients and Standardized Uptake Values in Hybrid ¹⁸ F-FDG PET/MR: Preliminary Results in Rectal Cancer Nuclear Medicine and Molecular Imaging, 50(2), 150-156	Duplicate reference
L1	Jiang, F.,Lei, P.,Chen, Y.,Zuu, X.,Lao, P.,Pan, X. (2017). Quantitative computed tomography measurement skeletal fluorosis rabbits bone density and the correlation with bone injury. [Chinese] Chinese Journal of Endemiology, 36(6), 414-417	Duplicate reference
L1	Jiang, H.,Bansal, A.,Pandey, M. K.,Peng, K. W.,Suksanpaisan, L.,Russell, S. J.,Degrado, T. R. (2016). Synthesis of ¹⁸ F-Tetrafluoroborate via radiofluorination of boron	Duplicate reference

Le vel	Bibliography	Reason for exclusion
VCI		
	trifluoride and evaluation in a murine C6-Glioma tumor model Journal of Nuclear Medicine, 57(9), 1454-1459	
L1	Jiang, Huailei,Bansal, Aditya,Pandey, Mukesh K.,Peng, Kah-Whye,Suksanpaisan, Lukkana,Russell, Stephen J.,DeGrado, Timothy R. (2016). Synthesis of 18F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation in a Murine C6-Glioma Tumor Model Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 57(9), 1454-1459	Duplicate reference
L1	Jiménez-Córdova, Monica I., Cárdenas-González, Mariana, Aguilar-Madrid, Guadalupe, Sanchez-Peña, Luz C., Barrera-Hernández, Ángel, Domínguez- Guerrero, Iván A., González-Horta, Carmen, Barbier, Olivier C., Del Razo, Luz M. (2018). Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels Toxicology and applied pharmacology, 352(#issue#), 97-106	Duplicate reference
L1	Jiménez-Córdova, Mónica I.,González-Horta, Carmen,Ayllón-Vergara, Julio C.,Arreola-Mendoza, Laura,Aguilar-Madrid, Guadalupe,Villareal-Vega, Efraín E.,Barrera-Hernández, Ángel,Barbier, Olivier C.,Del Razo, Luz M. (2019). Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride Environmental research, 169(#issue#), 220-228	Duplicate reference

1.0		
Le vel	Bibliography	Reason for exclusion
L1	Johansson, E., Lubberink, M., Heurling, K., Eriksson, J. W., Skrtic, S., Ahlstrom, H., Kullberg, J. (2018). Whole-Body Imaging of Tissue-specific Insulin Sensitivity and Body Composition by Using an Integrated PET/MR System: A Feasibility Study Radiology, 286(1), 271-278	Duplicate reference
L1	Kaur, L.,Rishi, M. S.,Siddiqui, A. U. (2020). Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India Environmental Pollution, 259 (no pagination)(113711), #Pages#	Duplicate reference
L1	Khandare, A. L., Gourineni, S. R., Validandi, V. (2017). Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India Environmental Monitoring and Assessment, 189 (11) (no pagination)(579), #Pages#	Duplicate reference
L1	Kong, Xiang-Yu,Hou, Ling-Jie,Shao, Xiu-Qing,Shuang, Shao-Min,Wang, Yu,Dong, Chuan (2019). A phenolphthalein-based fluorescent probe for the sequential sensing of Al(3+) and F(-) ions in aqueous medium and live cells Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 208(#issue#), 131-139	Duplicate reference
L1	Kopycka-Kedzierawski, D. T., Meyerowitz, C., Litaker,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	M. S., Chonowski, S., Heft, M. W., Gordan, V. V., Yardic, R. L., Madden, T. E., Reyes, S. C., Gilbert, G. H., National Dental, Pbrn Collaborative Group (2017). Management of Dentin Hypersensitivity by National Dental Practice-Based Research Network practitioners: results from a questionnaire administered prior to initiation of a clinical study on this topic BMC Oral Health, 17(1), 41	
L1	Kudinov, K. A., Cooper, D. R., Ha, J. K., Hill, C. K., Nadeau, J. L., Seuntjens, J. P., Bradforth, S. E. (2018). Scintillation Yield Estimates of Colloidal Cerium-Doped LaF ₃ Nanoparticles and Potential for "Deep PDT" Radiation Research, 190(1), 28-36	Duplicate reference
L1	Kurtdede, E.,Pekcan, M.,Karagül, H. (2017). Fluorosis problem in Turkey and biochemical interaction of fluorine Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 12(3), 320-326	Duplicate reference
L1	Kurtdede, E.,Pekcan, M.,Karagül, H. (2018). Free radicals, reactive oxygen species and relationship with oxidative stress Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 13(3), 373-379	Duplicate reference
L1	Levine, K. E.,Redmon, J. H.,Elledge, M. F.,Wanigasuriya, K. P.,Smith, K.,Munoz, B.,Waduge, V. A.,Periris-John, R. J.,Sathiakumar, N.,Harrington, J. M.,Womack, D. S.,Wickremasinghe, R. (2016). Quest to identify geochemical risk factors associated with	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples Environmental Monitoring & Assessment, 188(10), 548	
L1	Li, Bing-Yun, Yang, Yan-Mei, Liu, Yang, Sun, Jing, Ye, Yan, Liu, Xiao-Na, Liu, Hong-Xu, Sun, Zhen-Qi, Li, Mang, Cui, Jing, Sun, Dian-Jun, Gao, Yan-Hui (2017). Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis PloS one, 12(2), e0171011-e0171011	Duplicate reference
L1	Li, P.,Oyang, X.,Zhao, Y.,Tu, T.,Tian, X.,Li, L.,Zhao, Y.,Li, J.,Xiao, Z. (2019). Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China Chemosphere, 225(#issue#), 659-667	Duplicate reference
L1	Li, Yuan, Wang, Fei, Feng, Jia, Lv, Jun-Ping, Liu, Qi, Nan, Fang-Ru, Zhang, Wei, Qu, Wen-Yan, Xie, Shu-Lian (2019). Long term spatial-temporal dynamics of fluoride in sources of drinking water and associated health risks in a semiarid region of Northern China Ecotoxicology and environmental safety, 171 (#issue#), 274-280	Duplicate reference
L1	Liang, C.,Gao, Y.,He, Y.,Han, Y.,Manthari, R. K.,Tikka, C.,Chen, C.,Wang, J.,Zhang, J. (2020). Fluoride induced mitochondrial impairment and	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies Environ Pollut, 256(#issue#), 113438	
L1	Lisova, K., Chen, B. Y., Wang, J., Fong, K. M. M., Clark, P. M., van Dam, R. M. (2020). Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[¹⁸ F]fluoroethyl)-L-tyrosine ([¹⁸ F]FET) EJNMMI Radiopharmacy and Chemistry, 5 (1) (no pagination)(1), #Pages#	Duplicate reference
L1	Lisova, K., Chen, B. Y., Wang, J., Fong, K. M., Clark, P. M., van Dam, R. M. (2019). Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[¹⁸ F]fluoroethyl)-L-tyrosine ([¹⁸ F]FET) Ejnmmi Radiopharmacy & Chemistry, 5(1), 1	Duplicate reference
L1	Liu, G.,Chen, Y.,Jia, M.,Sun, Z.,Ding, B.,Shao, S.,Jiang, F.,Fu, Z.,Ma, P.,Lin, J. (2019). One-pot synthesis of SiO <inf>2</inf> -coated Gd <inf>2</inf> (WO <inf>4</inf>) <inf>3</inf> :Yb ³⁺ /Ho ³⁺ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton transactions (Cambridge, England: 2003), 48(28), 10537-10546	Duplicate reference
L1	Liu, G., Chen, Y., Jia, M., Sun, Z., Ding, B., Shao, S., Jiang, F., Fu, Z., Ma, P., Lin, J. (2019). One-pot	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	synthesis of SiO ₂ -coated Gd ₂ (WO ₄) ₃ :Y b ³⁺ /Ho ³⁺ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton Transactions, 48(28), 10537- 10546	
L1	Liu, G.,Sun, Z.,Fu, Z.,Ma, L.,Wang, X. (2017). Temperature sensing and bio-imaging applications based on polyethylenimine/CaF ₂ nanoparticles with upconversion fluorescence Talanta, 169(#issue#), 181-188	Duplicate reference
L1	Liu, Guofeng, Chen, Yeqing, Jia, Mochen, Sun, Zhen, Ding, Binbin, Shao, Shuai, Jiang, Fan, Fu, Zuoling, Ma, Ping'an, Lin, Jun (2019). One-pot synthesis of SiO(2)-coated Gd(2)(WO(4))(3):Yb(3+)/Ho(3+) nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton transactions (Cambridge, England: 2003), 48(28), 10537-10546	Duplicate reference
L1	Liu, Jing,Wang, Hong-Wei,Zhao, Wen-Peng,Li, Xiao-Ting,Lin, Lin,Zhou, Bian-Hua (2019). Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure Toxicology and industrial health, 35(1), 43-52	Duplicate reference
L1	Lowe, P. T., Dall'Angelo, S., Fleming, I. N., Piras, M., Zanda, M., O'Hagan, D. (2019). Enzymatic	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	radiosynthesis of a ¹⁸ F-Glu-Ureido-Lys ligand for the prostate-specific membrane antigen (PSMA) Organic & biomolecular chemistry, 17(6), 1480-1486	
L1	Lutje, S.,Franssen, G. M.,Herrmann, K.,Boerman, O. C.,Rijpkema, M.,Gotthardt, M.,Heskamp, S. (2019). In vitro and in vivo characterization of an ¹⁸ F-ALF-labeled PSMA ligand for imaging of PSMA-expressing xenografts Journal of Nuclear Medicine, 60(7), 1017-1022	Duplicate reference
L1	Ma, Q.,Huang, H.,Sun, L.,Zhou, T.,Zhu, J.,Cheng, X.,Duan, L.,Li, Z.,Cui, L.,Ba, Y. (2017). Geneenvironment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERA gene polymorphisms? Chemosphere, 188(#issue#), 525-531	Duplicate reference
L1	Malvezzi, M. A. P. N., Pereira, H. A. B. S., Dionizio, A., Araujo, T. T., Buzalaf, N. R., Sabino-Arias, I. T., Fernandes, M. S., Grizzo, L. T., Magalhaes, A. C., Buzalaf, M. A. R. (2019). Low-level fluoride exposure reduces glycemia in NOD mice Ecotoxicology and Environmental Safety, 168(#issue#), 198-204	Duplicate reference
L1	Malvezzi, Maria Aparecida Pereira Nunes, Pereira, Heloisa Aparecida Barbosa Silva, Dionizio, Aline, Araujo, Tamara Teodoro, Buzalaf, Nathalia Rabelo, Sabino-Arias, Isabela Tomazini, Fernandes,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Mileni Silva, Grizzo, Larissa Tercilia, Magalhães, Ana Carolina, Buzalaf, Marilia Afonso Rabelo (2019). Low- level fluoride exposure reduces glycemia in NOD mice Ecotoxicology and environmental safety, 168 (#issue#), 198-204	
L1	Martignon, S.,Opazo-Gutiérrez, M. O.,Velásquez-Riaño, M.,Orjuela-Osorio, I. R.,Avila, V.,Martinez-Mier, E. A.,González-Carrera, M. C.,Ruiz-Carrizosa, J. A.,Silva-Hermida, B. C. (2017). Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia) Environmental Monitoring and Assessment, 189(6), 264	Duplicate reference
L1	Martínez-Acuña, Mónica I., Mercado-Reyes, Marisa, Alegría-Torres, Jorge A., Mejía-Saavedra, José J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México Environmental monitoring and assessment, 188(8), 476-476	Duplicate reference
L1	Michelena, Olatz, Padro, Daniel, Carrillo-Carrión, Carolina, Del Pino, Pablo, Blanco, Jorge, Arnaiz, Blanca, Parak, Wolfgang J., Carril, Mónica (2017). Novel fluorinated ligands for gold nanoparticle	Duplicate reference

labelling with applications in (19)F-MRI Chemical

communications (Cambridge, England), 53(16), 2447-

Le vel	Bibliography	Reason for exclusion
	2450	
L1	Molina-Frechero, Nelly, Nevarez-Rascón, Martina, Tremillo-Maldonado, Omar, Vergara-Onofre, Marcela, Gutiérrez-Tolentino, Rey, Gaona, Enrique, Castañeda, Enrique, Jarquin-Yañez, Lizet, Bologna-Molina, Ronell (2020). Environmental Exposure of Arsenic in Groundwater Associated to Carcinogenic Risk in Underweight Children Exposed to Fluorides International journal of environmental research and public health, 17(3), E724	Duplicate reference
L1	Montanha-Andrade, K., Maia, W., Pimentel, A. C. P., Arsati, Y. B. O. L., Santos, J. N. D., Cury, P. R. (2019). Dental health status and its indicators in adult Brazilian Indians without exposition to drinking water fluoridation: a cross-sectional study Environmental science and pollution research international, 26(33), 34440-34447	Duplicate reference
L1	Munoz-Millan, P.,Zaror, C.,Espinoza-Espinoza, G.,Vergara-Gonzalez, C.,Munoz, S.,Atala-Acevedo, C.,Martinez-Zapata, M. J. (2018). Effectiveness of fluoride varnish in preventing early childhood caries in rural areas without access to fluoridated drinking water: a randomized control trial Community dentistry and oral epidemiology, 46(1), 63-69	Duplicate reference
L1	Murtaza, B., Natasha, Shahid, M., Imran, M., Shah, N. S., Abbas, G., Naeem, M. A., Amjad, M. (2019). Compositional and health risk assessment of drinking	Duplicate reference

Le	Bibliography	Reason for exclusion
vel		
	water from health facilities of District Vehari, Pakistan Environmental geochemistry and health., 11(#issue#), #Pages#	
L1	Nath, K. J., Sharma, Vinod Prakash (2017). Water and Sanitation in the New Millennium #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00066963 (2006). Fluoride Varnish Randomized Clinical Trial #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00758394 (2008). Clinical Study to Compare Dental Plaque Control #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00762528 (2010). Compare Anti-inflammatory Dentifrices #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00763256 (2009). The Effect of Periodontal Treatment and the Use of Dentifrice on Glycaemic Control in Diabetics #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00875212 (2009). Effect of Calcium Glycerophosphate (CaGP) - Fluoride Dentifrice on Dental Biofilm pH #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00926328 (2008). Comparative Efficacy of a Toothpaste That Reduces Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00936975 (2014). Fluorine F 18 Sodium Fluoride Positron Emission Tomography in Evaluating	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Response to Dasatinib in Patients With Prostate Cancer and Bone Metastases #journal#, #volume#(#issue#), #Pages#	
L1	NCT00981825 (2008). Efficacy of Salivary Bacteria and Post Brushing #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01014143 (2008). Evaluating Commercial Anti- Plaque Products and Oral Rinse #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01072201 (2008). To Access the Effects of Mucositis in Adults With Dental Implants #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01128972 (2010). Evaluation of a Test Mouthwash and Dentifrice Regimen in an In-situ Model of Dental Erosion #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01240551 (2013). F-18 Sodium Fluoride in Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01500187 (2014). Fluoride Varnish for Treatment of White Spot Lesions #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01563172 (2012). Effect of Dentifrice Usage Regime on Delivery and Efficacy of Fluoride #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01610167 (2012). NUPRO(r) Sensodyne	Duplicate reference

Le	D'I l'amanda	B (
vel	Bibliography	Reason for exclusion
	Prophylaxis Paste With NovaMin(r)Sensitivity Relief Study #journal#, #volume#(#issue#), #Pages#	
L1	NCT01629290 (2015). In Vivo Comparison of Salivary Fluoride Levels Following the Application of Different 5% NaF Varnishes #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01665911 (2013). An in Situ Study on the Impact of Fluoride Dose and Concentration in Milk on Its Anticaries Efficacy #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01727258 (2013). A Test on a New Experimental Mouth Rinse for Relieving Tooth Sensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01901250 (2013). Xylitol for Caries Prevention in Inner-City Children #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02004990 (2015). Dental Office Prevention Strategies for Children #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02207400 (2015). To Evaluate Efficacy and Tolerability of Sodium Bicarbonate Toothpaste and Its Effect on Opportunistic or Resistant Organisms #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02207907 (2015). To Evaluate the Efficacy and Tolerability of Sodium Bicarbonate Toothpaste #journal#, #volume#(#issue#), #Pages#	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	NCT02243046 (2015). The Clinical Investigation of a Zinc Based Toothpaste in Reducing Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02319668 (2015). Antimicrobial Agent for Reducing Bacteria in Aerosols and Oral Cavity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02360124 (2015). Preventing and Arresting Dental Root Surface Caries in Community-dwelling Older Adults #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02360995 (2015). The Clinical Investigation of Toothpaste as Compared to Toothpaste and Mouthwash in Reducing Plaque and Gingivitis: A Sixweek Clinical Study in the US #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02366689 (2015). Clinical Study Comparing Dental Plaque and Gingivitis Reduction After Using One of Three Oral Hygiene Multi-component Regimens (Using of a Manual Toothbrush, a Toothpaste and a Mouthwash) #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02371616 (2015). Clinical Study to Evaluate the Efficacy of Two Dentifrices for Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02612064 (2016). The Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#),	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	NCT02750943 (2016). Potential of Stannous Fluoride Toothpaste to Reduce Gum Disease #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02753075 (2016). A Study in Dentinal Hypersensitivity (DH) Participants to Assess the Efficacy of an Occluding Dentifrice. #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT03072719 (2017). The Efficacy of a Dentifrice in Providing Relief From Immediate and Short Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT03296072 (2018). In Situ Erosion Study to Investigate the Effectiveness of an Experimental Toothpaste #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT03383783 (2018). Evaluation of the Fluoride Dose Response of a Modified In Situ Caries Model #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT03405259 (2018). A Clinical Study to Compare Professional Treatments for Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Omóbòwálé, Temidayo Olutayo,Oyagbemi, Ademola Adetokunbo,Alaba, Bukola Ayokunmi,Ola-Davies, Olufunke Eunice,Adejumobi, Olumuyiwa Abiola,Asenuga, Ebunoluwa Racheal,Ajibade, Temitayo Olabisi,Adedapo, Adeolu Alex,Yakubu,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Momoh Audu (2018). Ameliorative effect of	
	Azadirachta indica on sodium fluoride-induced	
	hypertension through improvement of antioxidant	
	defence system and upregulation of extracellular	
	signal regulated kinase 1/2 signaling Journal of basic	
	and clinical physiology and pharmacology, 29(2), 155-164	
L1	Otabashi, M., Vriamont, C., Desfours, C., Morelle, J. L. (2017). Fully automated [¹⁸ F]FAZA	Duplicate reference
	production on allinone (Trasis) at commercial scale Journal of Labelled Compounds and	
	Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S458	
L1	Palmeira, A. R. D. O. A.,da Silva, V. A. T. H.,Dias Junior, F. L.,Stancari, R. C. A.,Nascentes, G. A. N.,Anversa, L. (2019). Physicochemical and microbiological quality of the public water supply in 38 cities from the midwest region of the State of Sao Paulo, Brazil Water Environment Research, 91(8), 805-812	Duplicate reference
L1	Palmieri, M. J., Andrade-Vieira, L. F., Campos, J. M. S., Gedraite, L. dos S., Davide, L. C. (2016). Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: a comparative analysis in meristematic cell type on toxicity bioassays Ecotoxicology and Environmental Safety, 133(#issue#), 442-447	Duplicate reference

Patel, P. P., Patel, P. A., Zulf, M. M., Yagnik, B., Kajale,

L1

Duplicate reference

_		
Le vel	Bibliography	Reason for exclusion
	N.,Mandlik, R.,Khadilkar, V.,Chiplonkar, S. A.,Phanse, S.,Patwardhan, V.,Joshi, P.,Patel, A.,Khadilkar, A. V. (2017). Association of dental and skeletal fluorosis with calcium intake and serum vitamin D concentration in adolescents from a region endemic for fluorosis Indian Journal of Endocrinology and Metabolism, 21(1), 190-195	
L1	Public Health Agency of Canada, (2018). The State of Community Water Fluoridation Across Canada: 2017 Report #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Pucelik, Barbara, Gürol, Ilke, Ahsen, Vefa, Dumoulin, Fabienne, D (2016). Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations European journal of medicinal chemistry, 124(#issue#), 284-298	Duplicate reference
L1	Ramesh, M., Malathi, N., Ramesh, K., Aruna, R. M., Kuruvilla, S. (2017). Comparative Evaluation of Dental and Skeletal Fluorosis in an Endemic Fluorosed District, Salem, Tamil Nadu Journal of pharmacy and bioallied sciences., 9(Suppl 1), S88-S91	Duplicate reference
L1	Rashid, Abdur, Guan, Dong-Xing, Farooqi, Abida, Khan, Sardar, Zahir, Salman, Jehan, Shah, Khattak, Seema Anjum, Khan, Muhammad Sufaid, Khan, Raees (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Pakistan The Science of the total environment, 635(#issue#), 203-215	
L1	Rodriguez Castillo, Alfredo Santiago, Guihéneuf, Solène, Le Guével, Rémy, Biard, Pierre- François, Paquin, Ludovic, Amrane, Abdeltif, Couvert, Annabelle (2016). Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor Journal of hazardous materials, 307 (#issue#), 221-230	Duplicate reference
L1	Romero, Verena, Norris, Frances J., Ríos, Juvenal A., Cortés, Isel, González, Andrea, Gaete, Leonardo, Tchernitchin, Andrei N. (2017). The impact of tap water fluoridation on human health Revista medica de Chile, 145(2), 240-249	Duplicate reference
L1	Roy Chowdhury, A.,Mondal, A.,Roy, B. G.,K, J. C. B.,Mukhopadhyay, S.,Banerjee, P. (2017). Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F ⁻ : experimental and DFT studies Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology, 16(11), 1654-1663	Duplicate reference
L1	Saha, D,Marwaha, S,Mukherjee, A (2018). Clean and Sustainable Groundwater in India #journal#, #volume#(#issue#), #Pages#	Duplicate reference

Le		
vel	Bibliography	Reason for exclusion
VC 1		
L1	Sariñana-Ruiz, Yareli A.,Vazquez-Arenas,	Duplicate reference
	Jorge,Sosa-Rodríguez, Fabiola S.,Labastida,	
	Israel, Armienta, Ma Aurora, Aragón-Piña,	
	Antonio, Escobedo-Bretado, Miguel A., González-	
	Valdez, Laura S., Ponce-Peña, Patricia, Ramírez-	
	Aldaba, Hugo, Lara, René H. (2017). Assessment of	
	arsenic and fluorine in surface soil to determine	
	environmental and health risk factors in the Comarca	
	Lagunera, Mexico Chemosphere, 178(#issue#), 391-	
	401	
L1	Savchenkov, M. F., Efimova, N. V., Manueva, R.	Duplicate reference
	S.,Nikolaeva, L. A.,Shin, N. S. (2016). Thyroid gland	
	pathology in children population exposed to the	
	combination of iodine deficiency and fluoride pollution	
	of environment. [Russian] Gigiena i sanitariia, 95(12),	
	1201-1205	
L1	Sezgİn, B. I.,Onur, Ş G.,Menteş, A.,Okutan, A.	Duplicate reference
	E.,Haznedaroğlu, E.,Vieira, A. R. (2018). Two-fold	.,
	excess of fluoride in the drinking water has no obvious	
	health effects other than dental fluorosis Journal of	
	Trace Elements in Medicine and Biology, 50(#issue#),	
	216-222	
		5
L1	Sezgin, Batın İlgit,Onur, Şirin Güner,Menteş,	Duplicate reference
	Ali,Okutan, Alev Eda,Haznedaroğlu, Eda,Vieira,	
	Alexandre Rezende (2018). Two-fold excess of	
	fluoride in the drinking water has no obvious health	
	effects other than dental fluorosis Journal of trace	

Le vel	Bibliography	Reason for exclusion
	elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS), 50(#issue#), 216-222	
L1	Shruthi, M. N., Santhuram, A. N., Arun, H. S., Kumar, B. N. K. (2016). A comparative study of skeletal fluorosis among adults in two study areas of Bangarpet taluk, Kolar Indian Journal of Public Health, 60(3), 203-209	Duplicate reference
L1	Sikdar, P. K (2019). Groundwater Development and Management: Issues and Challenges in South Asia #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Simon, Maciej J. K.,Beil, Frank Timo,Riedel, Christoph,Lau, Grace,Tomsia, Antoni,Zimmermann, Elizabeth A.,Koehne, Till,Ueblacker, Peter,Rüther, Wolfgang,Pogoda, Pia,Ignatius, Anita,Amling, Michael,Oheim, Ralf (2016). Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure Clinical oral investigations, 20(9), 2361-2370	Duplicate reference
L1	Sweileh, W. M., Zyoud, S. H., Al-Jabi, S. W., Sawalha, A. F., Shraim, N. Y. (2016). Drinking and recreational water-related diseases: a bibliometric analysis (1980-2015) Ann Occup Environ Med, 28(1), 40	Duplicate reference
L1	Tanifum, Eric A., Devkota, Laxman, Ngwa, Conelius, Badachhape, Andrew A., Ghaghada, Ketan B., Romero, Jonathan, Pautler, Robia G., Annapragada, Ananth V. (2018). A Hyperfluorinated Hydrophilic Molecule for Aqueous (19) F MRI Contrast Media	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Contrast media & molecular imaging, 2018(#issue#), 1693513-1693513	
L1	Valdez Jiménez, L.,López Guzmán, O. D.,Cervantes Flores, M.,Costilla-Salazar, R.,Calderón Hernández, J.,Alcaraz Contreras, Y.,Rocha-Amador, D. O. (2017). In utero exposure to fluoride and cognitive development delay in infants Neurotoxicology, 59(#issue#), 65-70	Duplicate reference
L1	Vivar, M.,Pichel, N.,Fuentes, M.,Martínez, F. (2016). An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict The Science of the total environment, 550(#issue#), 534-546	Duplicate reference
L1	Wang, F., Hou, T. Z., Li, J. J., Li, Z. Z., Tang, C. F. (2016). [Effect of magnesium and selenium on the expression of matrix metalloproteinases-20 and kallikrein 4 in fluorosis mice] Chung-Hua Kou Chiang i Hsueh Tsa Chih Chinese Journal of Stomatology, 51(9), 546-51	Duplicate reference
L1	Wang, H. W.,Liu, J.,Zhao, W. P.,Zhang, Z. H.,Li, S. Q.,Li, S. H.,Zhu, S. Q.,Zhou, B. H. (2019). Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats Biol Trace Elem Res, 189(2), 511-518	Duplicate reference
L1	Wang, He-Xuan, Zhu, Li-Nan, Guo, Fu-Qiao (2019). Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO(2) nanotube arrays	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Environmental science and pollution research international, 26(33), 33847-33855	
L1	Wang, Hong-Wei,Liu, Jing,Zhao, Wen-Peng,Zhang, Zi-Hao,Li, Si-Qi,Li, Si-Han,Zhu, Shi-Quan,Zhou, Bian- Hua (2019). Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats Biological trace element research, 189(2), 511-518	Duplicate reference
L1	Wang, Hong-Wei,Zhao, Wen-Peng,Tan, Pan-Pan,Liu, Jing,Zhao, Jing,Zhou, Bian-Hua (2017). The MMP-9/TIMP-1 System is Involved in Fluoride-Induced Reproductive Dysfunctions in Female Mice Biological trace element research, 178(2), 253-260	Duplicate reference
L1	Wang, M.,Li, X.,He, W. Y.,Li, J. X.,Zhu, Y. Y.,Liao, Y. L.,Yang, J. Y.,Yang, X. E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China Environ Pollut, 249(#issue#), 423-433	Duplicate reference
L1	Wang, Mei,Li, Xiang,He, Wen-Yan,Li, Jin-Xin,Zhu, Yan-Yuan,Liao, Yu-Liang,Yang, Jin-Yan,Yang, Xiao-E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China Environmental pollution (Barking, Essex: 1987), 249(#issue#), 423-433	Duplicate reference
L1	Wasana, Hewa M. S., Aluthpatabendi, Dharshani, Kularatne, W. M. T. D., Wijekoon,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Pushpa,Weerasooriya, Rohan,Bandara, Jayasundera (2016). Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water Environmental geochemistry and health, 38(1), 157-168	
L1	Wasana, Hewa M. S.,Perera, Gamage D. R. K.,Gunawardena, Panduka De S.,Fernando, Palika S.,Bandara, Jayasundera (2017). WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues Scientific reports, 7(#issue#), 42516-42516	Duplicate reference
L1	Wei, Yan,Zeng, Beibei,Zhang, Hua,Chen, Cheng,Wu, Yanli,Wang, Nanlan,Wu, Yanqiu,Shen, Liming (2016). iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis International journal of molecular sciences, 17(10), 1644	Duplicate reference
L1	Xie, Yun-Liang, Zhang, Bo, Jing, Ling (2018). MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia-reperfusion injury by targeting p53 Neurological research, 40(10), 828-837	Duplicate reference
L1	Yadav, K. K., Sandeep, Kumar, Quoc Bao, Pham, Neha, Gupta, Rezania, S., Hesam, Kamyab, Shalini, Yadav, Vymazal, J., Vinit,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Kumar, Doan Quang, Tri, Talaiekhozani, A., Shiv, Prasad, Reece, L. M., Neeraja, Singh, Maurya, P. K., Cho, Jin Woo (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: a comprehensive review Ecotoxicology and Environmental Safety, 182(#issue#), 109362	
L1	Yao, X.,Zhao, R.,Zha, Z.,Choi, S.,Ploessl, K.,Alexoff, D.,Zhu, L.,Kung, H. (2019). Optimization of solid phase extraction (SPE) in preparation of D3-[¹⁸ F]FSP: A new PET imaging agent for mapping Abeta plaques Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Duplicate reference
L1	Yeung, S, Argaez, C, CADTH (2017). Silver Diamine Fluoride for the Prevention and Arresting of Dental Caries or Hypersensitivity: A Review of Clinical Effectiveness, Cost-Effectiveness and Guidelines CADTH Rapid Response Reports, #volume#(#issue#), #Pages#	Duplicate reference
L1	Yİldİrİm, S.,Ekİn, S.,Huyut, Z.,Oto, G.,Comba, A.,Uyar, H.,Sengul, E.,Cİnar, D. A. (2018). Effect of chronic exposure to sodium fluoride and 7,12-dimethylbenz[a]anthracene on some blood parameters and hepatic, renal, and cardiac histopathology in rats Fluoride, 51(3), 278-290	Duplicate reference
L1	Yousefi, M., Asghari, F. B., Zuccarello, P., Oliveri Conti, G., Ejlali, A., Mohammadi, A. A., Ferrante, M. (2019). Spatial Distribution Variation and Probabilistic Risk	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Assessment of Exposure to Fluoride in Ground Water Supplies: A Case Study in an Endemic Fluorosis Region of Northwest Iran Int J Environ Res Public Health, 16(4), #Pages#	
L1	Zhang, L. E., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., Zhang, Z., Zou, Y. (2017). Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas Environ Pollut, 222(#issue#), 118-125	Duplicate reference
L1	Zhang, R.,Liao, Q. X.,Ke, L. L.,Ouyang, W.,Zhang, Z. G. (2017). The molecular mechanisms of the renal injury in fluorosis induced by drinking water with a high fluoride ion content and the effects of selenium intervention Fluoride, Part 2. 50(1), 105-120	Duplicate reference
L1	Zhang, Y.,Zhang, L.,Yang, J.,Wu, Z.,Ploessl, K.,Zha, Z.,Liu, F.,Xu, X.,Zhu, H.,Yang, Z.,Zhu, L.,Kung, H. F. (2019). Initial experience in synthesis of (2S,4R)-4-[¹⁸ F]fluoroglutamine for clinical application Journal of Labelled Compounds and Radiopharmaceuticals, 62(5), 209-214	Duplicate reference
L1	Zhao, YangFei,Zhao, Jun,Wang, JinMing,Wang, JunDong (2017). Fluoride exposure changed the structure and the expressions of HSP related genes in testes of pubertal rats Chemosphere, 184(#issue#), 1080-1088	Duplicate reference
L1	ACTRN12618000095268 (2018). A clinical trial to evaluate the influence of Casein Phosphopeptide-	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Amorphous Calcium Phosphate (CPP-ACP) – Cranberry toothpastes in changing the bacterial composition of dental plaque deposits on teeth of orthodontic patients. #journal#, #volume#(#issue#), #Pages#	
L1	ACTRN12618001865202 (2018). Topical agents for dental caries arrest in preschool children #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Adachi-Mejia, A. M., Murray, C. J., Karagas, M. R. (2019). "If providers had recommended it, we would have had it tested": rural mothers' perspectives on barriers and facilitators to testing for arsenic in their well water Journal of Environmental Health, 82(3), 26-32	Irrelevant exposure
L1	AhovuoSaloranta, Anneli,Forss, Helena,Hiiri, Anne,Nordblad, Anne,Makela, Marjukka (2016). Pit and fissure sealants versus fluoride varnishes for preventing dental decay in the permanent teeth of children and adolescents Cochrane Database of Systematic Reviews, #volume#(1), #Pages#	Irrelevant exposure
L1	Akiniwa, K,Narita, K (2019). The Harmful Effect on the Human Body of Hydrogen Fluoride Following the Use of Sodium Fluoride in Dental Caries Prevention XXXIVth Conference of the International Society For Fluoride Research, 52(1), 80-81	Irrelevant exposure
L1	Alehosseini, M.,Edris, H.,Fathi, M. (2017). Influence of strontium on the structure and biological properties	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	of mechanical activation sr-doped flourapatite nanopowder for bone replacement Iranian Journal of Biotechnology, ISSUE)(#issue#), 115	
L1	Ammanath, G., Yeasmin, S., Srinivasulu, Y., Vats, M., Cheema, J. A., Nabilah, F., Srivastava, R., Yildiz, U. H., Alagappan, P., Liedberg, B. (2019). Flow-through colorimetric assay for detection of nucleic acids in plasma Analytica Chimica Acta, 1066(#issue#), 102-111	Irrelevant exposure
L1	Antuganov, D.,Ryzhkova, D.,Zykova, T.,Vinal'ev, A.,Antuganova, Y.,Samburov, O.,Zykov, M. (2017). Modification of the automatic synthesis method for [¹⁸ F]-FDOPA production Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S457	Irrelevant exposure
L1	Athapattu, B. C. L., Thalgaspitiya, Twlr, Yasaratne, U. L. S., Vithanage, M. (2017). Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka Environmental Geochemistry & Health, 39(6), 1397-1407	Irrelevant exposure
L1	Aurlene, N., Manipal, S., Rajmohan, Prabu, D., Sindhu, R. (2019). Topical fluoride as a panacea for dental caries: A review Journal of Pharmaceutical Sciences and Research, 11(9), 3320-3325	Irrelevant exposure
L1	Avenell, Alison, Smith, Toby O., Curtain, James P., Mak, C. S. Jenson, Myint, Phyo K. (2016).	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Nutritional supplementation for hip fracture aftercare in older people Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	
L1	Awad, A., Cipriani, A. (2017). Prophylactic mood stabilization: What is the evidence for lithium exposure in drinking water? Bipolar Disorders, 19(7), 601-602	Irrelevant exposure
L1	Bader, JD,Rozier, G,Harris, R,Lohr, KN (2016). Dental caries prevention: the physician's role in child oral health (Structured abstract) Agency for Healthcare Research and Quality (AHRQ), #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Baglar, S. (2018). Sub-ablative Er,Cr:YSGG laser irradiation under all-ceramic restorations: effects on demineralization and shear bond strength Lasers in Medical Science, 33(1), 41-49	Irrelevant exposure
L1	Bajpai, A.,Lakshminarayanan, N.,Khushwaha, K.,Banerjee, S. (2017). Simultaneous synthesis of O-(2'-[¹⁸ F] fluoroethyltyrosine and [¹⁸ F] fluoromisonidazole using solid phase extraction method Indian Journal of Nuclear Medicine, 32 (5 Supplement 1)(#issue#), S15	Irrelevant exposure
L1	Bao, YiXiang, Deng, ShanShan, Jiang, XinShu, Qu, YingXi, He, Yuan, Liu, LiQuan, Chai, QiWan, Mumtaz, M., Huang, Jun, Cagnetta, G., Yu, Gang (2018). Degradation of PFOA substitute: GenX (HFPO-DA ammonium salt): oxidation with UV/persulfate or reduction with UV/sulfite? Environmental Science	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	& Technology, 52(20), 11728-11734	
L1	Bao, YiXiang, Huang, Jun, Cagnetta, G., Yu, Gang (2019). Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/sulfite reduction Water Research (Oxford), 163(#issue#), 114907	Irrelevant exposure
L1	Barr, H.,Isabelle, M.,Old, O.,Lloyd, G.,Lau, K.,Dorney, J.,Lewis, A.,Geraint, T.,Shepherd, N.,Bell, I.,Stone, N.,Kendall, C. (2016). Raman spectroscopycancer diagnostic for pathology of barrett's oesophagus Gut, 65 (Supplement 1)(#issue#), A177	Irrelevant exposure
L1	Baysoy, G.,Uzulmez, R. H. (2018). Who is your dietitian? Diet of breastfeeding mothers with an allergic infant lacks many essential nutrients Journal of Pediatric Gastroenterology and Nutrition, 66 (Supplement 2)(#issue#), 981	Irrelevant exposure
L1	Becam, J., Gaulier, J. M., Baillif-Couniou, V., Sastre, C., Piercecchi, M. D., Leonetti, G., Pelissier-Alicot, A. L. (2019). MDMA-related deaths: About 3 cases Toxicologie Analytique et Clinique, 31 (2 Supplement) (#issue#), S38	Irrelevant exposure
L1	Benson, Philip E.,Parkin, Nicola,Dyer, Fiona,Millett, Declan T.,Germain, Peter (2019). Fluorides for preventing early tooth decay (demineralised lesions) during fixed brace treatment Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Bentini, R.,Pola, A.,Rizzi, L. G.,Athanassiou, A.,Fragouli, D. (2019). A highly porous solvent free	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	PVDF/expanded graphite foam for oil/water separation Chemical Engineering Journal, 372(#issue#), 1174- 1182	
L1	Berroteran-Infante, N.,Hacker, M.,Mitterhauser, M.,Wadsak, W. (2016). Improved automated radiosynthesis of [¹⁸ F]FEPPA EJNMMI Radiopharmacy and Chemistry. Conference: 18th European Symposium on Radiopharmacy and Radiopharmaceuticals. Austria., 1(Supplement 1), #Pages#	Irrelevant exposure
L1	Bohmer, V. I., Van Der Born, D., Szymanski, W., Klopstra, M., Visser, T. J., Feringa, B. L., Elsinga, P. H. (2018). Automation of Click Chemistry for the synthesis of ¹⁸ F-labelled PSMA-tracers using the FlowSafe EJNMMI Radiopharmacy and Chemistry. Conference: 19th European Symposium on Radiopharmacy and Radiopharmaceuticals, ESRR'18. Netherlands., 3(Supplement 1), #Pages#	Irrelevant exposure
L1	Bohmer, V., Van Der Born, D., Szymanski, W., Antunes, I., Klopstra, M., Samplonius, D., Sijbesma, J., Helfrich, W., Visser, T., Feringa, B., Elsinga, P. (2019). ¹⁸ F-labelled click based PSMA-tracer for prostate cancer imaging Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S94-S95	Irrelevant exposure
L1	Boston, Catherine Moore, Banacos, Natalie, Heiger-Bernays, Wendy (2019). Per- and Polyfluoroalkyl	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Substances: A National Priority for Safe Drinking Water Public Health Reports, 134(2), 112-117	
L1	Bouyeure-Petit, A. C., Chastan, M., Edet-Sanson, A., Becker, S., Thureau, S., Houivet, E., Vera, P., Hapdey, S. (2017). Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for (18)F-FDG-PET-CT: phantom validation, practical implications and patient evaluation Br J Radiol, 90(1070), 20160549	Irrelevant exposure
L1	Bowden, G.,Franke, A.,Pichler, B.,Maurer, A. (2019). Automated synthesis of [¹⁸ F]O ⁶ -[(4- [¹⁸ F]fluoro)benzyl]guanine ([¹⁸ F]pFBG) via [¹⁸ F]- fluorobenzyl alcohol ([¹⁸ F]4FBnOH) from an optimized copper mediated radiofluorination (CMRF) of 4-tributyltin-benzyl alcohol Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S329-S331	Irrelevant exposure
L1	Boyles, A. L., Blain, R. B., Rochester, J. R., Avanasi, R., Goldhaber, S. B., McComb, S., Holmgren, S. D., Masten, S. A., Thayer, K. A. (2017). Systematic review of community health impacts of mountaintop removal mining Environment International, 107(#issue#), 163-172	Irrelevant exposure
L1	Bozorgi, M., Ghasempour, M., Ahmadi, G., Khafri, S. (2018). Comparison between the effects of green and	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	black tea, and fluoride on microhardness and prevention of demineralization of deciduous teeth enamel Journal of Babol University of Medical Sciences, 20(6), 14-19	
L1	Bruton, T. A., Blum, A. (2017). Proposal for coordinated health research in PFAS-contaminated communities in the United States Environmental Health: A Global Access Science Source, 16 (1) (no pagination)(120), #Pages#	Irrelevant exposure
L1	Burnazi, E., Carlin, S., Lyashchenko, S., Rotstein, B. H., Vasdev, N., Lewis, J. S. (2017). Iodonium ylidemediated radiofluorination of [¹⁸ F]MFBG and novel formulation with cation exchange solid-phase extraction Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S490-S491	Irrelevant exposure
L1	Burnazi, E., Carlin, S., Lyashchenko, S., Staton, K., Brown, A., Hicks, S., Veach, D., Lewis, J. S. (2017). High-yield manual synthesis of 16beta-[¹⁸ F]-fluoro-5alpha-dihydrotestosterone ([¹⁸ F]FDHT) using reverse-phase HPLC purification Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S427-S428	Irrelevant exposure
L1	Burnett, G. R., Gallob, J. T., Milleman, K. R., Mason, S., Patil, A., Budhawant, C., Milleman, J. L. (2018). Potassium oxalate oral rinses for long-term relief from	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	dentinal hypersensitivity: Three randomised controlled studies Journal of dentistry, 70(#issue#), 23-30	
L1	Cai, H.,Zhu, X.,Peng, C.,Xu, W.,Li, D.,Wang, Y.,Fang, S.,Li, Y.,Hu, S.,Wan, X. (2016). Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China Ecotoxicol Environ Saf, 131(#issue#), 14-21	Irrelevant exposure
L1	Cai, J.,Burrow, M. F.,Manton, D. J.,Tsuda, Y.,Sobh, E. G.,Palamara, J. E. A. (2019). Effects of silver diamine fluoride/potassium iodide on artificial root caries lesions with adjunctive application of proanthocyanidin Acta Biomaterialia, 88(#issue#), 491-502	Irrelevant exposure
L1	Catán, S. P., Juarez, N. A., Bubach, D. F. (2016). Characterization of freshwater changes in lakes of Nahuel Huapi National Park produced by the 2011 Puyehue-Cordón Caulle eruption Environmental Science and Pollution Research, 23(20), 20700- 20710	Irrelevant exposure
L1	Cavalli, A. M., Florio, F. M. (2018). Children's Menu Diversity: influence on Fluoride Absorption and Excretion Journal of contemporary dental practice, 19(1), 30-36	Irrelevant exposure
L1	Chansaenpak, K., Kamkaew, A., Weeranantanapan, O., Suttisintong, K., Tumcharern, G. (2018). Coumarin probe for selective detection of fluoride ions in aqueous solution and its bioimaging in live cells Sensors, 18(7), 2042	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Chen, S.,Song, L.,Xie, X.,Han, X.,Cheng, B. (2016). A case of abdominal mesenteric Castleman's disease with left renal cell carcinoma and stomach leiomyoma Hellenic Journal of Nuclear Medicine, 19(3), 285-288	Irrelevant exposure
L1	Chen, Y., Ginga, N. J., LePage, W. S., Kazyak, E., Gayle, A. J., Wang, J., Rodriguez, R. E., Thouless, M. D., Dasgupta, N. P. (2019). Enhanced Interfacial Toughness of Thermoplastic-Epoxy Interfaces Using ALD Surface Treatments ACS applied materials & interfaces, 11(46), 43573-43580	Irrelevant exposure
L1	Chen, Y.,Li, H.,Li, M.,Niu, S.,Wang, J.,Shao, H.,Li, T.,Wang, H. (2017). Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-kappaB signaling pathways J Ethnopharmacol, 200(#issue#), 165-173	Irrelevant exposure
L1	Chiotellis, A., Sladojevich, F., Mu, L., Muller Herde, A., Valverde, I. E., Tolmachev, V., Schibli, R., Ametamey, S. M., Mindt, T. L. (2016). Novel chemoselective (18)F-radiolabeling of thiol-containing biomolecules under mild aqueous conditions Chem Commun (Camb), 52(36), 6083-6	Irrelevant exposure
L1	Chong, Lee-Yee, Clarkson, Janet E., Dobbyn-Ross, Lorna, Bhakta, Smriti (2018). Slow-release fluoride devices for the control of dental decay Cochrane Database of Systematic Reviews, #volume#(4), #Pages#	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
L1	Choubisa, S. L., Choubisa, D. (2016). Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India Environmental science and pollution research international, 23(8), 7244-7254	Irrelevant exposure
L1	Clark, D.,Levin, L. (2018). Tooth hypersensitivity treatment trends among dental professionals Quintessence international (Berlin, Germany: 1985), 49(2), 147-151	Irrelevant exposure
L1	Colla, V.,Branca, T. A.,Rosito, F.,Lucca, C.,Padilla Vivas, B.,Menéndez Delmiro, V. (2016). Sustainable Reverse Osmosis application for wastewater treatment in the steel industry Journal of Cleaner Production, 130(#issue#), 103-115	Irrelevant exposure
L1	Collier, T. L., Yokell, D. L., Livni, E., Rice, P. A., Celen, S., Serdons, K., Neelamegam, R., Bormans, G., Harris, D., Walji, A., Hostetler, E. D., Bennacef, I., Vasdev, N. (2017). Automated radiosynthesis of [¹⁸ F]MK-6240 and validation for human use Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S612	Irrelevant exposure
L1	Crone, B. C., Speth, T. F., Wahman, D. G., Smith, S. J., Abulikemu, G., Kleiner, E. J., Pressman, J. G. (2019). Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water Critical Reviews in	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Environmental Science and Technology, 49(24), 2359-2396	
L1	Ctri, (2018). A study on fluoride retention in the oral cavity http://www.who.int/trialsearch/Trial2.aspx?TrialID=CT RI, 04(013052), #Pages#	Irrelevant exposure
L1	Ctri, (2018). Study of effect of 5 oral agents on the pH of saliva after drinking a carbonated drink http://www.who.int/trialsearch/Trial2.aspx?TrialID=CT RI, 04(013467), #Pages#	Irrelevant exposure
L1	Ctri, (2018). Study of effect of 5 oral agents on the pH of saliva after drinking a test flavoured milk http://www.who.int/trialsearch/Trial2.aspx?TrialID=CT RI, 04(013480), #Pages#	Irrelevant exposure
L1	Ctri, (2018). Study of effects of 5 oral agents on the pH of saliva after drinking a test mixed fruit juice http://www.who.int/trialsearch/Trial2.aspx?TrialID=CT RI, 04(013482), #Pages#	Irrelevant exposure
L1	Daly, N.,Farren, M.,McKeating, A.,Moffitt, K.,Sheehan, S. R.,Turner, M. J. (2016). Universal screening for gestational diabetes mellitus (GDM) with a fasting plasma glucose measurement under strict preanalytical conditions at the first prenatal visit American Journal of Obstetrics and Gynecology, 1)(#issue#), S169-S170	Irrelevant exposure
L1	Dam, J., Langkjaer, N., Baun, C., Olsen, B. (2019). Preparation and evaluation of [¹⁸ F] AIF-	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	NOTA-NOC for PET imaging of neuroendocrine tumors Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S416-S417	
L1	Das, S.,de Oliveira, L. M.,da Silva, E.,Liu, Y.,Ma, L. Q. (2017). Fluoride concentrations in traditional and herbal teas: Health risk assessment Environ Pollut, 231(Pt 1), 779-784	Irrelevant exposure
L1	Day, R.,Bradberry, S. M.,Thomas, S. H. L.,Vale, J. A. (2019). Liquid laundry detergent capsules (PODS): a review of their composition and mechanisms of toxicity, and of the circumstances, routes, features, and management of exposure Clinical Toxicology, 57(11), 1053-1063	Irrelevant exposure
L1	de Cassia Alves Nunes, R.,Chiba, F. Y.,Pereira, A. G.,Pereira, R. F.,de Lima Coutinho Mattera, M. S.,Ervolino, E.,Louzada, M. J.,Buzalaf, M. A.,Silva, C. A.,Sumida, D. H. (2016). Effect of Sodium Fluoride on Bone Biomechanical and Histomorphometric Parameters and on Insulin Signaling and Insulin Sensitivity in Ovariectomized Rats Biological Trace Element Research, 173(1), 144-53	Irrelevant exposure
L1	Dehbandi, R., Moore, F., Keshavarzi, B. (2018). Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran Chemosphere, 193(#issue#), 763-776	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
L1	Deraedt, Q.,Masset, J.,Otabashi, M.,Philippart, G. (2017). Efficient commercial scale [¹⁸ F]FES production on AllinOne (Trasis) Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S195	Irrelevant exposure
L1	Devalankar, D.,McConathy, J. (2019). Fully automated radiosyntheses of the ¹⁸ Flabeled amino acids MeFAMP and AFETP for oncologic imaging Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure
L1	Dimachkie, P.,Peicher, K.,Maalouf, N. M. (2017). Inhalation of air dust cleaner causing skeletal fluorosis Endocrine Reviews. Conference: 99th Annual Meeting of the Endocrine Society, ENDO, 38(3 Supplement 1), #Pages#	Irrelevant exposure
L1	Dinneen, J.,Fitzgibbon, M.,O'Gorman, P. (2018). Glucose determination at point of care using blood gas analyser-a worthy substitute for laboratory analysis in the oral glucose tolerance test Clinical Chemistry and Laboratory Medicine, 56 (2)(#issue#), eA83	Irrelevant exposure
L1	Dorri, Mojtaba, Martinez-Zapata, Jose Maria, Walsh, Tanya, Marinho, C. C. Valeria, Sheiham, Aubrey, Zaror, Carlos (2018). Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries Cochrane Database of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Systematic Reviews, #volume#(3), #Pages#	
L1	Duijster, D.,Monse, B.,Dimaisip-Nabuab, J.,Djuharnoko, P.,Heinrich-Weltzien, R.,Hobdell, M.,Kromeyer-Hauschild, K.,Kunthearith, Y.,Mijares- Majini, M. C.,Siegmund, N.,Soukhanouvong, P.,Benzian, H. (2017). 'Fit for school' - a school- based water, sanitation and hygiene programme to improve child health: results from a longitudinal study in Cambodia, Indonesia and Lao PDR BMC public health, 17(1), 302	Irrelevant exposure
L1	Eachempati, Prashanti, Kumbargere Nagraj, Sumanth, Kiran Kumar Krishanappa, Salian, Gupta, Puneet, Yaylali, Ethem Ibrahim (2018). Home-based chemically-induced whitening (bleaching) of teeth in adults Cochrane Database of Systematic Reviews, #volume#(12), #Pages#	Irrelevant exposure
L1	Ebenhan, T., Wagener, J., Suthiram, J., Marjanovic, P. B., Sathekge, M. M., Zeevaart, J. R. (2016). ⁶⁸ Ga-PSMA-11: An one-year performance experience on a singlevial kit-type preparation of a potent PETradiodiagnostic agent for prostate cancer imaging Molecular Imaging and Biology, 18 (2 Supplement) (#issue#), S1173	Irrelevant exposure
L1	Enriquez, J. S., Yu, M., Bouley, B. S., Xie, D., Que, E. L. (2018). Copper(ii) complexes for cysteine detection using (19)F magnetic resonance Dalton Trans, 47(42), 15024-15030	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
L1	Eskola, O., Yim, C. B., Johnson, T., Bergman, J., Solin, O. (2019). Synthesis of ¹⁸ F-labelled fragmented antibody [¹⁸ F]Fab Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S186-S187	Irrelevant exposure
L1	EUCTR2009-010725-39-GB (2010). A randomised controlled trial to measure the effects and costs of a dental caries prevention regime for young children attending primary care dental services - NIC-PIP Northern Ireland Caries Prevention in Practice Trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EUCTR2010-024624-20-GB (2011). A Pilot Study Investigating the Sensitivity of 18F-labelled Sodium Fluoride PET-CT for Detecting Skeletal Metastases in Renal Cell Carcinoma compared to Planar Bone Scintigraphy and Multidetector CT - 18F-Fluoride PET-CT for Detecting Bone Metastases in RCC #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2004-002366-38 (2004). Fluoride uptake and remineralisation of incipient carious lesions following the application of fluoride fluids with different fluoride concentrations #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2008-008594-58 (2008). In situ mineral change and fluoride retention of sound and demineralized enamel in high cariogenic milieus following the single application of a 1.25%- fluoride or	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	a placebo gel. #journal#, #volume#(#issue#), #Pages#	
L1	EudraCT-2009-010725-39 (2009). A randomised controlled trial to measure the effects and costs of a dental caries prevention regime for young children attending primary care dental services #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2009-015914-23 (2009). Clinical efficacy of an experimental toothpaste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2010-020538-24 (2010). White spot lesion development in post-orthodontic patients following weekly application of a 1.25% fluoride gel compared to placebo over 6 months #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2010-023476-23 (2010). Seal or Varnish? A Randomised Trial To Determine The Relative Cost And Effectiveness Of Pit And Fissure Sealants And Fluoride Varnish In Preventing Dental Decay #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2014-000952-26 (2014). Dual Antiplatelet Therapy to Inhibit Coronary Atherosclerosis and Myocardial Injury in Patients with Necrotic High-risk Coronary Plaque Disease #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Faidallah, H. M., Al-Mohammadi, M. M., Alamry, K. A., Khan, K. A. (2016). Synthesis and biological	Irrelevant exposure

Le vel	Bibliography	Reason for exclusio
	evaluation of fluoropyrazolesulfonylurea and thiourea derivatives as possible antidiabetic agents Journal of Enzyme Inhibition & Medicinal Chemistry, 31(sup1), 157-163	
L1	Farkas, A., Wolf, M., Landzberg, E., Woods, K., Lynch, M. (2018). Treatment of ventricular fibrillation due to ammonium bifluoride poisoning with hemodialysis Clinical Toxicology, 56 (10)(#issue#), 1063	Irrelevant exposure
L1	Farronato, M., Cossellu, G., Farronato, G., Inchingolo, F., Blasi, S., Angiero, F. (2019). Physico-chemical characterization of a smart thermo-responsive fluoride-releasing poloxamer-based gel Journal of Biological Regulators and Homeostatic Agents, 33(4), 1309-1314	Irrelevant exposure
L1	Fatemeh, M., Marjan, S., Homa, N., Mahsa, S. (2017). CPP-ACP: effect on Dental Plaque Acidity after Water Rinsing Following Topical Fluoride Therapy Journal of clinical pediatric dentistry, 41(1), 22-26	Irrelevant exposure
L1	Fernandez-Maza, L., Corral, A., Becerro, A., Gonzalez, D., Parrado, A., Balcerzyk, M., Ocana, M. (2019). ¹⁸ F-fluorination of BaGdF5 nanoparticles for multimodal imaging and PET/CT biodistribution in mouse Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S166-S168	Irrelevant exposure
L1	Flood, S., Asplund, K., Hoffman, B., Nye, A., Zuckerman, K. E. (2017). Fluoride Supplementation Adherence	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	and Barriers in a Community Without Water Fluoridation Academic Pediatrics, 17(3), 316-322	
L1	Fookes, F. A., Mengatto, L. N., Rigalli, A., Luna, J. A. (2019). Controlled fluoride release for osteoporosis treatment using orally administered chitosan hydrogels Journal of Drug Delivery Science and Technology, 51(#issue#), 268-275	Irrelevant exposure
L1	Fosso-Kankeu, E., Waanders, F., Fourie, C. L. (2016). Adsorption of Congo Red by surfactant-impregnated bentonite clay Desalination and Water Treatment, 57(57), 27663-27671	Irrelevant exposure
L1	Frezzo, J. A., Hoang, D. M., Wadghiri, Y. Z., Montclare, J. K. (2016). Traceable and thermoresponsive multifunctional engineered protein drug delivery agents for metastatic breast cancer Molecular Imaging and Biology, 18 (2 Supplement) (#issue#), S279	Irrelevant exposure
L1	Frood, R.,Baren, J.,McDermott, G.,Bottomley, D.,Patel, C.,Scarsbrook, A. (2018). Diagnostic performance of a streamlined (18)F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria Clin Radiol, 73(7), 632-639	Irrelevant exposure
L1	Frood, R.,McDermott, G.,Scarsbrook, A. (1086). Respiratory-gated PET/CT for pulmonary lesion characterisation-promises and problems British Journal of Radiology, 91(1086), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
ACI		
L1	Gai, Y.,Altine, B.,Han, N.,Lan, X. (2019). Preclinical evaluation of a ¹⁸ F-labeled phosphatidylinositol 3-kinase inhibitor for breast cancer imaging Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure
L1	Gai, Y., Yuan, L., Li, H., Zeng, D., Lan, X. (2018). Imaging of melanoma Using Al ¹⁸ F labeled peptidomemitic ligand LLP2A Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Galal, A. A. A.,Reda, R. M.,Abdel-Rahman Mohamed, A. (2018). Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide Fish Shellfish Immunol, 77(#issue#), 445-456	Irrelevant exposure
L1	Galvin, Imelda M.,Steel, Andrew,Pinto, Ruxandra,Ferguson, Niall D.,Davies, William Mark (2018). Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome Cochrane Database of Systematic Reviews, #volume#(12), #Pages#	Irrelevant exposure
L1	Garner, L. E., Steirer, K. X., Young, J. L., Anderson, N. C., Miller, E. M., Tinkham, J. S., Deutsch, T.	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
	G., Sellinger, A., Turner, J. A., Neale, N. R. (2017). Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte ChemSusChem, 10(4), 767-773	
L1	Ghosh, P.,Banerjee, P. (2019). A Journey towards Salivary Fluoride Level Detection by Suitable Low Cost Chemosensor: From Molecule to Product Chem Rec, 19(10), 2119-2129	Irrelevant exposure
L1	Gilbert, F. J. (2016). Beyond FDG: Getting new PET tracers into practice Journal of Medical Imaging and Radiation Oncology, 60 (Supplement 1)(#issue#), 33	Irrelevant exposure
L1	Girardi, P., Merler, E. (2019). A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid Environmental Research, Part A. 179 (no pagination)(108743), #Pages#	Irrelevant exposure
L1	Godel, J,Canadian Paediatric Society,Community Paediatrics Committee (2002). The use of fluoride in infants and children Paediatrics & Child Health, 7(8), 569-572	Irrelevant exposure
L1	Goh, Hoe Hock, Doubleday, Bridget (2018). Aids for mechanical cleaning of teeth with fixed braces Cochrane Database of Systematic Reviews, #volume#(1), #Pages#	Irrelevant exposure
L1	Grover, P. K., Kaur, K., Gautam, C. S. (2018). Impact of milk intake on dental fluorosis in the North Indian population: An observational study Biomedicine	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	(India), 38(2), 190-194	
L1	Grusovin, Gabriella Maria, Coulthard, Paul, Worthington, Helen V., George, Peter, Esposito, Marco (2019). Interventions for replacing missing teeth: maintaining and recovering soft tissue health around dental implants Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Gusman, Mariya, Aminsharifi, Jamie A., Peacock, Justin G., Anderson, Shane B., Clemenshaw, Michael N., Banks, Kevin P. (2019). Review of 18F- Fluciclovine PET for Detection of Recurrent Prostate Cancer RadioGraphics, 39(3), 822-841	Irrelevant exposure
L1	Gutierrez, R. M. P., Hoyo-Vadillo, C. (2017). Anti- inflammatory Potential of Petiveria alliacea on Activated RAW264.7 Murine Macrophages Pharmacogn Mag, 13(Suppl 2), S174-s178	Irrelevant exposure
L1	Hao, Y. P.,Liu, Z. Y.,Xie, C.,Zhou, L.,Sun, X. (2016). Novel fluorinated docetaxel analog for anti-hepatoma: Molecular docking and biological evaluation Eur J Pharm Sci, 88(#issue#), 274-81	Irrelevant exposure
L1	Hasan, R., Talha, M., Weinstein, R. S. (2017). Tea drinker's fluorosis Endocrine Reviews. Conference: 99th Annual Meeting of the Endocrine Society, ENDO, 38(3 Supplement 1), #Pages#	Irrelevant exposure
L1	He, F.,Li, C.,Zhang, X.,Chen, Y.,Deng, X.,Liu, B.,Hou, Z.,Huang, S.,Jin, D.,Lin, J. (2016). Optimization of upconversion luminescence of Nd(3+)-sensitized	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery Dalton Trans, 45(4), 1708-16	
L1	He, P., Domarkas, J., Cawthorne, C., Archibald, S. (2017). Microfluidic devices for electrode trapping of [¹⁸ F]fluoride from [¹⁸ O]water and continuous flow	Irrelevant exposure
	radiosynthesis of [¹⁸ F]FLT Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	
L1	Health Canada, (#year#). A MULTINATIONAL, MULTICENTER, PHASE 2 STUDY OF TESETAXEL PLUS A REDUCED DOSE OF CAPECITABINE IN PATIENTS WITH HER2 NEGATIVE, HORMONE RECEPTOR POSITIVE, LOCALLY ADVANCED OR METASTATIC BREAST CANCER WHO HAVE NOT PREVIOUSLY RECEIVED A TAXANE #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A MULTINATIONAL, MULTICENTER, RANDOMIZED, PHASE 3 STUDY OF TESETAXEL PLUS A REDUCED DOSE OF CAPECITABINE VERSUS CAPECITABINE ALONE IN PATIENTS WITH HER2 NEGATIVE, HORMONE RECEPTOR POSITIVE, LOCALLY ADVANCED OR METASTATIC BREAST CANCER PREVIOUSLY TREATED WITH A TAXANE #journal#,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#volume#(#issue#), #Pages#	
L1	Health Canada, (#year#). A PHASE 2, OPEN-LABEL, MONOTHERAPY, MULTICENTER STUDY TO EVALUATE THE EFFICACY AND SAFETY OF INCB054828 IN SUBJECTS WITH MYELOID/LYMPHOID NEOPLASMS WITH FGFR1 REARRANGEMENT #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A PHASE I/IB OPEN- LABEL, MULTI-CENTER, DOSE ESCALATION STUDY OF GWN323 (ANTI-GITR) AS A SINGLE AGENT AND IN COMBINATION WITH PDR001 (ANTI-PD-1) IN PATIENTS WITH ADVANCED SOLID TUMORS AND LYMPHOMAS #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A PHASE III, DOUBLE-BLIND, PLACEBO-CONTROLLED, RANDOMIZED STUDY OF IPATASERTIB IN COMBINATION WITH ATEZOLIZUMAB AND PACLITAXEL AS A TREATMENT FOR PATIENTS WITH LOCALLY ADVANCED UNRESECTABLE OR METASTATIC TRIPLE-NEGATIVE BREAST CANCER #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A PHASE III, MULTICENTER, RANDOMIZED, OPEN-LABEL TRIAL TO EVALUATE EFFICACY AND SAFETY OF RIBOCICLIB WITH ENDOCRINE THERAPY AS AN	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	ADJUVANT TREATMENT IN PATIENTS WITH HORMONE RECEPTOR-POSITIVE, HER2- NEGATIVE, EARLY BREAST CANCER (NEW ADJUVANT TRIALWITH RIBOCICLIB #journal#, #volume#(#issue#), #Pages#	
L1	Health Canada, (#year#). AN OPEN-LABEL, MULTICENTER, PHASE IIIB STUDY TO ASSESS THE SAFETY AND EFFICACY OF RIBOCICLIB (LEE011) IN COMBINATION WITH LETROZOLE FOR THE TREATMENT OF MEN AND POSTMENOPAUSAL WOMEN WITH HORMONE RECEPTOR-POSITIVE (HR+) HER2-NEGATIVE (HER2-) ADVANCED BREAST CANCER (ABC) WITH NO PRIOR HORMONAL THERAPY FOR ADVANCED DISEASE #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). DEVELOPING OPTIMAL PARAMETERS FOR HYPERPOLARIZED NOBLE GAS (3HE AND 129XE) AND INERT FLUORINATED GAS MAGNETIC RESONANCE IMAGING OF LUNG DISORDERS #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). EVALUATION OF REGIONAL LUNG VENTILATION IN PARTICIPANTS WITH LUNG DISORDERS USING INHALED INERT FLUORINATED GASES AS CONTRAST AGENTS FOR MAGNETIC RESONANCE IMAGING #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

1 -		
Le vel	Bibliography	Reason for exclusion
L1	Health Canada, (#year#). REGISTRY OF SODIUM 18F-FLUORIDE (NA18F) POSITRON EMISSION TOMOGRAPHY (PET) SCANS PERFORMED TO EVALUATE SKELETAL PATHOLOGY IN CHILDREN #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Henry, B. J., Carlin, J. P., Hammerschmidt, J. A., Buck, R. C., Buxton, L. W., Fiedler, H., Seed, J., Hernandez, O. (2018). A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers Integr Environ Assess Manag, 14(3), 316-334	Irrelevant exposure
L1	Hequet, E., Henoumont, C., Muller, R. N., Laurent, S. (2019). Fluorinated MRI contrast agents and their versatile applications in the biomedical field Future Med Chem, 11(10), 1157-1175	Irrelevant exposure
L1	Herbaut, M.,Zoghlami, A.,Habrant, A.,Falourd, X.,Foucat, L.,Chabbert, B.,Paës, G. (2018). Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance Biotechnology for Biofuels, 11(52), (27 February 2018)	Irrelevant exposure
L1	Hermenegildo, B.,Ribeiro, C.,Perez-Alvarez, L.,Vilas, J. L.,Learmonth, D. A.,Sousa, R. A.,Martins, P.,Lanceros-Mendez, S. (2019). Hydrogel-based magnetoelectric microenvironments for tissue stimulation Colloids Surf B Biointerfaces, 181(#issue#), 1041-1047	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
L1	Herndon, J. M. (2016). Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification Front Public Health, 4(#issue#), 139	Irrelevant exposure
L1	Higashiyama, A., Komori, T., Juri, H., Inada, Y., Azuma, H., Narumi, Y. (2018). Detectability of residual invasive bladder cancer in delayed (18)F-FDG PET imaging with oral hydration using 500 mL of water and voiding-refilling Ann Nucl Med, 32(8), 561-567	Irrelevant exposure
L1	Hines, Deon, Shiyou, Xu, Stranick, Michael, Lavender, Stacey, Pilch, Shira, Yun-Po, Zhang, Sullivan, Richard, Montesani, Luigi, Montesani, Lorenzo, Mateo, Luis R., Williams, Malcolm (2019). Effect of a stannous fluoride toothpaste on dentinal hypersensitivity: In vitro and clinical evaluation Journal of the American Dental Association (JADA), 150 (#issue#), S47-S59	Irrelevant exposure
L1	Hirakawa, K., Suzuki, A., Ouyang, D., Okazaki, S., Ibuki, Y., Nakazaki, J., Segawa, H. (2019). Controlled Photodynamic Action of Axial Fluorinated DiethoxyP(V)tetrakis(p-methoxyphenyl)porphyrin through Self-Aggregation Chem Res Toxicol, 32(8), 1638-1645	Irrelevant exposure
L1	Honda, N., Yoshimoto, M., Mizukawa, Y., Osaki, K., Kanai, Y., Kurihara, H., Tateishi, H., Takahashi, K. (2017). Radiosynthesis of 2-[¹⁸ F]fluoro-4-borono-phenylaranine ([¹⁸ F]FBPA)	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	using copper mediated oxidative aromatic nucleophilic [¹⁸ F]fluorination Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S512	
L1	Hong, Catherine H. L., Shijia, Hu, Haverman, Thijs, Stokman, Monique, Napeñas, Joel J., Braber, Jacolien Bos-den, Gerber, Erich, Geuke, Margot, Vardas, Emmanouil, Waltimo, Tuomas, Jensen, Siri Beier, Saunders, Deborah P., Hu, Shijia (2018). A systematic review of dental disease management in cancer patients Supportive Care in Cancer, 26(1), 155-174	Irrelevant exposure
L1	Hongyong, W.,Zou, P.,Xie, M.,Liu, Y.,Wu, J.,Wu, H. (2019). A high yield automated synthesis of ¹⁸ F-FLT On PET-MF- 2V-IT-I module with SPE purification European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S853-S854	Irrelevant exposure
L1	Hoover, A. J., Lazari, M., Ren, H., Narayanam, M. K., Murphy, J. M., van Dam, R. M., Hooker, J. M., Ritter, T. (2016). A Transmetalation Reaction Enables the Synthesis of [(18)F]5-Fluorouracil from [(18)F]Fluoride for Human PET Imaging Organometallics, 35(7), 1008-1014	Irrelevant exposure
L1	Horst, J. A., Tanzer, J. M., Milgrom, P. M. (2018). Fluorides and Other Preventive Strategies for Tooth Decay Dental clinics of North America, 62(2), 207-	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	234	
L1	Hu, Y.,Wu, B.,Jin, Q.,Wang, X.,Li, Y.,Sun, Y.,Huo, J.,Zhao, X. (2016). Facile synthesis of 5 nm NaYF(4):Yb/Er nanoparticles for targeted upconversion imaging of cancer cells Talanta, 152(#issue#), 504-12	Irrelevant exposure
L1	Huang, Y.,Tsai, C.,Ho, B.,Ho, H.,Chang, Y.,Wu, C.,Yen, R.,Shiue, C. (2019). In vitro evaluation of [¹⁸ F]FPA as a fatty acid synthasetargeting imaging agent for breast cancer and its in vivo whole-body biodistribution in normal mice European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S709-S710	Irrelevant exposure
L1	lafisco, M.,Degli Esposti, L.,Ramirez-Rodriguez, G. B.,Carella, F.,Gomez-Morales, J.,Ionescu, A. C.,Brambilla, E.,Tampieri, A.,Delgado-Lopez, J. M. (2018). Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization Scientific reports, 8(1), 17016	Irrelevant exposure
L1	Idon, P. I., Esan, T. A., Bamise, C. T. (2017). Efficacy of Three In-Office Dentin Hypersensitivity Treatments Oral Health & Preventive Dentistry, 15(3), 207-214	Irrelevant exposure
L1	Iglesias-Jerez, R., Cayero-Otero, M. D., Martin-Banderas, L., Borrego-Dorado, I. (2017). Influence of the use of cryoprotectant on the ladiolabelling of	Irrelevant exposure

Le		
vel	Bibliography	Reason for exclusion
	poly(lactic-co-glycolic acid) (PLGA) nanoparticles with 99m Tc European Journal of Nuclear Medicine and Molecular Imaging, 44 (2 Supplement 1)(#issue#), S564	
L1	Inkster, J., Dearling, J., Snay, E., Packard, A. (2019). Synthesis of ¹⁸ F-labeled acridinium cations: A new class of potential myocardial perfusion imaging agents Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure
L1	ISRCTN-04899524 (2014). An in situ study to determine the effects of calcium-based toothpaste in orthodontic patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN04899524 (2014). An in situ study to determine the effects of calcium-based toothpaste in orthodontic patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN10406748 (2016). A clinical study to evaluate how effective a dental strip containing an oxalate formulation is at reducing dentine hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-10406748 (2016). A clinical study to evaluate how effective a dental strip containing an oxalate formulation is at reducing dentine hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	ISRCTN10532332 (2018). The repair of early tooth decay using a combination of stannous fluoride and a calcium milk peptide complex http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISR CTN10532332., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN11992428 (2017). A randomised controlled trial to evaluate the cost effectiveness of prescribing high concentration fluoride toothpaste to prevent tooth decay in older adults #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN13773048 (2018). The importance of bioavailable calcium in fluoride dentifrices for tooth enamel remineralization (repair) http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISR CTN13773048., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-16336355 (2015). Manual versus sonic powered tooth brushing in patients with intellectual disability (Cepillado manual versus cepillado eléctrico para la salud oral en pacientes con discapacidad intelectual leve y moderada) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN16831120 (2016). A study to investigate the effect of a sensitivity toothpaste in providing relief from tooth sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-17029222 (2010). Seal or Varnish? A comparison of the cost and effectiveness of sealants	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	and varnish in preventing dental decay #journal#, #volume#(#issue#), #Pages#	
L1	ISRCTN17029222 (2010). Seal or Varnish? A comparison of the cost and effectiveness of sealants and varnish in preventing dental decay #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN19137849 (2019). Comparing the effects of milk and soy-based drinks on tooth enamel http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISR CTN19137849., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-22801431 (2003). The Mancunian Fluoride Varnish Project #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-35086887 (2013). Stop Caries Stockholm #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-36180119 (2009). Northern Ireland Caries Prevention In Practice trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-41467632 (2004). Dental caries prevention program for Cree mothers and infants #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-47055000 (2012). The effect of propolis on chemotherapy induced oral mucositis and bacteremia during oral mucositis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN47055000 (2012). The effect of propolis on	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	chemotherapy induced oral mucositis and bacteremia during oral mucositis #journal#, #volume#(#issue#), #Pages#	
L1	ISRCTN-52296479 (2016). Does a new toothpaste act as required to successfully treat dentine hypersensitivity? #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN52296479 (2016). Does a new toothpaste act as required to successfully treat dentine hypersensitivity? #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-67374556 (2009). The Monitor Practice Program - is non-invasive management of dental caries in private practice cost-effective? #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-68970559 (2008). Effects of gustatory stimulants of salivary secretion on the pH and stimulation of saliva #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-72589426 (2011). To measure the benefit of fluoride varnish in preventing dental decay when applied to permanent teeth of children for 3 years in the school setting #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-85164658 (2016). Clinical trial of fluoride varnish in preventing dental caries of Sjögren's syndrome patients #journal#, #volume#(#issue#),	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	ISRCTN-88646311 (2004). An evaluation of a model	Irrelevant exposure
	system for active prevention in the general dental	
	service. #journal#, #volume#(#issue#), #Pages#	
L1	ISRCTN-90779069 (2012). The effect of extracting	Irrelevant exposure
	badly decayed baby teeth from young underweight	
	Filipino children on the children's weight and height #journal#, #volume#(#issue#), #Pages#	
L1		Irralayant aynaayra
LI	ISRCTN-94617251 (2014). The acceptability and effectiveness of a computer-based oral health	Irrelevant exposure
	intervention for children undergoing caries treatment	
	under general anaesthesia #journal#,	
	#volume#(#issue#), #Pages#	
L1	ISRCTN94617251 (2014). The acceptability and	Irrelevant exposure
	effectiveness of a computer-based oral health	
	intervention for children undergoing caries treatment	
	under general anaesthesia #journal#, #volume#(#issue#), #Pages#	
L1	ISRCTN-99286964 (2004). Anti-microbial varnish in	Irrelevant exposure
	the management of root caries in mentally and/or	molovani oxpodaro
	medically compromised older adults #journal#,	
	#volume#(#issue#), #Pages#	
L1	Jahanshahi, M.,Kowsari, E.,Haddadi-Asl, V.,Khoobi,	Irrelevant exposure
	M.,Lee, J. H.,Kadumudi, F. B.,Talebian, S.,Kamaly,	
	N., Mehrali, M. (2019). Sericin grafted multifunctional	
	curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for	
	g proportion for	

Le vel	Bibliography	Reason for exclusion
	effective cancer cell targeting Int J Pharm, 572(#issue#), 118791	
L1	Jameel, R. A.,Khan, S. S.,Rahim, Z. H. A.,Bakri, M. M.,Siddiqui, S. (2016). Analysis of dental erosion induced by different beverages and validity of equipment for identifying early dental erosion, in vitro study Journal of the Pakistan Medical Association, 66(7), 843-848	Irrelevant exposure
L1	Janka, Z. (2019). Tracing trace elements in mental functions. [Hungarian] Ideggyogyaszati Szemle, 72(11-12), 367-379	Irrelevant exposure
L1	Jeong, J. H., Cho, I. H., Chun, K. A., Kong, E. J., Kwon, S. D., Kim, J. H. (2016). Correlation Between Apparent Diffusion Coefficients and Standardized Uptake Values in Hybrid (18)F-FDG PET/MR: Preliminary Results in Rectal Cancer Nucl Med Mol Imaging, 50(2), 150-6	Irrelevant exposure
L1	Jeppesen, T. E., Kristensen, L. K., Nielsen, C. H., Petersen, L. C., Kristensen, J. B., Behrens, C., Madsen, J., Kjaer, A. (2019). Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde Bioconjugate Chemistry, 30(3), 775-784	Irrelevant exposure
L1	Jiang, H.,Bansal, A.,Pandey, M. K.,Peng, K. W.,Suksanpaisan, L.,Russell, S. J.,DeGrado, T. R. (2016). Synthesis of 18F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation	Irrelevant exposure

1		
Le vel	Bibliography	Reason for exclusion
	in a Murine C6-Glioma Tumor Model J Nucl Med, 57(9), 1454-9	
L1	Jin, T,Zhang, H,Guan, Z (2019). The Historical Review and Development Strategies on Prevention and Control of Coal-Burning Type of Endemic Fluorosis in Liupanshui, Guizhou of China XXXIVth Conference of the International Society For Fluoride Research, 52(1), 94-95	Irrelevant exposure
L1	Johansson, E., Lubberink, M., Heurling, K., Eriksson, J. W., Skrtic, S., Ahlstrom, H., Kullberg, J. (2018). Whole-body imaging of tissuespecific insulin sensitivity and body composition by using an integrated PET/MR system: A feasibility study Radiology, 286(1), 271-278	Irrelevant exposure
L1	Jordan, R. A., Schulte, A., Bockelbrink, A. C., Puetz, S., Naumova, E., Warn, L. G., Zimmer, S. (2018). Caries-Preventive Effect of Salt Fluoridation in Preschool Children in The Gambia: a Prospective, Controlled, Interventional Study Caries research, 51(6), 596-604	Irrelevant exposure
L1	Ju, X.,Brennan, D.,Parker, E.,Mills, H.,Kapellas, K.,Jamieson, L. (2017). Efficacy of an oral health literacy intervention among Indigenous Australian adults Community dentistry and oral epidemiology, 45(5), 413-426	Irrelevant exposure
L1	Jung, S.,An, J.,Na, H.,Kim, J. (2019). Surface Energy of Filtration Media Influencing the Filtration Performance against Solid Particles, Oily Aerosol, and	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Bacterial Aerosol Polymers (Basel), 11(6), #Pages#	
L1	Kaczmarek, U., Kowalczyk, W., Gozdowski, D., Olczak- Kowalczyk, D. (2018). Dentists' knowledge of fluoride cariostatic mechanisms Nowa Stomatologia, 23(3), 102-109	Irrelevant exposure
L1	Katsifis, A.,Le, V.,Stark, D.,Hossain, M.,Le, T.,Lam, P.,Eberl, S.,Fulham, M. (2018). Optimisation and automation of [18F]PSMA-1007 production, a next generation PET ligand for prostate carcinoma, using a GE FASTlab 2 Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Khan, M. S.,Naz, F.,Javid, R.,Mosby, T. T.,Assaf, N. (2016). Pattern of nutritional deficiencies in childhood cancer patients-experience from a large cancer hospital in Pakistan Pediatric Blood and Cancer, 63 (Supplement 3)(#issue#), S282	Irrelevant exposure
L1	Kim, H.,Choi, J. Y.,Lee, K. H.,Kim, B. T.,Choe, Y. S. (2019). Synthesis and characterization of a difluoroboron complex of fluorine-18 labeled curcumin derivative for beta-amyloid plaque imaging Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S390-S391	Irrelevant exposure
L1	Kim, KyungJo,Baek, KiTae,Ji, SangWoo,Cheong, YoungWook,Yim, GilJae,Jang, Am (2016). Study on electrocoagulation parameters (current density, pH,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	and electrode distance) for removal of fluoride from groundwater Environmental Earth Sciences, 75(1), 45	
L1	Kim, M.,Lee, S. J.,Ko, N. R.,Kim, D. H.,Kim, J. S.,Oh, S. J. (2019). Simple and fully automatic production of [¹⁸ F]fluorodeprenyl-D2 using FXFN chemistry module Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S332	Irrelevant exposure
L1	Kong, X. Y.,Hou, L. J.,Shao, X. Q.,Shuang, S. M.,Wang, Y.,Dong, C. (2019). A phenolphthalein-based fluorescent probe for the sequential sensing of Al(3+) and F(-) ions in aqueous medium and live cells Spectrochim Acta A Mol Biomol Spectrosc, 208(#issue#), 131-139	Irrelevant exposure
L1	Kopycka-Kedzierawski, D. T., Meyerowitz, C., Litaker, M. S., Chonowski, S., Heft, M. W., Gordan, V. V., Yardic, R. L., Madden, T. E., Reyes, S. C., Gilbert, G. H. (2017). Management of Dentin Hypersensitivity by National Dental Practice-Based Research Network practitioners: results from a questionnaire administered prior to initiation of a clinical study on this topic BMC oral health, 17(1), 41	Irrelevant exposure
L1	Korner, P., Wiedemeier, D. B., Attin, T., Wegehaupt, F. J. (2020). Prevention of Enamel Softening by Rinsing with a Calcium Solution before Dental Erosion Caries research, #volume#(#issue#), 1-7	Irrelevant exposure
L1	Kramer, C. S., Kanagasundaram, T., Kopka, K. (2019).	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Development of a bimodal (PET/NIR) tumor tracer for non-invasive staging and fluorescence guided surgery of prostate cancer European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S753	
L1	Kudinov, K. A., Cooper, D. R., Ha, J. K., Hill, C. K., Nadeau, J. L., Seuntjens, J. P., Bradforth, S. E. (2018). Scintillation Yield Estimates of Colloidal Cerium-Doped LaF3 Nanoparticles and Potential for "Deep PDT" Radiat Res, 190(1), 28-36	Irrelevant exposure
L1	Kulkarni, P., Anand, A., Bansal, A., Jain, A., Tiwari, U., Agrawal, S. (2016). Erosive effects of pediatric liquid medicinal syrups on primary enamel: An in vitro comparative study Indian Journal of Dentistry, 7(3), 131-133	Irrelevant exposure
L1	Kumar, N., Hazari, P. P., Sony, S., Swatantra, Panchal, K. K., Ramgopal, Mishra, A. K. (2017). Synthesis of O-(2-[18F] fluoroethyl)-L-Tyrosine based on a cartridge purification method: A simple, fast, and high-yielding automated synthesis Indian Journal of Nuclear Medicine, 32 (5 Supplement 1)(#issue#), S45	Irrelevant exposure
L1	Kumari, U.,Behera, S. K.,Meikap, B. C. (2019). A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater Journal of Hazardous Materials, 365(#issue#), 868-882	Irrelevant exposure
L1	Lahna, D., Woltjer, R., Grinstead, J., Boespflug, E.	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	L.,Schwartz, D.,Kaye, J. A.,Rooney, W. D.,Silbert, L. C. (2018). Postmortem 7t Mri for Guided Histology and Tissue Segmentation Alzheimer's and Dementia, 14 (7 Supplement)(#issue#), P53	
L1	Lee, S. H.,Park, J. K.,Lee, S. Y.,Lee, J.,Ido, T. (2019). Radiolabeling of SUV size liposome with hexadecyl-4- [¹⁸ F]fluorobenzoate ([¹⁸ F] HFB) for tumor imaging Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S373-S374	Irrelevant exposure
L1	Lepoittevin, B., Elzein, T., Dragoe, D., Bejjani, A., Lemee, F., Levillain, J., Bazin, P., Roger, P., Dez, I. (2019). Hydrophobization of chitosan films by surface grafting with fluorinated polymer brushes Carbohydrate polymers, 205(#issue#), 437-446	Irrelevant exposure
L1	Li, B. Y.,Gao, Y. H.,Pei, J. R.,Yang, Y. M.,Zhang, W.,Sun, D. J. (2017). CIC-7/Ostm1 contribute to the ability of tea polyphenols to maintain bone homeostasis in C57BL/6 mice, protecting against fluorosis International Journal of Molecular Medicine, 39(5), 1155-1163	Irrelevant exposure
L1	Li, B. Y., Yang, Y. M., Liu, Y., Sun, J., Ye, Y., Liu, X. N., Liu, H. X., Sun, Z. Q., Li, M., Cui, J., Sun, D. J., Gao, Y. H. (2017). Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis PLoS ONE, 12 (2) (no pagination)(e0171011), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Li, M. H., Chu, H. H., Chang, H. C., Feng, C. F. (2016). Preparing of [¹⁸ F]INER-1577 as histone deacetylase (HDAC2) imaging agent for AD Molecular Imaging and Biology, 18 (2 Supplement)(#issue#), S592-S593	Irrelevant exposure
L1	Li, M. H., Shiue, C. Y., Chang, H. C., Chu, H. H. (2016). Synthesis of [18F]benzamide ([18F]INER-1577) as Histone Deacetylase (HDACs) imaging agent Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 57(SUPPL. 2), #Pages#	Irrelevant exposure
L1	Li, P.,Oyang, X.,Tu, T.,Tian, X.,Li, L.,Zhao, Y.,Li, J.,Xiao, Z. (2019). Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China Chemosphere, 225(#issue#), 659-667	Irrelevant exposure
L1	Li, X.,Brejnrod, A. D.,Ernst, M.,Rykaer, M.,Herschend, J.,Olsen, N. M. C.,Dorrestein, P. C.,Rensing, C.,Sorensen, S. J. (2019). Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites Environment International, 126(#issue#), 454-467	Irrelevant exposure
L1	Li, Z.,Jia, K.,Duan, Y.,Wang, D.,Zhou, Z.,Dong, S. (2017). Xanomeline derivative EUK1001 attenuates Alzheimer's disease pathology in a triple transgenic mouse model Mol Med Rep, 16(5), 7835-7840	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Lie, M., Thorstensen, K. (2018). A precise, sensitive and stable LC-MSMS method for detection of picomolar levels of serum aldosterone Scandinavian Journal of Clinical and Laboratory Investigation, 78(5), 379-385	Irrelevant exposure
L1	Lindner, J. M., Vogeser, M., Grimm, S. H. (2017). Biphenyl based stationary phases for improved selectivity in complex steroid assays Journal of Pharmaceutical and Biomedical Analysis, 142(#issue#), 66-73	Irrelevant exposure
L1	Lisova, K., Chen, B. Y., Wang, J., Fong, K. M., Clark, P. M., van Dam, R. M. (2019). Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[(18)F]fluoroethyl)-L-tyrosine ([(18)F]FET) EJNMMI Radiopharm Chem, 5(1), 1	Irrelevant exposure
L1	Lisova, K., Wang, J., Rios, A., Van Dam, R. M. (2019). Adaptation and optimization of [¹⁸ F] Florbetaben ([¹⁸ F]FBB) radiosynthesis to a microdroplet reactor Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S353-S354	Irrelevant exposure
L1	Liu, DanDan,Xu, RongZhen,Liu, Fei (2017). Photodecomposition of perfluorooctanoic acid under UV light in the presence of Fe (III) Environmental Science & Danger (China), 40(5), 26-31	Irrelevant exposure
L1	Liu, G., Chen, Y., Jia, M., Sun, Z., Ding, B., Shao,	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel	Bibliography	Reason for exclusion
	S.,Jiang, F.,Fu, Z.,Ma, P.,Lin, J. (2019). One-pot synthesis of SiO2-coated Gd2(WO4)3:Yb(3+)/Ho(3+) nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton Trans, 48(28), 10537-10546	
L1	Liu, G.,Sun, Z.,Fu, Z.,Ma, L.,Wang, X. (2017). Temperature sensing and bio-imaging applications based on polyethylenimine/CaF2 nanoparticles with upconversion fluorescence Talanta, 169(#issue#), 181-188	Irrelevant exposure
L1	Liu, R.,Fu, Z.,Zhao, M.,Gao, X.,Li, H.,Mi, Q.,Liu, P.,Yang, J.,Yao, Z.,Gao, Q. (2017). GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates Oncotarget, 8(24), 39476-39496	Irrelevant exposure
L1	Liu, Y.,Qian, M.,Ma, X.,Zhu, L.,Martin, J. W. (2018). Nontarget Mass Spectrometry Reveals New Perfluoroalkyl Substances in Fish from the Yangtze River and Tangxun Lake, China Environ Sci Technol, 52(10), 5830-5840	Irrelevant exposure
L1	Lowe, P. T., Dall'Angelo, S., Fleming, I. N., Piras, M., Zanda, M., O'Hagan, D. (2019). Enzymatic radiosynthesis of a (18)F-Glu-Ureido-Lys ligand for the prostate-specific membrane antigen (PSMA) Org Biomol Chem, 17(6), 1480-1486	Irrelevant exposure
L1	Lu, Qing,Wei, ShengYing,Pu, GuangLan,Wang, Mei,Yang, Ping,Li, ShengMei,Cai, ShengHua (2016).	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Investigation of drinking-tea-borne fluorosis distribution in Haidong, Qinghai Province Modern Preventive Medicine, 43(3), 424-425	
L1	Lundblad, Henrik, Karlsson-Thur, Charlotte, Maguire, Gerald Q., Jr., Jonsson, Cathrine, Noz, Marilyn E., Zeleznik, Michael P., Weidenhielm, Lars (2017). Can Spatiotemporal Fluoride (18F-) Uptake be Used to Assess Bone Formation in the Tibia? A Longitudinal Study Using PET/CT Clinical Orthopaedics & Related Research, 475(2), N.PAG-N.PAG	Irrelevant exposure
L1	Lutje, S.,Franssen, G. M.,Herrmann, K.,Boerman, O. C.,Rijpkema, M.,Gotthardt, M.,Heskamp, S. (2019). In Vitro and In Vivo Characterization of an (18)F-AIF-Labeled PSMA Ligand for Imaging of PSMA-Expressing Xenografts J Nucl Med, 60(7), 1017-1022	Irrelevant exposure
L1	Ly, P.,Hayes, D. K.,Yamashiroya, V.,Turnure, M. M.,Iwaishi, L. K. (2018). Knowledge and Attitudes Towards Fluoride Supplementation: A Survey of Pediatric Medical and Dental Providers in the State of Hawai'i Hawaii J Med Public Health, 77(11), 275-282	Irrelevant exposure
L1	Ma, L., Chen, J., Han, H., Liu, P., Wang, H., Lin, S., Zhang, Q., Lu, D., Zhang, X. (2019). Effects of lemon essential oil and limonene on the progress of early caries: An in vitro study Archives of oral biology, 111(#issue#), 104638	Irrelevant exposure
L1	Ma, XiangJuan,Bian, LiXia,Ding, JingFeng,Wu, YaPing,Xia, HuiLong,Li, JiongHui (2017).	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Electrochemical oxidation of quinoline aqueous solution on β-PbO2 anode and the evolution of phytotoxicity on duckweed Water Science and Technology, 75(8), 1820-1829	
L1	Maggitti, A. L.,Blum, L.,McMullin, M. (2016). Quantitative testing for polychlorinated biphenyls (PCBs) in human serum utilizing gas chromatography tandem mass spectrometry (GC-MS/MS) Clinical Chemistry, 62 (10 Supplement 1)(#issue#), S112	Irrelevant exposure
L1	Mandall, Nicky A., Hickman, Joy, Macfarlane, Tatiana V., Mattick, C. R. Rye, Millett, Declan T., Worthington, Helen V. (2018). Adhesives for fixed orthodontic brackets Cochrane Database of Systematic Reviews, #volume#(5), #Pages#	Irrelevant exposure
L1	Marinho, C. C. Valeria, Chong, Yee Lee, Worthington, Helen V., Walsh, Tanya (2016). Fluoride mouthrinses for preventing dental caries in children and adolescents Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Marshall, T. A., Curtis, A. M., Cavanaugh, J. E., Warren, J. J., Levy, S. M. (2019). Child and adolescent sugarsweetened beverage intakes are longitudinally associated with higher body mass index z scores in a birth cohort followed 17 years Journal of the Academy of Nutrition and Dietetics, 119(3), 425-434	Irrelevant exposure
L1	Marshall, T., Curtis, A., Cavanaugh, J., Warren, J., Levy, S. (2019). Associations Between Child and	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Adolescent Beverage Intakes and Age 17-year Percent Body Fat (P21-064-19) Current Developments in Nutrition, 3(Suppl 1), #Pages#	
L1	Matsuura, T.,Shako, N.,Ozaki, K. (2017). Long-term hyperglycemia naturally induces dental caries but not periodontal disease in type-2 diabetic db/db mouse Experimental Animals, 66 (Supplement 1)(#issue#), S61	Irrelevant exposure
L1	Mazur, C. M., Savic, D., Pedoia, V., Venkatachari, A. K., Seo, Y., Franc, B. L., Majumdar, S. (2016). A PET/MR study of cartilage-bone interactions in osteoarthritis using T <inf>1rho</inf> dispersion Molecular Imaging and Biology, 1)(#issue#), S759-S760	Irrelevant exposure
L1	McInnes, S. J.,Michl, T. D.,Delalat, B.,Al-Bataineh, S. A.,Coad, B. R.,Vasilev, K.,Griesser, H. J.,Voelcker, N. H. (2016). "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System ACS Appl Mater Interfaces, 8(7), 4467-76	Irrelevant exposure
L1	Meenakshi, Singh, Chetana, Vaishnavi, Rakesh, Kochhar, Safrun, Mahmood (2017). Toxigenic Clostridium difficile isolates from clinically significant diarrhoea in patients from a tertiary care centre Indian Journal of Medical Research, 145(6), 840-846	Irrelevant exposure
L1	Michelena, O., Padro, D., Carrillo-Carrion, C., Del Pino, P., Blanco, J., Arnaiz, B., Parak, W. J., Carril, M. (2017).	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Novel fluorinated ligands for gold nanoparticle labelling with applications in (19)F-MRI Chem Commun (Camb), 53(16), 2447-2450	
L1	Millett, Declan T., Glenny, AnneMarie, Mattick, C. R. Rye, Hickman, Joy, Mandall, Nicky A. (2016). Adhesives for fixed orthodontic bands Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Mirhashemi, A. H., Jahangiri, S., Kharrazifard, M. J. (2018). Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes Progress in Orthodontics, 19 (1) (no pagination)(4), #Pages#	Irrelevant exposure
L1	Mirzaei, A., Yerushalmi, L., Chen, Zhi, Haghighat, F., Guo, JianBo (2018). Enhanced photocatalytic degradation of sulfamethoxazole by zinc oxide photocatalyst in the presence of fluoride ions: optimization of parameters and toxicological evaluation Water Research (Oxford), 132(#issue#), 241-251	Irrelevant exposure
L1	Mishra, R., Siddiqui, A. A., Husain, A., Rashid, M., Bhardwaj, S. (2016). Design, synthesis and anticonvulsant activity of 1, 3, 5-triazin-2-imine/one/thione incorporated pyridazines Movement Disorders, 31 (Supplement 1)(#issue#), S96-S97	Irrelevant exposure
L1	Mitra, A., Rajesh, C., Lad, S., Upadhye, T., Banerjee, S., Rajan, R. (2017). Automated synthesis of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	pharmaceutical grade [¹⁸ F]FLT using 5'-O-(Benzoyl)-2,3'-anhydrothymidine Precursor Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S616	
L1	Mitra, R., Goddard, R., Porschke, K. R. (2017). 9,9- Difluorobispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin Inorg Chem, 56(11), 6712-6724	Irrelevant exposure
L1	Mohapatra, S., Das, R. K. (2019). Dopamine integrated B, N, S doped CQD nanoprobe for rapid and selective detection of fluoride ion Anal Chim Acta, 1058(#issue#), 146-154	Irrelevant exposure
L1	Molina-Frechero, N., Nevarez-Rascon, M., Tremillo-Maldonado, O., Vergara-Onofre, M., Gutierrez-Tolentino, R., Gaona, E., Castaneda, E., Jarquin-Yanez, L., Bologna-Molina, R. (2020). Environmental Exposure of Arsenic in Groundwater Associated to Carcinogenic Risk in Underweight Children Exposed to Fluorides Int J Environ Res Public Health, 17(3), #Pages#	Irrelevant exposure
L1	Mondal, N. K. (2018). Diagnosis of fluorosis and recovery through easy to practise interventions Fluoride, 51(3), 230-242	Irrelevant exposure
L1	Montedori, Alessandro, Abraha, Iosief, Orso, Massimiliano, D'Errico, Giuseppe Potito, Pagano, Stefano, Lombardo, Guido (2016). Lasers for caries removal in deciduous and permanent teeth Cochrane Database of Systematic Reviews, #volume#(9),	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	Moon, S. H., Wilks, M., Takahashi, K., Han, P., Ma, C., Yuan, H., El Fakhri, G., Shoup, T., Normandin, M. (2019). TEMPO as a PET/MR probe of oxidative stress in cell membranes Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure
L1	Morales-Roman, R., Tamano-Machiavello, M., Roig-Perez, L., Costa, C., Lanceros-Mendez, S., Gomez-Ribelles, J., Gallego-Ferrer, G. (2017). Electroactive poly(vinylidene fluoride) membranes with hydrophilic domains for osteogenic differentiation Artificial Organs, 41 (9)(#issue#), A62	Irrelevant exposure
L1	Morana, G.,Piccardo, A.,Luisa Garre, M.,Rossi, A. (2016). PET/MR of paediatric brain tumours Cancer Imaging. Conference: 16th Annual Teaching Course of the International Cancer Imaging Society, ICIS, 16(Supplement 1), #Pages#	Irrelevant exposure
L1	Mossine, A., Tanzey, S., Brooks, A., Henderson, B., Skaddan, M., Sanford, M., Scott, P. (2019). Automated production of high specific activity [¹⁸ F]6F-I-DOPA using a TRACERLab FXFN synthesis module Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S225-S226	Irrelevant exposure
L1	Mottaz, H.,Schönenberger, R.,Fischer, S.,Eggen, R. I. L.,Schirmer, K.,Groh, K. J. (2017). Dose-dependent effects of morphine on lipopolysaccharide (LPS)-	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	induced inflammation, and involvement of multixenobiotic resistance (MXR) transporters in LPS efflux in teleost fish Environmental Pollution, 221(#issue#), 105-115	
L1	Mozafari, V.,Khaleghi, F. (2016). Effects of gibberellic acid and nitrogen on some physiology parameters and micronutrients concentration in pistachio under salt stress Journal of Water and Soil, 30(3), Pe955-Pe967	Irrelevant exposure
L1	Mukhopadhyay, D.,Priya, P.,Chattopadhyay, A. (2016). Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1 Environmental Toxicology and Pharmacology, 40(2), 352-359	Irrelevant exposure
L1	Munoz-Millan, Patricia, Zaror, Carlos, Espinoza- Espinoza, Gerardo, Vergara-Gonzalez, Carolina, Munoz, Sergio, Atala-Acevedo, Claudia, Martinez-Zapata Maria, Jose (2018). Effectiveness of fluoride varnish in preventing early childhood caries in rural areas without access to fluoridated drinking water: a randomized control trial Community dentistry and oral epidemiology, 46(1), 63-69	Irrelevant exposure
L1	Naik, R. G., Dodamani, A. S., Vishwakarma, P., Jadhav, H. C., Khairnar, M. R., Deshmukh, M. A., Wadgave, U. (2017). Level of fluoride in soil, grain and water in Jalgaon district, Maharashtra, India Journal of Clinical and Diagnostic Research, 11(2), ZC05-ZC07	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Nan, L. (2018). Characterization and optimization of the radiochemical synthesis of [¹⁸ F]AMD3465: A potential PET imaging agent for Chemokine Receptor CXCR4 Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Napolitano, R.,De Matteis, S.,Carloni, S.,Simonetti, G.,Musuraca, G.,Lucchesi, A.,Calistri, D.,Cuneo, A.,Menon, K.,Martinelli, G. (2017). Kevetrin: Preclinical study of a new compound in acute myeloid leukemia Haematologica, 102 (Supplement 2)(#issue#), 371	Irrelevant exposure
L1	Nardi, G. M., Sabatini, S., Lauritano, D., Silvestre, F., Petruzzi, M. (2016). Effectiveness of two different desensitizing varnishes in reducing tooth sensitivity: a randomized double-blind clinical trial Oral & Implantology, 9(4), 185-189	Irrelevant exposure
L1	Naushad, M (2019). A New Generation Material Graphene: Applications in Water Technology #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2016). Efficacy of Different Chlorhexidine Concentrations https://clinicaltrials.gov/show/NCT02911766, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Community Partnering to Encourage Healthy Beverage Intake Through Child Care	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	https://clinicaltrials.gov/show/NCT03713840, #volume#(#issue#), #Pages#	
L1	Nct, (2018). Comparison of 5 Buffering Agents on Changes in Salivary pH in Individuals Previously Exposed to a Test Carbonated Drink https://clinicaltrials.gov/show/NCT03526770, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Effect of Different Over-the-counter Toothpastes on Enamel Remineralization https://clinicaltrials.gov/show/NCT03774498, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Effect of the Incoportation of Copper and Zinc Nanoparticles Into Dental Adhesives https://clinicaltrials.gov/show/NCT03635138, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Investigation of the Instant Tooth Whitening Effect of a Silica Toothpaste Containing Blue Covarine https://clinicaltrials.gov/show/NCT03760367, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2019). Efficacy of Resin Infiltration of Proximal Caries https://clinicaltrials.gov/show/NCT04092296, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2019). Older Adult Effectiveness of 2 Treatments https://clinicaltrials.gov/show/NCT03916926,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#volume#(#issue#), #Pages#	
L1	NCT00062374 (2011). Irinotecan and Cisplatin in Treating Patients Who Are Undergoing Surgery For Locally Advanced Cancer of the Stomach or Gastroesophageal Junction #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00066963 (2003). Fluoride Varnish Randomized Clinical Trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00300677 (2008). To Determine The Amount Of Voriconazole In The Brain After 2 Loading Doses And 3 Maintenance Doses Over 3 Days #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00372957 (2006). Study Of GW823093 In Japanese Subjects With Type 2 Diabetes Mellitus #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00375830 (2017). Combined 18F-NaF/18F-FDG PET/MRI for Detection of Skeletal Metastases #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00381797 (2015). Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00489827 (2009). Glutamate for Metabolic Intervention in Coronary Surgery #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

_		
Le vel	Bibliography	Reason for exclusion
L1	NCT00572728 (2014). Phase II Study of Fluorine-18 3'-Deoxy-3'-Fluorothymidine (F-18-FLT) in Invasive Breast Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00594568 (2011). Effect of LY450139 on the Long Term Progression of Alzheimer's Disease #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00602043 (2011). F-18 16 Alpha-Fluoroestradiol- Labeled Positron Emission Tomography in Predicting Response to First-Line Hormone Therapy in Patients With Stage IV Breast Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00703261 (2009). Evaluate the Utility of 18FDG-PET as a Tool to Quantify Atherosclerotic Plaque (MK-0000-081 AM3)(COMPLETED) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00708097 (2008). In Situ Caries Efficacy of Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00708123 (2008). In Situ Caries of Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00708305 (2008). Evaluation of Plaque Fluid Fluoride Retention From Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00729157 (2012). Aflibercept in Treating Patients With Recurrent and/or Metastatic Thyroid Cancer That	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Did Not Respond to Radioactive Iodine Therapy #journal#, #volume#(#issue#), #Pages#	
L1	NCT00752089 (2008). Experimental Dentifrice Remineralization/Fluoride Uptake in an in Situ Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00758290 (2008). Clinical Study to Evaluate Dental Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00758394 (2007). Clinical Study to Compare Dental Plaque Control #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00758563 (2008). Train New Examiners Via Modified Gingival Margin Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00759031 (2008). Investigation of Dental Plaque and Gingival Index #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00759187 (2008). Evaluate Clinical Research From Commerical Oral Care Products #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00761930 (2008). Compare the Clinical Efficacy of Prototype Toothpastes. #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762177 (2008). Investigate Oral Bacteria in Adult Population #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le		
vel	Bibliography	Reason for exclusion
L1	NCT00762411 (2011). Effects of LY450139, on the Progression of Alzheimer's Disease as Compared With Placebo #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762450 (2008). Effect on Bacterial Glycolytic Acid Formation on Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762515 (2008). Clinical Study to Evaluate the Treatment of Gingivitis of Two Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762528 (2008). Compare Anti-inflammatory Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762619 (2008). Clinical Study to Examine Brushing on Dental Implants #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762762 (2008). Investigate Plaque and Gingival Index #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762853 (2008). Development of Clinical Method to Triclosan Retention in Plaque Following Brushing #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00763048 (2008). Collection of Gingival Crevicular Fluid From Periodontitis Patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00763256 (2008). The Effect of Periodontal Treatment and the Use of Dentifrice on Glycaemic Control in Diabetics #journal#, #volume#(#issue#),	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	NCT00763269 (2008). The Efficacy of a Toothpaste to Reduce Sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00875212 (2007). Effect of Calcium Glycerophosphate (CaGP) - Fluoride Dentifrice on Dental Biofilm pH #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00926029 (2008). Compare the Clinical Efficacy of Prototype Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00926328 (2007). Comparative Efficacy of a Toothpaste That Reduces Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00928174 (2013). Measurement of Anti- Androgen Response Using Fluorine-18 Fluorocholine PET/CT in Androgen-Insensitive Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00928252 (2016). Chemotherapy Response Monitoring With 18F-choline PET/CT in Hormone Refractory Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00936975 (2009). Fluorine F 18 Sodium Fluoride Positron Emission Tomography in Evaluating Response to Dasatinib in Patients With Prostate Cancer and Bone Metastases #journal#,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#volume#(#issue#), #Pages#	
L1	NCT00941668 (2008). Evaluate Inflammation Caused by Gingivitis in Adults #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00963807 (2012). A Comparison of FLT to FDG PET/CT in the Early Assessment of Chemotherapy Response in Stage IB-IIIA Resectable NSCLC #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00964860 (2009). A Controlled Clinical Study to Determine the Gingivitis Benefit of Flossing #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00966953 (2008). Development of Clinical Method to Determination Triclosan Retention in Plaque Following Brushing. #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00981825 (2007). Efficacy of Salivary Bacteria and Post Brushing #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01005966 (2009). In Situ Caries Model of Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01009554 (2009). Oral Tissue Tolerance of a Mouthrinse #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01014143 (2007). Evaluating Commercial Anti- Plaque Products and Oral Rinse #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT01024738 (2008). Study to Determine the Anti- plaque Efficacy of Commerical Toothpastes and an Oral Rinse #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01040169 (2008). Clinical Efficacy of a Toothpaste on Hypersensitivity Reduction #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01049503 (2010). Effect of pH and Fluoride Concentration of Dentifrices on Caries Control #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01072188 (2008). Clinical Efficacy of 10% Arginine Bicarbonate Prophylaxis Paste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01072201 (2007). To Access the Effects of Mucositis in Adults With Dental Implants #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01128946 (2010). Enamel Remineralization Potential of Dentifrices in Situ #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01128972 (2009). Evaluation of a Test Mouthwash and Dentifrice Regimen in an In-situ Model of Dental Erosion #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01129206 (2012). Pralatrexate and Docetaxel in Treating Patients With Stage IV Esophageal or Gastroesophageal Cancer Who Have Failed Platinum- Based Therapy #journal#, #volume#(#issue#),	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	NCT01133379 (2010). Tooth Sensitivity Relief by Two Mouthrinses #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01153672 (2012). Vorinostat in Treating Patients With Stage IV Breast Cancer Receiving Aromatase Inhibitor Therapy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01156376 (2010). Oral Irritation Study of Two Experimental Mouthrinses #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01237054 (2011). Imaging in MGUS, SMM and MM #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01240551 (2010). F-18 Sodium Fluoride in Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01312181 (2015). HealthCall:Brief Intervention to Reduce Non-injecting Drug Use in HIV Primary Care Clinics #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01320943 (2016). Stopping TDF Treatment After Long Term Virologic Suppression in HBeAg-negative CHB #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01345292 (2011). A Study of the Relief of Tooth Sensitivity of an Experimental Mouthrinse Device #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT01395030 (2017). PET/CT in Diagnosing Patients With Liver Cancer Undergoing Surgical Resection #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01494649 (2011). Pilot Study to Investigate the Efficacy of a Toothpaste in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01496456 (2014). Radiographic Progression of Infiltrated Caries Lesions In-vivo #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01500187 (2011). Fluoride Varnish for Treatment of White Spot Lesions #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01541358 (2012). Sodium Fluoride PET/CT for the Evaluation of Skeletal Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01563172 (2009). Effect of Dentifrice Usage Regime on Delivery and Efficacy of Fluoride #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01584024 (2017). Resin Infiltration to Arrest Early Tooth Decay #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01592851 (2012). Clinical Efficacy of a Toothpaste in Providing Relief From the Pain of Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le		
vel	Bibliography	Reason for exclusion
L1	NCT01592864 (2012). The Efficacy of a Dentifrice in	Irrelevant exposure
	Providing Relief From the Pain of Dentinal	molevani expecure
	Hypersensitivity #journal#, #volume#(#issue#),	
	#Pages#	
L1	NCT01604109 (2011). Effect of CPP-ACP Paste on	Irrelevant exposure
	Dental Caries in Primary Teeth #journal#,	
	#volume#(#issue#), #Pages#	
L1	NCT01607411 (2012). A Clinical Study to Evaluate	Irrelevant exposure
	Experimental Children's Toothpastes in an In-Situ	
	Caries Model #journal#, #volume#(#issue#), #Pages#	
L1	NCT01610167 (2011). NUPRO(r) Sensodyne Prophylaxis Paste With NovaMin(r)Sensitivity Relief	Irrelevant exposure
	Study #journal#, #volume#(#issue#), #Pages#	
L1	NCT01629290 (2012). In Vivo Comparison of	Irrelevant exposure
	Salivary Fluoride Levels Following the Application of	
	Different 5% NaF Varnishes #journal#,	
	#volume#(#issue#), #Pages#	
L1	NCT01641237 (2012). Effect of Fluoride in a	Irrelevant exposure
	Dentifrice on Remineralization of Erosive Lesions	
	#journal#, #volume#(#issue#), #Pages#	
L1	NCT01648296 (2014). Fatty Acid Radiotracer	Irrelevant exposure
	Comparison Study in Heart Failure Patients #journal#, #volume#(#issue#), #Pages#	
1 1		Irrolovant ovnosura
L1	NCT01652001 (2014). Drug-induced Xerostomia. Evaluation of Malic Acid 1%, Salivary Mucins and	Irrelevant exposure
	Buffering Capacity #journal#, #volume#(#issue#),	

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	NCT01657877 (2013). Anti-caries Potential of a Sodium Monofluorophosphate and Calcium Sodium Phosphosilicate Dentifrice #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01657903 (2012). Evaluation of Efficacy of Experimental Gel to Foam Dentifrices in Dental Erosion #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01665911 (2012). An in Situ Study on the Impact of Fluoride Dose and Concentration in Milk on Its Anticaries Efficacy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01669785 (2012). NUPRO Sensodyne Prophylaxis Paste With NovaMin Sensitivity Relief Study #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01691560 (2012). Exploratory Study to Evaluate an Occlusion Based Dentifrice in Relief of Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01720602 (2015). Vorinostat in Treating Patients With Stage IV Breast Cancer Receiving Hormone Therapy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01727258 (2012). A Test on a New Experimental Mouth Rinse for Relieving Tooth Sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01797458 (2013). European Study on Three	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Different Approaches to Managing Class 2 Cavities in Primary Teeth #journal#, #volume#(#issue#), #Pages#	
L1	NCT01799226 (2013). Study of the Anti-Inflammatory Effects of Colgate Total® During an Experimental Gingivitis Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01806675 (2016). 18F-FPPRGD2 PET/CT or PET/MRI in Predicting Early Response in Patients With Cancer Receiving Anti-Angiogenesis Therapy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01816048 (2013). NaF Positron Emission Tomography/Computed Tomography (PET/CT)Imaging to Assess Treatment Responsiveness to TAK-700 in Patients With Castrate Resistant Prostate Cancer (CRPC) With Bone Metastasis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01827670 (2013). Investigating the Efficacy of a Dentifrice in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01831817 (2013). Exploratory Study to Evaluate the Efficacy of an Occlusion Based Dentifrice in Relief of Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01901250 (2011). Xylitol for Caries Prevention in Inner-City Children #journal#, #volume#(#issue#),	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	NCT01908127 (2011). Efficacy of Film Modelling in Paediatric Dentistry #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01928186 (2015). FLT PET in Measuring Treatment Response in Patients With Newly Diagnosed Estrogen Receptor-Positive, HER2- Negative Stage I-III Breast Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01962493 (2013). An Efficacy Study of Stain Control of a 67% Sodium Bicarbonate Containing Toothpaste on Chlorhexidine Tooth Staining #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02003183 (2018). Traumatic Brain Injury and Risk for Chronic Traumatic Encephalopathy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02004990 (2013). Dental Office Prevention Strategies for Children #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02034552 (2016). A Randomized Phase IIa Efficacy and Safety Study of Radium-223 Dichloride With Abiraterone Acetate or Enzalutamide in Metastatic Castration-resistant Prostate Cancer (CRPC) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02080273 (2013). Six Month Plaque and Gingivitis Study Using Colgate Total Toothpaste	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#journal#, #volume#(#issue#), #Pages#	
L1	NCT02113579 (2014). Test on a New Experimental Mouth Rinse for Relieving Tooth Sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02151058 (2014). A Clinical Trial to Test the Effect of a Marketed Mouth Rinse on Stain Removal #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02167204 (2019). 18F-FLT PET/CT in Measuring Cell Proliferation in Patients With Brain Tumors #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02187016 (2014). Efficacy and Safety Study of Interproximal Cleaning Modalities on Oral Health #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02193165 (2014). The Clinical Efficacy of Three Oral Hygiene Regimens Using a Manual Toothbrush, Toothpaste and a Mouthwash in Controlling Dental Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02194621 (2014). Clinical Investigation to Examine Toothpaste Effect on Oral Bacteria #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02195583 (2014). The Effect of Experimental Dentifrices on Remineralization of Caries Lesions Insitu #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02200536 (2013). Impact of Providing Free Preventive Dental Health Products on Infant's Tooth	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Brushing and Bottle-feeding Termination Practices #journal#, #volume#(#issue#), #Pages#	
L1	NCT02207400 (2014). To Evaluate Efficacy and Tolerability of Sodium Bicarbonate Toothpaste and Its Effect on Opportunistic or Resistant Organisms #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02207907 (2014). To Evaluate the Efficacy and Tolerability of Sodium Bicarbonate Toothpaste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02226562 (2014). Clinical Study Investigating the Efficacy of a Mouthwash in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02233998 (2014). A Clinical Trial to Test the Effect of Marketed Mouth Rinses on Decreasing Plaque and Gum Inflammation #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02243046 (2014). The Clinical Investigation of a Zinc Based Toothpaste in Reducing Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02319668 (2014). Antimicrobial Agent for Reducing Bacteria in Aerosols and Oral Cavity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02347124 (2017). Promoting Oral Health Among Smokers Randomized Trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02350478 (2017). Effects of Linagliptin on Endothelial Function #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02360124 (2014). Preventing and Arresting Dental Root Surface Caries in Community-dwelling Older Adults #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02360995 (2014). The Clinical Investigation of Toothpaste as Compared to Toothpaste and Mouthwash in Reducing Plaque and Gingivitis: A Sixweek Clinical Study in the US #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02366689 (2014). Clinical Study Comparing Dental Plaque and Gingivitis Reduction After Using One of Three Oral Hygiene Multi-component Regimens (Using of a Manual Toothbrush, a Toothpaste and a Mouthwash) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02371616 (2014). Clinical Study to Evaluate the Efficacy of Two Dentifrices for Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02384044 (2015). A Pilot Clinical Study to Evaluate the Safety and Efficacy of Marketed Oxalate Strips Compared to a Marketed Safety Pen #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02399163 (2015). Evaluation of Oral Hygiene Products in an In Situ Caries Model #journal#,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#volume#(#issue#), #Pages#	
L1	NCT02424097 (2016). MI Varnish and MI Paste Plus in a Caries Prevention and Remineralization Study #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02436811 (2015). Oral Health Literacy and Oral Education #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02460562 (2016). Caries Prevention Effect of S-PRG Filler Incorporated in Denture Base Resins on Edentulous Elderly People #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02533466 (2015). In Vivo Investigation of Initial Stages of Enamel Erosion #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02536040 (2016). Stopping Cavities Study: Diammine Silver Fluoride #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02542943 (2015). Efficacy of Two Experimental Oral Rinses in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02548156 (2015). Intra Oral Kinetics of Fluoride Containing Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02612064 (2015). The Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#),	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	NCT02645617 (2016). Safety Evaluation of Advantage Anti-Caries Varnish #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02651467 (2016). A Study to Investigate Efficacy of Two Experimental Oral Rinses in Providing Long Term Relief From Pain Derived From Exposed Dentine in Response to Chemical, Thermal, Tactile, or Osmotic Stimuli #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02657538 (2014). Validation of Near-infrared Light Transillumination for Interproximal Enamel Caries Detection #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02705716 (2016). Study Investigating Efficacy of an Occluding Dentifrice for Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02731833 (2016). Short Term Clinical Study Investigating the Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02750943 (2015). Potential of Stannous Fluoride Toothpaste to Reduce Gum Disease #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02751320 (2016). Efficacy of Three Toothpastes Using an in Situ Caries Model #journal#,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#volume#(#issue#), #Pages#	
L1	NCT02751450 (2016). The Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity(DH) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02752958 (2017). Impact of Long Term Management of Dentine Hypersensitivity (DH) With a Daily Use Anti-sensitivity Toothpaste on the Quality of Life Related to Oral Health #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02753075 (2015). A Study in Dentinal Hypersensitivity (DH) Participants to Assess the Efficacy of an Occluding Dentifrice #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02768194 (2016). Dentine Tubule Occlusion Assessment in a Modified in Situ Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02773758 (2016). Study to Investigate the Efficacy of an Occluding Dentifrice in Providing Relief From Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02832375 (2016). Investigating the Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02856880 (2015). A Study to Investigate the	Irrelevant exposure

Le		
vel	Bibliography	Reason for exclusion
VEI		
	Antimicrobial Activity of 2 Test Toothpastes #journal#,	
	#volume#(#issue#), #Pages#	
L1	NCT02861664 (2016). Assessment of the Efficacy of	Irrelevant exposure
	an Experimental Occlusion Technology Dentifrice in	
	Dentinal Hypersensitivity #journal#,	
	#volume#(#issue#), #Pages#	
L1	NCT02918617 (2016). Clinical Efficacy in Relieving	Irrelevant exposure
	Dentin Hypersensitivity of Nanohydroxyapatite-	·
	Containing Toothpastes and Cream #journal#,	
	#volume#(#issue#), #Pages#	
L1	NCT02923895 (2016). To Investigate the Efficacy of	Irrelevant exposure
	an Occluding Dentifrice in Dentinal Hypersensitivity	•
	(DH) #journal#, #volume#(#issue#), #Pages#	
L1	NCT02924350 (2017). The Efficacy of an Occluding	Irrelevant exposure
	Dentifrice in Providing Relief From Dentinal	•
	Hypersensitivity (DH) #journal#, #volume#(#issue#),	
	#Pages#	
L1	NCT02937636 (2017). To Investigate the Gingivitis	Irrelevant exposure
	Efficacy of a Stannous Fluoride Dentifrice in a	•
	Chinese Population #journal#, #volume#(#issue#),	
	#Pages#	
L1	NCT02953886 (2016). The Effect of Silver Diamine	Irrelevant exposure
	Fluoride (SDF) on Bacteria Involved in Root or	·
	Cervical Carious Lesions #journal#,	
	#volume#(#issue#), #Pages#	
L1	NCT02953886 (2017). The Effect of Silver Diamine	Irrelevant exposure
	,	•

Le vel	Bibliography	Reason for exclusion
	Fluoride (SDF) on Bacteria Involved in Root or Cervical Carious Lesions #journal#, #volume#(#issue#), #Pages#	
L1	NCT02988349 (2014). Ecological Effect of Arginine Dentifrice on Oral Microbiota #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02992691 (2017). Efficacy of Three Experimental Toothpastes to Remove Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03072719 (2012). The Efficacy of a Dentifrice in Providing Relief From Immediate and Short Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03160703 (2017). Study to Investigate the Stain Control of Two Stannous Fluoride Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03238352 (2017). A Study to Assess Efficacy of an Experimental Oral Rinse in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03267511 (2017). A Study to Investigate the Stain and Plaque Removal Capability of Two Experimental Potassium Nitrate Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03285984 (2012). Ability of Four Toothpastes to Remove Plaque #journal#, #volume#(#issue#),	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L1	NCT03296072 (2017). In Situ Erosion Study to Investigate the Effectiveness of an Experimental Toothpaste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03310268 (2018). A Clinical Study to Evaluate a Stannous Fluoride Toothpaste for the Relief of Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03383783 (2017). Evaluation of the Fluoride Dose Response of a Modified In Situ Caries Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03405259 (2013). A Clinical Study to Compare Professional Treatments for Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03446690 (2015). MI Varnish for the Prevention of White Spot Lesions #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03546491 (2018). Evaluate Dental Plaque Benefit of a Preventive Treatment Gel #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nelson, J. D., Spencer, S. M., Blake, C. E., Moore, J. B., Martin, A. B. (2018). Elevating Oral Health Interprofessional Practice Among Pediatricians Through a Statewide Quality Improvement Learning Collaborative J Public Health Manag Pract, 24(3), e19-e24	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Nemoto, A.,Chosa, N.,Kyakumoto, S.,Yokota, S.,Kamo, M.,Noda, M.,Ishisaki, A. (2018). Watersoluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells Molecular Medicine Reports, 17(3), 3448-3454	Irrelevant exposure
L1	Nguyen, A. (2017). The effect of various hindered tertiary alcohols on the SN2 radiofluorination of 3'-deoxy-3'-[18 F]fluorothymidine and its in vivo application as a proliferation imaging probe in acute myeloid leukemia Molecular Imaging and Biology, 19 (1 Supplement 1)(#issue#), S589	Irrelevant exposure
L1	Nigam, S.,Domarkas, J.,Bernard, J.,Clemente, G.,Burke, B.,Juge, S.,Malacea-Kabbara, R.,Benoit, D.,Cawthorn, C. (2017). O-BF <inf>3</inf> -Phosphonium pincer moieties in the design of delocalized lipophilic cation based tracers for PET imaging of mitochondrial function Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Irrelevant exposure
L1	Noh, M. F. B. M., Laurens, E., Jeow, S. Y., Vedarethinam, R., Wee, X. J., Fatholmoein, F. Z. B., Pek, G., Ping, H. T. S., Green, D., Chiam, V. K., Boodeea, K., Doshi, P. R., Kulasi, A., Hui, E. T. J., Weekes, A., Robins, E. (2019). Automated synthesis of [¹⁸ F]NAV4694 using GE	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	TracerLab FX-N Pro in compliance with PIC/S GMP Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S333-S334	
L1	Norman, M.,Twetman, S.,Hultgren Talvilahti, A.,Granstrom, E.,Stecksen-Blicks, C. (2017). Urinary fluoride excretion in preschool children after intake of fluoridated milk and use of fluoride-containing toothpaste Community dental health, 34(1), 27-31	Irrelevant exposure
L1	Nunes, R. de C. A., Chiba, F. Y., Pereira, A. G., Pereira, R. F., Mattera, M. S. de L. C., Ervolino, E., Louzada, M. J. Q., Buzalaf, M. A. R., Silva, C. A., Sumida, D. H. (2016). Effect of sodium fluoride on bone biomechanical and histomorphometric parameters and on insulin signaling and insulin sensitivity in ovariectomized rats Biological Trace Element Research, 173(1), 144-153	Irrelevant exposure
L1	Ogo, A., Miyake, S., Kubota, H., Higashida, M., Matsumoto, H., Teramoto, F., Hirai, T. (2017). Synergistic effect of eicosapentaenoic acid on antiproliferative action of anticancer drugs in a cancer cell line model Annals of Nutrition and Metabolism, 71(3/4), 247-252	Irrelevant exposure
L1	Ola-Davies, O. E. (2018). Ameliorative effect of gallic acid against sodium fluoride-induced hypertension and hepato-renal complications in wistar rats African Journal of Biomedical Research, 21(3), 285-294	Irrelevant exposure

Le		
vel	Bibliography	Reason for exclusion
1.4	Olda Hawari I Da Wit Van Dan Vann I Otaldal M	land a contract
L1	Olde Heuvel, J., De Wit-Van Der Veen, L., Stokkel, M. P. M., Van Der Poel, H. G., Tuch, D. S., Grootendorst,	Irrelevant exposure
	M. R., Vyas, K. N., Slump, C. H. (2019). Cerenkov	
	luminescence imaging for intraoperative specimen	
	analysis: A pre-clinical evaluation European Urology,	
	Supplements, 18 (1)(#issue#), e668-e669	
L1	Omobowale, T. O., Oyagbemi, A. A., Alaba, B. A., Ola-	Irrelevant exposure
	Davies, O. E., Adejumobi, O. A., Asenuga, E.	
	R., Ajibade, T. O., Adedapo, A. A., Yakubu, M. A.	
	(2018). Ameliorative effect of Azadirachta indica on	
	sodium fluoride-induced hypertension through	
	improvement of antioxidant defence system and	
	upregulation of extracellular signal regulated kinase 1/2 signaling Journal of Basic and Clinical Physiology	
	and Pharmacology, 29(2), 155-164	
L1		Irrelevant exposure
LI	Otabashi, M., Vergote, T., Desfours, C. (2017). Efficient commercial scale 18F-FES production on	irrelevant exposure
	AllinOne (Trasis) Journal of Nuclear Medicine.	
	Conference: Society of Nuclear Medicine and	
	Molecular Imaging Annual Meeting, SNMMI,	
	58(Supplement 1), #Pages#	
L1	Otabashi, M., Vergote, T., Desfours, C. (2017). Fully	Irrelevant exposure
	automated 18F-FAZA production on AllInOne (Trasis)	
	at commercial scale Journal of Nuclear Medicine.	
	Conference: Society of Nuclear Medicine and	
	Molecular Imaging Annual Meeting, SNMMI,	
	58(Supplement 1), #Pages#	

1.0		
Le vel	Bibliography	Reason for exclusion
L1	Oyagbemi, A. A.,Omobowale, T. O.,Ola-Davies, O. E.,Asenuga, E. R.,Ajibade, T. O.,Adejumobi, O. A.,Afolabi, J. M.,Ogunpolu, B. S.,Falayi, O. O.,Saba, A. B.,Adedapo, A. A.,Yakubu, M. A. (2018). Luteolin-mediated Kim-1/NF-kB/Nrf2 signaling pathways protects sodium fluoride-induced hypertension and cardiovascular complications BioFactors, 44(6), 518-531	Irrelevant exposure
L1	Oyagbemi, A. A.,Omobowale, T. O.,Ola-Davies, O. E.,Asenuga, E. R.,Ajibade, T. O.,Adejumobi, O. A.,Arojojoye, O. A.,Afolabi, J. M.,Ogunpolu, B. S.,Falayi, O. O.,Hassan, F. O.,Ochigbo, G. O.,Saba, A. B.,Adedapo, A. A.,Yakubu, M. A. (2018). Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARgamma signaling pathways BioFactors, 44(5), 465-479	Irrelevant exposure
L1	Ozerskaya, A.,Belugin, K.,Tokarev, N.,Chanchikova, N.,Larkina, M.,Podrezova, E.,Yusubov, M.,Belousov, M. (2019). Radiopharmaceutical production technology at the Nuclear Medicine Centre Federal Siberian Research Clinical Centre, Russia Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S577	Irrelevant exposure
L1	Ozsoy, G., Kendirli, T., Ates, U., Perk, O., Azapagasi, E., Ozcan, S., Baran, C., Goktug, A., Dindar, H. (2019). Fatal Refractory Ventricular Fibrillation Due to	Irrelevant exposure

1.0		
Le vel	Bibliography	Reason for exclusion
	Ingestion of Hydrofluoric Acid Pediatric emergency care, 35(11), e201-e202	
L1	Paiuk, O. L., Mitina, N. Y., Myagkota, O. S., Volianiuk, K. A., Musat, N., Stryganyuk, G. Z., Reshetnyak, O. V., Kinash, N. I., Hevus, O. I., Shermolovich, Y. G., Zaichenko, A. S. (2018). Fluorine-containing polyamphiphiles constructed from synthetic and biopolymer blocks Biopolymers and Cell, 34(3), 207-217	Irrelevant exposure
L1	Palmieri, L., Glassner, M., Hoogenboom, R., Staelens, S., Wyffels, L. (2017). Development and in vivo evaluation of ¹⁸ F-labeled PEtOx-RGD for PET imaging of alphavbeta3 integrins Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S511	Irrelevant exposure
L1	Park, J. Y.,Son, J.,Yun, M.,Chun, J. H. (2017). Radiosynthesis of mGlu5 PET tracer [¹⁸ F]PSS232 with protic solvent additives Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S289	Irrelevant exposure
L1	Paz, S., Jaudenes, J. R., Gutierrez, A. J., Rubio, C., Hardisson, A., Revert, C. (2017). Determination of Fluoride in Organic and Non-organic Wines Biological Trace Element Research, 178(1), 153-159	Irrelevant exposure
L1	Perala, S. R., Bhupathiraju, P. (2016). Efficacy of four fluoride mouth rinses on Streptococcus mutans in high	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	caries risk children - A randomized controlled trial Journal of clinical and diagnostic research, 10(9), ZC56-ZC60	
L1	Perrin, D. M. (2016). [(18)F]-Organotrifluoroborates as Radioprosthetic Groups for PET Imaging: From Design Principles to Preclinical Applications Acc Chem Res, 49(7), 1333-43	Irrelevant exposure
L1	Peters, M., Guo, Q., Strauss, H., Wei, R., Li, S., Yue, F. (2019). Contamination patterns in river water from rural Beijing: A hydrochemical and multiple stable isotope study Science of the Total Environment, 654(#issue#), 226-236	Irrelevant exposure
L1	Petrova, A.,Ol'shevskaya, V.,Zaitsev, A.,Tatarskiy, V.,Radchenko, A.,Kostyukov, A.,Kalinina, E.,Kuzmin, V.,Miyoshi, N.,Shtil, A. (2019). The novel tetracarboranylchlorin derivative for binary anticancer treatment: rapid tumor elimination via superoxide anion production FEBS Open Bio, 9 (Supplement 1)(#issue#), 334-335	Irrelevant exposure
L1	Piatek-Jakubek, K.,Nowak, J.,Boltacz-Rzepkowska, E. (2017). Influence of infiltration technique and selected demineralization methods on the roughness of demineralized enamel: An in vitro study Advances in Clinical and Experimental Medicine, 26(8), 1179-1188	Irrelevant exposure
L1	Pucelik, B., Gurol, I., Ahsen, V., Dumoulin, F., Dabrowski, J. M. (2016). Fluorination of phthalocyanine substituents: Improved	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	photoproperties and enhanced photodynamic efficacy after optimal micellar formulations Eur J Med Chem, 124(#issue#), 284-298	
L1	Qiu, L.,Xie, M.,Lin, J. (2018). Kit-like 18F radiolabeling of caspase activatable molecular probe for in situ noninvasive imaging of drug-induced apoptosis Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Qu, W.,Kelly, J.,Amor-Coarasa, A.,Waterhouse, N.,Dooley, M.,Babich, J. (2018). Improved two-step click synthesis of [¹⁸ F]RPS-040: A prostate specific membrane antigen (PSMA)-targeted tracer for Imaging prostate cancer (PCa) using positron emission tomography (PET) Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	R. B. R. g9vbx (2017). Comparison of toothpaste containing fluoride associated or not with arginine in initial caries lesions in milk teeth http://www.who.int/trialsearch/Trial2.aspx?TrialID=RB R 2g9vbx, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Raghavendra, Mitta, Kandula, R. R., Pulala, R. Y., Korlakunta, N. J. (2018). Alleviatory effects of hydroalcoholic extract of Brassica oleracea var. botrytis leaves against sodium fluoride induced	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	hepatotoxicity and oxidative stress on male Wistar rats Indian Journal of Biochemistry & Eiophysics, 55(3), 191-197	
L1	Raghavendra, Mitta, Kandula, R. R., Pulala, R. Y., Korlakunta, N. J., Vattikuti, U. M. R. (2017). Antioxidant and alleviatory effects of hydroalcholic extract of cauliflower leaves against sodium fluoride-induced cardiotoxicity in Wistar male rats Current Science, 112(6), 1183-1186	Irrelevant exposure
L1	Rashid, A.,Guan, D. X.,Farooqi, A.,Khan, S.,Zahir, S.,Jehan, S.,Khattak, S. A.,Khan, M. S.,Khan, R. (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan Sci Total Environ, 635(#issue#), 203-215	Irrelevant exposure
L1	Ren, X.,Hu, Q.,Liu, X.,Shen, Y.,Liu, C.,Yang, L.,Yang, H. (2019). Nanoparticles Patterned Ceramsites Showing Super-Hydrophobicity and Low Crushing Rate: The Promising Proppant for Gas and Oil Well Fracturing Journal of nanoscience and nanotechnology, 19(2), 905-911	Irrelevant exposure
L1	Resende, R. F., Arantes, B. F., Palma-Dibb, R. G., Faraoni, J. J., de Castro, D. T., de Menezes Oliveira, M. A. H., Soares, C. J., Geraldo-Martins, V. R., Lepri, C. P. (2019). Influence of Er, Cr: YSGG laser on dentin acid resistance after erosive challenge American journal of dentistry, 32(5), 215-218	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Rho, J., Stares, E., Adams, S. R., Lister, D., Leach, B., Ahrens, E. T. (2019). Paramagnetic Fluorinated Nanoemulsions for in vivo F-19 MRI Molecular Imaging and Biology., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Rikame, V.,Doshi, Y.,Horowitz, R. A.,Kevadia-Shah, V.,Shah, M. (2018). Comparative Evaluation of Fluoridated Mouthwash and Sodium Bicarbonate in Management of Dentin Hypersensitivity: An In Vitro SEM Study Compendium of Continuing Education in Dentistry, 39(1), e5-e8	Irrelevant exposure
L1	Riley, M., Morrison, L., McEvoy, A. (2019). Health Maintenance in School-Aged Children: Part I. History, Physical Examination, Screening, and Immunizations American family physician, 100(4), 213-218	Irrelevant exposure
L1	Riley, Philip, Moore, Deborah, Ahmed, Farooq, Sharif, Mohammad O., Worthington, Helen V. (2015). Xylitol- containing products for preventing dental caries in children and adults Cochrane Database of Systematic Reviews, #volume#(3), #Pages#	Irrelevant exposure
L1	Riondato, M., Pastorino, S., Giovacchini, G., Duce, V., Ferrando, O., Cazzola, E., Gorgoni, G., Ciarmiello, A. (2019). Feasibility study for the [¹⁸ F]FET manufacturing with a gallium-68 automated synthesizer in a radiopharmacy without cyclotron facility Clinical and Translational Imaging, 7 (Supplement 1)(#issue#), S128	Irrelevant exposure
L1	Riondato, M., Pastorino, S., Giovannini, E., Ferrando,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	O.,Lazzeri, P.,Duce, V.,Ciarmiello, A. (2019). [¹⁸ F]FET production with a modified gallium-68 automated synthesizer in a Radiopharmacy without cyclotron facility European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S723	
L1	Rischmueller, M. (2019). Management of Sjogren's syndrome International Journal of Rheumatic Diseases, 22 (Supplement 3)(#issue#), 27-28	Irrelevant exposure
L1	Rodriguez Castillo, A. S., Guiheneuf, S., Le Guevel, R., Biard, P. F., Paquin, L., Amrane, A., Couvert, A. (2016). Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor J Hazard Mater, 307(#issue#), 221-30	Irrelevant exposure
L1	Rollason, Victoria, Laverriere, Alexandra, MacDonald, C. I. Laura, Walsh, Tanya, Tramer, Martin R., VogtFerrier, Nicole B. (2016). Interventions for treating bisphosphonate-related osteonecrosis of the jaw (BRONJ) Cochrane Database of Systematic Reviews, #volume#(2), #Pages#	Irrelevant exposure
L1	Roy Chowdhury, A., Mondal, A., Roy, B. G., K, J. C. B., Mukhopadhyay, S., Banerjee, P. (2017). Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F(-): experimental and DFT studies Photochem Photobiol Sci, 16(11), 1654-1663	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Saffioti, N. A.,de Sautu, M.,Ferreira-Gomes, M. S.,Rossi, R. C.,Berlin, J.,Rossi, Jpfc,Mangialavori, I. C. (2019). E2P-like states of plasma membrane Ca(2+)ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues Biochim Biophys Acta Biomembr, 1861(2), 366-379	Irrelevant exposure
L1	Saha, A., Mukherjee, A. K., Ravichandran, B. (2016). Musculoskeletal problems and fluoride exposure: A cross-sectional study among metal smelting workers Toxicology & Industrial Health, 32(9), 1581-8	Irrelevant exposure
L1	Salvio, L. A., DoCarmo, V. C. F. T., Andrade, T. P. S., Baroudi, K. (2019). Effect of the combined use of adhesive systems and oxalate-based and fluoride-based dentin desensitizers on bond strength Journal of Clinical and Diagnostic Research, 13(9), ZC17-ZC21	Irrelevant exposure
L1	Samstein, M., Kaplan, B., Ponda, P. (2019). What's Not in the Water? Pseudoallergic Reactions to Niacinamide Containing Flouridated Multivitamins Annals of Allergy, Asthma and Immunology, 123 (5 Supplement) (#issue#), S67	Irrelevant exposure
L1	Samuel, A. R., Thomas, T. (2016). Management of sensitivity after dental bleaching - A review International Journal of Pharmacy and Technology, 8(3), 4857-4864	Irrelevant exposure
L1	Sato, M., Hanmoto, T., Yachiguchi, K., Tabuchi, Y., Kondo, T., Endo, M., Kitani, Y., Sekiguchi, T., Urata,	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
	M.,Hai, T. N.,Srivastav, A. K.,Mishima, H.,Hattori, A.,Suzuki, N. (2016). Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassius auratus Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 189(#issue#), 54-60	
L1	Savchenkov, M. F.,Efimova, N. V.,Manueva, R. S.,Nikolaeva, L. A.,Shin, N. S. (2016). Thyroid gland pathology in children population exposed to the combination of iodine deficiency and fluoride pollution of environment Gigiena i Sanitariya, #volume#(No.12), 1201-1205	Irrelevant exposure
L1	Schafer, D.,Zlatopolskiy, B. D.,Ermert, J.,Neumaier, B. (2017). A practical two-step synthesis of 5-[¹⁸ F]fluoro-L-tryptophan (5-[¹⁸ F]FTrp) via alcohol-enhanced Cumediated radiofluorination Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S105	Irrelevant exposure
L1	Seyedmonir, E.,Yilmaz, F.,Icgen, B. (2016). Methicillin-resistant bacteria inhabiting surface waters monitored by mecA-targeted oligonucleotide probes Bulletin of Environmental Contamination and Toxicology, 97(2), 261-271	Irrelevant exposure

Sheng, N., Zhou, X., Zheng, F., Pan, Y., Guo, X., Guo,

Y., Sun, Y., Dai, J. (2017). Comparative hepatotoxicity

L1

Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice Arch Toxicol, 91(8), 2909-2919	
L1	Shukurov, R.,Balashov, M.,Dadashov, Z.,Valiyev, M.,Mehdi, E.,Novruzov, F. (2019). Application of production and quality control procedures of 18F-PSMA-1007: Dominant in diagnosis of prostate cancer, through Synthera V2 European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S737-S738	Irrelevant exposure
L1	Shweta, Sharma, Sharma, K. P., Subhasini, Sharma (2016). Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride Environmental Science and Pollution Research, 23(24), 25280-25287	Irrelevant exposure
L1	Silva, V. H. O.,Batista, A. P. dos S.,Teixeira, A. C. S. C.,Borrely, S. I. (2016). Degradation and acute toxicity removal of the antidepressant Fluoxetine (Prozac®) in aqueous systems by electron beam irradiation Environmental Science and Pollution Research, 23(12), 11927-11936	Irrelevant exposure
L1	Singh, V. P,Yadav, S,Yadava, N. R (2018). Environmental Pollution: Select Proceedings of ICWEES-2016 #journal#, #volume#(77), #Pages#	Irrelevant exposure
L1	Sivarasan, Ganesan, Mohankumar, Amirthalingam, Pugazhendhi, Arivalagan, Shanmugam,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Govindan, Sundararaj, Palanisamy, Lingassamy, A. P., Ponnusamy, V. K. (2019). Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique Journal of Environmental Management, 245(#issue#), 409-417	
L1	Sofia Khalid, S ,Shoukat, M ,Khurshid, S ,Shah, R,Adrees, M ,Ahmad, M (2019). Determination of Fluoride Contents in Commercially Available Beverages in Rawalpindi City, Pakistan XXXIVth Conference of the International Society For Fluoride Research, 52(1), 96	Irrelevant exposure
L1	Sofilić, T. (2018). Metallurgy as factor of environmental pollution of the city of Zenica by dioxins and furans #journal#, #volume#(#issue#), 277-298	Irrelevant exposure
L1	Soldani, Francesca A., Lamont, Thomas, Jones, Kate, Young, Linda, Walsh, Tanya, Lala, Rizwana, Clarkson, Janet E. (2018). One-to-one oral hygiene advice provided in a dental setting for oral health Cochrane Database of Systematic Reviews, #volume#(10), #Pages#	Irrelevant exposure
L1	Soloviev, D.,Lewis, D. Y.,Ros, S.,Hu, D. E.,D'Santos, P.,Brindle, K. M. (2016). Simplified synthesis of [18F]tetrafluoroborate for NIS reporter imaging by PET Molecular Imaging and Biology, 18 (2 Supplement)(#issue#), S1197-S1198	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Souza, M. S.,Diniz, L. F.,Vogt, L.,Carvalho, P. S.,D'Vries, R. F.,Ellena, J. (2018). Avoiding irreversible 5-fluorocytosine hydration: Via supramolecular synthesis of pharmaceutical cocrystals New Journal of Chemistry, 42(18), 14994-15005	Irrelevant exposure
L1	Stafford, R. (2017). The spin-echo sequence; K-space Medical Physics, 44 (6)(#issue#), 3094	Irrelevant exposure
L1	Steen, J.,Denk, C.,Norregaard, K.,Jorgensen, J.,Rossin, R.,Svatunek, D.,Edem, P.,Robillard, M.,Kjaer, A.,Kristensen, J.,Mikula, H.,Herth, M. (2018). Towards the dual click ¹⁸ F-labeling of Antibodies Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Stepanova, N. V., Valeeva, E. R., Ziyatdinova, A. I., Fomina, S. F. (2016). Peculiarities of chidren's risk assessment on ingestion of chemicals with drinking water Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(3), 1677-1681	Irrelevant exposure
L1	Su, ChunMing (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature Journal of Hazardous Materials, 322(Part A), 48-84	Irrelevant exposure
L1	Su, Linjing, Zhang, Zhi, Xiong, Yuhao (2018). Water dispersed two-dimensional ultrathin Fe(iii)-modified	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	covalent triazine framework nanosheets: peroxidase like activity and colorimetric biosensing applications Nanoscale, 10(43), 20120-20125	
L1	Subhadharsini, S.,Pradeep, S. (2016). Glass ionomer dental cement - a review Research Journal of Pharmacy and Technology, 9(9), 1513-1515	Irrelevant exposure
L1	Surraya, Shahab,Ghulam, Mustafa,Imran, Khan,Muhammad, Zahid,Maimoona, Yasinzai,Nosheen, Ameer,Nazia, Asghar,Ikram, Ullah,Akhtar, Nadhman,Afaq, Ahmed,Iqbal, Munir,Adnan, Mujahid,Tajamal, Hussain,Ahmad, M. N.,Ahmad, S. S. (2017). Effects of fluoride ion toxicity on animals, plants, and soil health: a review Fluoride, 50(4), 393-408	Irrelevant exposure
L1	Sweileh, Waleed M.,Zyoud, Sa'ed H.,Al-Jabi, Samah W.,Sawalha, Ansam F.,Shraim, Naser Y. (2016). Drinking and recreational water-related diseases: a bibliometric analysis (1980-2015) Annals of occupational and environmental medicine, 28(1), 40-40	Irrelevant exposure
L1	Taddei, C.,Pike, V. (2019). Radiofluorination of a COX-1 specific ligand based on two nucleophilic addition strategies Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S115-S116	Irrelevant exposure
L1	Tago, T.,Toyohara, J.,Fujimaki, R.,Hirano, K.,Iwai, K.,Ishibashi, K.,Tanaka, H. (2019). A simple SPE	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	purification method for ¹⁸ F-radiolabeling: Proof-of-concept study in stilbene amyloid-beta ligands with a neopentyl labeling group Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S163-S164	
L1	Takahashi, R.,Ota, E.,Hoshi, K.,Naito, T.,Toyoshima, Y.,Yuasa, H.,Mori, R.,Nango, E. (2017). Fluoride supplementation (with tablets, drops, lozenges or chewing gum) in pregnant women for preventing dental caries in the primary teeth of their children Cochrane Database of Systematic Reviews, 2017 (10) (no pagination)(CD011850), #Pages#	Irrelevant exposure
L1	Takamizawa, T.,Tsujimoto, A.,Ishii, R.,Ujiie, M.,Kawazu, M.,Hidari, T.,Suzuki, T.,Miyazaki, M. (2019). Laboratory evaluation of dentin tubule occlusion after use of dentifrices containing stannous fluoride Journal of oral science, 61(2), 276-283	Irrelevant exposure
L1	Talpos, S. (2019). They persisted Science, 364(6441), 622-626	Irrelevant exposure
L1	Tambe, V., Thakkar, S., Raval, N., Sharma, D., Kalia, K., Tekade, R. K. (2017). Surface Engineered Dendrimers in siRNA Delivery and Gene Silencing Curr Pharm Des, 23(20), 2952-2975	Irrelevant exposure
L1	Tan, Haiping, Richards, Lindsay, Walsh, Tanya, Worthington, Helen V., Clarkson, Jan E., Wang, Linda, Mattar de Amoedo Campos Velo, Marilia (2017). Interventions for managing root caries	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
	Cochrane Database of Systematic Reviews, #volume#(8), #Pages#	
L1	Tanifum, E. A., Devkota, L., Ngwa, C., Badachhape, A. A., Ghaghada, K. B., Romero, J., Pautler, R. G., Annapragada, A. V. (2018). A Hyperfluorinated Hydrophilic Molecule for Aqueous ¹⁹ F MRI Contrast Media Contrast Media and Molecular Imaging, 2018 (no pagination)(1693513), #Pages#	Irrelevant exposure
L1	Tctr, (2018). Effective Delivery of Topical Fluoride Gel as an Alternative to Tray Application http://www.who.int/trialsearch/Trial2.aspx?TrialID=TC TR20180710004., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Temple, N. J,Wilson, T,Bray, G. A (2017). Nutrition Guide for Physicians and Related Healthcare Professionals #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Tibrewala, R.,Bahroos, E.,Mehrebian, H.,Foreman, S. C.,Link, T. M.,Pedoia, V.,Majumdar, S. (2019). [¹⁸ F]-sodium fluoride PET-MR imaging reveals bone-cartilage interactions in hip osteoarthritis Osteoarthritis and Cartilage, 27 (Supplement 1)(#issue#), S145-S147	Irrelevant exposure
L1	Toyohara, J.,Furumoto, S.,Tago, T. (2017). Fully automated radiosynthesis of [¹⁸ F]THK-5351 for clinical use Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S447	Irrelevant exposure

Le		
vel	Bibliography	Reason for exclusion
L1	Tsai, Wen-Ting K., Collins, Jeffrey, Zettlitz, Kirstin	Irrelevant exposure
	A.,Wu, Anna M.,Tavaré, Richard,Ha, Noel S.,van	
	Dam, R. Michael, Yamada, Reiko E., Timmerman, John	
	M. (2019). 18F-labeled anti-human CD20 cys-diabody	
	for same-day immunoPET in a model of aggressive B	
	cell lymphoma in human CD20 transgenic mice	
	European Journal of Nuclear Medicine & Molecular	
	Imaging, 46(2), 489-500	
L1	Tubert-Jeannin, Stephanie, Auclair, Candy, Amsallem,	Irrelevant exposure
	Emmanuel,Tramini, Paul,Gerbaud, Laurent,Ruffieux,	
	Christiane, Schulte, Andreas G., Koch, Martin J., Rege-	
	Walther, Myriam, Ismail, Amid (2019). Fluoride	
	supplements (tablets, drops, lozenges or chewing	
	gums) for preventing dental caries in children	
	Cochrane Database of Systematic Reviews,	
	#volume#(11), #Pages#	
L1	Usuda, K., Ueno, T., Ito, Y., Dote, T., Yokoyama,	Irrelevant exposure
	H.,Kono, K.,Tamaki, J. (2016). Risk assessment	
	study of fluoride salts: probability-impact matrix of	
	renal and hepatic toxicity markers Biological Trace	
	Element Research, 173(1), 154-160	
L1	Valdora, F., Houssami, N., Rossi, F., Calabrese,	Irrelevant exposure
	M., Tagliafico, A. S. (2018). Rapid review: radiomics	•
	and breast cancer Breast Cancer Res Treat, 169(2),	
	217-229	
L1	Van Den Berg, S. A. A., De Groot, M. J. M., Salden, L.	Irrelevant exposure
L 1	P. W., Draad, P. J. G. J., Dijkstra, I. M., Lunshof, S., Van	melevani exposure
	1 . vv.,Diadu, 1 . J. J. J.,Dijkstia, 1. ivi.,Eurisiidi, 3.,Vali	

Le vel	Bibliography	Reason for exclusion
	Thiel, S. W.,Boonen, K. J. M.,Thelen, M. H. M. (2016). How to perform pregnancy diabetes screening correctly Nederlands Tijdschrift voor Klinische Chemie en Laboratoriumgeneeskunde, 41(3), 198-199	
L1	Varsha, Dhurvey, Mangala, Thakare (2016). The effect of sodium fluoride intoxication on the estrous cycle and ovarian hormones in rats Fluoride, 49(3 Part 1), 223-232	Irrelevant exposure
L1	Venault, A.,Lin, K. H.,Tang, S. H.,Dizon, G. V.,Hsu, C. H.,Maggay, I. V. B.,Chang, Y. (2019). Zwitterionic electrospun PVDF fibrous membranes with a well-controlled hydration for diabetic wound recovery Journal of Membrane Science, (no pagination)(117648), #Pages#	Irrelevant exposure
L1	Vergote, T.,Otabashi, M.,Vriamont, C.,Desfours, C.,Morelle, J.,Philippart, G. (2017). Fully automated 18F-FAZA production on AllInOne (Trasis) at commercial scale European Journal of Nuclear Medicine and Molecular Imaging, 44 (2 Supplement 1)(#issue#), S518-S519	Irrelevant exposure
L1	Vieira, A. M., Neto, F., Carvalho, P., Manso, A. C. (2019). Erosive potential of medication on human enamel and posterior remineralization capacity Annals of Medicine, 51 (Supplement 1)(#issue#), S107-S109	Irrelevant exposure
L1	Wagner, O., Thiele, J., Weinhart, M., Mazutis, L., Weitz, D. A., Huck, W. T., Haag, R. (2016). Biocompatible fluorinated polyglycerols for droplet microfluidics as an	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	alternative to PEG-based copolymer surfactants Lab Chip, 16(1), 65-9	
L1	Wallat, J. D., Harrison, J. K., Pokorski, J. K. (2018). pH Responsive Doxorubicin Delivery by Fluorous Polymers for Cancer Treatment Mol Pharm, 15(8), 2954-2962	Irrelevant exposure
L1	Walsh, Tanya,OliveiraNeto, Jeronimo M.,Moore, Deborah (2015). Chlorhexidine treatment for the prevention of dental caries in children and adolescents Cochrane Database of Systematic Reviews, #volume#(4), #Pages#	Irrelevant exposure
L1	Walsh, Tanya, Worthington, Helen V., Glenny, Anne-Marie, Marinho, C. C. Valeria, Jeroncic, Ana (2019). Fluoride toothpastes of different concentrations for preventing dental caries Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Wang, H. X., Zhu, L. N., Guo, F. Q. (2019). Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays Environ Sci Pollut Res Int, 26(33), 33847-33855	Irrelevant exposure
L1	Wang, J.,Holloway, T.,Van Dam, R. M. (2019). Using a microdroplet reactor for rapid, nucleophilic synthesis of [¹⁸ F]FDOPA Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S337-S339	Irrelevant exposure
L1	Waugh, D. T., Godfrey, M., Limeback, H., Potter, W. (2017). Black Tea Source, Production, and	Irrelevant exposure

Le	Bibliography	Reason for exclusion
vel		
	Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand J Environ Public Health, 2017(#issue#), 5120504	
L1	Waugh, D. T.,Potter, W.,Limeback, H.,Godfrey, M. (2016). Risk assessment of fluoride intake from tea in the republic of ireland and its implications for public health and water fluoridation International Journal of Environmental Research and Public Health, 13 (3) (no pagination)(259), #Pages#	Irrelevant exposure
L1	Wei, GaoLiang, Quan, Xie, Fan, Xin Fei, Chen, Shuo, Zhang, Yao Bin (2017). Carbon-nanotube-based sandwich-like hollow fiber membranes for expanded microcystin-LR removal applications Chemical Engineering Journal, 319(#issue#), 212-218	Irrelevant exposure
L1	West, N. X., Seong, J., Hellin, N., Macdonald, E. L., Jones, S. B., Creeth, J. E. (2018). Assessment of tubule occlusion properties of an experimental stannous fluoride toothpaste: A randomised clinical in situ study Journal of dentistry, 76(#issue#), 125-131	Irrelevant exposure
L1	Wilhelm-Buchstab, T.,Thelen, C.,Leitzen, C.,Schmeel, L. C.,Mudder, T.,Oberste-Beulmann, S.,Schuller, H.,Rohner, F.,Garbe, S.,Schoroth, F.,Simon, B.,Schild, H. H. (2016). Protective effect on tissue using dental waterjet and dexpanthenol rinsing solution during radiotherapy in head and neck tumor patients Strahlentherapie und Onkologie, 192 (1	Irrelevant exposure

Supplement 1)(#issue#), 66

Le vel	Bibliography	Reason for exclusion
L1	Worthington, Helen V.,MacDonald, Laura,Poklepovic Pericic, Tina,Sambunjak, Dario,Johnson, Trevor M.,Imai, Pauline,Clarkson, Janet E. (2019). Home use of interdental cleaning devices, in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries Cochrane Database of Systematic Reviews, #volume#(4), #Pages#	Irrelevant exposure
L1	Yang, D.,Liu, Y.,Chu, Y.,Yang, Q.,Jiang, W.,Chen, F.,Li, D.,Qin, M.,Sun, D.,Yang, Y.,Gao, Y. (2016). Association between Vitamin D receptor gene Fokl polymorphism and skeletal fluorosis of the brick-tea type fluorosis: A cross sectional, case control study BMJ Open, 6 (11) (no pagination)(e011980), #Pages#	Irrelevant exposure
L1	Yang, F.,Cui, M. (2019). Technetium-99m labeled phenylquinoxaline derivatives as potential tauselective imaging probes for diagnosis of Alzheimer's disease Nuclear Medicine and Biology, 72-73 (Supplement 1)(#issue#), S56	Irrelevant exposure
L1	Yang, K., Yang, X., Zhao, X., Lamy de la Chapelle, M., Fu, W. (2019). THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent Anal Chem, 91(1), 785-791	Irrelevant exposure
L1	Yang, M.,Lin, H.,Jiang, R.,Zheng, G. (2016). Effects of desensitizing toothpastes on the permeability of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	dentin after different brushing times: An in vitro study American journal of dentistry, 29(6), 345-351	
L1	Yang, Q.,Chu, Y.,Jiang, W.,Li, J.,Li, Y.,Boo, Y.,Chen, F.,Li, B.,Yang, Y.,Guo, Y. (2017). Effects of different doses of sodium fluoride on cartilage lesion and expression of interleukin-6 in Balb/c mice. [Chinese] Chinese Journal of Endemiology, 36(6), 408-413	Irrelevant exposure
L1	Yang, Y.,Zhao, Q.,Liu, Y.,Liu, X.,Chu, Y.,Yan, H.,Fan, Y.,Huo, S.,Wang, L.,Lou, Q.,Guo, N.,Sun, D.,Gao, Y. (2018). FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China Archives of Toxicology, 92(7), 2217-2225	Irrelevant exposure
L1	Yao, X.,Zha, Z.,Zhao, R.,Choi, S. R.,Ploessl, K.,Liu, F.,Zhu, L.,Kung, H. F. (2019). Optimization of solid-phase extraction (SPE) in the preparation of [¹⁸ F]D3FSP: A new PET imaging agent for mapping Abeta plaques Nuclear medicine and biology, 71(#issue#), 54-64	Irrelevant exposure
L1	Ye, Zhuo,Duan, Chong,Sheng, RuiLong,Xu, JunChao,Wang, HongYing,Zeng, LinTao (2018). A novel colorimetric and ratiometric fluorescent probe for visualizing SO2 derivatives in environment and living cells Talanta, 176(#issue#), 389-396	Irrelevant exposure
L1	Yeung, Albert C., Chong, Lee-Yee, Glenny, Anne-Marie (2018). Fluoridated milk for preventing dental caries Cochrane Database of Systematic Reviews,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	#volume#(5), #Pages#	
L1	Yildirim, S.,Ekin, S.,Huyut, Z.,Oto, G.,Comba, A.,Uyar, H.,Sengul, E.,Cinar, D. A. (2018). Effect of chronic exposure to sodium fluoride and 7,12-dimethylbenz[a]anthracene on some blood parameters and hepatic, renal, and cardiac histopathology in rats Fluoride, 51(3), 278-290	Irrelevant exposure
L1	Yim, C. B., Mikkola, K., Nuutila, P., Solin, O. (2016). Synthesis of pancreatic beta cell-specific [¹⁸ F]fluoro-exendin-4 via strain- promoted aza-dibenzocyclooctyne/azide cycloaddition EJNMMI Radiopharmacy and Chemistry. Conference: 18th European Symposium on Radiopharmacy and Radiopharmaceuticals. Austria., 1(Supplement 1), #Pages#	Irrelevant exposure
L1	Yiming, Li, Suprono, Montry, Mateo, Luis R., Yun-Po, Zhang, Denis, Jean, D'Ambrogio, Robert, Sullivan, Richard, Thomson, Paul (2019). Solving the problem with stannous fluoride: Extrinsic stain Journal of the American Dental Association (JADA), 150(#issue#), S38-S46	Irrelevant exposure
L1	Yoshimoto, M.,Honda, N.,Takahashi, K.,Kurihara, H.,Fujii, H. (2019). Synthesis of 4-borono-2- ¹⁸ F-fluoro-phenylalanine using copper- mediated nucleophilic radiofluorination Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Yu, Q.,Liu, H.,Liu, Z.,Peng, Y.,Cheng, X.,Ma, K.,Ji, Y. (2017). Comparison of nanofluoridated hydroxyapatite of varying fluoride content for dentin tubule occlusion American Journal of Dentistry, 30(2), 109-115	Irrelevant exposure
L1	Zhang, HuiXin,Zhao, LuPing,Sun, DongXue,Cai, ZhiYue,Zhang, Jie,Han, Xu,Guo, XiaoHui,Cui, ManLi,Xie, DuanDuan (2016). A study on fluorescence properties of carboxymethyl-quaternary ammonium oligochitosan and its performances as a tracing agent Water Science and Technology, 74(10), 2427-2436	Irrelevant exposure
L1	Zhang, X. J.,Sun, T. C.,Liu, Z. W.,Wang, F. J.,Wang, Y. D.,Liu, J. (2017). Effects of Tianmagouteng particles on brain cognitive function in spontaneously hypertensive rats with hyperactivity of liver-yang: A [F-18] FDG micro-PET imaging study Biomed Pharmacother, 95(#issue#), 1838-1843	Irrelevant exposure
L1	Zhang, Y.,Zhang, L.,Wu, Z.,Yang, J.,Ploessl, K.,Zha, Z.,Fei, L.,Zhu, H.,Zhu, L.,Yang, Z.,Kung, H. (2019). Automated radiosynthesis of (2S,4R)-4-[¹⁸ F]fluoroglutamine for clinical application Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S322-S323	Irrelevant exposure
L1	Zhang, Y.,Zhang, L.,Yang, J.,Wu, Z.,Ploessl, K.,Zha, Z.,Liu, F.,Xu, X.,Zhu, H.,Yang, Z.,Zhu, L.,Kung, H. F.	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	(2019). Initial experience in synthesis of (2S,4R)-4- [(18) F]fluoroglutamine for clinical application J Labelled Comp Radiopharm, 62(5), 209-214	
L1	Zhao, DanDan,Yu, Yang,Wang, ChengHong,Chen, J. P. (2016). Zirconium/PVA modified flat-sheet PVDF membrane as a cost-effective adsorptive and filtration material: a case study on decontamination of organic arsenic in aqueous solutions Journal of Colloid and Interface Science, 477(#issue#), 191-200	Irrelevant exposure
L1	Zhong, B., Wang, L., Liang, T., Xing, B. (2017). Pollution level and inhalation exposure of ambient aerosol fluoride as affected by polymetallic rare earth mining and smelting in Baotou, north China Atmospheric Environment, 167(#issue#), 40-48	Irrelevant exposure
L1	Zhou, D.,Chu, W.,Katzenellenbogen, J. (2018). Exploration of alcohol-enhanced Cu-mediated radiofluorination towards practical labeling Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Zong, Y.,Shea, C.,Maffucci, K.,Ojima, I. (2017). Computational Design and Synthesis of Novel Fluoro-Analogs of Combretastatins A-4 and A-1 J Fluor Chem, 203(#issue#), 193-199	Irrelevant exposure
L1	Zorc, B., Pavic, K. (2018). Organofluorine drugs. [Croatian] Farmaceutski Glasnik, 74(5), 351-360	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Abtahi, M., Dobaradaran, S., Jorfi, S., Koolivand, A., Mohebbi, M. R., Montazeri, A., Khaloo, S. S., Keshmiri, S., Saeedi, R. (2018). Age-sex specific and sequela-specific disability-adjusted life years (DALYs) due to dental caries preventable through water fluoridation: An assessment at the national and subnational levels in Iran, 2016 Environ Res, 167(#issue#), 372-385	Irrelevant outcome
L1	ACTRN12609000330246 (2009). A controlled longitudinal study of caries prevention in children aged 2 to 4 years #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Allukian, M., Carter-Pokras, O. D., Gooch, B. F., Horowitz, A. M., Iida, H., Jacob, M., Kleinman, D. V., Kumar, J., Maas, W. R., Pollick, H., Rozier, R. G. (2018). Science, Politics, and Communication: The Case of Community Water Fluoridation in the US Annals of Epidemiology, 28(6), 401-410	Irrelevant outcome
L1	American Academy of Pediatric Dentistry, (2018). Oral Health Policies: Use of Fluoride The Reference Manual of Pediatric Dentistry, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Angulo, Marina, Cuitiño, Eduardo, Molina-Frechero, Nelly, Emilson, Claes-Göran (2020). The association between the prevalence of dental fluorosis and the socio-economic status and area of residence of 12-year-old students in Uruguay Acta odontologica Scandinavica, 78(1), 26-30	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
L1	Armfield, Jason M. (2005). Public water fluoridation and dental health in New South Wales Australian and New Zealand Journal of Public Health, 29(5), 477-483	Irrelevant outcome
L1	Armfield, Jason Mathew P. H. D. (2010). Community Effectiveness of Public Water Fluoridation in Reducing Children's Dental Disease Public Health Reports, 125(5), 655	Irrelevant outcome
L1	Arnold, Francis A.,et al., (1956). Effect of fluoridated public water supplies on dental caries prevalence: tenth year of the Grand Rapids-Muskegon [Mich.] study Public Health Reports, 71(#issue#), 652-658	Irrelevant outcome
L1	Ast, David B.,et al., (1965). Time and cost factors to provide regular, periodic dental care for children in a fluoridated and nonfluoridated area: Newburgh and Kingston, N.Y.; first two years [of a six-year study now in progress; address] American Journal of Public Health and the Nation's Health, 55(#issue#), 811-820	Irrelevant outcome
L1	Ast, David B., Schlesinger, Edward R. (1956). The conclusion of a ten-year study of water fluoridation: résumé of the Newburgh-Kingston [N.Y.] caries-fluorine study American Journal of Public Health and the Nation's Health, 46(#issue#), 265-271	Irrelevant outcome
L1	Aung, Y. M., Tin Tin, S., Jelleyman, T., Ameratunga, S. (2019). Dental caries and previous hospitalisations among preschool children: Findings from a population-based study in New Zealand New Zealand Medical Journal, 132(1493), 44-53	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
L1	Bachanek, T.,Hendzel, B.,Wolanska, E.,Samborski, D.,Jarosz, Z.,Pitura, K. M.,Dzida, K.,Podymniak, M.,Tymczyna-Borowicz, B.,Niewczas, A.,Shybinskyy, V.,Zimenkovsky, A. (2019). Condition of mineralized tooth tissuein a population of 15-year-old adolescents living in a region of ukraine with slightly exceeded fluorine concentration in the water Annals of Agricultural and Environmental Medicine, 26(4), 623-629	Irrelevant outcome
L1	Bailie, Ross S., Stevens, Matthew, Armfield, Jason M., Ehsani, Jonathan P., Beneforti, Mary, Spencer, John (2009). Association of natural fluoride in community water supplies with dental health of children in remote Indigenous communities - implications for policy Australian and New Zealand Journal of Public Health, 33(3), 205	Irrelevant outcome
L1	Beltrán-Aguilar, Eugenio D.,Barker, Laurie,Sohn, Woosung,Wei, Liang (2015). Water Intake by Outdoor Temperature among Children Aged 1-10 Years: Implications for Community Water Fluoridation in the U.S Public Health Reports, 130(4), 362-371	Irrelevant outcome
L1	Binns, Colin, Howat, Peter, Smith, James A., Jancey, Jonine (2016). Children, poverty and health promotion in Australia Health Promotion Journal of Australia, 27(3), 181-183	Irrelevant outcome
L1	Bomfim, R. A., Herrera, D. R., De-Carli, A. D. (2017). Oral health-related quality of life and risk factors	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	associated with traumatic dental injuries in Brazilian children: A multilevel approach Dent Traumatol, 33(5), 358-368	
L1	Calabrese, Edward J. (2017). Revival: Safe Drinking Water Act (1989) #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Carstairs, Catherine (2015). Debating WATER FLUORIDATION Before Dr. Strangelove American Journal of Public Health, 105(8), 1559-1569	Irrelevant outcome
L1	Celeste, Roger Keller, Luz, Patricia Blaya (2016). Independent and Additive Effects of Different Sources of Fluoride and Dental Fluorosis Pediatric Dentistry, 38(3), 233-238	Irrelevant outcome
L1	Demelash, Habtamu, Beyene, Abebe, Abebe, Zewdu, Melese, Addisu (2019). Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: systematic review and meta-analysis BMC Public Health, 19(1), N.PAG-N.PAG	Irrelevant outcome
L1	Englander, Harold R., Wallace, Donald A. (1962). Effects of naturally fluoridated water on dental caries in adults: Aurora-Rockford, Illinois, Study III [based on address] Public Health Reports, 77(#issue#), 887-893	Irrelevant outcome
L1	Escobar-Garcia, D., Mejia-Saavedra, J., Jarquin-Yanez, L., Molina-Frechero, N., Pozos-Guillen, A. (2016). Collagenase 1A2 (COL1A2) gene A/C polymorphism in relation to severity of dental fluorosis Community	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	Dent Oral Epidemiol, 44(2), 162-8	
L1	Gillies, J. Z. (1955). What fluoridation means to you: here is one of the most remarkable discoveries of modern timesa way to prevent dental decay! Municipal World, 65(#issue#), 49-50	Irrelevant outcome
L1	Harris, W. Leslie (1955). Fluoridation's decade of dental gains in Grand Rapids [Mich.]: nation's most carefully watched fluoridation program rolls up a continuing record of benefits and meets with no opposition or problems American City, #volume#(#issue#), 96-98	Irrelevant outcome
L1	Hayes, Richard L., et al., (1957). Posteruptive effects of fluoridation on first permanent molars of children in Grand Rapids, Michigan American Journal of Public Health and the Nation's Health, 47(#issue#), 192-199	Irrelevant outcome
L1	Horowitz, Herschel S.,et al., (1965). Effect of school water fluoridation on dental caries, St. Thomas, V.I. [based on a study of children at the Lincoln school in Charlotte Amalie, 1954-1962; address] Public Health Reports, 80(#issue#), 381-388	Irrelevant outcome
L1	Ibiyemi, O.,Zohoori, F. V.,Valentine, R. A.,Kometa, S.,Maguire, A. (2018). Prevalence and extent of enamel defects in the permanent teeth of 8-year-old Nigerian children Community Dentistry and Oral Epidemiology, 46(1), 54-62	Irrelevant outcome
L1	Iheozor-Ejiofor, Zipporah, Worthington, Helen V., Walsh, Tanya, O'Malley, Lucy, Clarkson, Jan	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	E.,Macey, Richard,Alam, Rahul,Tugwell, Peter,Welch, Vivian,Glenny, Anne-Marie (2015). Water fluoridation for the prevention of dental caries Cochrane Database of Systematic Reviews, #volume#(9), #Pages#	
L1	Ilankizhai, R. J. (2016). Dental fluorosis and its management - A review Research Journal of Pharmacy and Technology, 9(7), 967-971	Irrelevant outcome
L1	Kumar, N., Gauba, K., Goyal, A., Kapur, A. (2018). Comparative evaluation of three different recording criteria of dental fluorosis in a known endemic fluoride area of Haryana Indian Journal of Medical Research, 147(6), 567-572	Irrelevant outcome
L1	Kumbargere Nagraj, Sumanth, Eachempati, Prashanti, Uma, Eswara, Singh, Pal Vijendra, Ismail, Mastura Noorliza, Varghese, Eby (2019). Interventions for managing halitosis Cochrane Database of Systematic Reviews, #volume#(12), #Pages#	Irrelevant outcome
L1	Leavy, Justine E., Heyworth, Jane, Middleton, Aves, Rosenberg, Michael, Woloszyn, Magdalene (2012). Tap into Good Teeth - a Western Australian pilot study of children's drinking patterns Health Promotion Journal of Australia, 23(1), 42-7	Irrelevant outcome
L1	Li, J., Liang, P., Zheng, L. (2017). Investigation and analysis on the fluorine source and fluorotic teeth epidemic factors in wumeng mountain coal-burning contaminated area Biomedical Research (India), 2017(Special Issue	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	ArtificialIntelligentTechniquesforBioMedicalSignalProc essingEdition-I), S187-S192	
L1	Macey, R., Tickle, M., MacKay, L., McGrady, M., Pretty, I. A. (2018). A comparison of dental fluorosis in adult populations with and without lifetime exposure to water fluoridation Community Dent Oral Epidemiol, 46(6), 608-614	Irrelevant outcome
L1	Manthra Prathoshni, S. M., Vishnu Priya, V., Sohara Parveen, N. (2017). Awareness of dental fluorosis among children - A survey Journal of Pharmaceutical Sciences and Research, 9(4), 459-461	Irrelevant outcome
L1	Martignon, S.,Opazo-Gutierrez, M. O.,Velasquez-Riano, M.,Orjuela-Osorio, I. R.,Avila, V.,Martinez-Mier, E. A.,Gonzalez-Carrera, M. C.,Ruiz-Carrizosa, J. A.,Silva-Hermida, B. C. (2017). Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia) Environ Monit Assess, 189(6), 264	Irrelevant outcome
L1	Martinez-Acuna, M. I., Mercado-Reyes, M., Alegria-Torres, J. A., Mejia-Saavedra, J. J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, Mexico Environ Monit Assess, 188(8), 476	Irrelevant outcome
L1	McClure, F. J. (1962). Fluoride drinking waters: a selection of Public health service papers on dental	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	fluorosis and dental caries; physiological effects, analysis and chemistry of fluoride (Public health service. Pubn. no. 825), #volume#(#issue#), vi+636	
L1	McLaren, L., Singhal, S. (2016). Does cessation of community water fluoridation lead to an increase in tooth decay? A systematic review of published studies J Epidemiol Community Health, 70(9), 934-40	Irrelevant outcome
L1	McLaren, Lindsay, Patterson, Steven, Thawer, Salima, Faris, Peter, McNeil, Deborah, Potestio, Melissa, Shwart, Luke (2016). Measuring the short-term impact of fluoridation cessation on dental caries in Grade 2 children using tooth surface indices Community Dentistry & Oral Epidemiology, 44(3), 274-282	Irrelevant outcome
L1	McNeil, Donald R. (1957). How fluoridation began: the exciting discovery of an effective weapon for dental health Today's Health, #volume#(#issue#), 26-27	Irrelevant outcome
L1	Mohd Nor, Nor Azlida, Cardiff, University (2017). The impact of the downward adjustment of fluoride concentration in the Malaysian public water supply on dental fluorosis and caries #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Montanha-Andrade, K., Maia, W., Pimentel, A. C. P., Arsati, Ybol, Santos, J. N. D., Cury, P. R. (2019). Dental health status and its indicators in adult Brazilian Indians without exposition to drinking water	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	fluoridation: a cross-sectional study Environmental Science & Pollution Research, 26(33), 34440-34447	
L1	Nathan, Harriet, Scott, Stanley (1974). Fluoridation in California: a new look at a persistent issue [reports recent findings on the relationship between fluoridation and dental health] Public Affairs Report, 15(#issue#), 1-9	Irrelevant outcome
L1	Neeti, Rustagi,Rathore, A. S.,Meena, J. K.,Ankita, Chugh,Ranabir, Pal (2017). Neglected health literacy undermining fluorosis control efforts: a pilot study among schoolchildren in an endemic village of rural Rajasthan, India Journal of Family Medicine and Primary Care, 6(3), 533-537	Irrelevant outcome
L1	Nelson, T. M,Webb, J. R (2019). Dental Care for Children with Special Needs: A Clinical Guide #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	New Jersey Department of Health, (2017). Children's Oral Health #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Opydo-Szymaczek, J.,Gerreth, K.,Borysewicz- Lewicka, M.,Pawlaczyk-Kamienska, T.,Torlinska- Walkowiak, N.,Sniatala, R. (2018). Enamel defects and dental caries among children attending primary schools in Poznan, Poland Advances in Clinical and Experimental Medicine, 27(11), #Pages#	Irrelevant outcome
L1	Palczewska-Komsa, M.,Barczak, K.,Kotwas, A.,Sikora, M.,Chlubek, D.,Buczkowska-Radlińska, J. (2019). Fluoride concentration in dentin of human	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	permanent teeth Fluoride, 52(4), 489-496	
L1	Pollick, H. (2018). The Role of Fluoride in the Prevention of Tooth Decay Pediatric Clinics of North America, 65(5), 923-940	Irrelevant outcome
L1	Pretty, I. A.,Boothman, N.,Morris, J.,MacKay, L.,Liu, Z.,McGrady, M.,Goodwin, M. (2016). Prevalence and severity of dental fluorosis in four English cities Community Dent Health, 33(4), 292-296	Irrelevant outcome
L1	Public Health Agency of Canada, (2016). Community water fluoridation #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Public Health Agency of, Canada (2018). The state of community water fluoridation across Canada: 2017 report #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Ramesh, M., Narasimhan, M., Krishnan, R., Aruna, R. M., Kuruvilla, S. (2017). The effect of fluorosis on human teeth under light microscopy: A cross-sectional study J Oral Maxillofac Pathol, 21(3), 345-350	Irrelevant outcome
L1	Ranasinghe, N.,Kruger, E.,Tennant, M. (2019). Spatial distribution of groundwater fluoride levels and population at risk for dental caries and dental fluorosis in Sri Lanka Int Dent J, 69(4), 295-302	Irrelevant outcome
L1	Ranasinghe, Nirosha, Kruger, Estie, Chandrajith, Rohana, Tennant, Marc (2019). The heterogeneous nature of water well fluoride levels in Sri Lanka: An opportunity to mitigate the dental fluorosis Community	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	Dentistry & Oral Epidemiology, 47(3), 236-242	
L1	Riggs, Elisha, Kilpatrick, Nicky, Slack-Smith, Linda, Chadwick, Barbara, Yelland, Jane, Muthu, M. S., Gomersall, Judith C. (2019). Interventions with pregnant women, new mothers and other primary caregivers for preventing early childhood caries Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant outcome
L1	Rorty, James (1956). The case against fluoridation: despite intensive propaganda by sugar interests and fluorine suppliers, competent authorities see no evidence that the program cuts down tooth decay New Leader, #volume#(#issue#), 9-12	Irrelevant outcome
L1	Russell, A. L. (1957). Fluoride domestic water and periodontal disease American Journal of Public Health and the Nation's Health, 47(#issue#), 688-694	Irrelevant outcome
L1	Russell, A. L., White, Carl L. (1961). Dental caries in Maryland children after seven years of fluoridation Public Health Reports, 76(#issue#), 1087-1093	Irrelevant outcome
L1	Sabti, M. Y.,Al-Yahya, H.,Al-Sumait, N.,Akbar, A. A.,Qudeimat, M. A. (2019). Dental and medical practitioners' perception of community water fluoridation as a caries preventive measure European archives of paediatric dentistry, 20(1), 53-61	Irrelevant outcome
L1	Sami, E., Vichayanrat, T., Satitvipawee, P. (2016). Caries with Dental Fluorosis and Oral Health Behaviour Among 12-Year School Children in	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	Moderate-Fluoride Drinking Water Community in Quetta, Pakistan J Coll Physicians Surg Pak, 26(9), 744-7	
L1	Schultz, Dodi (1992). Flouride: cavity-fighter on tap FDA Consumer, 26(#issue#), 34-38	Irrelevant outcome
L1	Sebastian, S. T., Soman, R. R., Sunitha, S. (2016). Prevalence of dental fluorosis among primary school children in association with different water fluoride levels in Mysore district, Karnataka Indian Journal of Dental Research, 27(2), 151-4	Irrelevant outcome
L1	Snerghalatha, Duraiswami, Yen, V. A. (2017). Prevalence of dental fluorosis and its association with fluoride content of drinking water in the rural area of Dharmapuri district, Tamilnadu Journal of Evolution of Medical and Dental Sciences, 6(76), 5457-5462	Irrelevant outcome
L1	Spencer, A. J.,Do, L. G. (2016). Caution needed in altering the 'optimum' fluoride concentration in drinking water Community Dentistry and Oral Epidemiology, 44(2), 101-108	Irrelevant outcome
L1	Taylor, Frederick (1960). Fluoridation fight: new local votes near on treatment of water to curb tooth decay; issue is heated in Saginaw, Cincinnati. other cities; handbills warn: "poison"; medical groups push program Wall Street Journal, 156(#issue#), 1	Irrelevant outcome
L1	Ubell, Earl (1956). Why public health men favor fluoridation: a number of careful experiments establish its safety and effectiveness in reducing tooth decay	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	New Leader, #volume#(#issue#), 10-12	
L1	US Public Health Service, (2015). Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries Public Health Reports, 130(4), 318-331	Irrelevant outcome
L1	VanBuren, John, Cavanaugh, Joseph, Marshall, Teresa, Warren, John, Levy, Steven M. (2017). AIC identifies optimal representation of longitudinal dietary variables Journal of Public Health Dentistry, 77(4), 360-371	Irrelevant outcome
L1	Zhang, B.,Li, M.,Zhou, S.,Dai, X.,Xiong, P.,Zhu, S. (2016). A dental fluorosis trend analysis of children aged 8 to 12 in drinking-water-type endemic fluorosis areas of Hubei Province from 2010 to 2014. [Chinese] Chinese Journal of Endemiology, 35(9), 664-667	Irrelevant outcome
L1	Zilbovicius, Celso,Ferreira, Regina Glaucia Lucena Aguiar,Narvai, Paulo Capel (2018). Água e saúde: fluoretação e revogação da Lei Federal n. 6.050/1974 Revista de Direito Sanitário = Journal of Health Law, 18(3), 104	Irrelevant outcome
L1	Zwicker, Jennifer D., Dudley, Carolyn, Emery, J. C. Herbert (2016). It's Not Just About Baby Teeth: Preventing Early Childhood Caries The School of Public Policy Publications (SPPP), 9(#issue#), #Pages#	Irrelevant outcome
L1	Abdel-Rahman, G. H., El-Hallawany, H. A., Dohreig, R. A. (2018). Effect of excess fluoride on reproductive	Irrelevant population

Le	Bibliography	Reason for exclusion
vel		
	potentials in farm animals (ovine) Alexandria Journal of Veterinary Sciences, 57(2), 41-57	
L1	Achla, Rani,Rajeev, Sharma,Archana, Tomar (2018). Removal of fluoride from water by bioadsorbents: a review International Journal for Research in Applied Science and Engineering Technology, 6(8), 469-476	Irrelevant population
L1	Adedara, I. A., Abolaji, A. O., Idris, U. F., Olabiyi, B. F., Onibiyo, E. M., Ojuade, T. D., Farombi, E. O. (2017). Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats Chemico-Biological Interactions, 261(#issue#), 1-10	Irrelevant population
L1	Adedara, I. A., Ojuade, T. J. D., Olabiyi, B. F., Idris, U. F., Onibiyo, E. M., Ajeigbe, O. F., Farombi, E. O. (2017). Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride Biol Trace Elem Res, 175(2), 388-395	Irrelevant population
L1	Adedara, I. A., Olabiyi, B. F., Ojuade, T. J. D., Idris, U. F., Onibiyo, E. M., Farombi, E. O. (2017). Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats Canadian Journal of Physiology and Pharmacology, 95(9), 1019-1029	Irrelevant population
L1	Adejumobi, O.,Omobowale, T.,Oyagbemi, A.,Ayenuro, O.,Ola-Davies, O.,Adedapo, A.,Yakubu, M. (2017). Amelioration of sodium fluorideinduced hypertension, cardio-renal oxidative stress and genotoxicity by	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	azadirachta indica through antioxidant and extracellular signalregulated kinase (erk) 1/2 signal- ling FASEB Journal. Conference: Experimental Biology, 31(1 Supplement 1), #Pages#	
L1	Adimalla, N. (2019). Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA) Environmental Geochemistry & Health, 17(#issue#), 17	Irrelevant population
L1	Afolabi, J. M.,Oyagbemi, A. A.,Omobowale, T. O.,Asenuga, E. R.,Ajibade, T. O.,Adejumobi, O. A.,Hassan, F. O.,Adedapo, A. A.,Yakubu, M. A. (2017). Quercetin attenuates Sodium fluoride (NaF)-induced hypertension through reduction in oxidative stress and heat shock proteins (HSP 70)/extracellular signal regulated kinase (ERK) pathways in rats FASEB Journal. Conference: Experimental Biology, 31(1 Supplement 1), #Pages#	Irrelevant population
L1	Ahmad, K. R., Shazia, Noor, Shamsa, Jabeen, Tooba, Nauroze, Kanwal, M. A., Kausar, Raees, Tahir, Abbas (2017). Amelioration by jambul fruit extract of fluoride-induced hepato-nephronal histopathologies and impaired neuromotor capacity in mice Fluoride, 50(1 Part 1), 2-14	Irrelevant population
L1	Ahmad, M. A., Haleema, Bibi, Iqbal, Munir, Ahmad, M. N., Afia, Zia, Ghulam, Mustafa, Ikram, Ullah, Imran,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Khan (2018). Fluoride toxicity and its effect on two varieties of Solanum lycopersicum Fluoride, 51(3), 267-277	
L1	Ahmadi, S.,Rahdar, S.,Igwegbe, C. A.,Rahdar, A.,Shafighi, N.,Sadeghfar, F. (2019). Data on the removal of fluoride from aqueous solutions using synthesized P/gamma-Fe ₂ O ₃ nanoparticles: A novel adsorbent MethodsX, 6(#issue#), 98-106	Irrelevant population
L1	Akafu, T., Chimdi, A., Gomoro, K. (2019). Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide J Anal Methods Chem, 2019(#issue#), 4831926	Irrelevant population
L1	Akimov, O. Y., Mischenko, A. V., Kostenko, V. O. (2019). Influence of combined nitrate and fluoride intoxication on connective tissue disorders in rats gastric mucosa Archives of the Balkan Medical Union, 54(3), 417-421	Irrelevant population
L1	Alaiwa, M. A., Hilkin, B., Akurathi, V., Watkins, G., Stoltz, D., Sunderland, J., Welsh, M., Dick, D. (2019). Imaging mucociliary clearance using F-18 alumina PET: A proof in concept study Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant population
L1	Ali, S. M., Nawfal, A. J., Al-Okaily, B. N. (2019). Protective effects of coenzyme Q10 against sodium fluoride-induced reproductive disorders in male rats Iraqi Journal of Veterinary Sciences, 33(1), 143-149	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Alkurdi, S. S. A.,Al-Juboori, R. A.,Bundschuh, J.,Hamawand, I. (2019). Bone char as a green sorbent for removing health threatening fluoride from drinking water Environment International, 127(#issue#), 704-719	Irrelevant population
L1	Altine, B.,Gai, Y.,Han, N.,Jiang, Y.,Ji, H.,Fang, H.,Niyonkuru, A.,Bakari, K. H.,Rajab Arnous, M. M.,Liu, Q.,Zhang, Y.,Lan, X. (2019). Preclinical Evaluation of a Fluorine-18 ((18)F)-Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging Mol Pharm, 16(11), 4563-4571	Irrelevant population
L1	Ameer, N., Mustafa, G., Khan, I., Zahid, M., Yasinzai, M., Shahab, S., Asghar, N., Ullah, I., Ahmad, A., Munir, I., Khan, H., Badshah, S., Shahid, I., Ahmad, M. N., Zia, A., Ahmad, S. (2018). Chemical sensors: Promising tools for the online monitoring of fluorides Fluoride, 51(3), 252-266	Irrelevant population
L1	Anacletus, F. C.,Onyegeme-Okerenta, B. M.,Iheka, C. U. (2016). Management of fluoride toxicity on adult male wistar rats' fecundity using some selected antioxidants FASEB Journal. Conference: Experimental Biology, 30(Meeting Abstracts), #Pages#	Irrelevant population
L1	Andleeb, S.,Ata-ul-Mustafa, Fahid,Dilawari, U. F.,Arshad, M.,Ara, C. (2018). Attenuation of sodium fluoride induced nephrotoxicity by fresh orange juice in mice JAPS, Journal of Animal and Plant Sciences,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	28(6), 1709-1716 Aparna, Singh,Ragini, Gothalwal (2018). A reappraisal on biodegradation of fluoride compounds:	Irrelevant population
	role of microbes Water and Environment Journal, 32(3), 481-487	
L1	Apshankar, K. R., Sudha, Goel (2018). Review and analysis of defluoridation of drinking water by electrocoagulation Journal of Water Supply: Research and Technology - Aqua, 67(4), 297-316	Irrelevant population
L1	Araujo, T. T., Pereira, H. A. B. S., Dionizio, A., Sanchez, C. do C., Carvalho, T. de S., Fernandes, M. da S., Buzalaf, M. A. R. (2019). Changes in energy metabolism induced by fluoride: insights from inside the mitochondria Chemosphere, 236(#issue#), 124357	Irrelevant population
L1	Arnold, W. H., Groger, Ch, Bizhang, M., Naumova, E. A. (2016). Dentin abrasivity of various desensitizing toothpastes Head & face medicine, 12(#issue#), 16	Irrelevant population
L1	Asare, M. L., Cobbina, S. J., Akpabey, F. J., Duwiejuah, A. B., Abuntori, Z. N. (2018). Heavy metal concentration in water, sediment and fish species in the bontanga reservoir, Ghana Toxicology and Environmental Health Sciences, 10(1), 49-58	Irrelevant population
L1	Attia, K., Visser, T., Steven, J., Slart, R., Antunes, I., Van Der Hoek, S., Elsinga, P., Heerspink, H. (2019). Synthesis and evaluation of [¹⁸ F] canagliflozin for imaging SGLT-2-transporters in	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	diabetic patients Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S27-S29	
L1	Baba, N.,Raina, R.,Verma, P.,Sultana, M. (2016). Free radical-induced nephrotoxicity following repeated oral exposure to chlorpyrifos alone and in conjunction with fluoride in rats Turkish Journal of Medical Sciences, 46(2), 512-517	Irrelevant population
L1	Babaei Zarch, A.,Fallah Huseini, H.,Kianbakht, S.,Changaei, P.,Mirjalili, A.,Salehi, J. (2017). Malva sylvestris L. Protects from Fluoride Nephrotoxicity in Rat Journal of Medicinal Plants, 16(61), 21-32	Irrelevant population
L1	Babini, M. S.,Bionda, C. L.,Salas, N. E.,Martino, A. L. (2016). Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles Environmental Monitoring and Assessment, 188 (8) (no pagination)(459), #Pages#	Irrelevant population
L1	Baguet, T., Verhoeven, J., De Lombaerde, S., Piron, S., Descamps, B., Vanhove, C., Beyzavi, H., De Vos, F. (2019). Radiosynthesis, in vitro and in vivo evaluation of [¹⁸ F]Fluorphenylglutamine and [¹⁸ F]Fluorbiphenylglutamine as novel ASCT-2 directed tumor tracers Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S500-S502	Irrelevant population
L1	Bartos, M.,Gumilar, F.,Gallegos, C. E.,Bras, C.,Dominguez, S.,Mónaco, N.,Carmen Esandi, M.	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	del,Bouzat, C.,Cancela, L. M.,Minetti, A. (2018). Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: involvement of the α7 nicotinic receptor and oxidative stress Reproductive Toxicology, 81(#issue#), 108-114	
L1	Beekam, Kebede, Abebe, Beyene, Fekadu, Fufa, Moa, Megersa, Behm, M. (2016). Experimental evaluation of sorptive removal of fluoride from drinking water using iron ore Applied Water Science, 6(1), 57-65	Irrelevant population
L1	Berger, T., Mathurin, F. A., Drake, H., Astrom, M. E. (2016). Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks Science of the Total Environment, 569-570(#issue#), 948-960	Irrelevant population
L1	Bermejo, I. A., Usabiaga, I., Companon, I., Castro-Lopez, J., Insausti, A., Fernandez, J. A., Avenoza, A., Busto, J. H., Jimenez-Barbero, J., Asensio, J. L., Peregrina, J. M., Jimenez-Oses, G., Hurtado-Guerrero, R., Cocinero, E. J., Corzana, F. (2018). Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition J Am Chem Soc, 140(31), 9952-9960	Irrelevant population
L1	Bhattacharya, Shantanu, Gupta, Akhilendra Bhushan, Gupta, Ankur, Pandey, Ashok (2018). Water	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Remediation #journal#, #volume#(#issue#), #Pages#	
L1	Bondu, J. D.,Selvakumar,,Seshadri, M. S.,Fleming, J. J. (2017). Do vitamin D deficiency and renal dysfunction play a role in the pathogenesis of fluorotoxic metabolic bone disease (FMBD)? Indian Journal of Clinical Biochemistry, 32 (1 Supplement 1)(#issue#), S106	Irrelevant population
L1	Bondu, J. D., Seshadri, M. S., Selvakumar, R., Fleming, J. J. (2019). Effects of Fluoride on Bone in an Animal Model of Vitamin D Deficiency Indian J Clin Biochem, 34(1), 60-67	Irrelevant population
L1	Bongarzone, S.,Basagni, F.,Sementa, T.,Singh, N.,Gakpetor, C.,Faugeras, V.,Bordoloi, J.,Gee, A. D. (2018). Development of [¹⁸ F]FAMTO: A novel fuorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands European Journal of Nuclear Medicine and Molecular Imaging, 45 (Supplement 1)(#issue#), S191-S192	Irrelevant population
L1	Bongarzone, S.,Faugeras, V.,Sementa, T.,Gakpetor, C.,Gee, A. D. (2017). Novel ¹⁸ F-labelled Metomidate analogues for targeting CYP11B2 beta hydroxylase - Towards a new PET radiotracer for managing personalised treatments for aldosteronomamediated hypertension Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S73	Irrelevant population

Le	Bibliography	Reason for exclusion
vel	ыынодгартту	Reason for exclusion
L1	Bonotto, D. M.,Oliveira, A. M. M. A. D. (2017). Mobility indices and doses from ²¹⁰ Po and ²¹⁰ Pb activity concentrations data in Brazilian spas groundwaters Journal of Environmental Radioactivity, 172(#issue#), 15-23	Irrelevant population
L1	Boxi, S. S., Paria, S. (2016). Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles Dalton transactions (Cambridge, England: 2003), 45(2), 811-819	Irrelevant population
L1	Braga, T. M.,Braga, D. N.,Moreno-Carvalho, E.,Bauer, J. O.,Turssi, C. P. (2019). Calcium Pre-Rinse: Effect on permeability of dentin tubules by fluoride rinse Journal of Clinical & Experimental Dentistry, 11(4), e303-e309	Irrelevant population
L1	Breen, Sarah-Patricia (2018). Exploring a New Regionalism-Based Approach to Managing Drinking Water Systems in Rural Regions Society & Natural Resources, 31(6), 698-716	Irrelevant population
L1	Brooks, A.,Burris, S.,Scott, P. (2017). Binding of [¹⁸ F]N-Methyl lansoprazole to tau aggregates in post-mortem brain sections from alzheimer's disease and progressive supranuclear palsy patients Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Irrelevant population

La		
Le vel	Bibliography	Reason for exclusion
L1	Buckley, H. L., Molla, N. J., Cherukumilli, K., Boden, K. S., Gadgil, A. J. (2018). Addressing technical barriers for reliable, safe removal of fluoride from drinking water using minimally processed bauxite ores Dev Eng, 3(#issue#), 175-187	Irrelevant population
L1	Cai, L.,Liow, J. S.,Morse, C.,Davies, R.,Frankland, M.,Zoghbi, S.,Innis, R.,Pike, V. (2019). Synthesis and evaluation in rats of [¹¹ C] NR2B-Me as a PET radioligand for NR2B subunits in NMDA receptors Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S75-S77	Irrelevant population
L1	Camargo, J. A., Alonso, Á (2017). Ecotoxicological assessment of the impact of fluoride (F-) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent Environmental Science and Pollution Research, 24(18), 15667-15677	Irrelevant population
L1	Cao, J., Chen, Y., Chen, J., Yan, H., Li, M., Wang, J. (2016). Fluoride exposure changed the structure and the expressions of Y chromosome related genes in testes of mice Chemosphere, 161(#issue#), 292-299	Irrelevant population
L1	Cao, K.,Xiang, J.,Dong, Y. T.,Xu, Y.,Li, Y.,Song, H.,Zeng, X. X.,Ran, L. Y.,Hong, W.,Guan, Z. Z. (2019). Exposure to fluoride aggravates the impairment in learning and memory and neuropathological lesions in mice carrying the	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	APP/PS1 double-transgenic mutation Alzheimer's Research and Therapy, 11 (1) (no pagination)(35), #Pages#	
L1	Cardenas-Gonzalez, M., Jacobo Estrada, T., Rodriguez-Munoz, R., Barrera-Chimal, J., Bobadilla, N. A., Barbier, O. C., Del Razo, L. M. (2016). Sub- chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin Journal of Applied Toxicology, 36(2), 309-319	Irrelevant population
L1	Castillo, A. S. R., Guihéneuf, S., Guével, R. le, Biard, P. F., Paquin, L., Amrane, A., Couvert, A. (2016). Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor Journal of Hazardous Materials, 307(#issue#), 221-230	Irrelevant population
L1	Chai, L.,Dong, S.,Zhao, H.,Deng, H.,Wang, H. (2016). Effects of fluoride on development and growth of Rana chensinensis embryos and larvae Ecotoxicology and Environmental Safety, 126(#issue#), 129-137	Irrelevant population
L1	Chai, L., Wang, H., Zhao, H., Dong, S. (2017). Chronic Effects of Fluoride Exposure on Growth, Metamorphosis, and Skeleton Development in Bufo gargarizans Larvae Bull Environ Contam Toxicol, 98(4), 496-501	Irrelevant population
L1	Chaithra, B., Sarjan, H. N., Shivabasavaiah, (2019). A Comparative Analysis of Fluoride-Contaminated Groundwater and Sodium Fluoride-Induced	Irrelevant population

Le vel	Bibliography	Reason for exclusion
Vei	Reproductive Toxicity and Its Reversibility in Male Rats Biological Trace Element Research., #volume#(#issue#), #Pages#	
L1	Chaithra, B., Sarjan, H. N., Shivabasavaiah, (2019). Sodium Fluoride and Fluoride Contaminated Ground Water Induced Altered Reproductive Performances in Male Rats Biological Trace Element Research., #volume#(#issue#), #Pages#	Irrelevant population
L1	Chaithra, B., Sarjan, H. N., Shivabasavaiah, (2019). Time-dependent effect of ground water fluoride on motility, abnormality and antioxidant status of spermatozoa: An in vitro study Toxicology and Industrial Health, 35(5), 368-377	Irrelevant population
L1	Chander, V., Sharma, B., Negi, V., Aswal, R. S., Singh, P., Singh, R., Dobhal, R. (2016). Pharmaceutical compounds in drinking water Journal of Xenobiotics, 6 (1) (no pagination)(5774), #Pages#	Irrelevant population
L1	Chao, W.,Zhang, Y.,Chai, L.,Wang, H. (2018). Transcriptomics provides mechanistic indicators of fluoride toxicology on endochondral ossification in the hind limb of Bufo gargarizans Aquat Toxicol, 201(#issue#), 138-150	Irrelevant population
L1	Chen, JianJie, Xue, WenJuan, Cao, JinLing, Song, Jie, Jia, RuHui, Li, MeiYan (2016). Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio) Aquatic Toxicology, 171(#issue#), 48-58	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Chen, XiuWen,Wan, ChangWu,Xie, Chun,Wei, Yan,Wu, Yu,Wan, Wen (2016). Fluoride inhibits expressions of Notch3 and Jag1 proteins in rat bone tissues Journal of Environmental & Doccupational Medicine, 33(5), 494-498	Irrelevant population
L1	Chen, Y., Shen, C., Rashid, S., Li, S., Ali, B. A., Liu, J. (2017). Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water J Colloid Interface Sci, 491(#issue#), 207-215	Irrelevant population
L1	Chiba, F. Y.,Tsosura, T. V. S.,Pereir, R. F.,Mattera, M. S. L. C.,Dos Santos, R. M.,Marani, F.,Garbin, C. A. S.,Moimaz, S. A. S.,Sumida, D. H. (2019). Mild chronic NaF intake promotes insulin resistance and increase in inflammatory signaling in the white adipose tissue of rats Fluoride, 52(1), 18-28	Irrelevant population
L1	Choi, Y. E.,Seo, D. Y.,Lee, J. E.,Ha, Y.,Park, A. H.,Jeong, J. W.,Kwon, O. W.,Kim, Y. J. (2018). Comparative toxicity of Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanesulfonamide (PFOSA) in fish hepatoma cell line, PLHC-1 Toxicology and Environmental Health Sciences, 10 (4)(#issue#), S58	Irrelevant population
L1	Choong, C. E., Wong, K. T., Jang, S. B., Nah, I. W., Choi, J., Ibrahim, S., Yoon, Y., Jang, M. (2020). Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: Implications for their application in water treatment Chemosphere, 239 (no	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	pagination)(124765), #Pages#	
L1	Choubisa, S. L. (2018). A brief and critical review on hydrofluorosis in diverse species of domestic animals in India Environ Geochem Health, 40(1), 99-114	Irrelevant population
L1	Chowdhury, C. R., Shahnawaz, K., Kumari, D., Chowdhury, A., Bedi, R., Lynch, E., Harding, S., Grootveld, M. (2016). Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects Perspectives in Public Health, 136(6), 353-360	Irrelevant population
L1	Copeland, Ari, American Water Works, Association (2016). Water fluoridation principles and practices #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Costa, A. B. da,Rodrigues, G. S.,Baumann, L.,Santos, R. B. dos,Klamt, R. A.,Carvalho, F. S. de,Kirst, A.,Lobo, E. A. (2018). Defluoridation of groundwater by adsorption and precipitation by contact with activated bone charcoal Caderno de Pesquisa, Série Biologia, 30(Especial), 22-28	Irrelevant population
L1	Cox, K. D., English, J. C., Bhat, V. (2017). Use of "read-across" and threshold of toxicological concern approaches to establish allowable concentrations in drinking water: A case study Toxicology Letters, 280 (Supplement 1)(#issue#), S101	Irrelevant population
L1	Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., Vengosh, A. (2019). Co-occurrence of geogenic and anthropogenic contaminants in groundwater from	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Rajasthan, India Sci Total Environ, 688(#issue#), 1216-1227	
L1	Cristóvão, R. O., Pinto, V. M. S., Gonçalves, A., Martins, R. J. E., Loureiro, J. M., Boaventura, R. A. R. (2016). Fish canning industry wastewater variability assessment using multivariate statistical methods Process Safety and Environmental Protection, 102(#issue#), 263-276	Irrelevant population
L1	Cui, Y. S.,Zhong, Q.,Li, W. F.,Liu, Z. H.,Wang, Y.,Hou, C. C. (2017). Effects of fluoride exposure on thyroid hormone level and intelligence in rats Chinese journal of industrial hygiene and occupational diseases, 35(12), 888-892	Irrelevant population
L1	Dahi, E. (2016). Africa's U-turn in defluoridation policy: From the Nalgonda technique to bone char Fluoride, Part 1. 49(4), 401-416	Irrelevant population
L1	Dai, YouGang, Chen, XuanHao, Yang, LuHui, Zhang, Hua, Wei, Yan (2019). Effects of six-month sodium fluoride exposure via drinking water on osteogenic activity markers in rat bone tissues Journal of Environmental & Docupational Medicine, 36(8), 725-730	Irrelevant population
L1	Dai, YouGang, Wei, Yan, Chen, Xuan Hao, Qi, Zhong Da, Zhang, Hua (2019). Changes in bone histomorphometry and microRNA-23a expression in rats exposed to sodium fluoride Journal of Environmental & Docupational Medicine, 36(3),	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	254-260	
L1	Daiwile, A. P., Prashant, Tarale, Saravanadevi, Sivanesan, Naoghare, P. K., Amit, Bafana, Devendra, Parmar, Krishnamurthi, Kannan (2019). Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis Ecotoxicology and Environmental Safety, 169(#issue#), 410-417	Irrelevant population
L1	De Oliveira, F. A., Pereira, A. A., Da Silva Ventura, T., Buzalaf, M., De Oliveira, R. C., Peres-Buzalaf, C. (2016). Fluoride regulates osteoclastogenesis in a strain-specific manner Journal of Bone and Mineral Research. Conference, 31 (Supplement 1), #Pages#	Irrelevant population
L1	Debia, K., Janda, K., Siwiec, E., Wolska, J., Baranowska-Bosiacka, I., Jakubczyk, K., Chlubek, D., Gutowska, I. (2018). Do brewing temperature and the morphological part of the ground elder plant have an influence on the fluoride content of ground elder infusions? Fluoride, 51(2), 153-163	Irrelevant population
L1	Dec, K.,Lukomska, A.,Baranowska-Bosiacka, I.,Pilutin, A.,Maciejewska, D.,Skonieczna-Zydecka, K.,Derkacz, R.,Goschorska, M.,Wasik, A.,Rebacz-Maron, E.,Gutowska, I. (2018). Pre-and postnatal exposition to fluorides induce changes in rats liver morphology by impairment of antioxidant defense mechanisms and COX induction Chemosphere, 211(#issue#), 112-119	Irrelevant population
L1	Dec, K.,Lukomska, A.,Skonieczna-Zydecka,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	K.,Kolasa-Wolosiuk, A.,Tarnowski, M.,Baranowska-Bosiacka, I.,Gutowska, I. (2019). Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures NeuroToxicology, 74(#issue#), 81-90	
L1	Deepak, Kumar, Anshuman, Singh, Jha, R. K. (2018). Spatial distribution of uranium and basic water quality parameter in the capital of Bihar and consequent ingestion dose Environmental Science and Pollution Research, 25(18), 17901-17914	Irrelevant population
L1	Dehghani, M. H.,Haghighat, G. A.,Yousefi, M. (2018). Data on fluoride concentration in drinking water resources in Iran: A case study of Fars province; Larestan region Data in Brief, 19(#issue#), 842-846	Irrelevant population
L1	Deng, H.,Ikeda, A.,Cui, H.,Bartlett, J. D.,Suzuki, M. (2019). MDM2-mediated p21 proteasomal degradation promotes fluoride toxicity in ameloblasts Cells, 8 (5) (no pagination)(436), #Pages#	Irrelevant population
L1	Dhurvey, V., Thakarea, M. (2016). The effect of sodium fluoride intoxication on the estrous cycle and ovarian hormones in rats Fluoride, Part 1. 49(3), 223-232	Irrelevant population
L1	Dian, B. J., Selvakumar, R., Fleming, Joseph, J. (2016). Does Vitamin D deficiency and renal dysfunction play a role in the pathogenesis of Fluorotoxic Metabolic Bone Disease (FMBD) Indian Journal of Clinical	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Biochemistry, 31 (1 Supplement 1)(#issue#), S30 Dias, I. N.,Bassin, J. P.,Dezotti, M.,Vilar, V. J. P. (2018). Fluorene oxidation by solar-driven photo- Fenton process: toward mild pH conditions Environ Sci Pollut Res Int, 25(28), 27808-27818	Irrelevant population
L1	Diwan, V.,Sar, S. K.,Biswas, S.,Dewangan, R.,Baghel, T. (2019). Uranium in ground water of Rajnandgaon District of Central India Journal of Radioanalytical and Nuclear Chemistry, 321(1), 293-302	Irrelevant population
L1	Dong, H.,Lu, G.,Yan, Z.,Liu, J.,Yang, H.,Zhang, P.,Jiang, R.,Bao, X.,Nkoom, M. (2020). Distribution, sources and human risk of perfluoroalkyl acids (PFAAs) in a receiving riverine environment of the Nanjing urban area, East China Journal of Hazardous Materials, 381 (no pagination)(120911), #Pages#	Irrelevant population
L1	Dong, Y. T., Wei, N., Qi, X. L., Liu, X. H., Chen, D., Zeng, X. X., Guana, Z. Z. (2017). Attenuating effect of vitamin e on the deficit of learning and memory of rats with chronic fluorosis: The mechanism may involve muscarinic acetylcholine receptors Fluoride, 50(3), 354-364	Irrelevant population
L1	Dutta, J. (2016). Assessment of fluoride, arsenic and other heavy metals in the ground water of tea gardens belt of Sonitpur district, Assam, India International Journal of ChemTech Research, 9(2), 71-79	Irrelevant population
L1	Ebrahim, F. M., Nguyen, T. N., Shyshkanov, S., Gladysiak, A., Favre, P., Zacharia, A., Itskos,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	G.,Dyson, P. J.,Stylianou, K. C. (2019). Selective, Fast-Response, and Regenerable Metal-Organic Framework for Sampling Excess Fluoride Levels in Drinking Water Journal of the American Chemical Society, 141(7), 3052-3058	
L1	Elfikrie, N.,Ho, Y. B.,Zaidon, S. Z.,Juahir, H.,Tan, E. S. S. (2020). Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia Science of the Total Environment, 712 (no pagination)(136540), #Pages#	Irrelevant population
L1	Elumalai, V., Nwabisa, D. P., Rajmohan, N. (2019). Evaluation of high fluoride contaminated fractured rock aquifer in South Africa - Geochemical and chemometric approaches Chemosphere, 235(#issue#), 1-11	Irrelevant population
L1	Family, L., Zheng, G., Cabezas, M., Cloud, J., Hsu, S., Rubin, E., Smith, L. V., Kuo, T. (2019). Reasons why low-income people in urban areas do not drink tap water J Am Dent Assoc, 150(6), 503-513	Irrelevant population
L1	Fan, XiMin,Luo, Ying,Xu, Jie,Wu, Qin,Liu, Jie,Fan, QiYuan (2017). Effects of manganese chloride on mitochondrial damage, dopamine secretion, and expression of PARK2 in human bone marrow neuroblastoma cells Journal of Environmental & Doccupational Medicine, 34(8), 707-711, 717	Irrelevant population
L1	Ferrari, C. R., Nascimento, H. de A. F. do, Rodgher,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	S.,Almeida, T.,Bruschi, A. L.,Nascimento, M. R. L. do,Bonifácio, R. L. (2017). Effects of the discharge of uranium mining effluents on the water quality of the reservoir: an integrative chemical and ecotoxicological assessment Scientific Reports, 7(1), 13919 Flueck, W. T. (2016). The impact of recent volcanic ash depositions on herbivores in Patagonia: a review	Irrelevant population
L1	Rangeland Journal, 38(1), 27-34 Foka, F. E. T., Yah, C. S., Bissong, M. E. A. (2018). Physico-chemical properties and microbiological quality of borehole water in four crowded areas of benin city, nigeria, during rainfalls Shiraz E Medical Journal, 19 (11) (no pagination)(e68911), #Pages#	Irrelevant population
L1	Frawley, R. P., Smith, M., Cesta, M. F., Hayes-Bouknight, S., Blystone, C., Kissling, G. E., Harris, S., Germolec, D. (2018). Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague-Dawley rats and B ₆ C ₃ F ₁ /N mice when administered by oral gavage for 28 days Journal of Immunotoxicology, 15(1), 41-52	Irrelevant population
L1	Freitas, A. S., Fontes Cunha, I. M., Andrade-Vieira, L. F., Techio, V. H. (2016). Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L Ecotoxicology and Environmental Safety, 124(#issue#), 426-434	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Fromme, H., Wockner, M., Roscher, E., Volkel, W. (2017). ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany Int J Hyg Environ Health, 220(2 Pt B), 455-460	Irrelevant population
L1	Gama-Dominguez, Y.,Jacobo-Estrada, T.,Lopez-Ventura, D.,Moreno-Licona, N. J.,Trevino, S.,Barbier, O. (2016). Effect of renal ischemia on sub-chronically exposed rats to fluoride evaluated by the expression of hypoxia-inducible factor 1alpha (HIF-1alpha) Toxicology Letters, 259 (Supplement 1)(#issue#), S241-S242	Irrelevant population
L1	Gao, X.,Luo, W.,Luo, X.,Li, C.,Zhang, X.,Wang, Y. (2019). Indigenous microbes induced fluoride release from aquifer sediments Environmental Pollution, 252(#issue#), 580-590	Irrelevant population
L1	Gayatri, Singh,Babita, Kumari,Geetgovind, Sinam,Kriti,,Navin, Kumar,Shekhar, Mallick (2018). Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective- a review Environmental Pollution, 239(#issue#), 95-108	Irrelevant population
L1	Ge, YaMing,Chen, LingLi,Yin, ZhiHong,Song, XiaoChao,Ruan, Tao,Hua, LiuShuai,Liu, JunWei,Wang, JunDong,Ning, HongMei (2018). Fluoride-induced alterations of synapse-related proteins in the cerebral cortex of ICR offspring mouse	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	brain Chemosphere, 201(#issue#), 874-883 Greenwood, H. (2017). High throughput PET/CT imaging using a multiple mouse imaging system Molecular Imaging and Biology, 19 (1 Supplement 1)(#issue#), S540	Irrelevant population
L1	Güner, Ş,Uyar-Bozkurt, S.,Haznedaroğlu, E.,Menteş, A. (2016). Dental fluorosis and catalase immunoreactivity of the brain tissues in rats exposed to high fluoride pre- and postnatally Biological Trace Element Research, 174(1), 150-157	Irrelevant population
L1	Guo, Chao, Song, Hui, Liang, Feng, Zeng, QiaoLi, Miao, Yue, Zhen, Dong, Zhang, AiLong (2018). The study on the optimization of extraction technology and fluorescence labeling of Flammulina velutipes polysaccharides Journal of Fungal Research, 16(1), 43-50	Irrelevant population
L1	Gupta, A. R., Dey, S., Saini, M., Swarup, D. (2016). Toxic effect of sodium fluoride on hydroxyproline level and expression of collagen-1 gene in rat bone and its amelioration by Tamrindus indica L. fruit pulp extract Interdiscip Toxicol, 9(1), 12-16	Irrelevant population
L1	Hadipuro, W.,Indriyanti, N. Y. (2009). Typical urban water supply provision in developing countries: a case study of Semarang City, Indonesia Water Policy, 11(1), 55-66	Irrelevant population
L1	Han, YongLi, Yu, YuXiang, Liang, Chen, Shi, Yan, Zhu, YuChen, Zheng, HePing, Wang, JunDong, Zhang,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	JianHai (2019). Fluoride-induced unrestored arrest during haploid period of spermatogenesis via the regulation of DDX25 in rats Environmental Pollution, 253(#issue#), 538-551	
L1	Hardie, Julia, University of, Otago, Department of, History, University of, Otago (2016). There's something in the water: following Timaru's water fluoridation debate, 1957-1985: dissertation submitted for the degree of Bachelor of History with Honours #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Hariri, Mehran, Mirvaghefi, Alireza, Farahmand, Hamid, Taghavi, Lobat, Shahabinia, Amir-Reza (2018). In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario) Environmental toxicology and pharmacology, 58(#issue#), 59-69	Irrelevant population
L1	Hayat, E.,Baba, A. (2017). Quality of groundwater resources in Afghanistan Environmental Monitoring and Assessment, 189 (7) (no pagination)(318), #Pages#	Irrelevant population
L1	He, XinJin,Sun, ZiLong,Manthari, R. K.,Wu, PanHong,Wang, JunDong (2018). Fluoride altered rat's blood testis barrier by affecting the F-actin via IL- 1α Chemosphere, 211(#issue#), 826-833	Irrelevant population
L1	Hoffman, B. L.,Felter, E. M.,Chu, K. H.,Shensa, A.,Hermann, C.,Wolynn, T.,Williams, D.,Primack, B. A. (2019). It's not all about autism: The emerging	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	landscape of anti-vaccination sentiment on Facebook Vaccine, 37(16), 2216-2223	
L1	Holmquist, H.,Schellenberger, S.,van der Veen, I.,Peters, G. M.,Leonards, P. E. G.,Cousins, I. T. (2016). Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing Environment International, 91(#issue#), 251-264	Irrelevant population
L1	Hosokawa, M.,Sugaya, C.,Tsunoda, M.,Kodama, Y.,Sugita-Konishi, Y.,Ohta, H.,Yokoyama, K. (2016). The effects of fluoride on the bones and teeth from ICR-derived glomerulonephritis (ICGN) mice and ICR mice after subacute exposure Fluoride, Part 1. 49(4), 417-428	Irrelevant population
L1	Hossain, M.,Patra, P. K. (2019). Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types Environ Pollut, #volume#(#issue#), 113646	Irrelevant population
L1	Huang, Y., Wang, J., Tan, Y., Wang, L., Lin, H., Lan, L., Xiong, Y., Huang, W., Shu, W. (2018). Low-mineral direct drinking water in school may retard height growth and increase dental caries in schoolchildren in China Environment International, 115(#issue#), 104-109	Irrelevant population
L1	Hunt, Elizabeth (1996). Water and turf: Fluoridation and the 20th-century fate of waterworks engineers American Journal of Public Health, 86(9), 1310-7	Irrelevant population

Le		
vel	Bibliography	Reason for exclusion
L1	Hussain, I., Ahamad, K. U., Nath, P. (2017). Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water Analytical chemistry, 89(1), 767-775	Irrelevant population
L1	Hussien, H. M., Abd-Elmegied, A., Ghareeb, D. A., Hafez, H. S., Ahmed, H. E. A., El-Moneam, N. A. (2018). Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats Food and Chemical Toxicology, 111(#issue#), 432-444	Irrelevant population
L1	Idowu, O. S., Duckworth, R. M., Valentine, R. A., Zohoori, F. V. (2020). Biomarkers for the Assessment of Fluoride Exposure in Children Caries Res, #volume#(#issue#), 1-10	Irrelevant population
L1	Imran, Uzma, Chandio, T. A. (2017). Analysis of drinking water quality for presence of heavy metals and its impacts on health of local population in Sibi District European Journal of Sustainable Development, 6(4), 32-40	Irrelevant population
L1	Interlandi, V., Fontanetti, P. A., Ponce, R. H., Gallara, R. V., Centeno, V. A. (2018). Chronic Exposure to Fluoride During Gestation and Lactation Increases Mandibular Bone Volume of Suckling Rats Biol Trace Elem Res, 185(2), 395-403	Irrelevant population
L1	Izuagie, A. A., Gitari, W. M., Gumbo, J. R. (2016). Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	defluoridation: Towards fluorosis mitigation Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 51(10), 810-824	
L1	Jaishabanu, Ameeramja, Azhwar, Raghunath, Ekambaram, Perumal (2018). Tamarind seed coat extract restores fluoride-induced hematological and biochemical alterations in rats Environmental Science and Pollution Research, 25(26), 26157-26166	Irrelevant population
L1	Jaishabanu, Ameeramja, Ekambaram, Perumal (2018). Possible modulatory effect of tamarind seed coat extract on fluoride-induced pulmonary inflammation and fibrosis in rats Inflammation, 41(3), 886-895	Irrelevant population
L1	Jaishabanu, Ameeramja, Kanagaraj, V. V., Ekambaram, Perumal (2018). Protocatechuic acid methyl ester modulates fluoride induced pulmonary toxicity in rats Food and Chemical Toxicology, 118(#issue#), 235-244	Irrelevant population
L1	Jana, L.,Maity, P. P.,Perveen, H.,Dash, M.,Jana, S.,Dey, A.,De, S. K.,Chattopadhyay, S. (2018). Attenuation of utero-toxicity, metabolic dysfunction and inflammation by soy protein concentrate in rats exposed to fluoridated water: consequence of hyperlipidemia in parallel with hypohomocysteinemia Environ Sci Pollut Res Int, 25(36), 36462-36473	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Jena, C. K., Gupta, A. R., Patra, R. C. (2016). Osteodental fluorosis in cattle reared in villages on the periphery of the aluminium smelter in Odisha, India Fluoride, 49(4 Part 2), 503-508	Irrelevant population
L1	Jetti, R.,Raghuveer, C. V.,Mallikarjuna, R. C. (2016). Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride Toxicology and Industrial Health, 32(1), 183-187	Irrelevant population
L1	Jia, H.,Qian, H.,Qu, W.,Zheng, L.,Feng, W.,Ren, W. (2019). Fluoride occurrence and human health risk in drinkingwaterwells from southern edge of Chinese loess plateau International Journal of Environmental Research and Public Health, 16 (10) (no pagination)(1683), #Pages#	Irrelevant population
L1	Jiang, FeiFei,Lei, PingGui,Chen, YiJia,Zou, Xun,Luo, Peng,Pan, XueLi (2017). Quantitative computed tomography measurement skeletal fluorosis rabbits bone density and the correlation with bone injury Chinese Journal of Endemiology, 36(6), 414-417	Irrelevant population
L1	Jiang, N ,Xu, H ,Guo, F ,Zhang, X (2019). Role of PTH on the Fluoride-Affected Osteoclastic Diffrentiation Induced by Co-culture with Osteocytes XXXIVth Conference of the International Society For Fluoride Research, 52(1), 84-85	Irrelevant population
L1	Jiang, ShanShan,Liang, Chen,Gao, Yan,Liu, Yu,Han, YongLi,Wang, JunDong,Zhang, JianHai (2019).	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Fluoride exposure arrests the acrosome formation during spermatogenesis via down-regulated Zpbp1, Spaca1 and Dpy19l2 expression in rat testes Chemosphere, 226(#issue#), 874-882	
L1	Jianjie, C., Wenjuan, X., Jinling, C., Jie, S., Ruhui, J., Meiyan, L. (2016). Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio) Aquatic Toxicology, 171(#issue#), 48-58	Irrelevant population
L1	Johnson, J. K., Hoffman, C. M., Jr., Smith, D. A., Xia, Z. (2019). Advanced Filtration Membranes for the Removal of Perfluoroalkyl Species from Water ACS Omega, 4(5), 8001-8006	Irrelevant population
L1	Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera-Calderon, E., Torres-Palma, R. A. (2017). Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes Science of the Total Environment, 575(#issue#), 1228-1238	Irrelevant population
L1	Kaisam, J. P.,Kawa, Y. K.,Moiwo, J. P.,Lamboi, U. (2016). State of well-water quality in Kakua Chiefdom, Sierra Leone Water Science and Technology: Water Supply, 16(5), 1243-1254	Irrelevant population
L1	Kanwal, M. A.,Ahmad, K. R.,Tahir, Abbas,Kausar, Raees,Sadia, Suleman,Khalida, Jabeen (2016). Alleviating properties of strawberry fruit pulp extract on fluoride-induced fetal anomalies in mice Fluoride, 49(3 Part 2), 303-312	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Kaur, L.,Rishi, M. S. (2018). Data on fluoride contamination in potable water in alluvial plains of district Panipat, Haryana, India Data in Brief, 20(#issue#), 1844-1849	Irrelevant population
L1	Kazi, T. G.,Brahman, K. D.,Afridi, H. I.,Faheem, Shah,Arain, M. B. (2018). Effects of high fluoride content in livestock drinking water on milk samples of different cattle in endemic area of Pakistan: risk assessment for children Environmental Science and Pollution Research, 25(13), 12909-12914	Irrelevant population
L1	Keily, Elizabeth J. (2019). Groundwater quality assessment of the Piney Point aquifer in the Virginia Coastal plain #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Khan, H., Verma, Y., Rana, S. V. S. (2018). Oxidative stress induced by co-exposure to arsenic and fluoride in Wistar rat Cancer Medicine, 7 (Supplement 1)(#issue#), 33	Irrelevant population
L1	Khan, Z. N., Sabino, I. T., de Souza Melo, C. G., Martini, T., da Silva Pereira, H. A. B., Buzalaf, M. A. R. (2019). Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water Biological Trace Element Research, 187(1), 107-119	Irrelevant population
L1	Khandare, A. L., Vakdevi, Validandi, Munikumar, Manne, Reddy, G. B., Putcha, U. K., Gourineni, S. R., Balakrishna, Nagalla (2018). Tamarind fruit extract ameliorates fluoride toxicity by upregulating carbonic	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	anhydrase II: a mechanistic study Fluoride, 51(2), 137-152	
L1	Khanum, Z., Suleman, S., Mustanser, A., Ul Hassan, M. W., Raees, K., Kanwal, M. A., Zia, A., Ahmad, K. R. (2019). Comparative teratological outcomes of fluoride ions and a fluoridated insecticide (Bifenthrin) in chick embryos Fluoride, 52(1), 59-65	Irrelevant population
L1	KheradPisheh, Z.,Ehrampoush, M. H.,Montazeri, A.,Mirzaei, M.,Mokhtari, M.,Mahvi, A. H. (2016). Fluoride in drinking water in 31 provinces of Iran Exposure and Health, 8(4), 465-474	Irrelevant population
L1	Kichana, E., Minyila, S., Quarcoo, G. (2019). The lethal effect of groundwater fluoride on the germination and growth of maize (Zea mays) and rice (Oryza sativa) seeds and plants Fluoride, 52(3 Part 1), 284-288	Irrelevant population
L1	Kido, T.,Sugaya, C.,Yanagisawa, H.,Sugita-Konishi, Y.,Itai, K.,Tsunoda, M. (2017). The effects on renal function, in institute of cancer research-derived glomerulonephritis (ICGN) mice, of the subacute administration of the fluoride ion in drinking water Fluoride, 50(1 Part 2), 161-174	Irrelevant population
L1	Kido, T.,Tsunoda, M.,Sugaya, C.,Hano, H.,Yanagisawa, H. (2017). Fluoride potentiates tubulointerstitial nephropathy caused by unilateral ureteral obstruction Toxicology, 392(#issue#), 106- 118	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Kong, LingChao,Tian, Yu,Pang, Zheng,Huang, XiaoHong,Li, Ming,Yang, RuoChen,Li, Ning,Zhang, Jun,Zuo, Wei (2019). Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum- doped La@MgAl nanocomposites Chemical Engineering Journal, 371(#issue#), 893-902	Irrelevant population
L1	Koriem, K. M. M., Shamsuri, R. B., Ubaidillah, A. M. (2016). Evaluation of sodium fluoride toxicity in Schistosoma infected snails: assessment of antioxidants, antiapoptotic, hypoprotein and hypocholesterol activities Journal of Parasitic Diseases, 40(4), 1451-1458	Irrelevant population
L1	Kuang, P., Deng, H., Cui, H., Chen, L., Fang, J., Zuo, Z., Deng, J., Wang, X., Zhao, L. (2017). Sodium fluoride (NaF) causes toxic effects on splenic development in mice Oncotarget, 8(3), 4703-4717	Irrelevant population
L1	Kurtdede, E.,Pekcan, M.,Karagul, H. (2017). Fluorosis problem in Turkey and biochemical interaction of fluorine. [Turkish] Ataturk Universitesi Veteriner Bilimleri Dergisi, 12(3), 320-326	Irrelevant population
L1	Kurtdede, E.,Pekcan, M.,Karagul, H. (2018). Free radicals, reactive oxygen species and relationship with oxidative stress. [Turkish] Ataturk Universitesi Veteriner Bilimleri Dergisi, 13(3), 373-379	Irrelevant population
L1	Leslie, D. L., Lyons, W. B. (2018). Variations in dissolved nitrate, chloride, and sulfate in precipitation, reservoir, and tap waters, Columbus, Ohio Int J	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Environ Res Public Health, 15(8), #Pages# Li, J, Zhao, Q, Yang, Y, Sun, D, Gao, Y (2019). Effect of Exposure to Fluoride on Bone Development of Zebrafish XXXIVth Conference of the International Society For Fluoride Research, 52(1), 92-93	Irrelevant population
L1	Li, Shuo,Zhang, GuangShan,Zhang, Wen,Zheng, HeShan,Zhu, WeiYu,Sun, Nan,Zheng, YongJie,Wang, Peng (2017). Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst Chemical Engineering Journal, 326(#issue#), 756-764	Irrelevant population
L1	Li, X.,Zhang, J.,Niu, R.,Manthari, R. K.,Yang, K.,Wang, J. (2019). Effect of fluoride exposure on anxiety- and depression-like behavior in mouse Chemosphere, 215(#issue#), 454-460	Irrelevant population
L1	Li, Y., Wang, S., Prete, D., Xue, S., Nan, Z., Zang, F., Zhang, Q. (2017). Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China Sci Total Environ, 595(#issue#), 344-351	Irrelevant population
L1	Li, YanYan,Bian, ShengTai,Wang, JinMing,Wang, JunDong (2016). Effects of fluoride and chitosan on the gene expressions of bone morphogenic protein 2 and collagen type-1 alpha 1 chain in the mouse femur Fluoride, 49(1), 47-55	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Li, Yue,Li, JunJun,Bao, Ying,Li, BingYang,Huo, SiMeng,Fan, YuMei,Yon, HuaZhu,Yang, YanMei,Gao, YanHui (2018). Role of fibroblast growth factor-23 in bone injury induced by fluoride in mice Chinese Journal of Endemiology, 37(4), 259-264	Irrelevant population
L1	Liang, Chen,Gao, Yan,He, YuYang,Han, YongLi,Manthari, R. K.,Chiranjeevi, Tikka,Chen, ChenKai,Wang, JunDong,Zhang, JianHai (2020). Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: in vivo and in vitro studies Environmental Pollution, 256(#issue#), 113438	Irrelevant population
L1	Lim, MinHwa, Sadhasivam, T., Jung, DoSung, Lim, HanKwon, Ryi, ShinKun, Jung, HoYoung (2018). Removal of hazardous hydrogen fluoride (HF) from water through homogeneous nanostructured CaO-SiO2 sorbents: optimization of binder Water, Air, and Soil Pollution, 229(8), 278	Irrelevant population
L1	Limon-Pacheco, J. H., Jimenez-Cordova, M. I., Cardenas-Gonzalez, M., Sanchez Retana, I. M., Gonsebatt, M. E., Del Razo, L. M. (2018). Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children Annals of Global Health, 84(2), 257-273	Irrelevant population
L1	Linhares, D. P. S., Garcia, P. V., Amaral, L., Ferreira, T., Cury, J. A., Vieira, W., Rodrigues, A. D. S. (2016). Sensitivity of two biomarkers for biomonitoring	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	exposure to fluoride in children and women: A study in a volcanic area Chemosphere, 155(#issue#), 614-620	
L1	Liu, H.,Hou, C.,Zeng, Q.,Zhao, L.,Cui, Y.,Yu, L.,Wang, L.,Zhao, Y.,Nie, J.,Zhang, B.,Wang, A. (2016). Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide Environmental Toxicology and Pharmacology, 46(#issue#), 277-285	Irrelevant population
L1	Liu, J., Wang, H. W., Zhao, W. P., Li, X. T., Lin, L., Zhou, B. H. (2019). Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure Toxicol Ind Health, 35(1), 43-52	Irrelevant population
L1	Liu, Y,Guan, Z (2019). The Role of MAPK Signal Transduction Pathway and ECM in Pathogenesis of Brain Damage of Rats with Chronic Fluorosis XXXIVth Conference of the International Society For Fluoride Research, 52(1), 90-92	Irrelevant population
L1	Liu, Z.,Goodwin, M.,Ellwood, R. P.,Pretty, I. A.,McGrady, M. (2018). Automatic detection and classification of dental fluorosis in vivo using white light and fluorescence imaging J Dent, 74 Suppl 1(#issue#), S34-s41	Irrelevant population
L1	Lombarte, M.,Fina, B. L.,Lupion, P. M.,Lupo, M.,Rigallia, A. (2016). In vivo measurement of fluoride effects on glucose homeostasis: An explanation for the decrease in intelligence quotient and insulin	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	resistance induced by fluoride Fluoride, Part 1. 49(3), 204-210	
L1	Luo, Yu,Xie, Chun,Zhang, Hua,Tan, Ying,Ge, QiDi (2019). Effects of chronic fluoride exposure on hippocampal structure and spatial learning and memory of F2 rats Journal of Environmental & Docupational Medicine, 36(8), 767-772	Irrelevant population
L1	Ma, Y., Yao, Y., Zhong, N., Angwa, L. M., Pei, J. (2020). The dose-time effects of fluoride on the expression and DNA methylation level of the promoter region of BMP-2 and BMP-7 in rats Environmental Toxicology and Pharmacology, 75 (no pagination)(103331), #Pages#	Irrelevant population
L1	Ma, YanQin,Ma, ZhenHua,Yin, ShuQin,Yan, XiaoYan,Wang, JunDong (2017). Arsenic and fluoride induce apoptosis, inflammation and oxidative stress in cultured human umbilical vein endothelial cells Chemosphere, 167(#issue#), 454-461	Irrelevant population
L1	Machado, I.,Buhl, V.,Manay, N. (2019). Total arsenic and inorganic arsenic speciation in groundwater intended for human consumption in Uruguay: Correlation with fluoride, iron, manganese and sulfate Science of the Total Environment, 681(#issue#), 497-502	Irrelevant population
L1	Madiha, Tariq,Umar, Farooq,Makshoof, Athar,Salman, M.,Muqaddas, Tariq,Shabnam, Shahida,Farooqi, Z. H. (2019). Fluoride removal using simple protonated and	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	xanthate modified protonated Ficus religiosa branch powder in a fixed-bed column Desalination and Water Treatment, 150(#issue#), 204-212	
L1	Maheswari, E., Arumugham, I. M., Kumar, R. P., Sakthi, D. S. (2017). Fluoride content in various sources of drinking water in Chennai Journal of Advanced Pharmacy Education and Research, 7(2), 142-145	Irrelevant population
L1	Maleki, A.,Zandsalimi, Y.,Rezaei, R.,Rostami, M.,Moayeri, A.,Bahmani, P.,Nuri, A.,Zandi, S.,Sadeghi, S.,Ghahramani, E. (2017). Fluoride concentration in rural drinking water resources of Divandareh County using geographic information system (GIS) HOZAN, 2(1), 25-35	Irrelevant population
L1	Malone Rubright, S. L., Pearce, L. L., Peterson, J. (2017). Environmental toxicology of hydrogen sulfide Nitric Oxide - Biology and Chemistry, 71(#issue#), 1-13	Irrelevant population
L1	Malvezzi, Mapn,Pereira, Habs,Dionizio, A.,Araujo, T. T.,Buzalaf, N. R.,Sabino-Arias, I. T.,Fernandes, M. S.,Grizzo, L. T.,Magalhaes, A. C.,Buzalaf, M. A. R. (2019). Low-level fluoride exposure reduces glycemia in NOD mice Ecotoxicol Environ Saf, 168(#issue#), 198-204	Irrelevant population
L1	Manne, M., Validandi, V., Khandare, A. L. (2018). Reduction of fluoride toxicity by tamarind components: An in silico study Fluoride, 51(2), 122-136	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	McPherson, C. A.,Zhang, G.,Gilliam, R.,Brar, S. S.,Wilson, R.,Brix, A.,Picut, C.,Harry, G. J. (2018). An Evaluation of Neurotoxicity Following Fluoride Exposure from Gestational Through Adult Ages in Long-Evans Hooded Rats Neurotoxicity Research, 34(4), 781-798	Irrelevant population
L1	Megha, Mittal, Sreemoyee, Chatterjee, Flora, S. J. S. (2018). Combination therapy with vitamin C and DMSA for arsenic-fluoride co-exposure in rats Metallomics, 10(9), 1291-1306	Irrelevant population
L1	Mehta, D.,Mondal, P.,Saharan, V. K.,George, S. (2018). In-vitro synthesis of marble apatite as a novel adsorbent for removal of fluoride ions from ground water: An ultrasonic approach Ultrasonics Sonochemistry, Part A. 40(#issue#), 664-674	Irrelevant population
L1	Mena, V. F.,Betancor-Abreu, A.,Gonzalez, S.,Delgado, S.,Souto, R. M.,Santana, J. J. (2019). Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations Journal of Environmental Management, 246(#issue#), 472-483	Irrelevant population
L1	Michalke, B (2018). Selenium #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Mihanovic, D., Negovetic-Vranic, D. (2016). In vitro changes in the value of fluoride ions, and PH of artificial saliva due to the influence of erosive drinks in artificial saliva Acta Stomatologica Croatica, 50	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	(1)(#issue#), 90 Misra, A. K.,Nikita, Gupta,Anupriya, Gupta,Ankur, Shivhare,Manav, Wadhwa (2016). Designing and testing of a portable filter for groundwater defluoridation and desalination, equipped with non- woven geotextiles Desalination and Water Treatment, 57(23), 10593-10603	Irrelevant population
L1	Mitta, Raghavendra, Ravindra, R. K., Raghuveer, Y. P., Narasimha, J. K., Uma, M. R. V., Polu, Navakishor (2016). Alleviatory effects of hydroalcoholic extract of cauliflower (Brassica oleracea var. botrytis) on thyroid function in fluoride intoxicated rats Fluoride, 49(1), 84-90	Irrelevant population
L1	Mittal, M., Chatterjee, S., Flora, S. J. S. (2018). Combination therapy with vitamin C and DMSA for arsenic-fluoride co-exposure in rats Metallomics, 10(9), 1291-1306	Irrelevant population
L1	Mohamed, N. E. (2016). The role of calcium in ameliorating the oxidative stress of fluoride in rats Biological Trace Element Research, 170(1), 128-144	Irrelevant population
L1	Mohammadi, A. A., Yousefi, M., Mahvi, A. H. (2017). Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature Data in Brief, 13(#issue#), 312-315	Irrelevant population
L1	Moumita, Dutta, Prem, Rajak, Salma, Khatun, Sumedha, Roy (2017). Toxicity assessment	Irrelevant population

-		
Le vel	Bibliography	Reason for exclusion
	of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure Chemosphere, 166(#issue#), 255-266	
L1	Munikumar, Manne, Vakdevi, Validandi, Khandare, A. L. (2018). Reduction of fluoride toxicity by tamarind components: an in silico study Fluoride, 51(2), 122-136	Irrelevant population
L1	Murtaza, B.,Natasha,,Amjad, M.,Shahid, M.,Imran, M.,Shah, N. S.,Abbas, G.,Naeem, M. A.,Amjad, M. (2019). Compositional and health risk assessment of drinking water from health facilities of District Vehari, Pakistan Environ Geochem Health, #volume#(#issue#), #Pages#	Irrelevant population
L1	Nadei, O. V., Khvorova, I. A., Agalakova, N. I. (2019). Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling Biological Trace Element Research., #volume#(#issue#), #Pages#	Irrelevant population
L1	Nag, A,Kumar, C (2019). Fabrication and Study on A domestic Defluoridator Using Burnt Brick Chips of Specific Composition as Filter Material XXXIVth Conference of the International Society For Fluoride Research, 52(1), 98	Irrelevant population
L1	Nagabhushana, S. R., Sunilkumar, Suresh, S., Sannappa, J., Srinivasa, E. (2019). Study on activity of radium, radon and physicochemical parameters in ground water and their health hazards	Irrelevant population

Le	Bibliography	Reason for exclusion
vel		
	around Tumkur industrial area Journal of Radioanalytical and Nuclear Chemistry., #volume#(#issue#), #Pages#	
L1	Nagaraju, A., Thejaswi, A., Sun, L. (2016). Statistical analysis of high fluoride groundwater hydrochemistry in Southern India: Quality assessment and implications for source of fluoride Environmental Engineering Science, 33(7), 471-477	Irrelevant population
L1	Nageshwar, M., Sudhakar, K., Reddy, K. P. (2018). Quercetin ameliorates oxidative stress, neural damage of brain and behavioral impairment of rat with fluoride exposure International Journal of Pharmaceutical Sciences and Research, 9(8), 3247-3256	Irrelevant population
L1	Nakahara, Y.,Ozaki, K.,Matsuura, T. (2017). Long- term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents Diabetes, 66(11), 2868-2874	Irrelevant population
L1	Ndambiri, Hilary, Rotich, Emmy (2018). Valuing excess fluoride removal for safe drinking water in Kenya Water Policy, 20(5), 953-965	Irrelevant population
L1	Nelson, E. A., Halling, C. L., Buikstra, J. E. (2019). Evidence of Skeletal Fluorosis at the Ray Site, Illinois, USA: a pathological assessment and discussion of environmental factors International Journal Of Paleopathology, 26(#issue#), 48-60	Irrelevant population

La		
Le vel	Bibliography	Reason for exclusion
L1	Nguyen, T. N., Gaol, L. F, Hong, T. P, Trawiński, B (2019). Intelligent Information and Database Systems Proceedings of the 11th Asian Conference, ACIIDS April 8–11, 2019, Part I, #volume#(#issue#), #Pages#	Irrelevant population
L1	Ni, J.,Zhong, Z.,Zhang, W.,Liu, B.,Shu, R.,Li, Y. (2020). Fluoride resistance in fibroblasts is conferred via reduced susceptibility to oxidative stress and apoptosis FEBS Open Bio., #volume#(#issue#), #Pages#	Irrelevant population
L1	Nilotpal, Das, Sarma, K. P., Patel, A. K., Deka, J. P., Aparna, Das, Abhay, Kumar, Shea, P. J., Manish, Kumar (2017). Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, northeast India Environmental Earth Sciences, 76(4), 183	Irrelevant population
L1	Niu, Q. (2018). Neurotoxicity of Aluminum #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Niu, Q. (2018). Overview of the Relationship Between Aluminum Exposure and Health of Human Being Advances in Experimental Medicine and Biology, 1091(#issue#), 1-31	Irrelevant population
L1	Niu, R ,Sun, Z,Wang, J X,Li, R ,Guo, Z,Wang, J M,Zhang, J,Wang J D (2019). Effect of Physical Exercise on Bone Remodeling and Neurogenesis in Mice Exposed to Fluoride XXXIVth Conference of the International Society For Fluoride Research, 52(1), 93-94	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Nkpaa, K. W.,Onyeso, G. I. (2018). Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats Neuroscience Letters, 682(#issue#), 92-99	Irrelevant population
L1	NTP-National Toxicology Program, (2016). Systematic literature review on the effects of fluoride on learning and memory in animal studies. NTP Research Report 1 National Toxicology Program. Research Triangle Park, NC, #volume#(#issue#), #Pages#	Irrelevant population
L1	NTP-National Toxicology Program, (2019). Draft NTP monograph on the systematic review of fluoride exposure and neurodevelopmental and cognitive health effects U.S Department of Health and Human Services, National Toxicology Program. Research Triangle Park, NC, #volume#(#issue#), #Pages#	Irrelevant population
L1	Obeid, Grace, Do, Giao, Kirby, Lisa, Hughes, Carolyn, Sbidian, Emilie, Le Cleach, Laurence (2020). Interventions for chronic palmoplantar pustulosis Cochrane Database of Systematic Reviews, #volume#(1), #Pages#	Irrelevant population
L1	O'Connell, Joan,Rockell, Jennifer,Ouellet, Judith,Tomar, Scott L.,Maas, William (2016). Costs And Savings Associated With Community Water Fluoridation In The United States Health Affairs, 35(12), 2224-2232	Irrelevant population
L1	Olivera, S., Chaitra, K., Krishna,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Venkatesh, Muralidhara, H. B., Inamuddin, , Asiri, A. M., Ahamed, M. I. (2018). Cerium dioxide and composites for the removal of toxic metal ions Environmental Chemistry Letters, 16(4), 1233-1246	
L1	Oner, A. C., Komuroglu, A. U., Dede, S., Yur, F., Oner, A. (2017). The effect of vitamin C and vitamin E on oxidative damage in ratswith fluorosis Turkish Journal of Biochemistry, 42 (Supplement 1)(#issue#), 24	Irrelevant population
L1	Oner, A. C., Yur, F., Oner, A., Komuroglu, A. U., Dede, S. (2017). Effect of vitamin C and vitamin E on serum biochemistry for protection inflorosis Turkish Journal of Biochemistry, 42 (Supplement 1)(#issue#), 50	Irrelevant population
L1	Osterman, John W. (1990). Evaluating the Impact of Municipal Water Fluoridation on the Aquatic Environment American Journal of Public Health, 80(10), 1230-5	Irrelevant population
L1	Owumi, S. E., Aliyu-Banjo, N. O., Danso, O. F. (2019). Fluoride and diethylnitrosamine coexposure enhances oxido-inflammatory responses and caspase-3 activation in liver and kidney of adult rats J Biochem Mol Toxicol, 33(7), e22327	Irrelevant population
L1	Palczewska-Komsa, M., Wilk, A., Stogiera, A., Chlubek, D., Buczkowska-Radlińska, J., Wiszniewska, B. (2016). Animals in biomonitoring studies of environmental fluoride pollution Fluoride, 49(3 Part 2), 279-292	Irrelevant population
L1	Palipoch, S. (2018). Special Issue: Biomedical sciences Walailak Journal of Science and Technology,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	15(2), 107-177	
L1	Palmeira, Aroa,da Silva, Vath,Dias Junior, F. L.,Stancari, R. C. A.,Nascentes, G. A. N.,Anversa, L. (2019). Physicochemical and microbiological quality of the public water supply in 38 cities from the midwest region of the State of Sao Paulo, Brazil Water Environment Research, 91(8), 805-812	Irrelevant population
L1	Palmieri, M. J., Andrade-Vieira, L. F., Campos, J. M. S., dos Santos Gedraite, L., Davide, L. C. (2016). Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays Ecotoxicology and Environmental Safety, 133(#issue#), 442-447	Irrelevant population
L1	Palomino Cabello, C.,Font Picó, M. F.,Maya, F.,Rio, M. del,Turnes Palomino, G. (2018). UiO-66 derived etched carbon/polymer membranes: high-performance supports for the extraction of organic pollutants from water Chemical Engineering Journal, 346(#issue#), 85-93	Irrelevant population
L1	Pandey, P.,Khan, F.,Mishra, R.,Singh, S. K. (2020). Elucidation of the potential of Moringa oleifera leaves extract as a potent alternate to the chemical coagulant in water treatment process Water Environ Res, #volume#(#issue#), #Pages#	Irrelevant population
L1	Pandith, M.,Malpe, D. B.,Rao, A. D.,Rao, P. N. (2016). Aquifer wise seasonal variations and spatial distribution of major ions with focus on fluoride	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	contamination-Pandharkawada block, Yavatmal district, Maharashtra, India Environmental Monitoring and Assessment, 188(2), 1-20	
L1	Panziera, W., Schwertz, C. I., da Silva, F. S., Taunde, P. A., Pavarini, S. P., Driemeier, D. (2018). Acute sodium fluorosilicate poisoning in cattle. [Portuguese] Acta Scientiae Veterinariae, 46 (Supplement) (no pagination)(280), #Pages#	Irrelevant population
L1	Patel, R. K., Kumar, S., Chawla, A. K., Mondal, P., Neelam, Teychene, B., Pandey, J. K. (2019). Elimination of fluoride, arsenic, and nitrate from water through adsorption onto nano-adsorbent: A review Current Nanoscience, 15(6), 557-575	Irrelevant population
L1	Paul, C. J., Jeuland, M. A., Godebo, T. R., Weinthal, E. (2018). Communities coping with risks: Household water choice and environmental health in the Ethiopian Rift Valley Environmental Science and Policy, 86(#issue#), 85-94	Irrelevant population
L1	Pei, J., Yao, Y., Li, B., Wei, W., Gao, Y., Darko, G. M., Sun, D. (2017). Excessive fluoride stimulated osteoclast formation through up-regulation of receptor activator for nuclear factor-kappaB ligand (RANKL) in C57BL/6 mice International Journal of Clinical and Experimental Medicine, 10(11), 15260-15268	Irrelevant population
L1	Pereira, A. G., Chiba, F. Y., de Lima Coutinho Mattera, M. S., Pereira, R. F., de Cassia Alves Nunes, R., Tsosura, T. V. S., Okamoto, R., Sumida, D. H.	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	(2017). Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats J Trace Elem Med Biol, 39(#issue#), 140-146	
L1	Perera, T.,Ranasinghe, S.,Alles, N.,Waduge, R. (2018). Effect of fluoride on major organs with the different time of exposure in rats Environmental Health and Preventive Medicine, 23 (1) (no pagination)(17), #Pages#	Irrelevant population
L1	Pérez-Jiménez, M., Hernández-Munuera, M., Zapata, M. C. P., López-Ortega, G., Amor, F. M. del (2017). Two minuses can make a plus: waterlogging and elevated CO2 interactions in sweet cherry (Prunus avium) cultivars Physiologia Plantarum, 161(2), 257-272	Irrelevant population
L1	Peterson, E., Shapiro, H., Li, Y., Minnery, J. G., Copes, R. (2016). Arsenic from community water fluoridation: quantifying the effect J Water Health, 14(2), 236-42	Irrelevant population
L1	Pigna, M., Dynes, J. J., Violante, A., Sommella, A., Caporale, A. G. (2016). Sorption of arsenite on Cu-Al, Mg-Al, Mg-Fe, and Zn-Al layered double hydroxides in the presence of inorganic anions commonly found in aquatic environments Environmental Engineering Science, 33(2), 98-104	Irrelevant population
L1	Pollo, F. E., Grenat, P. R., Otero, M. A., Salas, N. E., Martino, A. L. (2016). Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	associated to fluorite mine Ecotoxicol Environ Saf, 133(#issue#), 466-74	
L1	Pollo, F. E., Grenat, P. R., Salinas, Z. A., Otero, M. A., Salas, N. E., Martino, A. L. (2017). Evaluation in situ of genotoxicity and stress in South American common toad Rhinella arenarum in environments related to fluorite mine Environmental science and pollution research international, 24(22), 18179-18187	Irrelevant population
L1	Prabhakar, Singh, Das, T. K. (2019). Ultrastructural localization of 4-hydroxynonenal adducts in fluoride-exposed cells: protective role of dietary antioxidants Fluoride, 52(1), 49-58	Irrelevant population
L1	Prabhu, S. M., Pawar, R. R., Sasaki, K., Park, ChangMin (2019). A mechanistic investigation of highly stable nano ZrO2 decorated nitrogen-rich azacytosine tethered graphene oxide-based dendrimer for the removal of arsenite from water Chemical Engineering Journal, 370(#issue#), 1474-1484	Irrelevant population
L1	Pradhan, R. M., Biswal, T. K. (2018). Fluoride in groundwater: a case study in Precambrian terranes of Ambaji region, North Gujarat, India Proceedings of the International Association of Hydrological Sciences, 379(#issue#), 351-356	Irrelevant population
L1	Prasad, Neha, Pushpaangaeli, Bernadette, Anumala, Ram, Maimanuku, Leenu (2018). Fluoride concentration in drinking water samples in Fiji	Irrelevant population

Le	Bibliography	Reason for exclusion
vel	ыынодгартту	Reason for exclusion
	Australian and New Zealand Journal of Public Health, 42(4), 372-374	
L1	Puntoriero, M. L., Cirelli, A. F., Volpedo, A. V. (2018). Histopathological changes in liver and gills of Odontesthes bonariensis inhabiting a lake with high concentrations of arsenic and fluoride (Chasicó Lake, Buenos Aires Province) Revista Internacional de Contaminación Ambiental, 34(1), 69-77	Irrelevant population
L1	Qi, HongJuan,Hu, XiaoFeng,Wang, LiLi,Zhang, Can,An, DaiZhi,Zhang, ChuanFu,Wang, Qiang,Jin, LianQun,Liu, XueLin (2018). Comparison of physicochemical profiles of drinking water sampled from 3 border defense regions in China Journal of Third Military Medical University, 40(20), 1815-1819	Irrelevant population
L1	Qin, J. H., Dilinuer, A., Saimire, S., Kalibinuer, A., Yusufu, M., Yirizhati, A., Cui, S. S., Nuersimanguli, M., Chen, W. J., Bai, S. B. (2017). [Excessive fluoride increases the expression of osteocalcin in the mouse testis] Zhong Hua Nan Ke Xue, 23(9), 782-785	Irrelevant population
L1	Qing-Feng, S., Tian-Tong, X., Ying-Peng, X. (2019). Matrix metalloproteinase-9 and p53 involved in chronic fluorosis induced blood-brain barrier damage and neurocyte changes Archives of Medical Science, 15(2), 457-466	Irrelevant population
L1	Qu, RuiJuan,Liu, JiaoQin,Li, ChenGuang,Wang, LianSheng,Wang, ZunYao,Wu, JiChun (2016). Experimental and theoretical insights into the	Irrelevant population

1		
Le vel	Bibliography	Reason for exclusion
	photochemical decomposition of environmentally persistent perfluorocarboxylic acids Water Research (Oxford), 104(#issue#), 34-43	
L1	Qu, W.,Zheng, W.,Spencer, P.,Zheng, J.,Yang, L.,Han, F.,Yan, L.,Ma, W.,Zhou, Y.,Zheng, Y.,Wang, Y. (2017). Public health concerns arising from interventions designed to circumvent polluted surface drinking water in Shenqiu County, Henan, China The Lancet, 390 (SPEC.ISS 1)(#issue#), 87	Irrelevant population
L1	Quadria, J ,Sarwara, S ,Shariffa, A (2019). Fluoride Induces Alteration in Gut Chemistry XXXIVth Conference of the International Society For Fluoride Research, 52(1), 94	Irrelevant population
L1	Rajkamal, Mohan,Bora, A. J.,Dutta, R. K. (2018). Fluoride removal from water by lime-sludge waste Desalination and Water Treatment, 112(#issue#), 19- 33	Irrelevant population
L1	Raju, S., Sivanesan, S. K., Gudemalla, K. (2019). Cognitive enhancement effect of ginkgo biloba extract on memory and learning impairments induced by fluoride neurotoxicity International Journal of Research in Pharmaceutical Sciences, 10(1), 129-134	Irrelevant population
L1	Raju, S.,Sivanesan, S.,Gudemalla, K.,Mundugaru, R.,Swaminathan, M. (2019). Effect of ginkgo biloba extract on hematological and biochemical alterations in fluoride intoxicated wistar rats Research Journal of	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Pharmacy and Technology, 12(8), 3839-3846	
L1	Ramesh, M. V., Naveenkumar, P. G., Prashant, G. M., Sakeenabi, B., Allamaprabhu, Vijetha, K. (2016). Evaluation of effect of brushite-calcite and two indigenous herbs in removal of fluoride from water Journal of Clinical and Diagnostic Research, 10(6), ZC83-ZC85	Irrelevant population
L1	Rameshrad, M.,Razavi, B. M.,Hosseinzadeh, H. (2017). Protective effects of green tea and its main constituents against natural and chemical toxins: A comprehensive review Food and Chemical Toxicology, 100(#issue#), 115-137	Irrelevant population
L1	Rango, T., Vengosh, A., Jeuland, M., Whitford, G. M., Tekle-Haimanot, R. (2017). Biomarkers of chronic fluoride exposure in groundwater in a highly exposed population Science of the Total Environment, #volume#(#issue#), 1-11	Irrelevant population
L1	Ray, S. P. Sinha (2019). Ground Water Development - Issues and Sustainable Solutions #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Rebhun, R. B., Kass, P. H., Kent, M. S., Watson, K. D., Withers, S. S., Culp, W. T. N., King, A. M. (2017). Evaluation of optimal water fluoridation on the incidence and skeletal distribution of naturally arising osteosarcoma in pet dogs Veterinary and Comparative Oncology, 15(2), 441-449	Irrelevant population

Le		
vel	Bibliography	Reason for exclusion
L1	Renu, Singh, Srivastava, A. K., Gangwar, N. K. (2017). Clinico-pathological studies on the co-exposure of cypermethrin and fluoride in experimental rats with ameliorative action of vitamin E Veterinary Practitioner, 18(2), 207-210	Irrelevant population
L1	Rezaeinia, S.,Nasseri, S.,Binesh, M.,Dezfuli, F. G.,Abdolkhani, S.,Gholami, M.,Jaafarzadeh, N. (2018). Qualitative and health-related evaluation of point-of-use water treatment equipment performance in three cities of Iran Journal of Environmental Health Science & Engineering, 16(2), 265-275	Irrelevant population
L1	Richardson, B. A.,Boyd, A. A.,Tobiasson, T.,Germino, M. J. (2018). Spectrophotometry of Artemisia tridentata to quantitatively determine subspecies Rangeland Ecology & Management, 71(1), 87-90	Irrelevant population
L1	Roger Lee, Mendoza (2011). Fluoride-treated water and the problem of merit goods Water Policy, 13(1), 38-52	Irrelevant population
L1	Roy, Swapnila (2016). Remediation of Fluoride in Waste Water #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Rubina, Sahin, Kavita, Tapadia, Ashima, Sharma (2016). Kinetic and isotherm studies on adsorption of fluoride by limonite with batch technique Journal of Environmental Biology, 37(5), 919-926	Irrelevant population
L1	Rubio, C.,Rodriguez, I.,Jaudenes, J. R.,Gutierrez, A. J.,Paz, S.,Burgos, A.,Hardisson, A.,Revert, C. (2020).	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Fluoride levels in supply water from a volcanic area in the Macaronesia region Environmental science and pollution research international., 22(#issue#), #Pages#	
L1	Sabarathinam, Chidambaram, Alagappan, Ramanathan (2016). Fluoride removal in community water supply using natural materials #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sadhasivam, T.,Lim, MinHwa,Jung, DoSung,Lim, HanKwon,Ryi, ShinKun,Jung, HoYoung (2019). A novel structured nanosized CaO on nanosilica surface as an alternative solid reducing agent for hydrogen fluoride removal from industrial waste water Journal of Environmental Management, 231(#issue#), 1076- 1081	Irrelevant population
L1	Saha, Dipankar, Marwaha, Sanjay, Mukherjee, Arunangshu (2018). Clean and Sustainable Groundwater in India #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sakizadeh, M., Ahmadpour, E., Sharafabadi, F. M. (2019). Spatial analysis of chromium in southwestern part of Iran: probabilistic health risk and multivariate global sensitivity analysis Environ Geochem Health, 41(5), 2023-2038	Irrelevant population
L1	Salifu, Abdulai (2017). Fluoride Removal from Groundwater by Adsorption Technology: the occurrence, adsorbent synthesis, regeneration and	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	disposal #journal#, #volume#(#issue#), #Pages# Sanchez-Gutierrez, M.,Martinez-Loredo, E.,Madrigal-Santillan, E. O.,Betanzos-Cabrera, G.,Hernandez-Zavala, A.,Mojica-Villegas, M. A.,Izquierdo-Vega, J. A. (2019). Exposure of fluoride with streptozotocin-induced diabetes aggravates testicular damage and spermatozoa parameters in mice Journal of Toxicology, 2019 (no pagination)(5269380), #Pages#	Irrelevant population
L1	Sankannavar, R., Chaudhari, S. (2019). An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation Journal of Environmental Management, 245(#issue#), 230-237	Irrelevant population
L1	Santos, M. S. F., Franquet-Griell, H., Alves, A., Lacorte, S. (2018). Development of an analytical methodology for the analysis of priority cytostatics in water Science of the Total Environment, 645(#issue#), 1264-1272	Irrelevant population
L1	Sarinana-Ruiz, Y. A., Vazquez-Arenas, J., Sosa-Rodriguez, F. S., Labastida, I., Armienta, M. A., Aragon-Pina, A., Escobedo-Bretado, M. A., Gonzalez-Valdez, L. S., Ponce-Pena, P., Ramirez-Aldaba, H., Lara, R. H. (2017). Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico Chemosphere, 178 (#issue#), 391-401	Irrelevant population
L1	Sarwar, S,Quadri, J,Singh, S,Das, P,Nag, T,Roy, T,Shariff, A (2019). Fluoride-Induced Glial Cell	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Changes in the Myenteric Plexus of Neonatal Rats XXXIVth Conference of the International Society For Fluoride Research, 52(1), 87-88	
L1	Saumya, S. M.,Basha, P. M. (2017). Fluoride exposure aggravates the testicular damage and sperm quality in diabetic mice: protective role of ginseng and banaba Biological Trace Element Research, 177(2), 331-344	Irrelevant population
L1	Schur, Emilie Louise, Wilder, Margaret L., Bauer, Carl J., Liverman, Diana (2017). Household Water Security within a Transboundary Aquifer Basin: A Comparative Study in the US-Mexico Borderlands #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Shah, N. S.,Rizwan, A. D.,Khan, J. A.,Murtaza, Sayed,Zia-ul-Haq, Khan,Behzad, Murtaza,Iqbal, J.,Salah ud, Din,Muhammad, Imran,Muhammad, Nadeem,Al-Muhtaseb, A. H.,Nawshad, Muhammad,Khan, H. M.,Moinuddin, Ghauri,Gohar, Zaman (2018). Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H2O2 based advanced oxidation processes Process Safety and Environmental Protection, 117(#issue#), 473-482	Irrelevant population
L1	Shahab, S., Mustafa, G., Khan, I., Zahid, M., Yasinzai, M., Ameer, N., Asghar, N., Ullah, I., Nadhman, A., Ahmed, A., Munir, I., Mujahid, A., Hussain, T., Ahmad, M. N., Ahmad, S. S. (2017). Effects of fluoride ion	Irrelevant population

La		
Le vel	Bibliography	Reason for exclusion
	toxicity on animals, plants, and soil health: A review Fluoride, 50(4), 393-408	
L1	Sharma, A., John, P. J., Bhatnagar, P. (2019). Combination of fluoride and endosulfan induced teratogenicity and developmental toxicity in Swiss albino mice exposed during organogenesis Toxicology and Industrial Health, 35(9), 604-613	Irrelevant population
L1	Sharma, C.,Suhalka, P.,Bhatnagar, M. (2018). Curcumin and resveratrol rescue cortical-hippocampal system from chronic fluoride-induced neurodegeneration and enhance memory retrieval International Journal of Neuroscience, 128(11), 1007-1021	Irrelevant population
L1	Sharma, S.,Upadhyay, D.,Singh, B.,Shrivastava, D.,Kulshreshtha, N. M. (2019). Defluoridation of water using autochthonous bacterial isolates Environmental Monitoring & Assessment, 191(12), 781	Irrelevant population
L1	Shashi, A.,Khan, I. (2017). Efficacy of Boerhaavia diffusa L. on disruption of gonadotropins and testosterone in fluoride intoxicated male rats Asian Journal of Pharmaceutical and Clinical Research, 10(12), 68-73	Irrelevant population
L1	Shashikant, Kahu, Anita, Shekhawat, Saravanan, D., Ravin, Jugade (2017). Stannic chloride impregnated chitosan for defluoridation of water International Journal of Biological Macromolecules, 104(Part B), 1528-1538	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Shin, W.,Oh, J.,Choung, S.,Cho, B. W.,Lee, K. S.,Yun, U.,Woo, N. C.,Kim, H. K. (2016). Distribution and potential health risk of groundwater uranium in Korea Chemosphere, 163(#issue#), 108-115	Irrelevant population
L1	Shraboni, Mukherjee, Gopinath, Halder (2018). A review on the sorptive elimination of fluoride from contaminated wastewater Journal of Environmental Chemical Engineering, 6(1), 1257-1270	Irrelevant population
L1	Shreeya, Kalidindi, Mounica, Vecha, Arkamitra, Kar, Trishikhi, Raychoudhury (2017). Aluminumcerium double-metal impregnated activated carbon: a novel composite for fluoride removal from aqueous solution Water Science and Technology: Water Supply, 17(1), 115-124	Irrelevant population
L1	Shukla, V,Kumar, N (2020). Environmental Concerns and Sustainable Development: Volume 1: Air, Water and Energy Resources #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sikdar, P K (2019). Groundwater Development and Management : Issues and Challenges in South Asia #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Simon, M. J. K.,Beil, F. T.,Riedel, C.,Lau, G.,Tomsia, A.,Zimmermann, E. A.,Koehne, T.,Ueblacker, P.,Ruther, W.,Pogoda, P.,Ignatius, A.,Amling, M.,Oheim, R. (2016). Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure Clin Oral	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Investig, 20(9), 2361-2370	
L1	Singh, A. K.,Das, S.,Singh, S.,Pradhan, N.,Gajamer, V. R.,Kumar, S.,Lepcha, Y. D.,Tiwari, H. K. (2019). Physicochemical parameters and alarming coliform count of the potable water of Eastern Himalayan state Sikkim: An indication of severe fecal contamination and immediate health risk Frontiers in Cell and Developmental Biology, 7 (AUG) (no pagination)(174), #Pages#	Irrelevant population
L1	Singh, A., Saha, D, Tyagi, A. C (2019). Water Governance: Challenges and Prospects #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Singh, B,Singh, K (2019). Integrated Fluorosis Mitigation Programme for Abatement of Fluorosis in Selected Fluorosis Endemic Villages of Nawada District, Bihar XXXIVth Conference of the International Society For Fluoride Research, 52(1), 82	Irrelevant population
L1	Singh, N. B., Nagpal, G., Agrawal, S., Rachna, (2018). Water purification by using adsorbents: a review Environmental Technology & Environmental Technology	Irrelevant population
L1	Singh, P,Singh, R. P,Srivastava, V (2020). Contemporary Environmental Issues and Challenges in Era of Climate Change #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Singh, P.,Das, T. K. (2019). Ultrastructural localization of 4-hydroxynonenal adducts in fluoride-	Irrelevant population

Le	Bibliography	Reason for exclusion
	exposed cells: Protective role of dietary antioxidants Fluoride, 52(1), 49-58	
L1	Singh, R., Hussain, M. A., Kumar, J., Kumar, M., Kumari, U., Mazumder, S. (2017). Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus Aquat Toxicol, 192(#issue#), 30-39	Irrelevant population
L1	Singh, R.,Khatri, P.,Srivastava, N.,Jain, S.,Brahmachari, V.,Mukhopadhyay, A.,Mazumder, S. (2017). Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections Fish Shellfish Immunol, 63(#issue#), 314- 321	Irrelevant population
L1	Singh, R., Srivastava, A. K., Gangwar, N. K. (2017). Clinico-pathological studies on the co-exposure of cypermethrin and fluoride in experimental rats with ameliorative action of Vitamin E Veterinary Practitioner, 18(2), 207-210	Irrelevant population
L1	Singh, S. T., Dua, K., Gupta, D. K., Randhawa, S. S., Bansal, B. K. (2017). Bovine fluorosis and its effects on essential minerals, haemogram and biochemical status in the fluoride endemic South-West Punjab of India Indian Journal of Animal Sciences, 87(6), 718-722	Irrelevant population
L1	Singh, V. P,Yadav, S,Yadava, N. R (2018). Water Resource Management: Select Proceedings of	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	ICWEES-2016 #journal#, #volume#(78), #Pages# Singh, Vijay P.,Yadav, Shalini,Yadava, Ram Narayan (2018). Water Quality Management : Select Proceedings of ICWEES-2016 #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sivasankar, Venkataraman (2016). Surface Modified Carbons as Scavengers for Fluoride from Water #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sm, S.,Mahaboob Basha, P. (2017). Fluoride Exposure Aggravates the Testicular Damage and Sperm Quality in Diabetic Mice: Protective Role of Ginseng and Banaba Biological Trace Element Research, 177(2), 331-344	Irrelevant population
L1	Snyder, Wesley M.,Oregon State, University (2016). Public Proof: Science Communication, Weak Theory, and the Nonrational #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Spellman, Frank R. (2017). The Drinking Water Handbook, Third Edition #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Spencer, K. F.,Limeback, H. (2018). Blood is thicker than water: Flaws in a National Toxicology Program study Medical Hypotheses, 121(#issue#), 160-163	Irrelevant population
L1	Sriroop, Chaudhuri,Mimi, Roy (2017). Rural-urban spatial inequality in water and sanitation facilities in India: a cross-sectional study from household to	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	national level Applied Geography, 85(#issue#), 27-38	
L1	Stalter, D.,O'Malley, E.,Gunten, U. von,Escher, B. I. (2016). Point-of-use water filters can effectively remove disinfection by-products and toxicity from chlorinated and chloraminated tap water Environmental Science: Water Research & Environmental Science: Water Research & Technology, 2(5), 875-883	Irrelevant population
L1	Sudhakar, K.,Reddy, K. P. (2018). Protective effects of Abelmoschus moschatus seed extract on neurotransmitter system of developing brain of Wistar rats with gestational and post-natal exposure of sodium fluoride International Journal of Green Pharmacy, 12(1 Supplement), S131-S139	Irrelevant population
L1	Sun, G,Li, Y,Wang, D,Dong, L,Li, X,Li, B,Zheng, Q,Dong, L (2019). Simultaneous Removal Fluoride and Arsenic From Drinking Water Using a New Nano-Micro Ceramic Materials XXXIVth Conference of the International Society For Fluoride Research, 52(1), 96-97	Irrelevant population
L1	Sun, Z.,Zhang, Y.,Xue, X.,Niu, R.,Wang, J. (2018). Maternal fluoride exposure during gestation and lactation decreased learning and memory ability, and glutamate receptor mRNA expressions of mouse pups Human & Experimental Toxicology, 37(1), 87-93	Irrelevant population
L1	Sun, ZiLong, Li, SuJuan, Guo, Zhen Zhen, Li, Rui, Wang, JiXiang, Niu, Rui Yan, Wang, Jun Dong (2018). Effects of fluoride on SOD and CAT in testis and epididymis	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	of mice Biological Trace Element Research, 184(1), 148-153	
L1	Susanta, Ray,Roy, P. K.,Arunabha, Majumder (2016). Quality of packaged drinking water in Kolkata city, India and risk to public health Desalination and Water Treatment, 57(59), 28734-28742	Irrelevant population
L1	Suzuki, M., Everett, E. T., Whitford, G. M., Bartlett, J. D. (2017). 4-phenylbutyrate Mitigates Fluoride-Induced Cytotoxicity in ALC Cells Front Physiol, 8(#issue#), 302	Irrelevant population
L1	Szyperska, A.,Gutowska, I.,Machoy-Mokrzynska, A.,Rak, J.,Baranowska-Bosiacka, I.,Machoy, Z. (2017). A study of an hypothesis linking aluminum fluoride to alzheimer disease: The affinity of amino acids occurring in Beta-amyloid to [Al(H <inf>2</inf> O) <inf>6</inf>] ³⁺ Fluoride, 50(4), 468-474	Irrelevant population
L1	Tan, Lynn,Lin, Caleb Zhiliang,Ma, Stefan,Romero, Lorena,Warrier, Satish (2018). Bowel preparation for colonoscopy Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant population
L1	Tan, Y. H.,Goh, P. S.,Ismail, A. F.,Ng, B. C.,Lai, G. S. (2017). Decolourization of aerobically treated palm oil mill effluent (AT-POME) using polyvinylidene fluoride (PVDF) ultrafiltration membrane incorporated with coupled zinc-iron oxide nanoparticles Chemical Engineering Journal, 308(#issue#), 359-369	Irrelevant population

-		
Le vel	Bibliography	Reason for exclusion
L1	Tang, Y. S. C., Davis, R. A., Ganguly, T., Sutcliffe, J. L. (2019). Identification, Characterization, and Optimization of Integrin alphavbeta(6)-Targeting Peptides from a One-Bead One-Compound (OBOC) Library: Towards the Development of Positron Emission Tomography (PET) Imaging Agents Molecules, 24(2), #Pages#	Irrelevant population
L1	Tanu, Sharma, Arvesh, Sharma, Inderpreet, Kaur, Mahajan, R. K., Litoria, P. K., Sahoo, S. K., Bajwa, B. S. (2019). Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India Chemosphere, 219(#issue#), 607-616	Irrelevant population
L1	Teng, Y.,Zhang, J.,Zhang, Z.,Feng, J. (2018). The Effect of Chronic Fluorosis on Calcium Ions and CaMKIIalpha, and c-fos Expression in the Rat Hippocampus Biological Trace Element Research, 182(2), 295-302	Irrelevant population
L1	Thammitiyagodage, M. G.,Gunatillaka, M. M.,Ekanayaka, N.,Rathnayake, C.,Horadagoda, N. U.,Jayathissa, R.,Gunaratne, U. K.,Kumara, W. G.,Abeynayake, P. (2017). Ingestion of dug well water from an area with high prevalence of chronic kidney disease of unknown etiology (CKDu) and development of kidney and liver lesions in rats Ceylon Medical Journal, 62(1), 20-24	Irrelevant population
L1	Thangarajan, M., Singh, V. P. (2016). Groundwater	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	assessment, modeling, and management #journal#, #volume#(#issue#), #Pages#	
L1	Thomas, S.,Ravishankaran, S.,Johnson Amala Justin, N. A.,Asokan, A.,Maria Jusler Kalsingh, T.,Mathai, M. T.,Valecha, N.,Eapen, A. (2016). Does fluoride influence oviposition of Anopheles stephensi in stored water habitats in an urban setting? Malaria journal, 15(1), 1-9	Irrelevant population
L1	Thompson, S.,Fleming, I. N.,O'Hagan, D. (2016). Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase Org Biomol Chem, 14(11), 3120-9	Irrelevant population
L1	Tian, X,Dong, N,Feng, J,Yan, X (2019). RNA Deep Sequencing Analysis of the Rat Heart Exposed to Fluoride XXXIVth Conference of the International Society For Fluoride Research, 52(1), 89	Irrelevant population
L1	Tian, X.,Xie, J.,Chen, X.,Dong, N.,Feng, J.,Gao, Y.,Tian, F.,Zhang, W.,Qiu, Y.,Niu, R.,Ren, X.,Yan, X. (2019). Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring Archives of Toxicology., #volume#(#issue#), #Pages#	Irrelevant population
L1	Tian, XiaoLin,Feng, Jing,Dong, NiSha,Lyu, Yi,Wei, CaiLing,Li, Ben,Ma, YanQin,Xie, JiaXin,Qiu, YuLan,Song, GuoHua,Ren, XueFeng,Yan, XiaoYan (2019). Subchronic exposure to arsenite and fluoride from gestation to puberty induces oxidative stress and	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	disrupts ultrastructure in the kidneys of rat offspring Science of the Total Environment, 686(#issue#), 1229-1237	
L1	Tian, Y.,Xiao, Y.,Wang, B.,Sun, C.,Tang, K.,Sun, F. (2018). Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways Bioscience Reports, 38 (4) (no pagination)(BSR20171003), #Pages#	Irrelevant population
L1	Torres, L., August, A. (2018). Does perfluorooctane sulfonic acid (PFOS) affect the mouse immune system? FASEB Journal. Conference: Experimental Biology, 32(1 Supplement 1), #Pages#	Irrelevant population
L1	Tran, H. N., Nguyen, H. C., Woo, S. H., Nguyen, T. V., Vigneswaran, S., Hosseini-Bandegharaei, A., Rinklebe, J., Kumar Sarmah, A., Ivanets, A., Dotto, G. L., Bui, T. T., Juang, R. S., Chao, H. P. (2019). Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review Critical Reviews in Environmental Science and Technology, 49(23), 2155-2219	Irrelevant population
L1	Trishikhi, Raychoudhury, Boindala, S. P., Shreeya, Kalidindi (2017). Performance evaluation of metal impregnated activated carbon composite for removal of fluoride under varying solution chemistry Water Science and Technology: Water Supply, 17(5), 1377-	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Tsunoda, M,Kido, T,Sugaya, C,Yanagisawa, H (2019). Fluoride Deteriorates Tubulointestinal Nephropathy of Rats caused by Unilateral Obstruction as an Experimental Model XXXIVth Conference of the International Society For Fluoride Research, 52(1), 83	Irrelevant population
L1	Uddin, M. K.,Ahmed, S. S.,Naushad, M. (2019). A mini update on fluoride adsorption from aqueous medium using clay materials Desalination and Water Treatment, 145(#issue#), 232-248	Irrelevant population
L1	Udhayakumari, D. (2019). Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015-2019 Spectrochimica acta, Part A, Molecular and biomolecular spectroscopy.(#issue#), 117817	Irrelevant population
L1	Validandi, V.,Gourineni, S. R.,Dheeravath, S.,Nagalla, B.,Khandarea, A. L. (2017). Tamarind supplementation ameliorates fluoride-induced glucose intolerance and insulin resistance in rats Fluoride, 50(3), 314-323	Irrelevant population
L1	Vesga, F. J., Moreno, Y., Ferrús, M. A., Campos, C., Trespalacios, A. A. (2018). Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques International Journal of Hygiene and Environmental Health, 221(4), 595-601	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Vivar, M.,Pichel, N.,Fuentes, M.,Martinez, F. (2016). An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict Sci Total Environ, 550(#issue#), 534-546	Irrelevant population
L1	Volenzo, T. E.,Odiyo, J. (2018). Ecological public health and participatory planning and assessment dilemmas: The case of water resources management International Journal of Environmental Research and Public Health, 15 (8) (no pagination)(1635), #Pages#	Irrelevant population
L1	Wallace, Anna Rose, Southern Methodist, University (2016). A study of the release and sorption of phosphate and fluoride in green infrastructure for stormwater management #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Wang, C.,Chen, Y.,Manthari, R. K.,Wang, J. (2018). Abnormal spermatogenesis following sodium fluoride exposure is associated with the downregulation of CREM and ACT in the mouse testis Toxicology and Industrial Health, 34(4), 219-227	Irrelevant population
L1	Wang, F.,Hou, T. Z.,Li, J. J.,Li, Z. Z.,Tang, C. F. (2016). Effect of magnesium and selenium on the expression of matrix metalloproteinases-20 and kallikrein 4 in fluorosis mice. [Chinese] Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology, 51(9), 546-551	Irrelevant population
L1	Wang, H. W.,Zhao, W. P.,Tan, P. P.,Liu, J.,Zhao,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	J.,Zhou, B. H. (2017). The MMP-9/TIMP-1 System is Involved in Fluoride-Induced Reproductive Dysfunctions in Female Mice Biological Trace Element Research, 178(2), 253-260	
L1	Wang, HongWei,Liu, Jing,Zhao, WenPeng,Zhang, ZiHao,Li, SiQi,Li, SiHan,Zhu, ShiQuan,Zhou, BianHua (2019). Effect of fluoride on small intestine morphology and serum cytokine contents in rats Biological Trace Element Research, 189(2), 511-518	Irrelevant population
L1	Wang, J (2019). Fluoride-Induced Reproductive Toxicity XXXIVth Conference of the International Society For Fluoride Research, 52(1), 81	Irrelevant population
L1	Wang, M., Svatunek, D., Rohlfing, K., Liu, Y., Wang, H., Giglio, B., Yuan, H., Wu, Z., Li, Z., Fox, J. (2016). Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation Theranostics, 6(6), 887-95	Irrelevant population
L1	Wang, Mei,Li, Xiang,He, WenYan,Li, JinXin,Zhu, YanYuan,Liao, YuLiang,Yang, JinYan,Yang Xiao, E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China Environmental Pollution, 249(#issue#), 423-433	Irrelevant population
L1	Wang, Y.,McKee, M.,Torbica, A.,Stuckler, D. (2019). Systematic Literature Review on the Spread of Health-related Misinformation on Social Media Soc Sci Med, 240(#issue#), 112552	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Wang, Y.,Yu, R.,Zhu, G. (2019). Evaluation of physicochemical characteristics in drinking water sources emphasized on fluoride: A case study of Yancheng, China International Journal of Environmental Research and Public Health, 16(6), 1030	Irrelevant population
L1	Wasana, H. M., Perera, G. D., Gunawardena, P. S., Fernando, P. S., Bandara, J. (2017). WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues Scientific Reports, 7(#issue#), 42516	Irrelevant population
L1	Washington,,Office of Drinking, Water,Washington,,Department of, Health (2018). Monthly operations report guidance #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Waugh, D. T. (2019). Fluoride exposure induces inhibition of sodium/iodide symporter (NIS) contributing to impaired iodine absorption and iodine deficiency: molecular mechanisms of inhibition and implications for public health International Journal of Environmental Research and Public Health, 16(6), 1086	Irrelevant population
L1	Wei, N.,Dong, Y. T.,Deng, J.,Wang, Y.,Qi, X. L.,Yu, W. F.,Xiao, Y.,Zhou, J. J.,Guan, Z. Z. (2018). Changed expressions of N-methyl-D-aspartate receptors in the brains of rats and primary neurons exposed to high level of fluoride Journal of Trace	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Elements in Medicine and Biology, 45(#issue#), 31-40	
L1	Wei, R.,Luo, G.,Sun, Z.,Wang, S.,Wang, J. (2016). Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice Chemosphere, 153(#issue#), 419-25	Irrelevant population
L1	Wei, Y.,Zeng, B.,Zhang, H.,Chen, C.,Wang, N.,Wu, Y.,Shen, L. (2016). ITRAQ-based proteomics analysis of serum proteins in wistar rats treated with sodium fluoride: Insight into the potential mechanism and candidate biomarkers of fluorosis International Journal of Molecular Sciences, 17 (10) (no pagination)(1644), #Pages#	Irrelevant population
L1	Wen, Yan, Wan, YiZhen, Qiao, ChunXia, Xu, XiaoFeng, Wang, Jun, Shen, Yi (2019). Immunoregenerative effects of the bionically cultured Sanghuang mushrooms (Inonotus sanghuagn) on the immunodeficient mice Journal of Ethnopharmacology, 245(#issue#), 112047	Irrelevant population
L1	Whyman, R. A., Mahoney, E. K., Borsting, T. (2016). Community water fluoridation: attitudes and opinions from the New Zealand Oral Health Survey Aust N Z J Public Health, 40(2), 186-92	Irrelevant population
L1	Wierichs, R. J., Rupp, K., Meyer-Lueckel, H., Apel, C., Esteves-Oliveira, M. (2019). Effects of Dentifrices Differing in Fluoride Content on Remineralization Characteristics of Dentin in vitro Caries research,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	#volume#(#issue#), 1-12	
L1	Wong, E. Y., Stenstrom, M. K. (2018). Onsite defluoridation system for drinking water treatment using calcium carbonate Journal of Environmental Management, 216(#issue#), 270-274	Irrelevant population
L1	Wong, Y. M.,Li, R.,Lee, C. K. F.,Wan, H. T.,Wong, C. K. C. (2017). The measurement of bisphenol A and its analogues, perfluorinated compounds in twenty species of freshwater and marine fishes, a time-trend comparison and human health based assessment Mar Pollut Bull, 124(2), 743-752	Irrelevant population
L1	World Health Organization, (2017). Inheriting a sustainable world? Atlas on children's health and the environment. Licence: CC BY-NC-SA 3.0 IGO. #journal#, #volume#(#issue#), xvii + 139 pp.	Irrelevant population
L1	Wu, K.,Zhang, N.,Liu, T.,Ma, C.,Jin, P.,Zhang, F.,Zhang, J.,Wang, X. (2017). Competitive adsorption behaviors of arsenite and fluoride onto manganese-aluminum binary adsorbents Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529(#issue#), 185-194	Irrelevant population
L1	Wu, P.,Sun, Z.,Lv, X.,Pei, X.,Manthari, R. K.,Wang, J. (2019). Fluoride induces autoimmune orchitis involved with enhanced IL-17A secretion in mice testis Journal of Agricultural and Food Chemistry, 67(48), 13333-13343	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Wu, T.,Li, X.,Yang, T.,Sun, X.,Mielke, H. W.,Cai, Y.,Ai, Y.,Zhao, Y.,Liu, D.,Zhang, X.,Li, X.,Wang, L.,Yu, H. (2017). Multi-Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment Int J Environ Res Public Health, 14(10), #Pages#	Irrelevant population
L1	Xie, DongHua,Gu, Yue,Wang, HaoJie,Wang, YongChuang,Qin, WenXiu,Wang, GuoZhong,Zhang, HaiMin,Zhang, YunXia (2019). Enhanced fluoride removal by hierarchically porous carbon foam monolith with high loading of UiO-66 Journal of Colloid and Interface Science, 542(#issue#), 269-280	Irrelevant population
L1	Xie, Y. L., Zhang, B., Jing, L. (2018). MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia- reperfusion injury by targeting p53 Neurol Res, 40(10), 828-837	Irrelevant population
L1	Xu, XiaoTing,Li, YaHe,Wang, Dong,Xu, NianJun (2016). Effects of simulated acid rain on the photosynthetic physiological characteristics in Ulva fasciata under salt stress Journal of Fisheries of China, 40(5), 731-739	Irrelevant population
L1	Xu, Y., Wang, S., Jiang, L., Wang, H., Yang, Y., Li, M., Wang, X., Zhao, X., Xie, K. (2016). Identify melatonin as a novel therapeutic reagent in the treatment of 1-bromopropane(1-BP) intoxication	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Medicine (United States), 95 (3) (no pagination)(e2203), #Pages#	
L1	Yadav, K. K., Neha, Gupta, Vinit, Kumar, Khan, S. A., Amit, Kumar (2018). A review of emerging adsorbents and current demand for defluoridation of water: bright future in water sustainability Environment International, 111(#issue#), 80-108	Irrelevant population
L1	Yadu, B., Chandrakar, V., Meena, R. K., Keshavkant, S. (2017). Glycinebetaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L South African Journal of Botany, 111(#issue#), 68-75	Irrelevant population
L1	Yan, N.,Liu, Y.,Liu, S.,Cao, S.,Wang, F.,Wang, Z.,Xi, S. (2016). Fluoride-Induced Neuron Apoptosis and Expressions of Inflammatory Factors by Activating Microglia in Rat Brain Mol Neurobiol, 53(7), 4449-60	Irrelevant population
L1	Yang, M.,Ren, Z.,Zhou, B.,Guan, Z.,Yu, W. (2017). Expression of endonuclease G in the brain tissue of rats with chronic fluorosis. [Chinese] Chinese Journal of Endemiology, 36(5), 327-332	Irrelevant population
L1	Yao, Y.,Ma, Y.,Zhong, N.,Pei, J. (2019). The Inverted U-Curve Association of Fluoride and Osteoclast Formation in Mice Biological Trace Element Research, 191(2), 419-425	Irrelevant population
L1	You, H.,Fu, S.,Qin, X.,Yu, Y.,Yang, B.,Zhang, G.,Sun, X.,Feng, Y.,Chen, Y.,Wu, J. (2016). A study of the	Irrelevant population

_		
Le vel	Bibliography	Reason for exclusion
	synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma Colloids Surf B Biointerfaces, 140(#issue#), 150-160	
L1	Yu, Fang,Zhou, YanMei,Cao, KunXia,Gao, WenLi,Gao, Bin,Sun, Li,Liu, ShengJian,Wang, Lin,Ding, YanTing (2018). Phytotoxicity of ionic liquids with different structures on wheat seedlings and evaluation of their toxicity attenuation at the presence of modified biochar by adsorption effect Chemosphere, 196(#issue#), 331-338	Irrelevant population
L1	Yu, Q,Shao, D,OuYang, W,Zhang, Z (2019). Effect of Drinking Water Fluorosis on L-Type Calcium Channel of Hippocampal Neurons in Mice XXXIVth Conference of the International Society For Fluoride Research, 52(1), 88-89	Irrelevant population
L1	Yu, Q.,Shao, D.,Zhang, R.,Ouyang, W.,Zhang, Z. (2019). Effects of drinking water fluorosis on L-type calcium channel of hippocampal neurons in mice Chemosphere, 220(#issue#), 169-175	Irrelevant population
L1	Yu, Y., Wang, X., Ge, C., Wang, B., Cheng, C., Gan, Y. H. (2017). Effects of rinsing with arginine bicarbonate and urea solutions on initial enamel lesions in situ Oral diseases, 23(3), 353-359	Irrelevant population
L1	Yu, Z.,Xu, C.,Yuan, K.,Gan, X.,Feng, C.,Wang, X.,Zhu, L.,Zhang, G.,Xu, D. (2018). Characterization	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal J Hazard Mater, 346(#issue#), 82-92	
L1	Zeng, XiaoXiao,Deng, Jie,Xiang, Jie,Dong, YangTing,Cao, Kun,Liu, XianHong,Chen, Dan,Ran, LongYan,Yang, Ye,Guan, ZhiZhong (2019). Resveratrol attenuated the increased level of oxidative stress in the brains and the deficit of learning and memory of rats with chronic fluorosis Fluoride, 52(2), 149-160	Irrelevant population
L1	Zhang, C.,Huo, S.,Fan, Y.,Gao, Y.,Yang, Y.,Sun, D. (2020). Autophagy May Be Involved in Fluoride-Induced Learning Impairment in Rats Biological Trace Element Research, 193(2), 502-507	Irrelevant population
L1	Zhang, GuangHe,Han, TianLong,Wang, Min,Wan, ShuangXiu,Chen, Yan,Wang, JunDong (2017). Decreased percentage of CD4+CD25+ regulatory T cells and GITR gene expression in the spleen of fluorosed male mice Fluoride, 50(1 Part 1), 29-40	Irrelevant population
L1	Zhang, J., Zhang, Y., Liang, C., Wang, N., Zheng, H., Wang, J. (2016). Choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and MEK expression in mice Toxicology and Applied Pharmacology, 310(#issue#), 205-214	Irrelevant population
L1	Zhang, J., Zhu, Y., Liang, C., Qie, M., Niu, R., Sun, Z., Wang, J. (2017). Effects of Fluoride on Expression	Irrelevant population

-		
Le vel	Bibliography	Reason for exclusion
	of P450, CREM and ACT Proteins in Rat Testes Biological Trace Element Research, 175(1), 156-160	
L1	Zhang, JianHai,Li, ZhiHui,Qie, MingLi,Zheng, RuiBo,Jagathpala, Shetty,Wang, JunDong (2016). Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice Food and Chemical Toxicology, 94(#issue#), 103-111	Irrelevant population
L1	Zhang, LiZhu, Tan, Wei, Wang, Rui, Yang, Yong Jun, Yang, Min, Wang, Hong Bin (2018). The characterization of mesoporous silica (Ms) supporting cerium carbonate (Ms-Ce) and its adsorption performance for defluorination in aqueous solutions Desalination and Water Treatment, 135(#issue#), 362-371	Irrelevant population
L1	Zhang, Rui,Liao, QiuXia,Ke, LuLu,Ouyang, Wei,Zhang, ZiGui (2017). The molecular mechanisms of the renal injury in fluorosis induced by drinking water with a high fluoride ion content and the effects of selenium intervention Fluoride, 50(1 Part 2), 105- 120	Irrelevant population
L1	Zhang, Rui,Liao, QiuXia,Ke, LuLu,Zhang, SiMeng,Ouyang, Wei,Zhang, ZiGui (2017). Effects of calcium on mitochondrial injury of kidney in offspring rats with maternal fluoride exposure Journal of Environmental & Doccupational Medicine, 34(2), 154-159	Irrelevant population
L1	Zhang, Shun, Niu, Qiang, Gao, Hui, Ma, RuLin, Lei,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	RongRong,Zhang, Cheng,Xia, Tao,Li, Pei,Xu, ChunYan,Wang, Chao,Chen, JingWen,Dong, LiXing,Zhao, Qian,Wang, AiGuo (2016). Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride Environmental Pollution, 212(#issue#), 97-104	
L1	Zhang, X.,Gao, X.,Li, C.,Luo, X.,Wang, Y. (2019). Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China Scientific reports, 9(1), 14488	Irrelevant population
L1	Zhang, X.,Miao, J.,Hu, B. X.,Liu, H.,Zhang, H.,Ma, Z. (2017). Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China) Environmental science and pollution research international, 24(26), 21073-21090	Irrelevant population
L1	Zhang, Y.,Xie, L.,Li, X.,Chai, L.,Chen, M.,Kong, X.,Wang, Q.,Liu, J.,Zhi, L.,Yang, C.,Wang, H. (2018). Effects of fluoride on morphology, growth, development, and thyroid hormone of Chinese toad (Bufo gargarizans) embryos Environmental and Molecular Mutagenesis, 59(2), 123-133	Irrelevant population
L1	Zhao, Q.,Niu, Q.,Chen, J.,Xia, T.,Zhou, G.,Li, P.,Dong, L.,Xu, C.,Tian, Z.,Luo, C.,Liu, L.,Zhang, S.,Wang, A. (2019). Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	and children Archives of Toxicology, 93(3), 709-726 Zhao, W., Wang, H., Tan, P., Liu, J., Zhang, C., Zhou, B. (2018). Fluoride exposure changed the structure and the function of sperm in the testis and epididymis of male rats Fluoride, 51(4), 340-354	Irrelevant population
L1	Zhao, Wen,Alcantar, N.,Durham, D. R.,Ergas, Sarina Joy,Ghebremichael, Kebreab,Thomas, Sylvia,Zhang, Qiong (2017). The control of water contaminants assisted by natural materials #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Zhao, Y.,Zhao, J.,Wang, J. (2017). Fluoride exposure changed the structure and the expressions of HSP related genes in testes of pubertal rats Chemosphere, 184(#issue#), 1080-1088	Irrelevant population
L1	Zheng, X.,Sun, Y.,Ke, L.,Ouyang, W.,Zhang, Z. (2016). Molecular mechanism of brain impairment caused by drinking-acquired fluorosis and selenium intervention Environmental Toxicology and Pharmacology, 43(#issue#), 134-139	Irrelevant population
L1	Zhong, Nan, Yao, YingJie, Ma, YongZheng, Pei, JunRui (2019). Effects of fluoride on oxidative damage of protein in rat plasma Chinese Journal of Endemiology, 38(9), 692-696	Irrelevant population
L1	Zigui, Z.,Xiaoyu, W.,Weiwei, N.,Qiuxia, L.,Rui, Z.,Wei, O. (2017). Effects of calcium on drinking fluorosis-induced hippocampal synaptic plasticity impairment in the offspring of rats Translational Neuroscience, 8(1),	Irrelevant population

Le vel	Bibliography	Reason for exclusion
VCI		
	191-200	
L1	Zubedah, Khanum,Sadia, Suleman,Aqsa, Mustanser,Muhammad, Waqar-ul-Hassana,Kausar, Raees,Kanwal, M. A.,Afia, Zia,Ahmad, K. R. (2019). Comparative teratological outcomes of fluoride ions and a fluoridated insecticide (bifenthrin) in chick embryos Fluoride, 52(1), 59-65	Irrelevant population
L1	Anonymous (1955). Can we end our toothaches? most experts endorse fluoridation, insist it helps prevent tooth decay and does not endanger health United States News & World Report, #volume#(#issue#), 30-32	Irrelevant publication date
L1	Anonymous (1955). Fluoridation: report, [in accordance with] House resolution no.167, 1953. (Assembly interim com. repts., 1953-1955, v.9, no.4) (Assembly interim com. repts., 1953-1955, v.9, no.4), #volume#(#issue#), 24	Irrelevant publication date
L1	Anonymous (1955). Report [by a committee of the City club of Portland, Portland, Ore.] on fluoridation of the public water supply Portland City Club Bulletin, 35(#issue#), 343-358	Irrelevant publication date
L1	Anonymous (1956). American communities reported adopting, then rescinding fluoridation (including two which have reinstated fluoridation) #journal#, #volume#(#issue#), 10+4	Irrelevant publication date
L1	Anonymous (1956). Fluoridation of New York city	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	water supply #journal#, #volume#(#issue#), 9	
L1	Anonymous (1956). Fluoridation of New York city water supply [reports of the Committee on city affairs and the Committee on public health, Chamber of commerce of the state of New York, Feb. 9, 1956] Monthly Bulletin, 47(#issue#), 496-505	Irrelevant publication date
L1	Anonymous (1956). Report to the mayor on fluoridation for New York city #journal#, #volume#(#issue#), 52	Irrelevant publication date
L1	Anonymous (1956). Supplement to Fluoridation of public water supplies: annotated references #journal#, #volume#(#issue#), 8	Irrelevant publication date
L1	Anonymous (1956). Why some stopped fluoridation [summary of a survey by the Bureau of municipal research, Syracuse, N.Y.] American City, #volume#(#issue#), 175-176	Irrelevant publication date
L1	Anonymous (1958). First report (Tech. rept. ser. no. 146), #volume#(#issue#), 25	Irrelevant publication date
L1	Anonymous (1959). What is the present status of fluoridation? Public Health News, 40(#issue#), 79-81	Irrelevant publication date
L1	Anonymous (1974). Whatever happened to fluoridation issue: still hotly fought U.S. News & World Report, 76(#issue#), 94	Irrelevant publication date
L1	Arnold, Francis A. (1957). Grand Rapids [Mich.] fluoridation studyresults pertaining to the eleventh year of fluoridation American Journal of Public Health	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	and the Nation's Health, 47(#issue#), 539-545	
L1	Auermann, E.,Lingelbach, H. (1964). Status and prospects of fluoridation in Europe: for the purpose of preventing dental caries American Journal of Public Health and the Nation's Health, 54(#issue#), 1545-1550	Irrelevant publication date
L1	Bain, Rob E. S., Gundry, Stephen W., Wright, Jim A., Yang, Hong, Pedley, Steve, Bartram, Jamie K. (2012). Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries World Health Organization. Bulletin of the World Health Organization, 90(3), 228-235A	Irrelevant publication date
L1	Benavides, José R. (1972). El programa de fluoruración del agua en las principales ciudades del país [México; conference paper] Salud Publica de Mexico, 14(#issue#), 99-102	Irrelevant publication date
L1	Boudewyns, Celestin (1953). The fluoridation racket #journal#, #volume#(#issue#), 58+4	Irrelevant publication date
L1	Brand, J. A. (1971). The politics of fluoridation: a community conflict [based on interviews with officials in forty of the fifty-six authorities in Scotland which had considered the issue of fluoridation] Political Studies, 19(#issue#), 430-439	Irrelevant publication date
L1	Brier, Alan P. (1970). The decision process in local government: a case study of fluoridation in Hull [Eng.]	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	Public Administration, 48(#issue#), 153-168	
L1	Broadbent, Jonathan M., Thomson, W. Murray, Ramrakha, Sandhya, Moffitt, Terrie E., Zeng, Jiaxu, Foster Page, Lyndie A., Poulton, Richie (2015). Community Water Fluoridation and Intelligence: Prospective Study in New Zealand American journal of public health, 105(1), 72-76	Irrelevant publication date
L1	Buckley, Priscilla L. (1956). Freedom from fluoridation: mass fluoridation of water supplies is not a plot of big business or a communist conspiracy to ruin American health; but there is a case against it National Review, #volume#(#issue#), 15-17	Irrelevant publication date
L1	CADTH (2011). Silver Diamine Fluoride for the Prevention and Arresting of Dental Caries or Hypersensitivity: A Review - Summary of the Evidence CADTH Report / Project in Briefs, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Centers for Disease Control, (2013). Bottled Water #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Cheyne, Christine, Comrie, Margie (2002). Enhanced legitimacy for local authority decision making: challenges, setbacks and innovation Policy and Politics, 30(4), 469-482	Irrelevant publication date
L1	Clark, C ,Wulf, C ,Easley, M (1984). The fluoridation controversy: understanding the opposition and effectively meeting the challenge [conference paper]	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	Health Matrix, 2(2), 65-77	
L1	Clark, Duncan W. (1957). The issue of fluoridation and the public health Public Health News, 38(#issue#), 3-9	Irrelevant publication date
L1	Cohn, Perry D. (1992). An epidemiologic report on drinking water and fluoridation #journal#, #volume#(#issue#), 17+10	Irrelevant publication date
L1	Committee on Agriculture and Environment-New Jersey Legislature-General Assembly, (1976). Public hearing before Assembly Agriculture and Environment Committee on Senate, no. 976 (fluoridation) held May 26, 1976, Assembly Chamber, State House, Trenton, New Jersey. #journal#, #volume#(#issue#), 48+102	Irrelevant publication date
L1	Committee to Protect Our Children's Teeth Inc., (1957). Our children's teeth: a digest of expert opinion based on studies of the use of fluorides in public water supplies, submitted to the mayor and the Board of estimate of the city of New York [N.Y.], March 6, 1957 #journal#, #volume#(#issue#), vi+104	Irrelevant publication date
L1	Congressional Research Service-Library of Congress, (1991). Major Issues Forum: Water quality and resources. 102d Congress, 1st Session CRS Review, 12(#issue#), 1-23	Irrelevant publication date
L1	Crain, Robert L., et al., (1969). The politics of community conflict: the fluoridation decision; with preface by James Q. Wilson (Advanced study in	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	sociol.), #volume#(#issue#), xix+269	
L1	Crain, Robert L.,Rosenthal, Donald B. (1966). Executive leadership and community innovation: the fluoridation experience [position taken on fluoridation in the various surveyed cities by the mayor, citymanager or other chief executive, and effects on the community's decision] Urban Affairs Quarterly, 1(#issue#), 39-57	Irrelevant publication date
L1	Crain, Robert L.,Rosenthal, Donald B. (1966). Structure and values in local political systems: the case of fluoridation decisions Journal of Politics, 28(#issue#), 169-195	Irrelevant publication date
L1	Creighton, W. E.,et al., (1964). Effect of fluoridated water in schools upon dental caries susceptibility Public Health Reports, 79(#issue#), 778-780	Irrelevant publication date
L1	Davis, Ellen (1963). Fluoridationyes or no? (Special topics no. 1), #volume#(#issue#), 11	Irrelevant publication date
L1	Davis, Morris (1960). Community attitudes toward fluoridation [publicity and politics] Public Opinion Quarterly, 23(#issue#), 474-482	Irrelevant publication date
L1	Diesendorf, Mark, Colquhoun, John, Spittle, Bruce J., Everingham, Douglas N., Clutterbuck, Frederick W. (1997). New evidence on fluoridation Australian and New Zealand Journal of Public Health, 21(2), 187-190	Irrelevant publication date
L1	Division of Dental Health-US Public Health Service, (1967). Fluoridation census, 1966 (Pubn. no. 1670),	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	#volume#(#issue#), 42	_
L1	Division of Dental Health-US Public Health Service, (1970). Fluoridation census 1969 #journal#, #volume#(#issue#), iii+72	Irrelevant publication date
L1	Division of Dental Public Health, (1958). Status of controlled fluoridation in the United States, 1945-57. Report by the Division of Dental Public Health, Bureau of State Services, Public Health Service. Public Health Reports, 73(#issue#), 634-635	Irrelevant publication date
L1	Division of dental public health, (1965). Fluoridation census, 1965 #journal#, #volume#(#issue#), 30+10	Irrelevant publication date
L1	Do, Loc, Spencer, A. John (2015). Contemporary multilevel analysis of the effectiveness of water fluoridation in Australia Australian and New Zealand Journal of Public Health, 39(1), 44-50	Irrelevant publication date
L1	Dobbs, Geoffrey (1957). Can we be sure that fluoridation is safe [some studies and recommendations in Great Britain] Municipal Journal, Public Works Engineer and Contractors' Guide, 65(#issue#), 1483	Irrelevant publication date
L1	Doessel, Darrel P., Karunaratne, Neil D. (1979). Temporal and spatial diffusion of water fluoridation in Australia Economic Activity, 22(#issue#), 33-46	Irrelevant publication date
L1	Dublin, Louis I. (1957). Water fluoridation: facts, not myths (Public affairs pam. no.251), #volume#(#issue#), 28	Irrelevant publication date

-		
Le vel	Bibliography	Reason for exclusion
L1	Dunning, James M. (1962). What's all the fuss about fluoridation? New Englander, #volume#(#issue#), 10-11	Irrelevant publication date
L1	Easley, Michael W. (1990). The status of community water fluoridation in the United States Public Health Reports, 105(#issue#), 348-353	Irrelevant publication date
L1	Environmental Protection Agency, (2005). Bottled Water Basics #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Environmental Protection Agency, (2005). WATER ON TAP what you need to know #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Esty, Geoffrey W. (1961). Safety of fluoridation from a medical standpoint [address] Public Health News, 42(#issue#), 81-84	Irrelevant publication date
L1	Etchie, Ayotunde T., Etchie, Tunde O., Adewuyi, Gregory O., Krishnamurthi, Kannan, Devi, S. Saravana, Wate, Satish R. (2013). Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach World Health Organization. Bulletin of the World Health Organization, 91(8), 553-561J	Irrelevant publication date
L1	Exner, F. B. (1962). The real issue behind fluoridation [individual responsibility for health care] American Opinion, 5(#issue#), 9-14	Irrelevant publication date
L1	Exner, F. B., Waldbott, G. L. (1957). The American fluoridation experiment #journal#, #volume#(#issue#),	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	viii+277	
L1	Family Practice Network, (2008). Goiter #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Family Practice Network, (2013). Fluoride Toxicity #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Family Practice Network, (2014). Community Water Fluoridation in Canada – Trends, Benefits, and Risks #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Flemming, AS (1959). Fluoridation: statement by Arthur S. Flemming, secretary of health, education, and welfare; report on fluoridation in the United States; statements on proposed alternatives to fluoridation of water supplies Public Health Reports, 74(#issue#), 511-520	Irrelevant publication date
L1	Fordham Law Review, (1955). Fluoridation: is it constitutional? [review of decisions on both sides] #journal#, 24(#issue#), 657-684	Irrelevant publication date
L1	Freeze, R. A., Lehr, J. H (2009). The Fluoride Wars: How a Modest Public Health Measure Became America's Longest-Running Political Melodrama #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Frias, Antonio, Narvai, Paulo C., De Araujo, Maria E., Zilbovicius, Celso, Antunes, Jose L. F. (2006). Custo da fluoretagao das aguas de abastecimento publico, estudo de caso - Municipio de Sao Paulo, Brasil, periodo de 1985-2003 Cadernos de Saude	Irrelevant publication date

La		
Le vel	Bibliography	Reason for exclusion
	B. I.I. (20/2) 1007 1010	
	Publica, 22(6), 1237-1246	
L1	Gamson, W A, Mueller, J (1968). Fluoridation attitude	Irrelevant publication date
	change, by John E. Mueller; Commentary on	
	"Fluoridation attitude change," by William A. Gamson;	
	Reply by Dr. Mueller [Combined Title] American	
	Journal of Public Health and the Nation's Health,	
	58(#issue#), 1876-1882	
L1	Gamson, William A. (1961). The fluoridation dialogue: is it an ideological conflict? [based on interviewing 141 of a probability sample of 190 registered voters shortly after the Cambridge, Mass. referendum of Nov., 1959] Public Opinion Quarterly, 25(#issue#), 526-537	Irrelevant publication date
L1	Gelberg, Kitty H.,Fitzgerald, Edward F.,Hwang, Synian,Dubrow, Robert (1995). Fluoride exposure and childhood osteosarcoma: A case-control study American Journal of Public Health, 85(12), 1678-83	Irrelevant publication date
L1	Government of Ireland, (1960). Health (Fluoridation of Water Supplies) Act #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Grace, Linwood G. (1960). Fluoridation [claims that despite opposition fluoridation has been endorsed by twentyfive national scientific societies and will eventually be as widespread as chlorination] Pennsylvania League of Cities, 25(#issue#), 5	Irrelevant publication date
L1	Grace, Linwood G.,et al., (1957). Fluoridation of a public water supply Authority, #volume#(#issue#), 10-	Irrelevant publication date

Le	Bibliography	Reason for exclusion
vel		
	12	
L1	Gramm, Classen J., Jr. (1962). Fluoridation of water supplies Notre Dame Lawyer, 38(#issue#), 71-78	Irrelevant publication date
L1	Grandjean, Philippe, Choi, Anna L., Broadbent, Jonathan M., Thomson, W. Murray, Moffitt, Terrie E., Poulton, Richie (2015). COMMUNITY WATER FLUORIDATION AND INTELLIGENCE/BROADBENT ET AL. RESPOND American Journal of Public Health, 105(4), E3-E4	Irrelevant publication date
L1	Griffiths, Joel (1992). Fluoride: commie plot or capitalist ploy Covert Action Information Bulletin, #volume#(#issue#), 26-30	Irrelevant publication date
L1	Gulick, L (1957). "Who are we to believe?" [letter from Luther Gulick to Abe Stark, president of the New York city council, discussing pros and cons of fluoridation for New York, N.Y.] Public Administration Review, 17(#issue#), 106-110	Irrelevant publication date
L1	Hass, Robert L. (1966). The case for fluoridation: not one legitimate, documented, medically established original study detrimental to fluoridation is recorded American Journal of Nursing, 66(#issue#), 328-331	Irrelevant publication date
L1	Health Canada, (2010). Guidelines for Canadian Drinking Water Quality: Guideline Technical Document - Fluoride Water, Air and Climate Change Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, (Catalogue	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	No. H128-1/11-647E-PDF)(#issue#), #Pages#	
L1	Helmholz, H. F. (1954). Views of the National congress of parents and teachers in regard to fluoridation American Journal of Public Health and The Nation's Health, 44(#issue#), 884-887	Irrelevant publication date
L1	Hooper, W. E. (1954). Get ready for fluoridation: what is involved in satisfying the public's demand for this dental-health measurewhether or not water-works men like it Alabama Municipal Journal, #volume#(#issue#), 16-17	Irrelevant publication date
L1	Isaacs, Stephen L., Schroeder, Steven A. (2003). Quiet victories: what we can learn from success stories in health Responsive Community, 13(#issue#), 60-71	Irrelevant publication date
L1	Jacobsen, Steven J.,O Fallon, W. Michael,Melton, L. Joseph, III (1993). Hip fracture incidence before and after the fluoridation of the public water supply, Rochester, Minnesota American Journal of Public Health, 83(5), 743-5	Irrelevant publication date
L1	Klerer, M. (1956). The fluoridation experiment [review of various experiments throughout the United States] Contemporary Issues, 7(#issue#), 119-167	Irrelevant publication date
L1	Klerer, Melvin, Ubell, Earl (1956). "Why the furor over fluoridation?" radio discussion Town Meeting, #volume#(#issue#), 1-12	Irrelevant publication date
L1	Knutson, John W. (1960). Fluoridation: where are we	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	today? American Journal of Nursing, 60(#issue#), 196-198	
L1	Larson, Donn (1965). Fluoridation: how we lost in Duluth [Minn.; losing campaign that preceded the Apr. 6, 1965, referendum; excerpts from address] Minnesota Municipalities, 50(#issue#), 308-309	Irrelevant publication date
L1	Leitch, Gordon B. (1956). Fluoridated water: pap on tap! or is it poison? Freeman, #volume#(#issue#), 2-7	Irrelevant publication date
L1	Leonard, Richard C. (1963). Flouridation in Maryland (Mo. bul. v. 35, no. 5), #volume#(#issue#), 4	Irrelevant publication date
L1	Levy, S. M. (2008). Findings and recommendations of the Fluoride Expert Panel (January 2007) #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Levy, Steven M., Muchow, Gary (1992). Provider Compliance with Recommended Dietary Fluoride Supplement Protocol American Journal of Public Health, 82(2), 281-3	Irrelevant publication date
L1	Loe, Harald (1986). The fluoridation status of U.S. public water supplies Public Health Reports, 101(#issue#), 157-162	Irrelevant publication date
L1	Mahoney, Martin C., Nasca, Philip C., et al., (1991). Bone Cancer Incidence Rates in New York State: Time Trends and Fluoridated Drinking Water American Journal of Public Health, 81(4), 475-9	Irrelevant publication date
L1	Martin, Brian (1991). Scientific knowledge in controversy: the social dynamics of the fluoridation	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	debate SUNY ser. in sci., technol., and society, #volume#(#issue#), vii+266	
L1	Masterton, George (1963). A study of responses to a questionnaire on fluoridation: a study is reported in five communities which indicates that a majority in each of these favors fluoridation of water supplies American Journal of Public Health and the Nation's Health, 53(#issue#), 1243-1251	Irrelevant publication date
L1	Matter, L. D. (1960). Present status of water fluoridation in Pennsylvania [based on address] Authority, 18(#issue#), 14-16	Irrelevant publication date
L1	Mazur, Allan (1975). Opposition to technological innovation [illustrated through the opposition to fluoridation of water supplies and the location of nuclear plants: United States] Minerva, 13(#issue#), 58-81	Irrelevant publication date
L1	Mazur, Allan (2001). Looking back at fluoridation Risk: Health, Safety & Environment, 12(1/2), 59-65	Irrelevant publication date
L1	McCauley, H. B. (1954). How fluoridation facts were presented to the citizens of Baltimore, Md American Journal of Public Health and The Nation's Health, 44(#issue#), 892-898	Irrelevant publication date
L1	McClure, Frank J. (1970). Water fluoridation: the search and the victory #journal#, #volume#(#issue#), xi+302	Irrelevant publication date
L1	McNeil, Donald R. (1957). The fight for fluoridation	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	#journal#, #volume#(#issue#), x+241	
L1	McNeil, Donald R. (1985). America's longest war: the fight over fluoridation, 1950 Wilson Quarterly, 9(#issue#), 140-153	Irrelevant publication date
L1	Medline Plus, (2015). Fluoride and Water #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Metz, A. Stafford (1966). An analysis of some determinants of attitude toward fluoridation [four variables: education, income, age, and number of children] Social Forces, 44(#issue#), 477-484	Irrelevant publication date
L1	Mitchell, Austin (1960). Fluoridation in Dunedin [N.Z.]: a study of pressure groups and public opinion Political Science, 12(#issue#), 71-93	Irrelevant publication date
L1	Mitchell, Bruce (1972). Fluoridation bibliography: referendums, public participation in decision-making, and methodologies for attitude perception studies (Exchange bibl. 268), #volume#(#issue#), 26	Irrelevant publication date
L1	Mueller, John E. (1966). The politics of fluoridation in seven California cities Western Political Quarterly, 19(#issue#), 54-67	Irrelevant publication date
L1	Mummery, W. Kerry, Mitchell, Duncan, Kift, Ryan (2007). Socio-economic differences in public opinion regarding water fluoridation in Queensland Australian and New Zealand Journal of Public Health, 31(4), 336-339	Irrelevant publication date
L1	Murphy, G,Cunningham, J (2009). Fluoridated water	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	for cavity prevention: a review of the clinical- effectiveness, cost-effectiveness, and guidelines (Structured abstract) Canadian Agency for Drugs and Technologies in Health (CADTH),, #volume#(#issue#), #Pages#	
L1	N. H. S. Centre for Reviews & Dissemination, Bader, J. D., Rozier, G., Harris, R., Lohr, K. N., Murphy, G., Cunningham, J. (2000). A systematic review of public water fluoridation (Structured abstract) #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Nathan, Harriet, Scott, Stanley (1966). Fluoridation in California: an unresolved public policy issue Public Affairs Report, 7(#issue#), 1-6	Irrelevant publication date
L1	National Cancer Institute, (2010). Contaminants in Drinking Water #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	National Research Council, (2006). Fluoride in Drinking Water: A Scientific Review of EPA's Standards National Academies Press, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Nelson, Elizabeth A.,Kirchhoff, Claire,University of North, Texas,Health Science Center at Fort, Worth (2015). Possible fluoride toxicity in North America: a paleopathological assessment and discussion of modern occurrence #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date

Le		
vel	Bibliography	Reason for exclusion
L1	New Jersey Fluoridation study committee, (1973). Final report to the governor and the Legislature (pursuant to J. R. 3, 1971) #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	New York Department of Health (1954). Fluoridation of New York city water supply [resolution recommending steps to facilitate introduction of fluoridation, what it is, where it is used] Monthly Bulletin, 46(#issue#), 159-164	Irrelevant publication date
L1	Panizzi, Mirvaine, Peres, Marco Aurelio (2008). Ten Years of External Control over Water Fluoridation in Chapeco, Santa Catarina State, Brazil Cadernos de Saude Publica, 24(9), 2021-2031	Irrelevant publication date
L1	Peckham, Stephen (2012). Slaying sacred cows: is it time to pull the plug on water fluoridation Critical Public Health, 22(2), 159-177	Irrelevant publication date
L1	Petersen, Lyle R., Denis, Diane, Brown, David, Hadler, James L., Helgerson, Steven D. (1988). Community Health Effects of a Municipal Water Supply Hyperfluoridation Accident American Journal of Public Health, 78(6), 711-3	Irrelevant publication date
L1	Plaut, Thomas F. A. (1959). Analysis of voting behavior on a fluoridation referendum [Cambridge, Mass.] Public Opinion Quarterly, 23(#issue#), 213- 222	Irrelevant publication date
L1	Pratt, Edwin, Jr., Rawson, Raymond D., Rubin, Mark (2002). Fluoridation at fifty: What have we learned?	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	The Journal of Law, Medicine & Ethics, 30(3), 117-121	
L1	Reinemer, Vic (1955). Is fluoridation a Marxist plot? [various charges made by the opponents of fluoridation] Reporter, #volume#(#issue#), 28-30	Irrelevant publication date
L1	Rocha-Amador, Diana, Navarro, Maria Elena, Carrizales, Leticia, Morales, Raul, Calderon, Jacqueline (2007). Decreased Intelligence in Children and Exposure to Fluoride and Arsenic in Drinking Water Cadernos de Saude Publica, 23 (supplement 4), S579-S587	Irrelevant publication date
L1	Roemer, Ruth (1965). Water fluoridation: public health responsibility and the democratic process: the constitutionality of fluoridation legislation, the scope and role of referenda, and the possibilities of statewide legislation: implications for public health American Journal of Public Health and the Nation's Health, 55(#issue#), 1337-1348	Irrelevant publication date
L1	Ross, Milton R.,et al., (1960). Results of five years of fluoridation in 21 Monmouth county [N.J.] municipalities Public Health News, 41(#issue#), 174-176	Irrelevant publication date
L1	Sapolsky, Harvey M. (1969). The fluoridation controversy: an alternative explanation Public Opinion Quarterly, 33(#issue#), 240-248	Irrelevant publication date
L1	Sapora, Myrtle K. (1990). The case against	Irrelevant publication date

Le		
vel	Bibliography	Reason for exclusion
	fluoridation Illinois Issues, 16(#issue#), 32-33	
L1	Saul, H,A. A. London (1954). Water fluoridation: the pro and con: Advantages of fluoridation of community water supplies; Hazards of fluoridation of community water supplies [Combined Title] New Jersey Municipalities, #volume#(#issue#), 16-24	Irrelevant publication date
L1	Schlesinger, Edward R.,et al., (1956). Study of children drinking fluoridated and nonfluoridated water [Newburgh and Kingston, N.Y.] Journal of the American Medical Association, 160(#issue#), 21-24	Irrelevant publication date
L1	Shaw, J. H. (1954). Fluoridation as a public health measure #journal#, #volume#(#issue#), v+232	Irrelevant publication date
L1	Shaw, James H. (1956). Should fluorides be added to public water supplies? Public Health News, 37(#issue#), 331-342	Irrelevant publication date
L1	Silva, Josiene Saibrosa da, Val, Cinthya Melo do, Costa, Juliana Noleto, Moura, Marcoeli Silva de, Silva, Thais Alves Elias, Sampaio, Fabio Correia (2007). Monitoring Water Fluoridation in Three Cities in Piaui^FAC State, Brazil Cadernos de Saude Publica, 23(5), 1083-1088	Irrelevant publication date
L1	Simmel, A,David, B,Sanders, I,Vogt, J (1962). Some correlates of opinion on fluoridation: why do some people oppose fluoridation? role of hostility to the medical profession and to public health is analyzed and the consequences for improvement are presented, by Arnold Simmel and David B. Ast: The	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	involvement of health professionals and local officials in fluoridation controversies in ten Massachusetts towns, by Irwin T. Sanders; The role of the public health engineer in fluoridation: advancing the fluoridation of community water supplies, by John E. Vogt [Combined Title] American Journal of Public Health and the Nation's Health, 52(#issue#), 1288-1292	
L1	Singh, Nandita (2013). Translating human right to water and sanitation into reality: a practical framework for analysis Water Policy, 15(6), 943-960	Irrelevant publication date
L1	Stallsmith, W. P., Jr. (1955). Legal aspects of the fluoridation of public drinking water George Washington Law Review, 23(#issue#), 343-357	Irrelevant publication date
L1	Striffler, David F. (1958). Criteria to consider when supplementing fluoride-bearing water [address] American Journal of Public Health and the Nation's Health, 48(#issue#), 29-37	Irrelevant publication date
L1	Suarez-Almazor, Maria E.,Flowerdew, Gordon,Saunders, Duncan,Soskolne, Colin L.,Russell, Anthony S. (1993). The fluoridation of drinking water and hip fracture hospitalization in two Canadian communities American Journal of Public Health, 83(5), 689-93	Irrelevant publication date
L1	Tiemann, Mary (2006). Fluoride in drinking water: a review of fluoridation and regulation issues CRS Report for Congress, #volume#(#issue#), 13	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Tiemann, Mary,Library of, Congress,Congressional Research, Service (2013). Fluoride in drinking water: a review of regulatory issues and developments #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	United States Congress Committee on Interstate and Foreign Commerce, (1954). Fluoridation of water: Hearings, May 25-27, 1954, on H.R.2341, a bill to protect the public health from the dangers of fluorination of water (83d Congress, 2d sess.), #volume#(#issue#), vi+491	Irrelevant publication date
L1	United States Indian Health Service, (1999). Water fluoridation policy issuance IHS circ. no. 99-01, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	US Public Health Service (2015). U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries Public Health Reports, 130(4), 318	Irrelevant publication date
L1	US Public Health Service, (1959). Natural fluoride content of communal water supplies in the United States. PHS Publication no. 655, c1959 PHS Publication no. 655, c1959, #volume#(#issue#), xvi+111	Irrelevant publication date
L1	US Public Health Service, (1966). 1966 national dental health assembly, emphasis: fluoridation: summary and recommendations, sponsored by the U.S. public health service and the American dental association, February 6-8, 1966, Arlington, Va (Public	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	health service. Pubn. no. 1552), #volume#(#issue#), vi+22	
L1	US Public Health Service, (1967). A guide to reading on fluoridation: annotated (Pubn. no. 1680), #volume#(#issue#), 11	Irrelevant publication date
L1	US Public Health Service, (1992). Review of fluoride benefits and risks: report of the Ad Hoc Subcommittee on Fluoride of the Committee to Coordinate Environmental Health and Related Programs, February 1991 #journal#, #volume#(#issue#), 134+	Irrelevant publication date
L1	Walsh, Diana Chapman (1992). Public Health At A Crossroads Health Affairs, 11(2), 225-227	Irrelevant publication date
L1	Weissman, A. M. (1997). Bottled water use in an immigrant community: a public health issue? [letter] American Journal of Public Health, 87(8), 1379-80	Irrelevant publication date
L1	Whitlock, Robin (1999). Water fluoridation: the truth they don't want you to know Ecologist, 29(#issue#), 39-41	Irrelevant publication date
L1	Wild, Russell (1984). Fluoride: miracle cure or public menace? [possible dangers to humans of fluoridated water] Environmental Action, 16(#issue#), 14-19	Irrelevant publication date
L1	Williams, Lloyd (1957). Big gains in '56more to come in '57: fluoridation across Canada Civic Administration, #volume#(#issue#), 73-74	Irrelevant publication date
L1	Winstanley, Ann (2005). The not-so-hidden politics of fluoridation Policy and Politics, 33(3), 367-385	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Worsnop, Richard L. (1994). Water quality: should safety standards for drinking water be tougher in the U.S.? CQ Researcher, 4(#issue#), 123-143	Irrelevant publication date
L1	Wright, Charles L. (1970). Water fluoridation (Research rept. no. 58), #volume#(#issue#), v+73	Irrelevant publication date
L1	Wright, J. T., Grange, D. K., Fete, M. (1993). Hypohidrotic Ectodermal Dysplasia GeneReviews((R)), #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Wright, Janice C., Bates, Michael N., Cutress, Terry, Lee, Martin (2001). The cost-effectiveness of fluoridating water supplies in New Zealand Australian and New Zealand Journal of Public Health, 25(2), 170-178	Irrelevant publication date
L1	Bobak, M., Dunn, J. R. (2017). Editorial note: Peckham versus Newton Journal of epidemiology and community health, 71(4), 317	Irrelevant study type
L1	Fabreau, Gabriel E.,Bauman, Paul,Coakley, Annalee L.,Johnston, Kelly,Kennel, Kurt A.,Gifford, Jessica L.,Sadrzadeh, Hossein Mh,Whitford, Gary M.,Whyte, Michael P.,Kline, Gregory A. (2019). Skeletal fluorosis in a resettled refugee from Kakuma refugee camp Lancet (London, England), 393(10168), 223-225	Irrelevant study type
L1	Farooqi, A.,Zafar, M. I. (2016). Response to "Cooccurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment" by Rasool et al. 2015 Environ Sci	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
	Pollut Res Int, 23(13), 13578-80	
L1	Friedman, Jay W. D. D. S. M. P. H. (2016). DEBUNKING DEBATING WATER FLUORIDATION/CARSTAIRS RESPONDS American Journal of Public Health, 106(2), 211-212	Irrelevant study type
L1	Gesser-Edelsburg, A., Shir-Raz, Y. (2018). Communicating risk for issues that involve 'uncertainty bias': what can the Israeli case of water fluoridation teach us? Journal of Risk Research, 21(4), 395-416	Irrelevant study type
L1	Hahn, Robert A. PhD M. P. H. (2019). Two Paths to Health in All Policies:The Traditional Public Health Path and the Path of Social Determinants American Journal of Public Health, 109(2), 253-254	Irrelevant study type
L1	Honkanen, I.,Hock, L.,Bettendorf, B.,Fiordellisi, W. (2018). An unlikely source of periostitis Journal of General Internal Medicine, 33 (2 Supplement 1)(#issue#), 464	Irrelevant study type
L1	Klotz, A., Hughes, K., McCabe, D., Cole, J. (2018). Let's Iron OutVR What is Toxic in Here Clinical Toxicology, 56 (10)(#issue#), 1072-1073	Irrelevant study type
L1	Levallois, P.,Villanueva, C. M. (2019). Drinking water quality and human health: An editorial International Journal of Environmental Research and Public Health, 16 (4) (no pagination)(631), #Pages#	Irrelevant study type
L1	Lyke, K. (2016). Global water fluoridation: what is holding us back? Alternative Therapies in Health &	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
	Medicine, 22(1), 6-7	
L1	Morabia, Alfredo (2016). Community Water Fluoridation: Open Discussions Strengthen Public Health American Journal of Public Health, 106(2), 209-210	Irrelevant study type
L1	National Center for Fluoridation Policy and Research, (2016). Fluoridation News: Information about Fluoridation for the Public & the Media NCFPR, #volume#(#issue#), #Pages#	Irrelevant study type
L1	Newbrun, Ernest, Carstairs, Catherine (2016). HISTORIC EARLY ENDORSEMENT OF COMMUNITY WATER FLUORIDATION/CARSTAIRS RESPONDS American Journal of Public Health, 106(2), 210-212	Irrelevant study type
L1	Newton, J. N., Verne, J., Dancox, M., Young, N. (2017). Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? Comments on the authors' response to earlier criticism Journal of epidemiology and community health, 71(4), 315-316	Irrelevant study type
L1	O'Neill, Brenda, Kapoor, Taruneek, McLaren, Lindsay (2019). Politics, Science, and Termination: A Case Study of Water Fluoridation Policy in Calgary in 2011 Review of Policy Research, 36(1), 99-120	Irrelevant study type
L1	Osmunson, Bill,Limeback, Hardy,Neurath, Chris,Broadbent, Jonathan M.,Thomson, W. Murray,Moffitt, Terrie E.,Poulton, Richie (2016). STUDY INCAPABLE OF DETECTING IQ LOSS	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
	FROM FLUORIDE/BROADBENT ET AL. RESPOND American Journal of Public Health, 106(2), 212-214	
L1	Peckham, S.,Lowery, D.,Spencer, S. (2017). Fluoride levels in drinking water and hypothyroidism: Response to Grimes and Newton et al Journal of epidemiology and community health, 71(4), 313-314	Irrelevant study type
L1	Perrott, K. W. (2018). Fluoridation and attention deficit hyperactivity disorder - a critique of Malin and Till (2015) British dental journal, 223(11), 819-822	Irrelevant study type
L1	Pitts, S,Gordon, C. M (2018). A Practical Approach to Adolescent Bone Health: A Guide for the Primary Care Provider #journal#, #volume#(#issue#), #Pages#	Irrelevant study type
L1	Quadri, J. A., Alam, M. M., Sarwar, S., Ghanai, A., Shariff, A., Das, T. K. (2016). Multiple Myeloma- Like Spinal MRI Findings in Skeletal Fluorosis: An Unusual Presentation of Fluoride Toxicity in Human Front Oncol, 6(#issue#), 245	Irrelevant study type
L1	Spittle, B. (2017). The effect of the fluoride ion on reproductive parameters and an estimate of the safe daily dose of fluoride to prevent female infertility and miscarriage, and foetal neurotoxicity Fluoride, 50(3), 287-291	Irrelevant study type
L1	Susan, J., Sebastian, S. (2019). An unusual cause of back pain in South India: Case report Turkish Journal of Gastroenterology, 30 (Supplement 3)(#issue#),	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
	S190-S191	
L1	Wright, J. V. (2016). Global water fluoridation: what is holding us back? Alternative Therapies in Health & Medicine, 22(1), 6	Irrelevant study type
L2	AlKhaddar, R,Singh, K,Dutta, S,Kumari, M (2018). Advances in Water Resources Engineering and Management Select Proceedings of TRACE, #volume#(#issue#), #Pages#	Book
L2	Alley, W ,Alley, R (2017). High and Dry: Meeting the Challenges of the World's Growing Dependence on Groundwater #journal#, #volume#(#issue#), #Pages#	Book
L2	Chelmow, D,Blanchard, A ,Learman, L (2017). The Well-Woman Visit #journal#, #volume#(#issue#), #Pages#	Book
L2	Cotruvo, Joseph (2018). Drinking Water Quality and Contaminants Guidebook #journal#, #volume#(#issue#), #Pages#	Book
L2	Gallico, M & Buhner, SH (2018). The Hidden Cause of Acne: How Toxic Water Is Affecting Your Health and What You Can Do about It #journal#, #volume#(#issue#), #Pages#	Book
L2	Gupta, A. K. ,Ayoob, S (2016). Fluoride in drinking water: status, issues and solutions #journal#, #volume#(#issue#), #Pages#	Book
L2	Johansen, Erling (2019). Continuing Evaluation of the Use of Fluorides #journal#, #volume#(#issue#),	Book

Le vel	Bibliography	Reason for exclusion
	#Pages#	
L2	Kurisu, F ,Ramanathan, A ,Kazmi, A. A ,Kumar, M (2017). Trends in Asian Water Environmental Science and Technology #journal#, #volume#(#issue#), #Pages#	Book
L2	Leal Filho, W,Noyola-Cherpitel, R,Medellín-Milán, P,Ruiz Vargas, V (2018). Sustainable Development Research and Practice in Mexico and Selected Latin American Countries #journal#, #volume#(#issue#), #Pages#	Book
L2	Luo, Y,Tu, C (2018). Twenty Years of Research and Development on Soil Pollution and Remediation in China #journal#, #volume#(#issue#), #Pages#	Book
L2	Mukherjee, A. (2018). Groundwater of South Asia #journal#, #volume#(#issue#), #Pages#	Book
L2	Nath, K. J,Sharma, P. V (2017). Water and Sanitation in the New Millennium #journal#, #volume#(#issue#), #Pages#	Book
L2	Pardhe, Nilesh, Vijay, Pradkhshana, Singhal, Ishank (2016). Fluoride: Recent concepts #journal#, #volume#(#issue#), #Pages#	Book
L2	Anonymous, (2016). Global water fluoridation: what is holding us back? Reply Alternative Therapies in Health & Medicine, 22(1), 7	Commentary/communicat ion/editorial/letter
L2	Cragoe, D (2019). False Reporting of Water Fluoridation Data and Fabricated Statements	Commentary/communicat ion/editorial/letter

Le vel	Bibliography	Reason for exclusion
V C1	Regarding Fluoridation Safety by the US Centers for Disease Control XXXIVth Conference of the International Society For Fluoride Research, 52(1), 93	
L2	Nicole, W. (2019). Comparing fluoride exposures in pregnant canadian women: Fluoridated versus nonfluoridated drinking water Environmental Health Perspectives, 127 (7) (no pagination)(074002), #Pages#	Commentary/communicat ion/editorial/letter
L2	Scott Stewart (2016). Community Water Fluoridation At the Levels Recommended By The U.S. Department of Health and Human Services Have Not Been Shown To Have An Effect On Children's Neurological Development #journal#, #volume#(#issue#), #Pages#	Commentary/communicat ion/editorial/letter
L2	Washington,,Department of, Health (2018). Recommended actions following fluoride overfeed #journal#, #volume#(#issue#), #Pages#	Commentary/communicat ion/editorial/letter
L2	Barbier, O., Cardenas-Gonzalez, M., Parada-Cruz, B., Lopez, V. D., Jimenez-Cordova, M., Solis-Angeles, S., Del Razo, L. M. (2016). Fluoride: An underestimated nephrotoxic Toxicology Letters, 259 (Supplement 1)(#issue#), S13	Conference abstract/poster/presentati on/report
L2	Khandare, A. L. (2016). Report on the XXXIIIRD conference of the international society for fluoride research, debilitating fluorosis: Current status, health challenges, and mitigation measures, Hyderabad, India, November 9-11, 2016 Fluoride, Part 2. 49(4), 467-470	Conference abstract/poster/presentati on/report

Le		
vel	Bibliography	Reason for exclusion
L2	Kumar, R,Kumar, V (2019). Fluorosis Management Through Plants in Some Endemic Villages of Bihar XXXIVth Conference of the International Society For Fluoride Research, 52(1), 89-90	Conference abstract/poster/presentati on/report
L2	Murti, B., Agustin, D. A., Ayuningrum, I. Y., Putri, S. I., Halu, S. A. N. (2017). Oral and poster presentation: topic I: epidemiology and public health #journal#, #volume#(#issue#), 81-124	Conference abstract/poster/presentati on/report
L2	Rahman, Z ,Khan, B ,Khan, H ,Brusseau, M ,Iqbal Ahmad (2019). Assessment of Fluoride Contamination in Groundwater of District Mardan in Pakistan XXXIVth Conference of the International Society For Fluoride Research, 52(1), 95	Conference abstract/poster/presentati on/report
L2	Rahman, Z. U.,Khan, B.,Ahmada, I.,Mian, I. A.,Saeed, A.,Afaq, A.,Khan, A.,Smith, P.,Mianh, A. A. (2018). A review of groundwater fluoride contamination in Pakistan and an assessment of the risk of fluorosis Fluoride, 51(2), 171-181	Conference abstract/poster/presentati on/report
L2	Singh, V. P,Yadav, S,Yadava, N. R (2018). Groundwater: Select Proceedings of ICWEES-2016 #journal#, #volume#(76), #Pages#	Conference abstract/poster/presentati on/report
L2	Struneckà, A (2019). Health Risks of Fluoride: From Molecules to Disease XXXIVth Conference of the International Society For Fluoride Research, 52(1), 77-78	Conference abstract/poster/presentati on/report
L2	Sun, D,Gao, Y,Zhao, L (2019). Epidemic and Control of Endemic Fluorosis in China XXXIVth Conference of	Conference abstract/poster/presentati

Le vel	Bibliography	Reason for exclusion
	the International Society For Fluoride Research, 52(1), 79-80	on/report
L2	Arshad, N.,Imran, S. (2017). Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan Environ Sci Pollut Res Int, 24(3), 2449-2463	Exposure assessment
L2	Bondu, J. D., Selvakumar, R., Fleming, J. J. (2017). Validating a High Performance Liquid Chromatography-Ion Chromatography (HPLC-IC) Method with Conductivity Detection After Chemical Suppression for Water Fluoride Estimation Indian journal of clinical biochemistry, 33(1), 86-90	Exposure assessment
L2	Chuah, C. J., Lye, H. R., Ziegler, A. D., Wood, S. H., Kongpun, C., Rajchagool, S. (2016). Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand Sci Total Environ, 545-546(#issue#), 266-79	Exposure assessment
L2	Goankar, S. M., Kalashetti, M. B., Kalshetty, B. M. (2017). Fluoride toxicity on human health from water resources available at granite mine in Bagalkot district, Karnataka, India Rasāyan Journal of Chemistry, 10(1), 165-175	Exposure assessment
L2	Hewavithana, P. B., Jayawardhane, W. M., Gamage, R., Goonaratna, C. (2018). Skeletal fluorosis in Vavuniya District: an observational study Ceylon Medical Journal, 63(3), 139-142	Exposure assessment

Le vel	Bibliography	Reason for exclusion
L2	Khare, P. (2017). A large-scale investigation of the quality of groundwater in six major districts of Central India during the 2010-2011 sampling campaign Environmental Monitoring and Assessment, 189 (9) (no pagination)(429), #Pages#	Exposure assessment
L2	Ocak, E.,Kose, S. (2018). Determination of fluoride in water, milk, and dairy products Fluoride, 51(2), 182-192	Exposure Assessment
L2	Podgorski, J. E.,Labhasetwar, P.,Saha, D.,Berg, M. (2018). Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India Environmental Science & Technology, 52(17), 9889-9898	Exposure assessment
L2	Rocha, R. A., Calatayud, M., Devesa, V., Velez, D. (2017). Evaluation of exposure to fluoride in child population of North Argentina Environmental Science & Pollution Research, 24(27), 22040-22047	Exposure assessment
L2	Sharmila, C., Subramanian, S. P. (2019). Endemic fluorosis in vellore district, tamil nadu - a biogeochemical approach International Journal of Pharmaceutical Sciences Review and Research, 54(2), 58-66	Exposure assessment
L2	Till, C.,Green, R.,Grundy, J. G.,Hornung, R.,Neufeld, R.,Martinez-Mier, E. A.,Ayotte, P.,Muckle, G.,Lanphear, B. (2018). Community water fluoridation and urinary fluoride concentrations in a national sample of pregnant women in Canada Environmental	Exposure assessment

La		
Le vel	Bibliography	Reason for exclusion
	Health Perspectives, 126 (10) (no pagination)(107001), #Pages#	
L2	Centers for Disease Control, (2019). Community Water Fluoridation #journal#, #volume#(#issue#), #Pages#	General information
L2	Centers for Disease Control, (2019). Private Wells #journal#, #volume#(#issue#), #Pages#	General information
L2	Centers for Disease Control, (2020). Water Fluoridation Basics #journal#, #volume#(#issue#), #Pages#	General information
L2	Medline Plus, (2018). Bowlegs #journal#, #volume#(#issue#), #Pages#	General information
L2	Medline Plus, (2019). Fluoride in diet #journal#, #volume#(#issue#), #Pages#	General information
L2	National Cancer Institute, (2017). Fluoridated Water #journal#, #volume#(#issue#), #Pages#	General information
L2	National Institute of Arthritis and Musculoskeletal and Skin Diseases, (2016). Spinal Stenosis #journal#, #volume#(#issue#), #Pages#	General information
L2	National Institute of Dental and Craniofacial Research, (2018). Story of Fluoridation #journal#, #volume#(#issue#), #Pages#	General information
L2	National Institute of Dental and Craniofacial Research, (2018). ToxGuide for Fluorides, Hydrogen Fluoride, and Fluorine #journal#, #volume#(#issue#), #Pages#	General information

Le		
vel	Bibliography	Reason for exclusion
L2	North Carolina Division of Public Health (2019). Fluoride & private wells #journal#, #volume#(#issue#), #Pages#	General information
L2	Aggeborn, Linuz,Ã-hman, Mattias,Ifau, (2017). The Effects of Fluoride in the Drinking Water, IFAU Working Paper 2017:20 #journal#, #volume#(#issue#), #Pages#	Examined in CADTH 2019
L2	Archer, N. P., Napier, T. S., Villanacci, J. F. (2016). Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas Cancer Causes Control, 27(7), 863-8	Examined in CADTH 2019
L2	Barberio, A. M., Hosein, F. S., Quinonez, C., McLaren, L. (2017). Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation Journal of epidemiology and community health, 71(10), 1019-1025	Examined in CADTH 2019
L2	Barberio, A. M., Quinonez, C., Hosein, F. S., McLaren, L. (2017). Fluoride exposure and reported learning disability diagnosis among Canadian children: Implications for community water fluoridation Canadian journal of public health = Revue canadienne de sante publique, 108(3), e229-e239	Examined in CADTH 2019
L2	CADTH (2019). Community Water Fluoridation Exposure: A Review of Neurological and Cognitive Effects CADTH Rapid Response Reports, #volume#(#issue#), #Pages#	Examined in CADTH 2019

La		
Le vel	Bibliography	Reason for exclusion
L2	CADTH (2019). Community Water Fluoridation	Examined in CADTH
	Programs: A Health Technology Assessment —	2019
	Review of Dental Caries and Other Health Outcomes	
	(CADTH technology review; no. 12) CADTH	
	Technology Review, #volume#(#issue#), #Pages#	
L2	Chafe, R., Aslanov, R., Sarkar, A., Gregory, P., Comeau,	Examined in CADTH
	A., Newhook, L. A. (2018). Association of type 1	2019
	diabetes and concentrations of drinking water	
	components in Newfoundland and Labrador, Canada	
	BMJ Open Diabetes Research and Care, 6 (1) (no	
	pagination)(e000466), #Pages#	
L2	Fluegge, K. (2016). Community water fluoridation	Examined in CADTH
	predicts increase in age-adjusted incidence and	2019
	prevalence of diabetes in 22 States from 2005 and	
	2010 Journal of Water and Health, 14(5), 864-877	
L2	Green, R., Lanphear, B., Hornung, R., Flora,	Examined in CADTH
	D., Martinez-Mier, E. A., Neufeld, R., Ayotte, P., Muckle,	2019
	G.,Till, C. (2019). Association between maternal	
	fluoride exposure during pregnancy and IQ scores in	
	offspring in Canada JAMA pediatrics, 173(10), 940-	
	948	
L2	Guissouma, W., Hakami, O., Al-Rajab, A. J., Tarhouni,	Examined in CADTH
	J. (2017). Risk assessment of fluoride exposure in	2019
	drinking water of Tunisia Chemosphere, 177(#issue#),	
	102-108	
L2	Jack, B., Ayson, M., Lewis, S., Irving, A., Agresta, B., Ko,	Examined in CADTH
	H. ,Stoklosa, A. (2016). Health Effects of Water	2019

Le vel	Bibliography	Reason for exclusion
	Fluoridation: Technical Report National Health and Medical Research Council, #volume#(#issue#), #Pages#	
L2	Kebede, A.,Retta, N.,Abuye, C.,Whiting, S. J.,Kassaw, M.,Zeru, T.,Tessema, M.,Kjellevold, M. (2016). Dietary fluoride intake and associated skeletal and dental fluorosis in school age children in rural Ethiopian Rift Valley International Journal of Environmental Research and Public Health, 13 (8) (no pagination)(756), #Pages#	Examined in CADTH 2019
L2	Khandare, A. L., Gourineni, S. R., Vakdevi, Validandi (2017). Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India Environmental Monitoring and Assessment, 189(11), 579	Examined in CADTH 2019
L2	Khandare, A. L., Validandi, V., Gourineni, S. R., Gopalan, V., Nagalla, B. (2018). Dose-dependent effect of fluoride on clinical and subclinical indices of fluorosis in school going children and its mitigation by supply of safe drinking water for 5 years: an Indian study Environmental Monitoring and Assessment, 190 (3) (no pagination)(110), #Pages#	Examined in CADTH 2019
L2	Kheradpisheh, Z.,Mirzaei, M.,Mahvi, A. H.,Mokhtari, M.,Azizi, R.,Fallahzadeh, H.,Ehrampoush, M. H. (2018). Impact of drinking water fluoride on human	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	thyroid hormones: A case-control study Scientific Reports, 8(1), 2674	
L2	Li, M.,Gao, Y.,Cui, J.,Li, Y.,Li, B.,Liu, Y.,Sun, J.,Liu, X.,Liu, H.,Zhao, L.,Sun, D. (2016). Cognitive Impairment and Risk Factors in Elderly People Living in Fluorosis Areas in China Biological Trace Element Research, 172(1), 53-60	Examined in CADTH 2019
L2	Ma, Qiang, Huang, Hui, Sun, Long, Zhou, Tong, Zhu, Jing Yuan, Cheng, Xue Min, Duan, Lijv, Li, Zhi Yuan, Cui, Liu Xin, Ba, Yue (2017). Gene-environment interaction: does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms? Chemosphere, 188(#issue#), 525-531	Examined in CADTH 2019
L2	Mani, Arulkumar,Raji, Vijayan,Sakayanathan, Penislusshiyan,Palanivel, Sathishkumar,Jayaraman, Angayarkanni,Thayumanavan, Palvannan (2017). Alteration of paraoxonase, arylesterase and lactonase activities in people around fluoride endemic area of Tamil Nadu, India Clinica Chimica Acta, 471(#issue#), 206-215	Examined in CADTH 2019
L2	Meena, C., Dwivedi, S., Rathore, S., Gonmei, Z., Toteja, G. S., Bala, K., Mohanty, S. S. (2017). Assessment of skeletal fluorosis among children in two blocks of rural area, Jaipur District, Rajasthan, India Asian Journal of Pharmaceutical and Clinical Research, 10(9), 322-325	Examined in CADTH 2019
L2	Moghaddam, V. K., Yousefi, M., Khosravi, A., Yaseri,	Examined in CADTH

Le vel	Bibliography	Reason for exclusion
	M.,Mahvi, A. H.,Hadei, M.,Mohammadi, A. A.,Robati, Z.,Mokammel, A. (2018). High Concentration of Fluoride Can Be Increased Risk of Abortion Biological Trace Element Research, 185(2), 262-265	2019
L2	Mohammadi, A. A., Yousefi, M., Yaseri, M., Jalilzadeh, M., Mahvi, A. H. (2017). Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran Scientific Reports, 7(1), 17300	Examined in CADTH 2019
L2	Mondal, D., Dutta, G., Gupta, S. (2016). Inferring the fluoride hydrogeochemistry and effect of consuming fluoride-contaminated drinking water on human health in some endemic areas of Birbhum district, West Bengal Environmental Geochemistry and Health, 38(2), 557-576	Examined in CADTH 2019
L2	Mondal, D.,Gupta, S.,Reddy, D. V.,Dutta, G. (2017). Fluoride enrichment in an alluvial aquifer with its subsequent effect on human health in Birbhum district, West Bengal, India Chemosphere, 168(#issue#), 817- 824	Examined in CADTH 2019
L2	Nasman, P.,Granath, F.,Ekstrand, J.,Ekbom, A.,Sandborgh-Englund, G.,Fored, C. M. (2016). Natural fluoride in drinking water and myocardial infarction: A cohort study in Sweden Science of the Total Environment, 562(#issue#), 305-311	Examined in CADTH 2019
L2	NHMRC-National Health and Medical Research Council, (2017). Information paper – Water fluoridation: dental and other human health outcomes,	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	report prepared by the Clinical Trials Centre at University of Sydney NHMRC, #volume#(#issue#), #Pages#	
L2	Patel, P.,Zulf, M.,Yagnik, B.,Kajale, N.,Mandlik, R.,Khadilkar, V.,Chiplonkar, S.,Phanse, S.,Patwardhan, V.,Joshi, P.,Patel, A.,Khadilkar, A. (2017). Association of dental and skeletal fluorosis with calcium intake and serum Vitamin D concentration in adolescents from a region endemic for fluorosis Indian Journal of Endocrinology and Metabolism, 21(1), 190-195	Examined in CADTH 2019
L2	Ramesh, M., Malathi, N., Ramesh, K., Aruna, R., Kuruvilla, S. (2017). Comparative evaluation of dental and skeletal fluorosis in an endemic fluorosed district, Salem, Tamil Nadu Journal of Pharmacy and Bioallied Sciences, 9(5 Supplement 1), S88-S91	Examined in CADTH 2019
L2	Sahu, B. L.,Banjare, G. R.,Shobhana, Ramteke,Patel, K. S.,Matini, L. (2017). Fluoride contamination of groundwater and toxicities in Dongargaon block, Chhattisgarh, India Exposure and Health, 9(2), 143-156	Examined in CADTH 2019
L2	Shruthi, M. N.,Santhuram, A. N.,Arun, H. S.,Kishore Kumar, B. N. (2016). A comparative study of skeletal fluorosis among adults in two study areas of Bangarpet taluk, Kolar Indian journal of public health, 60(3), 203-209	Examined in CADTH 2019
L2	Valdez Jimenez, L.,Lopez Guzman, O. D.,Cervantes	Examined in CADTH

Le	Bibliography	Reason for exclusion
vel		
	Flores, M., Costilla-Salazar, R., Calderon Hernandez, J., Alcaraz Contreras, Y., Rocha-Amador, D. O. (2017). In utero exposure to fluoride and cognitive development delay in infants NeuroToxicology, 59(#issue#), 65-70	2019
L2	Wasana, H. M., Aluthpatabendi, D., Kularatne, W. M., Wijekoon, P., Weerasooriya, R., Bandara, J. (2016). Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water Environmental Geochemistry & Health, 38(1), 157-68	Examined in CADTH 2019
L2	Wickramarathna, S.,Balasooriya, S.,Diyabalanage, S.,Chandrajith, R. (2017). Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach Journal of Trace Elements in Medicine and Biology, 44(#issue#), 298-306	Examined in CADTH 2019
L2	Yousefi, M., Mohammadi, A. A., Yaseri, M., Mahvi, A. H. (2017). Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: An ecological study in west Azerbaijan province, poldasht county, Iran Fluoride, 50(3), 343-353	Examined in CADTH 2019
L2	Zhang, L.,Huang, D.,Yang, J.,Wei, X.,Qin, J.,Ou, S.,Zhang, Z.,Zou, Y. (2017). Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas Environmental Pollution, 222(#issue#), 118-125	Examined in CADTH 2019

1.0		
Le vel	Bibliography	Reason for exclusion
L2	Alimohammadi, M., Nabizadeh, R., Yaghmaeian, K., Mahvi, A. H., Foroohar, P., Hemmati, S., Heidarinejad, Z. (2018). Data on assessing fluoride risk in bottled waters in Iran Data Brief, 20(#issue#), 825-830	Methods paper
L2	Azhdarpoor, A.,Radfard, M.,Rahmatinia, M.,Hashemi, H.,Hashemzadeh, B.,Nabavi, S.,Akbari, H.,Akbari, H.,Adibzadeh, A. (2018). Data on health risk assessment of fluoride in drinking water in the Khash city of Sistan and Baluchistan province, Iran Data Brief, 21(#issue#), 1508-1513	Methods paper
L2	Alberta Health, (2019). Position Statement on Community Water Fluoridation #journal#, #volume#(#issue#), #Pages#	Narrative review
L2	Atta, Rasool, Abida, Farooqi, Xiao, TangFu, Waqar, Ali, Sifat, Noor, Abiola, O., Salar, Ali, Wajid, Nasim (2018). A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation Environmental Geochemistry and Health, 40(4), 1265-1281	Narrative review
L2	Botchey, S; Ouyang, J; Vivekanantham, S (2016). Global water fluoridation: what is holding us back? Reply Alternative therapies in health and medicine, 22(1), 1-7	Narrative review
L2	Chakraborti, D.,Rahman, M. M.,Chatterjee, A.,Das, D.,Das, B.,Nayak, B.,Pal, A.,Chowdhury, U. K.,Ahmed, S.,Biswas, B. K.,Sengupta, M. K.,Lodh,	Narrative review

Le vel	Bibliography	Reason for exclusion
	D.,Samanta, G.,Chakraborty, S.,Roy, M. M.,Dutta, R. N.,Saha, K. C.,Mukherjee, S. C.,Pati, S.,Kar, P. B. (2016). Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches J Trace Elem Med Biol, 38(#issue#), 33-45	
L2	Choubisa, S. L. (2018). A brief and critical review of endemic hydrofluorosis in Rajasthan, India Fluoride, 51(1), 13-34	Narrative review
L2	Costa-Vieira, D.,Monteiro, R.,Martins, M. J. (2019). Metabolic syndrome features: Is there a modulation role by mineral water consumption? a review Nutrients, 11 (5) (no pagination)(1141), #Pages#	Narrative review
L2	Dharmaratne, R. W. (2019). Exploring the role of excess fluoride in chronic kidney disease: A review Human and Experimental Toxicology, 38(3), 269-279	Narrative review
L2	Dipankar, Chakraborti,Rahman, M. M.,Amit, Chatterjee,Dipankar, Das,Bhaskar, Das,Biswajit, Nayak,Arup, Pal,Chowdhury, U. K.,Sad, Ahmed,Biswas, B. K.,Sengupta, M. K.,Dilip, Lodh,Gautam, Samanta,Sanjana, Chakraborty,Roy, M. M.,Dutta, R. N.,Saha, K. C.,Mukherjee, S. C.,Shyamapada, Pati,Kar, P. B. (2016). Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: magnitude, health, socio- economic effects and mitigation approaches Journal	Narrative review

Le vel	Bibliography	Reason for exclusion
	of Trace Elements in Medicine and Biology, 38(#issue#), 33-45	
L2	Dissanayake, C. B.,Rohana, Chandrajith (2017). Groundwater fluoride as a geochemical marker in the etiology of chronic kidney disease of unknown origin in Sri Lanka Ceylon Journal of Science, 46(2), 3-12	Narrative review
L2	FSAI (2018). FSAI Publishes Total Diet Study on Dietary Exposure to Fluoride World Food Regulation Review, 27(11), 9	Narrative review
L2	Heck, Brandon (2016). Essays on health, education, and consumer information #journal#, #volume#(#issue#), #Pages#	Narrative review
L2	Kabir, H.,Gupta, A. K.,Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity Critical Reviews in Environmental Science and Technology., 50(11), 1116-1193	Narrative review
L2	Kurdi, M. S. (2016). Chronic fluorosis: The disease and its anaesthetic implications Indian Journal of Anaesthesia, 60(3), 157-162	Narrative review
L2	Kurwadkar, S. (2019). Occurrence and distribution of organic and inorganic pollutants in groundwater Water Environment Research, 91(10), 1001-1008	Narrative review
L2	Lacson, C. F. Z.,Lu, M. C.,Huang, Y. H. (2020). Fluoride network and circular economy as potential model for sustainable development-A review	Narrative review

Le vel	Bibliography	Reason for exclusion
	Chemosphere, 239 (no pagination)(124662), #Pages#	
L2	Lash, L. H. (2019). Environmental and Genetic Factors Influencing Kidney Toxicity Seminars in Nephrology, 39(2), 132-140	Narrative review
L2	Mondal, P., Chattopadhyay, A. (2019). Environmental exposure of arsenic and fluoride and their combined toxicity: A recent update Journal of Applied Toxicology., #volume#(#issue#), #Pages#	Narrative review
L2	Mukherjee, I; Singh, U (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context Environmental Geochemistry and Health, 40(6), 2259-2301	Narrative review
L2	Patil, M. M., Lakhkar, B. B., Patil, S. S. (2018). Curse of Fluorosis Indian Journal of Pediatrics, 85(5), 375-383	Narrative review
L2	Pinto, U., Thoradeniya, B., Maheshwari, B. (2019). Water quality and chronic kidney disease of unknown aetiology (CKDu) in the dry zone region of Sri Lanka: impacts on well-being of village communities and the way forward Environmental science and pollution research international., 10(#issue#), #Pages#	Narrative review
L2	Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., Abiola, O., Ali, S., Nasim, W. (2018). A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation Environ	Narrative review

Le vel	Bibliography	Reason for exclusion
	Geochem Health, 40(4), 1265-1281	
L2	Sharma, D.,Singh, A.,Verma, K.,Paliwal, S.,Sharma, S.,Dwivedi, J. (2017). Fluoride: A review of preclinical and clinical studies Environ Toxicol Pharmacol, 56(#issue#), 297-313	Narrative review
L2	Spittle, B (2019). The importance of timing in fluoride-induced developmental neurotoxicity Fluoride, 52(4), 483-488	Narrative review
L2	Spittle, B. (2018). Fluoride, IQ, emotion, and children's school performance Fluoride, 51(2), 98-101	Narrative review
L2	Spittle, B. (2018). Fluoride-induced developmental disorders and iodine deficiency disorders as examples developmental disorders due to disturbed thyroid hormone metabolism Fluoride, 51(4), 307-318	Narrative review
L2	Spittle, B. (2018). International differences in the recognition of non-skeletal Fluorosis: A comparison of India and New Zealand Fluoride, 51(3), 199-205	Narrative review
L2	Spittle, B. (2018). The diagnosis of chronic fluoride intoxication including the use of serum and urinary fluoride ion levels and a forearm radiograph in the diagnosis of stage II and III skeletal fluorosis Fluoride, 51(1), 3-12	Narrative review
L2	Spittle, B. (2019). The effects of fluoride on inflammation and cancer Fluoride, 52(1), 7-8	Narrative review
L2	Strunecka, A., Strunecky, O. (2019). Chronic fluoride exposure and the risk of autism spectrum disorder	Narrative review

Le		
vel	Bibliography	Reason for exclusion
	International Journal of Environmental Research and Public Health, 16 (18) (no pagination)(3431), #Pages#	
L2	Strunecká, A., Strunecký, O., Guan, ZhiZhong (2019). The resemblance of fluorosis pathology to that of autism spectrum disorder: a mini-review Fluoride, 52(2), 105-115	Narrative review
L2	Susheela, A. K., Toteja, G. S. (2018). Prevention & control of fluorosis & linked disorders: Developments in the 21 st century - Reaching out to patients in the community & hospital settings for recovery Indian Journal of Medical Research, 148(5), 539-547	Narrative review
L2	Wimalawansa, S. J. (2016). The role of ions, heavy metals, fluoride, and agrochemicals: critical evaluation of potential aetiological factors of chronic kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication Environmental Geochemistry and Health, 38(3), 639-678	Narrative review
L2	Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., Yadav, S., Vymazal, J., Kumar, V., Tri, D. Q., Talaiekhozani, A., Prasad, S., Reece, L. M., Singh, N., Maurya, P. K., Cho, J. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review Ecotoxicol Environ Saf, 182(#issue#), 109362	Narrative review

Le vel	Bibliography	Reason for exclusion
L2	Aziz, S. A. ,Mehta, R (2016). Technical Aspects of Toxicological Immunohistochemistry: System Specific Biomarkers #journal#, #volume#(#issue#), #Pages#	No human subjects
L2	Dec, K., Lukomska, A., Maciejewska, D., Jakubczyk, K., Baranowska-Bosiacka, I., Chlubek, D., Wasik, A., Gutowska, I. (2017). The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System Biological Trace Element Research, 177(2), 224-234	No human subjects
L2	Dharma-Wardana, M. W. C. (2018). Chronic kidney disease of unknown etiology and the effect of multipleion interactions Environmental geochemistry and health, 40(2), 705-719	No human subjects
L2	Hussain, C. M (2019). Fluoride Contamination in Groundwater and the Source Mineral Releasing Fluoride in Groundwater of Indo-Gangetic Alluvium, India. In Handbook of Environmental Materials Management #journal#, #volume#(#issue#), 210-245	No human subjects
L2	Zhao, Q,Niu, Q,Chen, J,Xia, T,Zhou, G,Li, P,Dong, L,Xu, C,Tian, Z,Luo, C,Liu, L,Zhang, S,Wang, A (2019). Mitochondrial Fission Inhibition induces Deffective Autophagy and Excessive Apoptosis Contributing to Developmental Fluoride Neurotoxicity XXXIVth Conference of the International Society For Fluoride Research, 52(1), 86-87	No human subjects
L2	Alipour, S., Hemmati, A. (2016). Distribution maps and origin of fluoride anomalies in water bodies of	No pdf available

Le vel	Bibliography	Reason for exclusion
	Bazargan-Poldasht, NW. of Iran Journal of Natural Environment, 69(1), 107-129	
L2	Allwood-Newhook, L. A., Chafe, R., Aslanov, R., Clarke, J., Gregory, P., Gill, N., Sarkar, A. (2017). The association of type 1 diabetes mellitus and concentrations of drinking water components in Newfoundland and Labrador, Canada Pediatric Diabetes, 18 (Supplement 25)(#issue#), 64	No pdf available
L2	Arumugam, T.,Kunhikannan, S.,Radhakrishnan, P. (2019). Assessment of fluoride hazard in groundwater of Palghat District, Kerala: A GIS approach International Journal of Environment and Pollution, 66(1-3), 187-211	No pdf available
L2	Babcock, T. A., Liu, X. Z. (2018). Otosclerosis: From Genetics to Molecular Biology Otolaryngologic Clinics of North America, 51(2), 305-318	No pdf available
L2	Datta, A. S.,Singh, R.,Basu, D.,Lahiri, S. C. (2016). Preliminary clinical investigation on fluoride contamination in Nalhati subdivision (West Bengal);possible structural changes of water due to fluoride ion and related clinical aspects Journal of the Indian Chemical Society, 93(12), 1383-1388	No pdf available
L2	Duan, YiMin, Wang, ChenChen, Pu, Dan, Lin, Qin, Huang, Jia, Zhang, Ling (2018). Drinking tea type of endemic fluorosis in Xinjiang in 2014-2016 Chinese Journal of Endemiology, 37(4), 316-318	No pdf available

Le vel	Bibliography	Reason for exclusion
L2	Dutta, V.,Fatima, N.,Kumar, N. (2019). Excessive fluoride in groundwater of Central Ganga Alluvial Plain: a case study of Fatehpur, north India International Journal of Environmental Science and Technology, 16(12), 7791-7798	No pdf available
L2	Goyal, N., Dulawat, M. S., Dulawat, S. S. (2019). Effects of fluoride on human health in Rajasthan Advanced Science, Engineering and Medicine, 11(1-2), 21-23	No pdf available
L2	Hari Kumar, K. V. S., Singh, Y. (2019). Visual vignette Endocrine Practice, 25(10), 1082	No pdf available
L2	Jarquin-Yanez, L.,Mejia-Saavedra, J.,Molina-Frechero, N.,Pozos-Guillen, A.,Alvarez, G. (2016). Risk assessment by exposure to fluorine through water consumption, by determining susceptibility biomarkers and effect in child population of San Luis Potosi Toxicology Letters, 259 (Supplement 1)(#issue#), S123-S124	No pdf available
L2	Jimenez-Cordova, M. I.,Gonzalez-Horta, M. C.,Aguilar-Madrid, G.,Barrera-Hernandez, A.,Sanchez-Pena, L. C.,Barbier, O. C.,Del Razo, L. M. (2016). Evaluation of KIM-1, Cystatin-C and glomerular filtration rate in schoolchildren exposed to inorganic fluoride Toxicology Letters, 259 (Supplement 1)(#issue#), S131	No pdf available
L2	Karak, P. (2017). Health effects of ground water fluoride contamination in Bankura district of West	No pdf available

Le vel	Bibliography	Reason for exclusion
	Bengal, India International Journal of Pharma and Bio Sciences, 8(3), B195-B203	
L2	Rathore, S.,Meena, C.,Gonmei, Z.,Toteja, G. S.,Bala, K. (2018). Study of excess fluoride ingestion and effect on liver enzymes in children living in Jodhpur district of Rajasthan Indian Journal of Public Health Research and Development, 9(1), 412-416	No pdf available
L2	Solis-Angeles, S., Cardenas Gonzalez, M., Jimenez-Cordova, M. I., Villarreal-Vega, E., Aguilar-Madrid, G., Gonzalez-Horta, M. C., Del Razo, L. M., Barbier, O. (2016). Comparative urinary miRNAs expression and cystatin C level in adults chronically exposed to fluoride through drinking water Toxicology Letters, 259 (Supplement 1) (#issue#), S115	No pdf available
L2	Strunecka, A., Blaylock, R. L., Strunecky, O. (2016). Fluoride, aluminum, and aluminofluoride complexes in pathogenesis of the autism spectrum disorders: A possible role of immunoexcitotoxicity Journal of Applied Biomedicine, 14(3), 171-176	No pdf available
L2	Tunakova, J.,Galimova, A.,Fajzullin, R.,Valiev, V. (2016). Assessment of health risks of the child population in the consumption of drinking water, taking into account secondary pollution on the example of Kazan Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(1), 1114-1117	No pdf available
L2	Valdez-Jimenez, L.,Lopez-Guzman, O. D.,Cervantes-Flores, M.,Costilla-Salazar, R.,Calderon-Hernandez,	No pdf available

Le vel	Bibliography	Reason for exclusion
	J.,Alcaraz-Contreras, Y.,Rocha-Amador, D. O. (2016). In utero exposure to fluoride through drinking water and cognitive development delay in children Toxicology Letters, 259 (Supplement 1)(#issue#), S206	
L2	Walsh, Christine E., Jackson, Mark E., Central Connecticut State, University, Department of, Biology (2018). Community Water Fluoridation in the United States and the Possible Threat of Neurotoxicity to Humans #journal#, #volume#(#issue#), #Pages#	No pdf available
L2	Wang, X. L.,Ming, J.,Qiu, B.,Liao, Y. F.,Liao, Y. D.,Wei, S. F.,Tu, C. L.,Pan, X. L. (2019). [Relationship between fluoride exposure, orthopedic injuries and bone formation markers in patients with coal-burning fluorosis] Yingyong Shengtai Xuebao, 30(1), 43-48	No pdf available
L2	Zhou, Yuan, Yon, RuiXia, Xu, Rui, Zhang, Juan, Li, YanGuo, Liu, MingQing (2019). Effects of water-borne iodine and fluoride on thyroid diseases Chinese Journal of Endemiology, 38(3), 249-252	No pdf available
L2	Abouleish, M. Y. (2016). Evaluation of fluoride levels in bottled water and their contribution to health and teeth problems in the United Arab Emirates Saudi Dent J, 28(4), 194-202	No relevant health outcomes
L2	Abtahi, M., Dobaradaran, S., Jorfi, S., Koolivand, A., Khaloo, S. S., Spitz, J., Saeedi, H., Golchinpour, N., Saeedi, R. (2019). Age-sex specific disability-	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: A national and subnational study in Iran, 2017 Water Research, 157(#issue#), 94-105	
L2	Academy of Medical Sciences, (2016). Improving the health of the public by 2040 #journal#, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Actrn, (2019). Water Quality and the Microbiome Study - TUMS http://www.who.int/trialsearch/Trial2.aspx?TrialID=AC TRN12619000458134., #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Aghapour, S.,Bina, B.,Tarrahi, M. J.,Amiri, F.,Ebrahimi, A. (2018). Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS Environ Monit Assess, 190(3), 137	No relevant health outcomes
L2	Amouei, A. I.,Faraji, H.,Khalilpour, A.,Fallah, S. H.,Asgharnia, H. A. (2016). Fluoride Concentration in Drinking Water Resources; North of Iran International Archives of Health Sciences, 3(1), 19-22	No relevant health outcomes
L2	Anim-Gyampo, M., Anornu, G. K., Appiah-Adjei, E. K., Agodzo, S. K. (2019). Quality and health risk assessment of shallow groundwater aquifers within the Atankwidi basin of Ghana Groundwater for Sustainable Development, 9(#issue#), 100217	No relevant health outcomes
L2	Arya, S.,Subramani, T.,Vennila, G.,Karunanidhi, D. (2019). Health risks associated with fluoride intake	No relevant health

1.0		
Le vel	Bibliography	Reason for exclusion
	from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India Environmental geochemistry and health., 18(#issue#), #Pages#	outcomes
L2	Aslani, H.,Zarei, M.,Taghipour, H.,Khashabi, E.,Ghanbari, H.,Ejlali, A. (2019). Monitoring, mapping and health risk assessment of fluoride in drinking water supplies in rural areas of Maku and Poldasht, Iran Environ Geochem Health, 41(5), 2281-2294	No relevant health outcomes
L2	Bhattacharya, P.,Samal, A. C.,Banerjee, S.,Pyne, J.,Santra, S. C. (2017). Assessment of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India Environ Sci Pollut Res Int, 24(25), 20300-20314	No relevant health outcomes
L2	Canadian Paediatric Society, (2019). Position Statement: The use of fluoride in infants and children #journal#, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Dahi, E (2019). Database Management of Defluoridation Work as an Essential Tool in Minimising Exposure to Fluoride Through Water XXXIVth Conference of the International Society For Fluoride Research, 52(1), 97	No relevant health outcomes
L2	Das, N.,Das, A.,Sarma, K. P.,Kumar, M. (2018). Provenance, prevalence and health perspective of co- occurrences of arsenic, fluoride and uranium in the	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	aquifers of the Brahmaputra River floodplain Chemosphere, 194(#issue#), 755-772	
L2	Deavenport-Saman, A.,Britt, A.,Smith, K.,Jacobs, R. A. (2017). Milestones and controversies in maternal and child health: Examining a brief history of micronutrient fortification in the US Journal of Perinatology, 37(11), 1180-1184	No relevant health outcomes
L2	Ding, L., Yang, Q., Yang, Y., Ma, H., Martin, J. D. (2020). Potential risk assessment of groundwater to address the agricultural and domestic challenges in Ordos Basin Environ Geochem Health, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Emenike, C. P., Tenebe, I. T., Jarvis, P. (2018). Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk Ecotoxicol Environ Saf, 156(#issue#), 391-402	No relevant health outcomes
L2	Fallahzadeh, R. A., Miri, M., Taghavi, M., Gholizadeh, A., Anbarani, R., Hosseini-Bandegharaei, A., Ferrante, M., Conti, G. O. (2018). Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water Food and Chemical Toxicology, 113(#issue#), 314-321	No relevant health outcomes
L2	Farooqi, A., Sultana, J., Masood, N. (2017). Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health	No relevant health outcomes

Le		
vel	Bibliography	Reason for exclusion
	implications Toxicol Ind Health, 33(8), 655-672	
L2	Fonkwe, Merline L. d (2016). A Framework for Better Understanding Drinking Water Quality in Happy Valley-Goose Bay Labrador: Indications for Optimization and Protection of Municipally Supplied Water #journal#, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., Owusu-Ansah, E. D. G. J., Tettey, S., Diabene, P. Y., Asimah, S. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana Chemosphere, 233(#issue#), 862-872	No relevant health outcomes
L2	Ghaderpoori, M., Najafpoor, A. A., Ghaderpoury, A., Shams, M. (2018). Data on fluoride concentration and health risk assessment of drinking water in Khorasan Razavi province, Iran Data in Brief, 18(#issue#), 1596-1601	No relevant health outcomes
L2	Hanse, A., Chabukdhara, M., Gohain Baruah, S., Boruah, H., Gupta, S. K. (2019). Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India Environ Monit Assess, 191(12), 782	No relevant health outcomes
L2	Jayasinghe, S.,Zhu, Y. G. (2020). Chronic kidney disease of unknown etiology (CKDu): Using a system dynamics model to conceptualize the multiple environmental causative pathways of the epidemic Science of the Total Environment, 705 (no	No relevant health outcomes

Le		
vel	Bibliography	Reason for exclusion
	maningtion/(405700) #Dana#	
	pagination)(135766), #Pages#	
L2	Kanagaraj, G.,Elango, L. (2019). Chromium and	No relevant health
	fluoride contamination in groundwater around leather	outcomes
	tanning industries in southern India: Implications from	
	stable isotopic ratio δ53Cr/δ52Cr, geochemical and	
	geostatistical modelling Chemosphere, 220(#issue#),	
	943-953	
L2	Karunanidhi, D., Aravinthasamy, P., Roy, P.	No relevant health
	D., Praveenkumar, R. M., Prasanth, K., Selvapraveen,	outcomes
	S.,Thowbeekrahman, A.,Subramani,	
	T., Srinivasamoorthy, K. (2020). Evaluation of non-	
	carcinogenic risks due to fluoride and nitrate	
	contaminations in a groundwater of an urban part	
	(Coimbatore region) of south India Environ Monit	
	Assess, 192(2), 102	
L2	Kaur, L., Rishi, M. S., Siddiqui, A. U. (2020).	No relevant health
	Deterministic and probabilistic health risk assessment	outcomes
	techniques to evaluate non-carcinogenic human	
	health risk (NHHR) due to fluoride and nitrate in	
	groundwater of Panipat, Haryana, India Environ Pollut,	
	259(#issue#), 113711	
L2	Kazi, T. G.,Brahman, K. D.,Baig, J. A.,Afridi, H. I.	No relevant health
	(2019). Bioaccumulation of arsenic and fluoride in	outcomes
	vegetables from growing media: health risk	
	assessment among different age groups Environ	
	Geochem Health, 41(3), 1223-1234	
L2	Keramati, H., Miri, A., Baghaei, M., Rahimizadeh,	No relevant health
	, , , , , , ,	-

Le vel	Bibliography	Reason for exclusion
	A.,Ghorbani, R.,Fakhri, Y.,Bay, A.,Moradi, M.,Bahmani, Z.,Ghaderpoori, M.,Mousavi Khaneghah, A. (2019). Fluoride in Iranian Drinking Water Resources: a Systematic Review, Meta-analysis and Non-carcinogenic Risk Assessment Biol Trace Elem Res, 188(2), 261-273	outcomes
L2	Kumar, S.,Singh, R.,Venkatesh, A. S.,Udayabhanu, G.,Sahoo, P. R. (2019). Medical Geological assessment of fluoride contaminated groundwater in parts of Indo-Gangetic Alluvial plains Sci Rep, 9(1), 16243	No relevant health outcomes
L2	Li, Y., Wang, S., Nan, Z., Zang, F., Sun, H., Zhang, Q., Huang, W., Bao, L. (2019). Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China Sci Total Environ, 663(#issue#), 307-314	No relevant health outcomes
L2	Marghade, D., Malpe, D. B., Subba Rao, N. (2019). Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India Environ Geochem Health, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Mejare, I. (2018). Current Guidance for Fluoride Intake: Is It Appropriate? Advances in dental research, 29(2), 167-176	No relevant health outcomes
L2	Mirzabeygi Rad Fard, M., Yousefi, M., Soleimani, H., Mohammadi, A. A., Mahvi, A. H., Abbasnia, A.	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	(2018). The concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran Data Brief, 18(#issue#), 40-46	
L2	Mukherjee, I.,Singh, U. K.,Patra, P. K. (2019). Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India Chemosphere, 233(#issue#), 164-173	No relevant health outcomes
L2	Narsimha, A., Sanda, Rajitha (2018). Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India Human and Ecological Risk Assessment, 24(8), 2119-2132	No relevant health outcomes
L2	Narsimha, A., Sudarshan, V. (2018). Data on fluoride concentration levels in semi-arid region of Medak, Telangana, South India Data in Brief, 16(#issue#), 717-723	No relevant health outcomes
L2	Narsimha, A., Sudarshan, V. (2018). Drinking water pollution with respective of fluoride in the semi-arid region of Basara, Nirmal district, Telangana State, India Data Brief, 16(#issue#), 752-757	No relevant health outcomes
L2	Noda, Grace (2016). The Controversy over Community Water Fluoridation : an Analysis of its Effects and Reasons Behind the Arguments #journal#, #volume#(#issue#), #Pages#	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
L2	Qasemi, M., Afsharnia, M., Zarei, A., Farhang, M., Allahdadi, M. (2019). Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: a case study Human and Ecological Risk Assessment, 25(5), 1222-1233	No relevant health outcomes
L2	Radfard, M.,Rahmatinia, M.,Akbari, H.,Hashemzadeh, B.,Akbari, H.,Adibzadeh, A. (2018). Data on health risk assessment of fluoride in water distribution network of Iranshahr, Iran Data Brief, 20(#issue#), 1446-1452	No relevant health outcomes
L2	Samuel, O. A., PraiseGod, E. C., Theophilus, T. I., Omolola, K. C. (2018). Human health risk assessment data of trace elements concentration in tap water-Abeokuta South, Nigeria Data Brief, 18(#issue#), 1416-1426	No relevant health outcomes
L2	Singh, G., Kumari, B., Sinam, G., Kriti,, Kumar, N., Mallick, S. (2018). Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspectivea review Environ Pollut, 239(#issue#), 95-108	No relevant health outcomes
L2	Singh, G.,Rishi, M. S.,Herojeet, R.,Kaur, L.,Sharma, K. (2019). Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India Environ Geochem Health, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Sisay, T.,Beyene, A.,Alemayehu, E. (2017).	No relevant health

-		
Le vel	Bibliography	Reason for exclusion
	Spatiotemporal variability of drinking water quality and the associated health risks in southwestern towns of Ethiopia Environ Monit Assess, 189(11), 569	outcomes
L2	Valeeva, E. R.,Ismagilova, G. A.,Stepanova, N. V.,Serazetdinova, F. I.,Saifullin, R. R.,Iliasova, A. R. (2017). Assessment of adolescents' exposure to non-carcinogenic risk associated with drinking water Journal of Pharmacy Research, 11(10), 1209-1213	No relevant health outcomes
L2	Yadav, K. K., Kumar, V., Gupta, N., Kumar, S., Rezania, S., Singh, N. (2019). Human health risk assessment: Study of a population exposed to fluoride through groundwater of Agra city, India Regul Toxicol Pharmacol, 106(#issue#), 68-80	No relevant health outcomes
L2	Yousefi, M., Asghari, F. B., Zuccarello, P., Conti, G. O., Ejlali, A., Mohammadi, A. A., Ferrante, M. (2019). Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: A case study in an endemic fluorosis region of northwest Iran International Journal of Environmental Research and Public Health, 16 (4) (no pagination)(564), #Pages#	No relevant health outcomes
L2	Yousefi, M.,Ghalehaskar, S.,Asghari, F. B.,Ghaderpoury, A.,Dehghani, M. H.,Ghaderpoori, M.,Mohammadi, A. A. (2019). Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran Regul Toxicol Pharmacol,	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	107(#issue#), 104408	
L2	Yousefi, M., Ghoochani, M., Hossein Mahvi, A. (2018). Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran Ecotoxicol Environ Saf, 148(#issue#), 426-430	No relevant health outcomes
L2	Yu, J.,Zhou, J.,Long, A.,He, X.,Deng, X.,Chen, Y. (2019). A comparative study of water quality and human health risk assessment in longevity area and adjacent non-longevity area International Journal of Environmental Research and Public Health, 16 (19) (no pagination)(3737), #Pages#	No relevant health outcomes
L2	Yuan, L.,Fei, W.,Jia, F.,Jun-Ping, L.,Qi, L.,Fang-Ru, N.,Xu-Dong, L.,Shu-Lian, X. (2020). Health risk in children to fluoride exposure in a typical endemic fluorosis area on Loess Plateau, north China, in the last decade Chemosphere, 243(#issue#), 125451	No relevant health outcomes
L2	Zhang, L.,Zhao, L.,Zeng, Q.,Fu, G.,Feng, B.,Lin, X.,Liu, Z.,Wang, Y.,Hou, C. (2020). Spatial distribution of fluoride in drinking water and health risk assessment of children in typical fluorosis areas in north China Chemosphere, 239(#issue#), 124811	No relevant health outcomes
L2	Kanduti, D., Sterbenk, P., Artnik, B. (2016). The use of fluoride and its effect on health. [Slovene] Zdravniski Vestnik, 85(5-6), 348-353	Non-English reference
L2	Ortega-Romero, M. S., Hernandez Sanchez, A. M., Medeiros-Domingo, M., Barbier, O. (2016). Evaluation of risk factors for renal disease in a	Non-English reference

Le vel	Bibliography	Reason for exclusion
	pediatric Mexican meztizo population from Apizaco in Tlaxcala Mexico Toxicology Letters, 259 (Supplement 1)(#issue#), S242	
L2	Yan, RuiXia,Xu, Rui,Zhou, Yuan,Li, YanGuo,Pang, YaXian,Liu, Jia,Hu, XiaoHong,Yang, FengYan,Wen, SongChen,Zhang, LiPing,Ren, JianLi,Liu, MingQing (2019). Effects of iodine and fluoride content in drinking water on prevalence of adults thyroid nodules in Cangzhou, Hebei Chinese Journal of Endemiology, 38(6), 472-475	Non-English reference
L2	Yan, RuiXia,Zhou, Yuan,Li, YanGuo,Xu, Rui,Li, ShuZhen,Wen, SongChen,Li, XiaoMei,Zhang, LiPing,Meng, YuJun,Ren, JianLi,Liu, MingQing (2019). Detection of thyroid nodules in children from areas with different drinking water iodine and fluoride contents in Cangzhou, Hebei Province Journal of Environmental & Docupational Medicine, 36(5), 470-473, 478	Non-English reference
L2	Abdur, Rashid,Guan, DongXing,Abida, Farooqi,Sardar, Khan,Salman, Zahir,Shah, Jehan,Khattak, S. A.,Khan, M. S.,Raees, Khan (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan Science of the Total Environment, 635(#issue#), 203-215	Only dental outcome
L2	Li, Z., Yang, K., Xie, C., Yang, Q., Lei, X., Wang, H. (2019). Assessment of potential health risk of major	Only dental outcome

Le vel	Bibliography	Reason for exclusion
	contaminants of groundwater in a densely populated agricultural area Environ Geochem Health, #volume#(#issue#), #Pages#	
L2	Rashid, A., Farooqi, A., Gao, X., Zahir, S., Noor, S., Khattak, J. A. (2020). Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan Chemosphere, 243(#issue#), 125409	Only dental outcome
L2	Sezgin, B. I.,Onur, S. G.,Mentes, A.,Okutan, A. E.,Haznedaroglu, E.,Vieira, A. R. (2018). Two-fold excess of fluoride in the drinking water has no obvious health effects other than dental fluorosis J Trace Elem Med Biol, 50(#issue#), 216-222	Only dental outcome
L2	Alaska Nurses Association, (2018). An Emerging Threat to Drinking Water and Public Health: Forever Chemicals Alaska Nurse, 69(1), 5-8	Other fluoride/water type
L2	Chang, W., Wang, L., Zhang, Y., Wang, M., Wang, Y., Li, P. (2019). A review of sources, multimedia distribution and health risks of novel fluorinated alternatives Ecotoxicology and Environmental Safety, 182 (no pagination)(109402), #Pages#	Other fluoride/water type
L2	Chubaka, Chirhakarhula (2019). Roof Harvested Rainwater in the Adelaide Region, South Australia #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Duan, Q ,Li, Y ,Lei, P ,Chen, X ,Guan, Z (2019). Skeletal Features of Children Living in the Area of	Other fluoride/water type

Le vel	Bibliography	Reason for exclusion
	Coal-Burning Type of Endemic Fluorosis Detected by X-Ray Imaging XXXIVth Conference of the International Society For Fluoride Research, 52(1), 86	
L2	Fan, Z.,Gao, Y.,Wang, W.,Gong, H.,Guo, M.,Zhao, S.,Liu, X.,Yu, B.,Sun, D. (2016). Prevalence of Brick Tea-Type Fluorosis in the Tibet Autonomous Region J Epidemiol, 26(2), 57-63	Other fluoride/water type
L2	Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K. (2018). Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India Chemosphere, 207(#issue#), 626-636	Other fluoride/water type
L2	Guan, Z ,Wang, Y ,Duan, Q,Liu, R ,Li, F,Xu, S ,Yang, G ,Deng, J ,Li, Y ,Wu, C ,Liu, Y We, N ,Dong, Y,Qi, X ,Yu, W (2019). Basic Investigation and Clinic Treatment for the Coal-Burning Type of Endemic Fluorosis in Guizhou, China XXXIVth Conference of the International Society For Fluoride Research, 52(1), 83-84	Other fluoride/water type
L2	larc Working Group on the Evaluation of Carcinogenic Risk to Humans (2017). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Some Chemicals Used as Solvents and in Polymer Manufacture, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Mastrantonio, M.,Bai, E.,Uccelli, R.,Cordiano, V.,Screpanti, A.,Crosignani, P. (2018). Drinking water contamination from perfluoroalkyl substances (PFAS):	Other fluoride/water type

Le vel	Bibliography	Reason for exclusion
	an ecological mortality study in the Veneto Region, Italy Eur J Public Health, 28(1), 180-185	
L2	Medline Plus, (2017). Fluoride #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Medline Plus, (2017). Fluoride Overdose #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Medline Plus, (2018). Osteosclerosis #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Negm, A. M (2017). The Nile Delta #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Spitz, J (2019). Genetic, Epigenetic and Environmental Factors: The Triangle of Health XXXIVth Conference of the International Society For Fluoride Research, 52(1), 78-79	Other fluoride/water type
L2	Struneckà, A ,Strunecky, O (2019). Neurotoxicity of Fluoride: Autism Spectrum Disorders XXXIVth Conference of the International Society For Fluoride Research, 52(1), 77	Other fluoride/water type
L2	Davoudi, M ,Mahvi, A H,Barjasteh-Askari, F Bazrafshan, E,Sarmadi, M,Ghorbani, M,Yaseri, M (2019). Relationship of fluoride in drinking water with hypertension prevalence and blood pressure. PROSPERO 2019 CRD42019138629 #journal#, #volume#(#issue#), #Pages#	Research protocol
L2	Frazão, P,Belotti, L (2019). Effectiveness of fluoridation of public water supply in Brazil -	Research protocol

Le vel	Bibliography	Reason for exclusion	
	systematic review. PROSPERO 2019 CRD42019142050 #journal#, #volume#(#issue#), #Pages#		
L2	Rosário, H,Rosário, B,Vieira, W,Cericato, G,Nóbrega, D,Paranhos, L R (2019). External control of fluoride concentration in public water supply in Brazilian cities: a meta-analysis. PROSPERO 2019 CRD42019120870 #journal#, #volume#(#issue#), #Pages#	Research protocol	
L2	Alarcon-Herrera, M. T.,Martin-Alarcon, D. A.,Gutierrez, M.,Reynoso-Cuevas, L.,Martin- Dominguez, A.,Olmos-Marquez, M. A.,Bundschuh, J. (2020). Co-occurrence, possible origin, and health- risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization Sci Total Environ, 698(#issue#), 134168	Used reference concentration	
L2	Bai, X.,Song, K.,Liu, J.,Mohamed, A. K.,Mou, C.,Liu, D. (2019). Health risk assessment of groundwater contaminated by oil pollutants based on numerical modeling International Journal of Environmental Research and Public Health, 16 (18) (no pagination)(3245), #Pages#	Used reference concentration	
L2	Jolović, B., Stevanović, A., Nogić, M. (2017). Causes of increased concentration of fluorides in groundwater in Srebrenica municipality Journal of Engineering & Engineering & Processing Management, 9(1), 69-75	Used reference concentration	
L2	Levine, K. E., Redmon, J. H., Elledge, M.	Used reference	

Le vel	Bibliography	Reason for exclusion
	F., Wanigasuriya, K. P., Smith, K., Munoz, B., Waduge, V. A., Periris-John, R. J., Nalini, Sathiakumar, Harrington, J. M., Womack, D. S., Rajitha, Wickremasinghe (2016). Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka - a multimedia laboratory analysis of biological, food, and environmental samples Environmental Monitoring and Assessment, 188(10), 548	concentration
L2	Li, Y., Wang, F., Feng, J., Lv, J. P., Liu, Q., Nan, F. R., Zhang, W., Qu, W. Y., Xie, S. L. (2019). Long term spatial-temporal dynamics of fluoride in sources of drinking water and associated health risks in a semiarid region of Northern China Ecotoxicol Environ Saf, 171(#issue#), 274-280	Used reference concentration
L2	Odiyo, J. O.,Makungo, R. (2018). Chemical and microbial quality of groundwater in Siloam village, implications to human health and sources of contamination International Journal of Environmental Research and Public Health, 15(2), 317	Used reference concentration
L2	Ranasinghe, N.,Kruger, E.,Chandrajith, R.,Tennant, M. (2018). Groundwater fluoride in Sri Lanka: opportunities to mitigate the risk at maximum contaminant level Ceylon Med J, 63(4), 174-179	Used reference concentration

Section 3. Data abstraction and risk of bias assessment - human studies

(Studies arranged in a descending chronological order then alphabetically by author's last name)

Mercado 2023 [1]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The higher
Original study	Fluoride levels in:	 Dental fluorosis 	 Descriptive analysis 	concentration of fluoride in drinking
Study design:	Ground water			water is directly
Cross-sectional				related to the higher
Country:				degree of fluorosis."
Peru				
Participants:	Method of exposure		Results:	
12-15 years old students	assessment:		Fluoride in water/Dean's	
Sampling time frame:	 SPANDS method 		fluorosis index:	
2012			Panchacutes I: 0.98mg/L/2.08	
Sample size:			Tiabaya Pampas Nuevas: 0.79 mg/L/1.90	
504			Tiabaya El Cural: 0.73	
Sex:	Exposure level(s):	Method of outcome	mg/L/1.72	
Girls: 34.52%	• Ground water (mg/L)	ascertainment:	La Bedoya: 0.43 mg/L/1.54	
Exclusions:	0.22-0.98 mg/L	Dean's index		

Study Characteristics	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Students with an oral			Panchacutes II: 0.32 mg/L/1	.42	
pathology treatment			La Tomialla: 0.22 mg/L/1.26		
 Live in a different region of the school 			Dental fluorosis for Panchacutes I:		
Source of funding / support:			Severe: 10.71% Moderate: 23.81%		
NR			Mild: 32.14%		
Author declaration of			Very Mild: 26.19%		
interest:			Questionable: 7.143 %		
			Normal: 0%		
NR			<u>Tiabaya Pampas Nuevas:</u>		
			Severe: 8.33% Moderate: 21.43%		
			Mild: 30.95%		
			Very Mild: 26.19%		
			Questionable: 9.52 %		
			Normal: 3.57%		
			Tiabaya "El Cural":		
			Severe: 5.95%		
			Moderate: 19.05%		
			Mild: 29.76%		
			Very Mild: 26.19%		
			Questionable: 10.71 %		
			Normal: 8.33%		
			La Bedoya:		
			Severe: 3.57%		
			Moderate: 15.48% Mild: 29.76%		
			Very Mild: 27.38%		
			v 61 y 1viiiu. 21 .30 /0		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Questionable: 13.10 %	
			Normal: 10.71%	
			Panchacutes II:	
			Severe: 2.38%	
			Moderate: 13.10%	
			Mild: 28.57%	
			Very Mild: 28.57%	
			Questionable: 15.48 %	
			Normal: 11.90%	
			<u>La Tomialla:</u>	
			Severe: 0%	
			Moderate: 10.71%	
			Mild: 27.38%	
			Very Mild: 30.95%	
			Questionable: 16.69%	
			Normal: 14.29 %	
			Relationship between	
			fluoridation and DF: (p<0,05;	
			χ2<0,05)	
			Relationship between "Never	,,,
			Fluoridation and DF	
			Normal: 7.5%	
			Questionable: 12.5%	
			Very Mild: 27.5%	
			Mild: 30%	
			Moderate: 17.5%	
			Severe: 5%	
			Relationship between "One"	
			Fluoridation and DF	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Normal: 8.26%	
			Questionable: 11.98%	
			Very Mild: 27.69%	
			Mild: 29.75%	
			Moderate: 17.36%	
			Severe: 4.96%	
			Relationship between "Two"	
			Fluoridation and DF	
			Normal: 8.14%	
			Questionable: 12.21%	
			Very Mild: 27.33%	
			Mild: 29.65%	
			Moderate: 17.44%	
			Severe: 5.23%	
			Relationship between "Three"	
			Fluoridation and DF	
			Normal: 8.0%	
			Questionable: 12.0%	
			Very Mild: 28.0%	
			Mild: 30.0%	
			Moderate: 16.0%	
			Severe: 6.0%	

Risk of bias assessment		
Bias domain	Criterion	Response

Risk of bias assessment			
Bias domain	Criterion	Response	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (students with an oral pathology treatment, and those who live in a different region than the school's one).
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride exposure levels were obtained from water wells and the local schools, using the SPANDS method.
	Can we be confident in the outcome assessment?	++	Yes, DF was assessed by researchers who were evaluated by university professor, using Dean's fluorosis index. Blinding of exposure status may have not significantly biased the assessment.
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Tang 2023 [2]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	Since "stratified
Original study	Fluoride levels in:	 Dental fluorosis 	 Descriptive analysis 	analysis indicated a weaker association
Study design:	 Ground water 		Mediation analysis Adjusted for age, say, DMI	between fluoride
Cross-sectional	 Urine samples 		 Adjusted for age, sex, BMI, parental education, family 	concentration and
Country:			income and low birth weight, in	DF prevalence in boys than in girls.",
China			addition to urinary creatinine for urine fluoride assessments	"the DF prevalence
Participants: 7-14 years old children	Method of exposure assessment:		Results:	may be sex- specific." Inflammatory
residing since birth in study area that is supplied by groundwater Sampling time frame: NR	 Fluoride in Drinking water_and Urine samples: lon-selective potentiometry (PF- 202-CF; INESA 		 Water fluoride concentration >1mg/L and DF prevalence: Normal: 17 (5.6%) Very mild: 47 (15.5%) Mild: 210 (69.3%) Moderate:29(9.6%) Water fluoride concentration 	factors may partially mediate the increased prevalence of mild DF in school-aged children with low-to-moderate fluoride

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size: 593	Scientific Instrument Co., Ltd., China)		1mg/L and DF prevalence: Normal: 216 (74.5%) Very mild: 22 (15.2%)	exposure. The study demonstrates that
Sex: N (%): Girls: 300 (50.6%)	Exposure level(s): (Chinese standard	Method of outcome ascertainment:	Mild: 30 (10.3%) Moderate:0(0.00%)	the risk of DF has an upward trend
Exclusions:	fluoride limit in water = 1.0mg/L)	• Dean's Index	 Water fluoride and DF (PR (95% Cl), increase per 1ml/L): Overall DF: 1.50 (1.42, 1.57) 	when the fluoride gradually in increases, in water
 History of chronic medical conditions or other endemic diseases, such as kidney, liver, or endocrine disorders Children living in areas with exposure to other pollutants, such as lead, arsenic, or mercury. Source of funding / support: National Natural 	 Water fluoride: 0.20 to 3.90, mean 1.42 (SD 1.00), median 1.20 (IQR 0.70–2.20) mg/L Urinary fluoride: 0.01 to 5.54, mean 1.36 (SD 1.31), median 0.56 (IQR 0.16-2.29) mg/L Fluoride concentration:: Mean SD (>1mg/L) 	:	Very mild DF: 1.85 (1.64, 2.07) Moderate DF: 3.92 (3.03, 5.06) P < 0.001 • Urinary fluoride DF (PR (95% CI), increase per 1ml/L): Overall DF: 1.42 (1.35, 1.50) Very mild DF: 1.67 (1.48, 1.88) Mild DF:1.72 (1.61, 1.84) moderate DF: 3.02 (2.50, 4.13) P < 0.001	and urine.
Science Foundation of China (Grants No. 82073515, and No. 81773388) The State Key Program of National Natural Science Foundation of	SD (>1mg/L): Higher exposure gp.: Water: 2.19 ±0.81 Urine: 2.48 ±0.88 Lower exposure gp.: Water: 0.61 ±0.24		Association between fluoride content and DF by sex: PR (95%CI) Water Fluoride Overall: 1.33 (1.29, 1.36), P-interaction=0.325 Very Mild: 1.31 (1.23, 1.39) P-interaction=0.485	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
China (Grant No.	Urine: 0.18 ±0.12		Mild: 1.39 (1.35, 1.44)	
81430076)			P-interaction=0.431	
Author declaration of			Moderate: 1.33 (1.25, 1.42	2)
Author declaration of			P-interaction=0.852	
interest: No COI			Urinary Fluoride:	
			Overall: 1.27 (1.23, 1.30)	
			P-interaction=0.013	
			Very Mild: 1.25 (1.17, 1.32	2)
			P-interaction=0.025	,
			Mild: 1.32 (1.28, 1.36)	
			P-interaction=0.014	
			Moderate: 1.27 (1.20, 1.36	5)
			P-interaction=0.170	
			Sensitivity analysis for effec	
			fluoride exposure on DF: [Pl	<u> </u>
			(95%CI) for every 1mg/L	
			increment of water fluoride]	
			Adjusted for age and sex, w	ater
			fluoride (mg/L)	
			Overall: 1.50 (1.42, 1.57)	2
			WHO Guideline: 0.78 (0.6 0.89) *	0,
			Very Mild: 1.83 (1.62, 2.06	
			WHO Guideline: 1.25 (0.9	,
			1.52) *	5 ,
			Mild: 1.72 (1.61, 1.83)	
			WHO Guideline: 1.10 (0.9)	3.
			1.27) *	- 1
			Moderate: 3.18 (2.54, 3.98	3)
			WHO Guideline: 3.13 (2.3	
			3.90) *	•

Study Character	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			Adjusted for BMI, water fluor	ride	
			(mg/L)		
			Overall: 1.50 (1.42, 1.58) WHO Guideline: 0.79 (0.67	7	
			0.91) *	,	
			Very Mild: 1.82 (1.62, 2.05)	
			WHO Guideline: 1.23 (0.95		
			1.51) *	•	
			Mild: 1.72 (1.61, 1.83)		
			WHO Guideline: 1.11 (0.94	1,	
			1.28) *	`	
			Moderate: 3.27 (2.73, 3.92		
			WHO Guideline: 3.15 (2.40 3.90) *	J,	
			Adjusted for parental educat	ion,	
			and family income, water		
			fluoride (mg/L)		
			Overall: 1.50 (1.43, 1.58)	-	
			WHO Guideline: 0.79 (0.67 0.91) *	' ,	
			Very Mild: 1.83 (1.63, 2.06)	
			WHO Guideline: 1.22 (0.95		
			1.50) *	•	
			Mild: 1.73 (1.62, 1.84)		
			WHO Guideline: 1.11		
			(0.94,1.28) *	`	
			Moderate: 3.78 (2.93, 4.88		
			WHO Guideline: 3.12 (2.29 3.95) *	o,	
			Adjusted for low birth weight	,	
			water fluoride (mg/L)		
			Overall: 1.50 (1.42, 1.57)		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			WHO Guideline: 0.79 (0.67	,
			0.91) *	
			Very Mild: 1.83 (1.62, 2.06)	
			WHO Guideline: 1.21 (0.92	.,
			1.50) *	
			Mild: 1.72 (1.61, 1.83)	
			WHO Guideline: 1.11 (0.94	•,
			1.28) *	_ `
			Moderate: 3.384 (2.82, 4.0	•
			WHO Guideline: 3.13 (2.37	,
			3.89) *	
			Adjusted for age, sex, BMI,	
			parental education, family	
			income, and low birth weight	,
			water fluoride (mg/L)	
			Overall: 1.50 (1.42, 1.58)	
			WHO Guideline: 0.78 (0.66	,
			0.90) *	
			Very Mild: 1.85 (1.64, 2.07)	
			WHO Guideline: 1.24 (0.95	,
			1.52) *	
			Mild: 1.723 (1.61, 1.84)	
			WHO Guideline: 1.10	
			(0.93,1.27) *	
			Moderate: 3.92 (3.03, 5.06	
			WHO Guideline: 3.13 (2.32	• •
			3.94) *	
			*Water fluoride ≤ 1.5 is	
			reference. P=0.001	
			Sensitivity analysis for effect	of
			fluoride exposure on DF: [PF	
			(95%CI) for every 1mg/L	_

Study Character	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			increment of urinary fluoride]		
			Adjusted for age and sex,		
			urinary fluoride (mg/L)		
			Overall: 1.41 (1.34, 1.48)		
			Very Mild: 1.66 (1.48, 1.87)		
			Mild: 1.57 (1.48, 1.68)		
			Moderate: 2.68 (2.26, 3.19)		
			Adjusted for BMI, urinary		
			fluoride (mg/L)		
			Overall: 1.41 (1.34, 1.48)		
			Very Mild: 1.63 (1.44, 1.85)		
			Mild: 1.57 (1.47, 1.67)		
			Moderate: 2.59 (2.18, 3.08)		
			Adjusted for parental education	on,	
			and family income, urinary		
			fluoride (mg/L)		
			Overall: 1.41 (1.34, 1.48)		
			Very Mild: 1.65 (1.47, 1.85)		
			Mild: 1.57 (1.47, 1.67)		
			Moderate: 2.98 (2.37, 3.75)		
			Adjusted for low birth weight,		
			urinary fluoride (mg/L)		
			Overall: 1.41 (1.34, 1.48)		
			Very Mild: 1.64 (1.45 1.86)		
			Mild: 1.57 (1.47, 1.67)		
			Moderate: 2.57 (2.14, 3.08)		
			Adjusted for urinary creatinine	,	
			urinary fluoride (mg/L)		
			Overall: 1.42 (1.35, 1.50)		
			Very Mild: 1.63 (1.43, 1.86)		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			Mild: 1.59 (1.48, 1.71) Moderate: 2.76 (2.19, 3.48	3)	
			Adjusted for age, urine creatinine, sex, BMI, parente education, family income an low birth weight, urinary fluo (mg/L) Overall: 1.42 (1.35, 1.50) Very Mild: 1.67 (1.48, 1.88)	d ride	
			Mild: 1.59 (1.48, 1.72) Moderate: 3.20 (2.49, 4.13	3)	

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable			
	Was allocation to study groups adequately concealed?	N/A Not applicable			
	Did selection of study participants result in appropriate comparison groups?	Yes, participants were selected according to the same crit and from the same eligible population. Time frame was reported in the study.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++ Yes, the study was adjusted for major confounders (age, s BMI, low birth weight, parental education, family income low birth weight). Urinary fluoride was additionally adjusted urinary creatinine.	and		

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on the reasons for exclusion of study participants (history of chronic medical conditions such as kidney, liver, or endocrine disorders, children living in areas where iodine deficiency disorders were endemic, or where exposure to other potential pollutants such as lead, arsenic, or mercury was known/reported).			
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride levels in water and urine were assessed suing Ion-selective potentiometry (PF-202-CF; INESA Scientific Instrument Co., Ltd., China)			
	Can we be confident in the outcome assessment?	++	Yes, the outcome (DF) was assessed by two experienced dentists who were blinded to children's exposure status, using DFI.			
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Ahmad 2022 3

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "The significantly
Original study Study design:	Fluoride levels inDrinking water	• IQ Method of outcome	 T-test and Mann-Whitney test were used Statistical significance at p 	higher IQ, 99.95±15.50, of boys in the urban
Cross-sectional study	Urine Method of exposure	ascertainment:The Raven's Progressive	<0.05	area madrassas with a high drinking water fluoride level
Country:	assessment:	Matrices Intelligence Test • A teacher trained by a	Results: N (%) of IQ scores by high	compared to the IQ, 92.30±14.97, of
Pakistan Participants:	Exposure level:	psychologist administered the test	(urban) and low (rural) fluoride areas	boys in the rural area madrassas
Students (9 – 11 years of age) of madrassa (Islamic religious school)	Mean fluoride levels in urban madrassas (Karachi Central)		 IQ <70 retarded (low) High fluoride: 2 (3.33) Low fluoride: 5 (8.33) IQ 70 – 79 borderline (below) 	with a low drinking water fluoride level contradicts the previous reports of
in urban and rural locations within the province of Sindh	Drinking water: 2.04 mg/LUrine: 5.99 (±3.57) mg/L		average)High fluoride: 4 (6.67)Low fluoride: 6 (10)	higher fluoride levels being associated with a
Sampling time frame:	Mean fluoride levels in rural madrassas (Umerkot)		IQ 80 – 89 dull normal (low average) • High fluoride: 10 (16.67)	lower IQ. However, several confounding factors

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
NR	Drinking water: 1	.07 mg/L	• Low fluoride: 9 (15)	were not controlled
	• Urine: 3.53 (±1.09	9 mg/L)	<u>IQ 90 – 109 normal</u>	for in the present
Sample size:			(average)	study, including the
•			 High fluoride: 20 (33.33) 	level of parental
120			• Low fluoride: 19 (31.67)	education, socio-
			IQ 110 - 119 bright normal	economic status,
Sex N (%):			(high average)	and the levels of
Girls: 34 (28.3%)			 High fluoride: 16 (26.67) 	arsenic, lead, and
			• Low fluoride: 15 (25)	iodine." (p. 57)
Exclusions:			<u>IQ 120 – 129 superior</u>	
			(good)	
NR			High fluoride: 7 (11.67)	
			Low fluoride: 6 (10)	
Source of funding /			IQ >129 very superior	
support:			(excellent)	
NR			 High fluoride: 1 (1.66) 	
			• Low fluoride: 0 (0.0)	
Author declaration of			"A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
interest:			"No significant difference	
NR			was present between the IQ	
INIX			distribution in the high and	
			low fluoride areas on chi-	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			square testing after	
			combining the groups IQ	
			<70 and IQ 70-79, and the)
			groups IQ 120–129 and IC	!
			>129, so that the cells had	
			an n of 5 or more" (p. 56)	
			IQ scores by high (urban)	
			and low (rural) fluoride are	as
			stratified by gender	
			<u>Boys</u>	
			• High fluoride: 99.95 (±	
			15.50)	
			• Low fluoride: 92.30 (±	
			14.97)	
			<u>Girls</u>	
			• High fluoride: 96.90 (±	
			16.31)	
			• Low fluoride: 90.30 (±	
			15.49)	
			"comparing IQ of high	

Study Character	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			fluoride boys and low	
			fluoride boys p<0.05" (p. 5	57)

Risk of bias assessment						
Bias domain	Criterion	Resp	oonse			
Selection	Was administered dose or exposure level	NA	Not applicable			
	adequately randomized?					
	Was allocation to study groups adequately	NA	Not applicable			
	concealed?					
	Did selection of study participants result in	-	NR (eligibility criteria and recruitment time frame not			
	appropriate comparison groups?		reported)			
Confounding	Did the study design or analysis account for	-	t-test and Mann Whitney tests were used.			
	important confounding and modifying variables?		"several confounding factors were not controlled for			
			including the level of			
			parental education, socio-economic status, and the levels			
			of arsenic, lead, and iodine." (p. 49)			
Performance	Were experimental conditions identical across study	N/A	Not applicable			
	groups?					
	Were the research personnel and human subjects	N/A	Not applicable			
	blinded to the study group during the study?					
Attrition	Were outcome data complete without attrition or	-	Reasons for exclusion NR. "There were more than 230			
	exclusion from analysis?		students registered in madrassa in rural and urban areas			

Criterion	Door		
	Response		
		and the participants in this cross-sectional study	
		comprised 120 madrassa students, aged 9-11-years-old,	
		in the rural and urban areas of Sindh province, Pakistan.	
		According to the fluoride concentration in the groundwater,	
		the participants were determined using a stratified cluster	
		selection of areas based on the geological survey report of	
		the Government of Pakistan." (p. 54-55)	
Can we be confident in the exposure	_	Exposure assessment methods NR	
characterization?			
Can we be confident in the outcome assessment?	_	"The Raven's Progressive Matrices Intelligence Test, with	
		a series of conceptual judgment multiple choice questions	
		in the Urdu and English languages, was employed in the	
		study" (p. 55). Unclear blinding	
Were all measured outcomes reported?	++	Outcomes discussed in methods were reported in the	
		results	
Were there no other potential threats to internal	++	None identified	
validity (e.g., statistical methods were appropriate			
and researchers adhered to the study protocol)?			
1	Can we be confident in the outcome assessment? Were all measured outcomes reported? Were there no other potential threats to internal validity (e.g., statistical methods were appropriate	Can we be confident in the outcome assessment? Were all measured outcomes reported? Were there no other potential threats to internal validity (e.g., statistical methods were appropriate	

Feng 2022 [4]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Excessive fluoride exposure may have
Original study	Fluoride level(s) in:	• Intelligence quotient (IQ).	Descriptive analysis	adverse effects on
Study design:	• Urine		Generalized linear model (GLM) Multipomial logistic regression	children's intelligence, and changes in children's intelligence may be
Cross-sectional			Multinomial logistic regression	associated with the
Country:				interaction between fluoride and MTHFD1 polymorphisms."
China				 Note: significant trends in
Participants:	Method of exposure		Results:	IQ with increasing creatinine-adjusted urinary
Children aged 8-12 years	assessment:		Mean IQ scores	fluoride were found only in high fluoride group; no
Sampling time frame:	 Fluoride ion-selective electrode (Shanghai 		HFG: 122.61±11.61CG: 121.50±12.14	significant trends were seen in the total
April-May 2017	Exactitude Instruments,		P=0.290Total: 122.05±11.88	population.
Sample size:	Shanghai, China) • Creatinine-adjusted		Distribution by intelligence level	
683	urinary fluoride		in HFG and CG	
	(UFcr) levels were calculated		 Normal: (IQ 90-109): 15.25% (HFG); 17.54% (CG) 	
Sex: N (%):	Exposure level(s):	Method of outcome	 High-normal (IQ 110-119): 	
Boys: 324 (47.44%)	Median UFcr (mg/L): 1.33	ascertainment:	25.81% (HFG); 24.85% (CG) • Superior (IQ 120-129): 30.21% (HFG); 33.04% (CG)	
Exclusions:	Children were divided	 The second revision of the Combined Raven's 	• Excellent (IQ≥130): 28.74%	
Non-residents	into two groups, high	Test – the Rural in China	(HFG); 24.56% (CG)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 On calcium supplements Had disorders of calcium or phosphorus metabolism, digestive diseases, or thyroid diseases. Children with IQ<90 Source of funding / support: The National Natural Science Foundation of China (Nos. 81972981, 82003401, and 81673116) Key Projects of Colleges and Universities of Henan Education Department (21A330006) Author declaration of interest: no COI 	fluoride group (HFG, UFcr>1.33 mg/L) and control group (CG, UFcr≤1.33 mg/L). Mean urinary fluoride [UF, unadjusted for creatinine] (mg/L): • HFG:1.56±0.82 • CG: 0.98±0.62 • P<0.001 • Total: 1.27±0.79 Mean UFcr (mg/L) • HFG: 2.15±0.91 • CG: 0.83±0.30 • P<0.001 • Total: 1.49±0.95	(CRTRC2) • Children completed the test "independently with the supervision of trained investigators".	 P=0.539 High fluoride group (HFG) Change in IQ score per 1.0 mg/L increase in UFcr level: β=-2.502 (95% CI: -4.411, -0.593); p=0.010 Change in the probability of "excellent" intelligence (IQ≥130) per 1.0 mg/L increase in UFcr level: OR=0.537 (95% CI: 0.290, 0.994); p=0.048 No significant trend in IQ scores by tertile of UFcr (≤1.63, 1.64-2.14, >2.14 mg/L); p=0.116 Control group No significant change in IQ score per 1.0 mg/L increase in UFcr level: p=0.181 No significant change in the probability of "excellent" intelligence (IQ≥130) per 1.0 mg/L increase in UFcr level: p=0.659 No significant trend in IQ scores by tertile of UFcr (≤0.66, 0.67-1.02, >1.02 mg/L); p=0.343 	

Study Characteristic	es es			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Ottudy	LAPOSCITO		Total • No significant change in IQ score per 1.0 mg/L increase UFcr level: p=0.376 • No significant change in the probability of "excellent" intelligence (IQ≥130) per 1.0 mg/L increase in UFcr level: p=0.396 • No significant trend in IQ scores by tertile of UFcr	in
			(≤1.02, 1.03-1.63, >1.63 mg/L); p=0.426 Statistically significant geneenvironmental interaction on the IQ scores	he
			[Polymorphisms in 4 loci of MTHFD1 related to neurodevelopment (rs11627387, rs1076991, rs2236224, and rs2236225) were analyzed]	
			 UFcr x rs11627387 x rs1076991 x rs2236224: F=1.669; p=0.021 UFcr x rs11627387 x rs1076991 x rs2236225: F=1.764; p=0.012 UFcr x rs11627387 x 	

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
			rs1076991 x rs2236224 x rs2236225: F=1.614; p=0.				

Risk of bias assessment					
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	All participants were recruited from the same four primary schools at the same time and using the same eligibility criteria.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it was adjusted for major confounders such as children's age, sex, BMI, age at which pregnancy occurred, gestational weeks, birth weight, birth modes, and paternal and maternal education level.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		

Risk of bias a	Risk of bias assessment						
Bias domain	Criterion	Response					
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on the reasons for exclusion of study participants (non-residents, on calcium supplements, had disorders of calcium or phosphorus metabolism, digestive diseases, or thyroid diseases, and children with IQ<90).				
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in urine using fluoride ion- selective electrode (Shanghai Exactitude Instruments, Shanghai, China). Creatinine-adjusted urinary fluoride levels were calculated to correct for urine dilution.				
	Can we be confident in the outcome assessment?	-	The Combined Raven's Test – the Rural in China (CRTRC2) was completed by children under supervision of "trained investigators". It is not reported whether the children and/or the "trained investigators" were aware of the exposure status.				
Selective	Were all measured outcomes reported?	++	Yes, the primary outcome (children intelligence, IQ)				

Risk of bias a	Risk of bias assessment					
Bias domain	Criterion	Respo	onse			
reporting			discussed in methods were presented in the results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

García-Escobar 2022 [5]

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "Patients from rural		
Original study	Fluoride levels in	Dental fluorosis	 Fisher's exact test 	communities of the		
Study design:	 Drinking water 		 Spearman's rank order 	Anantapur district		
Cross-sectional			correlation	showed a high		
Country:			 Method for estimation of ORs 	prevalence (over		
India			not reported.	90%) of dental		
Participants:	Method of exposure		Results:	fluorosis. Moreover,		
785 subjects aged 10-60	assessment:		Overall prevalence	the Anantapur		
years				population presents		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame:	• Fluoride levels in		• 94.6% (DI)	a high number of
NR	water: "ion		• 94.4 (TFI)	moderate and
Sample size:	chromatography		Prevalence of Moderate-Severe	severe cases (over
785	according to the		(MS) cases (DI) and TFI score	60%), while other
	parameters for		<u>4–9 cases</u>	populations showed
	potable waters for		[DI MS group corresponds to	less severe forms
	public consumption		TFI 4–9]	of fluorosis, despite
	in Spain (R.D.		• 62.8% (DI MS)	reporting superior
	140/2003)"		• 73.1% (TFI 4-9)	fluoride levels to
Sex: N (%):	Exposure level(s):	Method of outcome	Prevalence of fluorosis among	those found in the
Men: 322 (41.3%)	• Water fluoride (ppm):	ascertainment:	those consuming water with	Anantapur drinking
Exclusions:	1.1 to 2.92 (mean	The Dean Index (DI)	water fluoride ≤1.5 ppm	water."
Orofacial malformations	1.71, median 1.5)	The Thylstrup and	• 54.3% (DI)	"The severity of
or pathologies that		Fejerskov Index (TFI)	• 54.5% (TFI)	fluorosis concerning
could make			Prevalence of DI MS and TFI 4-	fluoride
examination difficult			9 among those consuming	concentration levels
 Systemic pathology 			water with water fluoride ≤1.5	in drinking water in
affecting fluoride			<u>ppm</u>	Anantapur suggests
metabolism			• 33.2% (DI MS)	that other factors
Absence of permanent			• 39.9% (TFI 4-9)	are involved in the
or definitive teeth			OR (95% CI)	severity of the
Dental surface wear or				dental fluorosis

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
stains due to tobacco,			DI MS	observed. A
betel, or another			•≤1.5 ppm: reference	potential change in
chewing habit			•>1.5 ppm: 1.81 (1.34–2.45)	the biological
 Excessive bacterial 			• P=0.000	susceptibility of the
dental plaque or			TFI 4-9	population to the
calculus			•≤1.5 ppm: reference	toxin, due to the
 Patients requiring 			•>1.5 ppm: 1.79 (1.28–2.5)	long-term
urgent dental attention			• P=0.000	exposition
 Patients with missing 			Spearman's rank order	(including several
data			correlation between water	generations) could
 Patients whose parents 	S		fluoride and moderate-severe	explain the
or grandparents came			fluorosis	phenomenon"
from a community			• DI MS: R _s =0.527; p=0.064	
outside Anantapur.			• TFI 4-9: R _s =0.610; p=0.027	
Source of funding /				
support:				
No external funding				
Author declaration of				
interest: No COI				

Risk of bias assessment

Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	NA	Not applicable
	Was allocation to study groups adequately concealed?	NA	Not applicable
	Did selection of study participants result in		Participants selected using same criteria. Sampling time
	appropriate comparison groups?	+	frame not reported.
Confounding	Did the study design or analysis account for		NR
	important confounding and modifying variables?	_	INK
Performance	Were experimental conditions identical across	NΙΛ	Not applicable
	study groups?	NA	Not applicable
- ,	Were the research personnel and human subjects blinded to the study group during the study?		
			Not applicable
Attrition	Were outcome data complete without attrition or		Reasons for exclusion were provided
	exclusion from analysis?	++	Reasons for exclusion were provided
Detection	Can we be confident in the exposure	++	Fluoride was measured in water using ion
	characterization?	-	chromatography
	Can we be confident in the outcome	++	DF examined using the Thysltrup and Fejerskov criteria
	assessment?	77	and Dean Index
Selective	Were all measured outcomes reported?	4.1	Outcomes discussed in the methods were reported in the
reporting		++	results

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Other	Were there no other potential threats to internal			
sources	validity (e.g., statistical methods were	thods were	None identified	
	appropriate and researchers adhered to the		None Identified	
	study protocol)?			

Goodman 2022 ^[6]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• " prenatal exposure
Original study	Fluoride level in	Children's IQ	 Generalized estimating equation 	to fluoride is associated with sustained impacts
Study design:	Maternal urine		(GEE) population averaged	on IQ."
Cohort	collected during one		models for panel data with an	• " an increment of 0.5
(ELEMENT)	or more trimesters of		autoregressive correlation	mg/L in maternal
(ELEIVIEINI)	pregnancy		structure (estimation across time).	urinary fluoride
Country:			 Age-stratified multiple linear 	concentration was associated with a 2-
Mexico			regression analyses (estimation	point decrement in
			at each time point)	children's Full-Scale IQ scores".

Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants:	Method of exposure		Results:	"Non-verbal abilities
 Women who were planning to conceive or were pregnant at <14 weeks gestation (Cohorts 2A and Cohort 3 of the ELEMENT project). Children examined at 	A modification of the hexamethyldisiloxane (Sigma Chemical Co., USA) microdiffusion method with the ionselective electrode An average of all available maternal urinary fluoride adjusted for creatinine		Changes in cognitive sore per 0.5 mg/L increase in MUFcre GEE population-averaged models • FSIQ/GCI: B=-2.12 (95% CI: -3.49, -0.75); p=0.002 • PIQ: B=-2.63 (95% CI: -3.87, -1.40); p<0.001 • VIQ: B=-1.29 (95% CI: -2.60, 0.01); p=0.053 • No interactions were between MUFcre and time (p>0.10). • No interaction between MUFcre and child sex (p>0.10) Linear regression analysis	may be more susceptible to impairment from prenatal fluoride exposure as compared to verbal abilities." • "These results were found among mother- child pairs living in a region of Mexico in which fluoride is added to salt."
ages 4, 5, and 6– 12 years	concentrations during pregnancy (1 to 3		Age 4	
Sampling time frame: Recruitment: Cohort 2A in 1997- 1999; Cohort 3 in 2001-2003 Sample size:	samples) was used as the exposure measure.		 GCI: B=-2.12 (95% CI: -3.83, -0.41); p=0.015 PIQ: B=-3.08 (95% CI: -4.69, -1.47); p<0.001) VIQ: B=-0.81 (95% CI: -2.30, 0.69); p>0.05 Age 5 GCI: B=-1.97 (95% CI: -3.64, - 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Primary sample with complete covariate, maternal urinary fluoride, and outcome data for at least two time points: 348 mother-child dyads Examined at age 4 years: 386 Examined at age 5: 308 Examined at age 6-12: 278 Sex: N (%): Boys: Primary sample: 167 (47.99%) Age 4: 183 (47.41%) 	Exposure level(s): • Creatinine-adjusted maternal urinary fluoride (MUFcre, µg/L): 0.14 to 3.01; mean 0.90 (SD 0.39),	Method of outcome ascertainment: McCarthy Scales of Children's Abilities (MSCA) translated into Spanish to children aged 4 and 5 years	0.30); p=0.021 • PIQ: B=-2.46 (95% CI: 4.04, -0.87); p=0.003 • VIQ: B=-1.24 (95% CI: -2.97, 0.49); p>0.05 Age 6-12 • FSIQ: B=-2.01 (95% CI: -3.66, -0.46); p=0.012 • PIQ: B=-1.80 (95% CI: -3.39, -0.21); p=0.027 • VIQ: B=-1.93 (95% CI: -3.67, -0.18); p=0.031 • No interaction between MUFcre and child sex Sensitivity analyses (GEE models), B (95% CI) FSIQ/GCI. • Model A ⁵ : -2.10 (-3.47, -0.73) • Model A + number/timing of urine	
• Age 5: 151 (49.03%)	1110di1 0.00 (OD 0.00),	 Verbal scale (VIQ, a 	samples ⁶ : -2.12 (-3.49, -0.75)	

⁵ GEE models adjusted for gestational age, weight at birth, sex, parity (being the first child), age at outcome measurement, time of testing, smoking history (ever smoked during the pregnancy vs. non-smoker), marital status (married vs. others), maternal age at delivery, maternal education, and cohort/calcium treatment.

⁶ Number/timing of urine samples included as a covariate

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
• Age 6-12: 132 (47.48%)	median 0.83; IQR 0.64-1.11	measure of verbal reasoning and comprehension) • Perceptual-performance	 Model A – IQ score<70⁷: -1.67 (-2.93, -0.41) Model A – Cohort 3 Ca⁸: -1.98 (-3.70, -0.27) 	
Exclusions: Women with a history of		scale (PIQ, a measure of nonverbal reasoning and perceptual information processing) • General Cognitive Index	 Model A – Maternal IQ⁹: -2.40 (-3.79, -1.01) Model A + Maternal IQ¹⁰: -2.09 (-3.44, -0.73) Model A – HOME¹¹: -2.33 (-4.46, - 	
psychiatric disorders,		(GCI), the standardized composite score	0.20) • Model A + HOME ¹² : -2.11 (-4.06, -0.16)	
substance use, high-risk		Spanish version of Wechsler Abbreviated Scale of Intelligence	 Model A – Patella Lead¹³: -2.42 (-3.98, -0.86) Model A + Patella Lead¹⁴: -2.41 (- 	
pregnancy, or other medical conditions		(WASI) to children aged 6- 12 years. • Verbal IQ (VIQ, a	 Model A + Patella Lead : -2.41 (-3.98, -0.85) Model A – Tibia Lead¹⁵: -2.75 (-4.61, -0.89) 	

 $^{^{\}rm 7}$ Excluding cases with FSIQ/GCI, PIQ, or VIQ scores less than 70

⁸ Subset of cases who received calcium supplementation

⁹ Subset of cases who have data on maternal IQ

¹⁰ Subset of cases who have data on maternal IQ, adjusted for maternal IQ

¹¹ Subset of cases who have data on Home Observation for the Measurement of the Environment (HOME) scores

¹² Subset of cases with HOME score, adjusted for HOME score

¹³ Subset of cases who have data on maternal patella lead

¹⁴ Subset of cases with data on maternal patella lead, adjusted for maternal patella lead

¹⁵ Subset of cases who have data on maternal tibia lead

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of fund	ding	measure of verbal	• Model A + Tibia Lead ¹⁶ : -2.23 (-	
/ support:		reasoning and comprehension)	4.09, - 0.38) • Model A – Tibia and Patella	
• The American	ı	Performance (PIQ, a measure of nonverbal	Lead ¹⁷ : -2.73 (-4.71, -0.76) • Model A + Tibia and Patella	
British Cowdra	ay	reasoning and spatial	Lead ¹⁸ : -2.20 (-4.18, -0.22)	
Hospital provid	ded	processing) • Full-Scale intelligence	PIQ	
facilities for the	е	(FSIQ, a measure of		
ELEMENT		global intellectual functioning)	• Model A: 2.61 (-3.85, -1.38)	
research.		runctioning)	 Model A + number/timing of urine samples: -2.63 (-3.86, -1.39) 	
• U.S. National		Each child was evaluated by one of three	 Model A – IQ score<70: -2.61 (-3.81, -1.42) 	
Institutes of		psychologists supervised	• Model A – Cohort 3 Ca: -3.13 (-	
Health (NIH;		by experienced developmental	4.67, -1.58)	
grants		psychologist.	 Model A – Maternal IQ: -2.78 (4.04, -1.52) 	
R01ES021446	6	The inter-examiner	Model A + Maternal IQ: -2.46 (-	
and R01-		reliability: r>0.90 (MSCA);	3.68, -1.24) • Model A – HOME: -3.67 (-5.52, -	
ES007821)		not assessed for WASI	1.82)	
• The National			 Model A + HOME: -3.44 (-5.15, - 1.72) 	
Institute of			Model A – Patella Lead: -2.66 (-	
Environmenta	I		4.05, -1.27)	

¹⁶ Subset of cases with data on maternal tibia lead, adjusted for maternal tibia lead

¹⁷ Subset of cases who have data on maternal tibia and patella lead

¹⁸ Subset of cases with data on maternal tibia and patella lead, adjusted for maternal tibia and patella lead

Study Charact	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Health			• Model A + Patella Lead: -2.65	5 (-
Sciences/the			4.04, -1.27)	
U.S.			 Model A – Tibia Lead: -2.81 (-4.46, -1.16) 	•
Environmenta	I		 Model A + Tibia Lead: -2.41 (-4.07, -0.76) 	-
Protection			 Model A – Tibia and Patella L 	ead:
Agency			-2.75 (-4.50, -1.00)	
(NIEHS/EPA;			 Model A + Tibia and Patella L -2.32 (-4.08, -0.56) 	ead:
grant			,	
P01ES022844	1,		VIQ	
83543601)			• Model A: -1.28 (-2.58, 0.03)	
• The NIEHS			 Model A + number/timing of u samples: -1.30 (-2.60, 0.01) 	rine
(grant P42-			 Model A – IQ score<70: -1.05 	(-
ES05947,			2.31, 0.21)	1
P20ES01817	1)		 Model A – Cohort 3 Ca: -0.69 2.31, 0.94) 	(-
NIEHS Center	,		 Model A – Maternal IQ: -1.55 2.86, -0.24) 	(-
Grant			 Model A + Maternal IQ: -1.33 	(-
P30ES017885	5)		2.62, -0.04) • Model A – HOME: -0.71 (-2.72)	2
National Instit	ute		1.30)	۷,
of Public			 Model A + HOME: -0.54 (-2.4) 1.35) 	3,
Health/Ministr	y of		• Model A – Patella Lead: -1.62	<u> </u>
Health of Mex	ico		3.12, -0.11)	
Author			 Model A + Patella Lead: -1.62 3.13, -0.11) 	. (-

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
declaration of	f		• Model A – Tibia Lead: -2.09	(-	
interest: No C	COI		3.88, -0.31)	,	
			• Model A + Tibia Lead: -1.65	(-	
			3.44, 0.14)		
			Model A – Tibia and Patella A 00 (2.00 - 0.10)	Lead:	
			-2.09 (-3.99, -0.19)		
			 Model A + Tibia and Patella 	Lead:	
			-1.63 (-3.55, 0.28)		

Risk of bias assessment						
Bias domain	omain Criterion		Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in	+	Mother-child pairs were enrolled from three			
	appropriate comparison groups?		hospitals in Mexico City serving low to middle			
			income families. Eligibility criteria were slightly			
			different between the two cohorts (2A and 3), but			
			there is no indication that they differed in relation to			
			fluoride exposure level. Time frame was different for			

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
			the two cohorts (2A and 3). More information about study participants can be found in Perng et al. 2019 ¹⁹ .			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it was adjusted for major confounders such as maternal education, maternal age at delivery, marital status at delivery, maternal smoking, gestational age, weight at birth, birth order, child age at each outcome measurement, and cohort.			
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on the reasons for exclusion of study participants (women with a history of psychiatric disorders, substance use, high-risk pregnancy, or other medical conditions). Although it is not reported, there is no indication that losses to			

¹⁹ https://bmjopen.bmj.com/content/9/8/e030427

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Response			
			follow-up were related to intelligence level.		
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in maternal urine using a modification of the hexamethyldisiloxane (Sigma Chemical Co., USA) microdiffusion method with the ion-selective electrode		
	Can we be confident in the outcome assessment?	++	Yes, IQ was consistently assessed by one of three psychologists who was unaware to the child's prenatal fluoride exposure and supervised by an experienced developmental psychologist. The ageappropriate assessment tools included the McCarthy Scales of Children's Abilities, MSCA, translated into Spanish (administered at ages 4 and 5 years), and the Spanish version of Wechsler Abbreviated Scale of Intelligence, WASI (administered at age 6-12 years).		
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcome (children intelligence, IQ) discussed in methods were presented in the results section with adequate level of detail for data extraction		

Risk of bias assessment					
Bias domain	Criterion	Respo	nse		
Other	Were there no other potential threats to	++	None identified		
sources	internal validity (e.g., statistical methods were				
	appropriate and researchers adhered to the				
	study protocol)?				

Gupta 2022 🔼

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:		
Original study	Fluoride levels in:	Dental fluorosis	Descriptive analysis	concentrations of fluoride in potable	
Study design:	 Drinking water 	 Skeletal fluorosis 	 Analysis of variance 	water, poor socio-	
Case-Control Study	• Serum			economic status and	
Country:				nutritional deficiency also contribute to	
India				fluorosis in exposed	
Participants:	Method of exposure		Results:	individuals from endemic regions."	
Subjects: from endemic villages, controls: from	assessment:		Water fluoride concentration	• For the individuals	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
non-endemic villages Sampling time frame: 2014-2015 Sample size: 180 Sex: N (%): NR Exclusions: Neonates, children, pregnant women and patients with other severe & chronic diseases Source of funding / support: • UGC, New Delhi • Chhattisgarh Council of Science and Technology Author declaration of	Drinking water: Thermo scientific orion 9609 BNWP ion selective fluoride electrode Serum: Semi auto analyzer (Model CHEM 400), Electronics India. Exposure level(s): Mean drinking water fluoride levels 1.16-7.56 ppm	Method of outcome ascertainment: • Dental Fluorosis: NR • Skeletal Fluorosis: NR	associated with: • Dental fluorosis: 0.67-0.83 ppm • Skeletal fluorosis: 0.43-0.83 ppm	residing in an endemic area and consuming the same high fluoride containing drinking water which doesn't have visible symptoms of dental or skeletal fluorosis, individuals might be considered in a preclinical stage of fluorosis and may develop symptoms of fluorosis in subsequent years. The finding of this study might be a preliminary screening for those individuals. However, urine and blood fluoride analyses of the subjects are also needed for further confirmation."	

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (Neonates, children, pregnant women and patients with other severe & chronic diseases)			
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride exposure levels Drinking water samples from the study areas were collected and estimated for the fluoride content with the help of Thermo-scientific Orion 9609 BNWP ion selective fluoride electrode. Fluoride concentrations in serum was measured by the Semi auto analyzer (Model CHEM 400), Electronics India.			
	Can we be confident in the outcome assessment?	-	NR – NR			
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were			

Risk of bias assessment					
Bias domain	Criterion	Resp	oonse		
reporting			presented in the results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Ibarluzea 2022 [8]

Ibarluzea 2022					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Routes of	Outcome(s):	Statistical analysis ²⁰ :	• "We observed no	
Original study	exposures:	• Children's	Student's t tests	negative effects on	
Study design:	Fluoride level in	cognition/intelligence	 One-way analysis of variance 	children's cognition	
Longitudinal	 Maternal urine 		 Pearson correlations 	and even found	
Country:	collected in the first		 Multiple linear regression 	positive associations	
Spain	and third trimesters			for verbal,	

²⁰ Student's t-test, one-way ANOVA and Pearson correlation were used to select variables for multiple linear regression (with p<0.2)

	of pregnancy			performance,
Participants:	Method of exposure	_	Results:	numeric, memory
Pregnant women	assessment:		Changes in cognitive score	scores and GCI, in
Children examined at	 Potentiometry using 		per unit (mg/g) increase in	boys at the age of 4
ages 1 and 4 years	an ion-selective		maternal creatinine-adjusted	years, although
Sampling time frame:	electrode (DX219-F,		urinary fluoride (MUFcr), β	when Hg levels were
Recruitment of pregnant	Mettler Toledo)		(95% CI) ²¹	included in the
women between 1997	 Urinary fluoride 		Bayley Mental Development	model only verbal
and 2008 in different	levels were adjusted		Index (MDI)	and GCI at week 32
study areas (Guxen et	for creatinine		Both trimesters MUFcr	and whole
al. 2012) ²²			• All: 1.48 (-4.2, 7.16)	pregnancy remained
Sample size:	_		• Boys: 3.84 (-5.04, 12.72)	significant or
 Assessed at age 1 			• Girls: 0.75 (-6.92, 8.43)	marginally
year: 316 mother-child			Week 12 MUFcr	significant."
pairs			• All: 0.55 (- 4.64, 5.74)	"The positive
• Assessed at ages 1 and			• Boys: 2.96 (-5.09, 11.01)	associations
4 years: 248 mother-			• Girls: -1 (-8.07, 6.07)	between MUFcr and
child pairs			Week 32 MUFcr	cognitive functions
Sex: N (%):	Exposure level(s):	Method of outcome	• All: 1.52 (-2.92, 5.97)	seemed to be more

²¹ Adjusted for child's age at testing (only for McCarthy), order of the child (between siblings), nursery at 14 months, breastfeeding, maternal social class, IQ and smoking

²² Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, Olea N, Rebagliato M, Tardón A, Torrent M, Vioque J, Vrijheid M, Sunyer J; INMA Project. Cohort Profile: the INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J Epidemiol. 2012 Aug;41(4):930-40. doi: 10.1093/ije/dyr054. Epub 2011 Apr 5. PMID: 21471022

Boys:	Fluoride levels in	ascertainment:	• Boys: 2.50 (-4.46, 9.46)	evident in children of
 Assessed at age 1 	drinking water	 Bayley Scales of Infant 	• Girls: 1.7 (-4.30, 7.71)	mothers who lived
year: 146 (46.2%)	 Community 	Development (BSID) at	McCarthy, verbal	their pregnancy in
 Assessed at age 4 	fluoridated drinking	age 1 year	Both trimesters MUFcr	the nonfluoridated
years: 125 (50.4%)	water systems: mean	 McCarthy Scales of 	• All: 13.86 (3.91, 23.82)	zones."
Exclusions:	0.81 (SD 0.15) mg/L	Children's Abilities	• Boys: 13.38 (2.81, 23.95)	"The associations
At recruitment	 Community non- 	(MSCA) ²⁴	• Girls: -1.31 (-9.35, 6.74)	have been seen with
• Maternal age <16 years	fluoridated drinking		• P<0.05	MUFcr of the third
Multiple pregnancy	water systems: <0.1		Week 12 MUFcr	trimester and not
 Pregnancy achieved 	mg/L		• All: 1.11 (-4.86, 7.07)	with those of the first
with assisted	Mean (95% CI)		• Boys: 3.78 (-6.16, 13.71)	one."
reproduction techniques	maternal creatinine-		• Girls: -0.91 (-8.78, 6.96)	"As there is not
 Not planning birth in 	adjusted urinary		Week 32 MUFcr	information of
the referral hospital	fluoride levels (mg/g		• All: 12.01 (4.82, 19.19)	MUFcr of the
 Communication 	creatinine) ²³		• Boys: 11.79 (4.22, 19.36)	second trimester of
problems in Spanish or	Assessed at age 1		• Girls: -0.93 (-7.01, 5.15)	pregnancy, it is
Basque	<u>year</u>		• P<0.01	difficult to identify a
Analytical sample	• Both trimesters: 0.66		McCarthy, performance	window of exposure
• Incomplete data [To be	(0.61; 0.70)		Both trimesters MUFcr	related to the effect,
included, participants	• Week 12 of		• All: 5.86 (0.32, 11.39)	but the lack of
had to have 1) data on	pregnancy: 0.57		5.55 (5.52, 1.165)	associations in the

Trial Ex. 133.0397

²³ Detailed data on maternal creatinine-adjusted urinary fluoride levels by maternal and children's characteristics are reported in Supplementary tables S2, S3 and S5

²⁴ The motor scale of the MSCA was not included in this study.

	(0.000		
neuropsychological	(0.52; 0.62)	• Boys: 12.24 (2.87, 21.61)	first trimester
assessment at 1 year of	Week 32 of	• Girls: 2.03 (-4.77, 8.83)	indicate that the
age; 2) data on	pregnancy: 0.74	• P<0.05	effects are
neuropsychological	(0.69; 0.79)	Week 12 MUFcr	associated with later
assessment at 4 years	• P<0.001 [1 st vs. 3 rd	• All: 4.63 (-0.57, 9.82)	periods in
of age provided they	trimester]	• Boys: 9.11 (0.47, 17.75)	pregnancy."
also had assessment	Assessed at age 4	• Girls: 1.10 (-5.53, 7.73)	• "A positive
data at 1 year; 3)	<u>years</u>	Week 32 MUFcr	association between
maternal urinary	Both trimesters: 0.64	• All: 3.68 (-0.49, 7.85)	MUF and GCI
creatinine adjusted	(0.59; 0.68)	• Boys: 7.17 (0.24, 14.09)	scores and other
fluoride levels at the	• Week 12 of	• Girls: 1.69 (-3.44, 6.83)	measures of
first and third trimesters	pregnancy: 0.55	• P<0.05	cognitive functions
of pregnancy.]	(0.50;0.60)	McCarthy, numeric	at 4 years of age is
Source of funding /	• Week 32 of	Both trimesters MUFcr	observed among
support ²⁵ :	pregnancy: 0.73	• All: 6.22 (0.65, 11.79	boys in a
The Instituto de Salud	(0.67;0.79)	• Boys: 11.09 (1.79, 20.4)	prospective birth
Carlos III, Red de	• P<0.001 [1 st vs. 3 rd	• Girls: 3.03 (-3.96, 10.03)	cohort in Spain. The
Centros de	trimester]	• P<0.05	current findings
investigación en	Whole pregnancy	Week 12 MUFcr	contradict, with a
Epidemiología y Salud	mean (SD) maternal	• All: 4.47 (-0.79, 9.73)	few exceptions,
Pública (RCESP)	urinary fluoride	• Boys: 5.03 (-3.65, 13.7)	results obtained
CIBER Epidemiología y	(mg/L)		previously in cross-
Salud Pública		• Girls: 2.92 (-3.95, 9.78)	sectional and

²⁵ Information from Guxen et al. 2012.

Trial Ex. 133.0398

(CIBERESP)	Assessed at age 1	Week 32 MUFcr	prospective studies."
• The Fondo de	<u>year</u>	• All: 4.13 (-0.07, 8.32)	
Investigación Sanitaria	 Non-fluoridated 	• Boys: 8.56 (1.81, 15.31)	
• The European Union's	zone: 0.36 (0.21)	• Girls: 1.55 (-3.74, 6.85)	
6th and 7th Framework	Fluoridated zone:	• P<0.05	
Programmes (Hiwate,	0.65 (0.29)	McCarthy, memory	
Escape, Hitea and	• P<0.001	Both trimesters MUFcr	
Contamed projects)	Assessed at age 4	• All: 11.63 (2.62, 20.63)	
• The Ministerio de	<u>years</u>	• Boys: 11.3 (1.90, 20.7)	
Educación y Ciencia,	 Non-fluoridated 	• Girls: -2.12 (-9.32, 5.09)	
the Generalitat de	zone: 0.35 (0.20)	• P<0.05	
Catalunya	Fluoridated zone:	Week 12 MUFcr	
The Centre for	0.62 (0.26)	• All: 1.71 (-3.66, 7.09)	
Research in	• P<0.001	• Boys: 4.28 (-4.51, 13.06)	
Environmental	Both trimesters	• Girls: -1.40 (-8.46, 5.67)	
Epidemiology (CREAL)	mean (SD)	Week 32 MUFcr	
of Barcelona	creatinine-adjusted	• All: 9.2 (2.67, 15.73)	
• The Fundació La Caixa,	maternal urinary	• Boys: 9.26 (2.47, 16.05)	
the Fundació Roger	fluoride (mg/g	• Girls: -1.72 (-7.17, 3.72)	
Torné	creatinine)	• P<0.01	
The Consejería de	Assessed at age 1	McCarthy, general cognitive	
Salud de Andalucía	<u>year</u>	Both trimesters MUFcr	
The Junta the	 Non-fluoridated 	• All: 15.4 (6.32, 24.48)	
Andalucía	zone: 0.46 (0.25)	• Boys: 15.03 (5.3, 24.75)	
The Conselleria de	• Fluoridated zone:		

Sanitat de la	0.84 (0.40)	• Girls: -0.02 (-7.16, 7.12)
Generalitat Valenciana	• P<0.001	• P<0.01
• The CAJASTUR—Caja	Assessed at age 4	Week 12 MUFcr
Asturias	<u>years</u>	• All: 3.37 (-2.09, 8.83)
The Spanish	 Non-fluoridated 	• Boys: 7.14 (-2.06, 16.33)
Association against the	zone: 0.45 (0.26)	• Girls: 0.21 (-6.77, 7.19)
Cancer (AECC)	Fluoridated zone:	Week 32 MUFcr
(Delegación Provincial	0.82 (0.39)	• All: 11.48 (4.88, 18.08)
Asturias)	• P<0.001	• Boys: 11.39 (4.33, 18.44)
The Departamento de		• Girls: -0.16 (-5.55, 5.23)
Sanidad-Gobierno		• P<0.01
Vasco		Changes in cognitive score
The Diputación Floral		per unit (mg/g) increase in
de Gipuzkoa		MUFcr, β (95% CI)
• The University of		additionally adjusted for cord
Oviedo, the KUTXA –		blood Hg levels.
Caja Gipuzkoa San		Bayley Mental Development
Sebastián		Index (MDI)
• The city councils of		Both trimesters MUFcr
Zumarraga, Urretxu,		• All: 2.67 (-3.46, 8.81)
Legazpi, Azpeitia,		 No significant interaction by
Beasain and Azkoitia in		sex
Gipuzkoa	_	Week 12 MUFcr
Author declaration of		• All: 0.89 (-4.55, 6.32)
interest: no COI		

sex	
Week 32 MUFcr	
• All: 2.65 (-2.14, 7.45)	
No significant interaction by	
sex	
McCarthy, verbal	
Both trimesters MUFcr	
• All: 9.4 (-1.78, 20.57)	
• Boys:	
• Girls: -2.07 (-10, 5.87)	
• P<0.1	
Week 12 MUFcr	
• All: -1.5 (-7.53, 4.54)	
No significant interaction by	
sex	
Week 32 MUFcr	
• All: 9.74 (1.75, 17.74)	
• Boys:	
• Girls: -0.74 (-6.72, 5.25)	
• P<0.05	
McCarthy, performance	
Both trimesters MUFcr	
• All: 4.41 (-1.59, 10.41)	

 No significant interaction by sex

Week 12 MUFcr

- All: 3.85 (-1.62, 9.33)
- No significant interaction by sex

Week 32 MUFcr

- All: 2.33 (-2.15, 6.82)
- No significant interaction by sex

McCarthy, numeric

Both trimesters MUFcr

- All: 5.28 (-0.54, 11.1)
- No significant interaction by sex

Week 12 MUFcr

- All: 3.38 (-1.96, 8.71)
- No significant interaction by sex

Week 32 MUFcr

- All: 3.47 (-0.88, 7.82)
- No significant interaction by sex

McCarthy, memory

Both trimesters MUFcr

• All: 0.8 (-5.3, 6.9)

• No significant interaction by

sex

Week 12 MUFcr

• All: -0.52 (-6.06, 5.02)

• No significant interaction by

sex

Week 32 MUFcr

• All: 1.15 (-3.4, 5.69)

• No significant interaction by

sex

McCarthy, general cognitive

Both trimesters MUFcr

• All: 10.54 (0.19, 20.89)

• Boys: --

• Girls: -0.83 (-8.18, 6.52)

• P<0.05

Week 12 MUFcr

• All: 1 (-4.61, 6.61)

No significant interaction by

sex:

Week 32 MUFcr

• All: 8.15 (0.69, 15.61)

• Boys: --

• Girls: -0.46 (-6.04, 5.12)

• P<0.05

Changes in cognitive score per unit (mg/g) increase in MUFcr, β (95% CI), stratified

by fluoridated and non-

fluoridated zone

Bayley Mental Development Index (MDI)

Both trimesters MUFcr

- Both zones/non-fluoridated: -0.52 (-7, 5.95)
- No significant interaction by zone

Week 12 MUFcr

- Both zones/non-fluoridated: -1 (-6.66, 4.65)
- No significant interaction by zone

Week 32 MUFcr

- Both zones/non-fluoridated: 0.33 (-4.52, 5.19)
- No significant interaction by zone

McCarthy, verbal

25 March 2023 403

Both trimesters MUFcr

- Both zones/non-fluoridated:
- 15.58 (3.71, 27.45)
- Fluoridated zone: -2.4 (-11.17, 6.37)
- P<0.01

Week 12 MUFcr

- Both zones/non-fluoridated:
- 0.27 (-6.12, 6.65)
- No significant interaction by zone

Week 32 MUFcr

- Both zones/non-fluoridated:
- 16.11 (7.4, 24.81)
- Fluoridated zone: -2.3 (-8.6, 3.99)
- P<0.01

McCarthy, performance

Both trimesters MUFcr

- Both zones/non-fluoridated:
- 7.82 (1.58, 14.07)
- Fluoridated zone: not reported
- P<0.05

Week 12 MUFcr

• Both zones/non-fluoridated:

5.5 (-0.07, 11.07)

 No significant interaction by zone

Week 32 MUFcr

- Both zones/non-fluoridated:4.67 (0.08, 9.26)
- Fluoridated zone: not reported
- P<0.05

McCarthy, numeric

Both trimesters MUFcr

- Both zones/non-fluoridated:4.08 (-2.21, 10.36)
- No significant interaction by zone

Week 12 MUFcr

- Both zones/non-fluoridated:2.63 (-2.96, 8.23)
- No significant interaction by zone

Week 32 MUFcr

- Both zones/non-fluoridated:2.53 (-2.06, 7.13)
- No significant interaction by zone

McCarthy, memory

Both trimesters MUFcr

- Both zones/non-fluoridated:2.71 (-3.77, 9.18)
- No significant interaction by zone

Week 12 MUFcr

- Both zones/non-fluoridated:1.01 (-4.74, 6.77)
- No significant interaction by zone

Week 32 MUFcr

- Both zones/non-fluoridated:2.17 (-2.56, 6.9)
- No significant interaction by zone:

McCarthy, general cognitive

Both trimesters MUFcr

- Both zones/non-fluoridated: 15.46 (4.55, 26.36)
- Fluoridated zone: 1.96 (-6.09, 10.02)
- P<0.01

Week 12 MUFcr

Both zones/non-fluoridated:3.5 (-2.36, 9.36)

 No significant interaction by zone

Week 32 MUFcr

- Both zones/non-fluoridated:12.88 (4.82, 20.94)
- Fluoridated zone: 0.11 (-5.73, 5.95)
- P<0.01

Analyses stratified by fluoridated and non-fluoridated zone, boys only

 Significant associations only in non-fluoridated zones [see supplementary table S21 for details.]

Analyses stratified by maternal social class

 "more positive and significant associations were observed in children of mothers with a better social position" [see supplementary table S22]

Analyses stratified by quality of the family context; boys only

 Statistically significant associations only in families with a lower quality of the family context (supplementary table S23)

Other analyses

- Inclusion of other variables, such as other neurotoxicants
 (As, Mn, Pb, As x Pb), iodine, quality child's family context
 (HES), deprivation index did not substantially change the results.
- Analyses including women
 with only one sample of urine
 available (first or third
 trimester), adjustment for
 zone (fluoridated vs non fluoridated), or excluding
 extreme low scores of
 cognitive functions (less than
 2 SD) did not substantially
 change the results

Risk of bias assessment

Bias domain	Criterion Was administered dose or exposure level adequately randomized?		Response		
Selection			Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Mother-child pairs were enrolled from Gipuzkoa, Spain. Pregnant women were recruited between 1997- 2008. Their children were assessed at the age of 1 and 4 years. More information about study participants can be found in Guxen et al. 2012.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, study accounted for major confounders such as maternal characteristics (sociodemographic, behavioral and reproductive), maternal habits (smoking, type of water consumed) and child characteristics (sex, age, order of the child among siblings, breastfeeding, small for gestational age, and prematurity) and child habits (nursery attendance at 14 months). Adjustments also included creatinine, and Hg in umbilical cord blood, urinary iodine and urinary creatinine and specific gravity.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Mother-child pairs were enrolled from Gipuzkoa, Spain. Pregnant women were recruited between 1997- 2008. Their children were assessed at the age of 1 and 4 years. More information about study participants can be found in Guxen et al. 2012.		
Detection	Can we be confident in the exposure	++	Study reported on source and intake of drinking water (tap		

Risk of bias ass	Risk of bias assessment					
Bias domain	Criterion	Response				
	characterization?		or bottled) including food and drink, during the first and third trimesters. Bottled water intake was calculated based on the information provided by the mothers. Maternal urinary fluoride was measured by potentiometry using an ion-selective electrode (DX219-F, Mettler Toledo).			
	Can we be confident in the outcome assessment?	++	Yes, children's neuropsychological development was consistently assessed using the Bayley Scales of Infant Development (BSID) (Bayley, 1977) and a standardized version of the McCarthy Scales of Children's Abilities (MSCA) adapted to the Spanish population (McCarthy, 2009) respectively. Assessments were conducted by specially trained neuropsychologists who were blinded to the child's fluoride's exposure status.			
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Kaur 2022 9

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"No statistically
Original study	Fluoride levels in • Water	• IQ	 One-way ANOVA test and paired t-test were used 	significant correlation (p> 0.05) existed
Study design: • Cross-sectional study	• Urine	Method of outcome ascertainment:	Statistical significance at p< 0.05	between fluoride excretion and IQ in
Country:	Method of exposure assessment:	• Raven's Colored Progressive Matrices	Results:	Group A children. But there was a
• India	 Water fluoride: Acquired from the Public Health 	intelligence test	Correlation between IQ and urinary fluoride level	statistically significant
Participants:	Engineering Department • Urine fluoride: Selective		• Group A: $r = -0.161$ p = > 0.05	correlation between fluoride excretion
• School children (12-13 years of age) residing in	Ion Electrode Technique		• Group B: $r = -0.485$ p = < 0.01	and IQ level in Group B (p<0.01)
Dhand of Amer Tehsil, Mohanpura, or Muhana	Exposure level: Water fluoride		• Group C: r = -0.334 p = < 0.05	and Group C (p< 0.05). As the level of fluoride ion
of Sanganer Tehsil.	concentration by group			concentration in urine increased,
Sampling time frame: • September 2011 –	Group A: 2 ppmGroup B: 5 ppm			there was a significant decrease

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
October 2011	• Group C: 2 – 5 ppm			in IQ level" (p. 3)
				• "The results
Sample size:	Urinary fluoride			indicated that there
-	concentration by group			was a positive
• N = 90	• Group A: 1.60ppm			correlation between
	• Group B: 6.82 ppm			excess fluoride in
Sex N (%):	• Group C: 2.69 ppm			drinking water and
• NR				IQ." (p. 1)
Exclusions:				
• Those with history of				
head trauma or injury				
Those with congenital				
or acquired neurological				
disorders				
Those with				
psychological disorders				
Source of funding /				
support:				
• None				

Study character	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declarati	ion of			
interest:				
• No COI				

sessment				
Bias domain Criterion		Response		
Was administered dose or exposure level	N/A	Not applicable		
adequately randomized?				
Was allocation to study groups adequately	NA	Not applicable		
concealed?				
Did selection of study participants result in	++	Participants recruited using same eligibility criteria and		
appropriate comparison groups?		recruited within same time frame		
Did the study design or analysis account for	_	ANOVA test and t-tests were conducted for statistical		
important confounding and modifying variables?		analysis.		
Were experimental conditions identical across study	NA	Not applicable		
groups?				
Were the research personnel and human subjects	NA	Not applicable		
blinded to the study group during the study?				
Were outcome data complete without attrition or	++	"The total number of school children aged 12-13 years at		
	Criterion Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately concealed? Did selection of study participants result in appropriate comparison groups? Did the study design or analysis account for important confounding and modifying variables? Were experimental conditions identical across study groups? Were the research personnel and human subjects blinded to the study group during the study?	Criterion Resp Was administered dose or exposure level N/A adequately randomized? NA Was allocation to study groups adequately NA concealed? The selection of study participants result in appropriate comparison groups? The study design or analysis account for important confounding and modifying variables? The study design or analysis account for important confounding and modifying variables? Were experimental conditions identical across study groups? NA Were the research personnel and human subjects NA blinded to the study group during the study? NA		

Risk of bias as	ssessment		
Bias domain	Criterion	Resp	onse
	exclusion from analysis?		Dhand, Mohanpura, and Muhana was 35, 42, and 39,
			respectively. Children with a history of trauma or injury to
			the head and those affected by any congenital or
			acquired neurological disorders or psychological
			disorders were excluded from the study. Thirty children
			were randomly allocated from each school into their
			respective groups. The children were divided into three
			groups: Group A (Fluoride concentration of 2 ppm),
			Group B (Fluoride concentration of 5 ppm), and Group C
			(Fluoride concentration of 2-5 ppm)."
Detection	Can we be confident in the exposure	++	Water fluoride data was acquired from the Public Health
	characterization?		Engineering Department. Urinary fluoride measured
			using Selective Ion Electrode Technique
	Can we be confident in the outcome assessment?	+	"The IQ of the children was measured using Raven's
			Coloured Progressive Matrices™ intelligence test [8],
			which consists of a series of multiple-choice questions.
			Before administering the test, a friendly explanation of
			the important instructions was given by a single examiner
			to avoid mental stress for those taking the test. Children
			were made to sit in a manner to ensure that they couldn't
			talk with each other." (p. 2). Unclear blinding.
Selective	Were all measured outcomes reported?	++	Outcomes discussed in methods were reported in the
reporting			results

Risk of bias assessment				
Bias domain	Criterion	Resp	onse	
Other sources	Were there no other potential threats to internal	++	None identified	
	validity (e.g., statistical methods were appropriate			
	and researchers adhered to the study protocol)?			

Marques 2022 [10]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "The prevalence of
Original study	Fluoride levels in	Dental fluorosis	Chi-square test	dental fluorosis at
Study design:	Drinking water		 Student's t tests 	all levels was
Cross-sectional			 Logistic regression 	higher in fluoridated
Country:				areas, however, in
Brazil				both groups, there
Participants:	Method of exposure		Results:	were few cases
High school students	assessment:		Fluorosis prevalence and	with esthetic
aged 17-20 years	 Fluoride in water by 		severity (n, %)	implications."
Sampling time frame:	a specific ion		Fluorosis absent	
January to September	electrode (Orion		Exposed: 195 (58.9%)	
2017	Model 96–09)		• Unexposed: 260 (79.0%)	
Sample size:	coupled to the ion		Very mild or mild fluorosis:	
660 (331 exposed and	analyzer (Orion Star		• Exposed: 96 (29.0%)	
329 unexposed to	A211, S~ao Paulo,		• Unexposed: 55 (16.7%)	
fluoridated water)	Brazil).		Moderate fluorosis:	
			• Exposed: 40 (12.1%)	
Sex: N (%):	Exposure level(s):	Method of outcome	• Unexposed: 14 (4.3%)	
Boys: 275 (41.7%)	Fluoride levels in:	ascertainment:	P<0.001	
Exclusions:	Fluoridated water:	Thylstrup and Fejerskov	Multivariate logistic regression	
• Students who had lived	0.50 to 0.90 ppm	(TF) index		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
in the study area <70%	Non-fluoridated	The intra and inter-	Very mild or mild fluorosis	
of their lives.	water: <0.05 ppm	examiner kappa indexes	Exposed: AOR [adjusted odds	
 Students with a fixed 		were 0.87 and 0.85 for	ratio] =2.26 (95% CI: 1.54-	
orthodontic appliance or		dental fluorosis.	3.32)	
those with			Unexposed: reference	
amelogenesis			• P<0.001	
imperfecta			Moderate fluorosis	
Source of funding /			• Exposed: AOR=3.66 (95% CI:	
support			1.93–6.95)	
NR			Unexposed: reference	
Author declaration of			• P<0.001	
interest:				
NR				

Risk of bias a	Risk of bias assessment			
Bias domain	Criterion	Res	ponse	
Selection	NA	Not applicable		
	adequately randomized?	INA	Not applicable	
	Was allocation to study groups adequately	NΙΛ	Not applicable	
	concealed?	INA	NA Not applicable	
Did selection of study participants result in appropriate comparison groups?		Participants selected using same criteria. Sampling time		
	++	frame reported.		

Risk of bias as	ssessment			
Bias domain	Criterion	Res	ponse	
Confounding	Did the study design or analysis account for	++	Confounders were adjusted for.	
	important confounding and modifying variables?		Combandore Were adjusted for:	
Performance	Were experimental conditions identical across	NA	Not applicable	
	study groups?		Tet applicable	
	Were the research personnel and human			
	subjects blinded to the study group during the	NA	Not applicable	
	study?			
Attrition	Were outcome data complete without attrition or	++	Reasons for exclusion were provided	
	exclusion from analysis?	•	reasons for exclusion were provided	
Detection	Can we be confident in the exposure	++	Fluoride was measured in water using a specific ion	
	characterization?	• •	electrode and ion analyzer	
	Can we be confident in the outcome	++	DF examined using the Thysltrup and Fejerskov criteria	
	assessment?		2. Oxaminou doing the myoth up and respective to the na	
Selective	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the	
reporting			results	
Other	Were there no other potential threats to internal			
sources	validity (e.g., statistical methods were	++	None identified	
	appropriate and researchers adhered to the		Trono Idontinod	
	study protocol)?			

McLaren 2022 [11]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Routes of	Outcome(s):	Statistical analysis:	"Although estimates
Original study	exposures:	Dental fluorosis	 Poisson, Zero-inflated 	of fluorosis were
Study design:	Water fluoridation		Poisson, or logistic regression	higher in Edmonton
Cross-sectional ["pre-	Fluoride levels in		(as appropriate) for	than in Calgary, it is
post cross-sectional	 Fingernails 		comparison between Calgary	important to note
design with comparison	Water (in water		and Edmonton	that nearly all cases
group"]	treatment plants)		 Difference-in-differences 	(>99%) in both
Country:			approach to compare trends	cities were mild,
Canada			over time between Calgary	which is in line with
			and Edmonton	national estimates."
Participants:	Method of exposure		Results:	
Children aged ~7 years	assessment:			
(grade 2 schoolchildren)	Water fluoridation		Fluorosis prevalence (95% CI),	
Sampling time frame:	<u>status</u>		<u>%</u>	
• 2018-2019 school year	 Never exposed to 		[Note: crude - weighted estimate	
Pre-cessation data	water fluoridation		for the full samples; adjusted - weighted estimate adjusted for	
(2004/2005 and	(Calgary)		covariates; subset - crude	
2009/2010 [Calgary	 Always exposed to 		weighted estimate for lifelong residents of Calgary or	
only]), early post-	water fluoridation		Edmonton who reported usually	
cessation data	(Edmonton)		drinking tap water.]	
(2013/2014) from	Fluoride levels in		Years 2018-2019	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
previous studies	• Fingernails: Method		Calgary (water fluoridation	
Sample size:	of analysis not		ceased in 2011)	
<u>2018-2019</u>	reported; reference		• Crude: 8.3 (6.6-10.3)*	
• Calgary: 1620	to Whitford et al.		• Adjusted: 7.7 (5.9-9.6)*	
• Edmonton: 1402	1999 (Caries Res.		• Subset: 6.2 (4.3-8.9)*	
<u>2004-2005</u>	33(6):462-7) who		Edmonton (water fluoridation continues)	
• Calgary: 380	determined fluorides		• Crude: 19.4 (16.3-22.9)	
• Edmonton: 41,749497	"with the electrode		,	
2009-2010	following HMDS-		• Adjusted: 18.3 (14.9-21.6)	
• Calgary: 365	facilitated diffusion".		• Subset: 18.8 (14.4-24.2)	
• Edmonton:	• Water collected in		*Calgary vs. Edmonton: P<0.05	
<u>2013-2014</u>	water treatment		Changes over time (crude	
• Calgary: 2084	plants: data from		estimates)	
• Edmonton: 1749	annual water quality		Calgary (water fluoridation ceased in 2011)	
Fingernail clippings	reports		• 2004-2005: 22.6 (18.8, 26.9)	
(2018/2019 <u>)</u>			• 2009-2010: 29.1 (24.6, 34.1)	
• Calgary: 34			• 2013-2014: 19.9 (17.8, 22.2)	
• Edmonton: 31			• 2018-2019: 8.3 (6.6-10.3)	
Sex: N (%):	Exposure level(s):	Method of outcome	,	
NR	Total fluoride in	ascertainment:	Edmonton (water fluoridation continues)	
Exclusions:	<u>fingernails</u>	 Tooth Surface Index of 	• 2004-2005: 39.8 (37.0, 42.7)	
NR	Mean (95% CI), μg/g		(, -)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding /	• Calgary: 1.1 (0.9 to	Fluorosis [TSIF] criteria.	• 2009-2010: no data	
support:	1.2)	 Dental fluorosis 	• 2013-2014: 14.1 (11.4, 17.4)	
 Research grant from 	• Edmonton: 1.6 (1.3	expressed as prevalence:	• 2018-2019: 19.4 (16.3-22.9)	
the Canadian Institutes of Health Research (CIHR) (PJT-156258) • Dr McLaren was supported by an Applied Public Health Chair research award funded by CIHR (Institute of Population & Public Health and Institute of	to 1.8) Median (inter-quartile range), µg/g • Calgary: 1.0 (0.7 to 1.2) • Edmonton: 1.3 (1.3 to 1.5) P<0.0001 Fluoride in water: range (average, if available), µg/L 26	expressed as prevalence: % with TSIF score ≥1 based on the most severe level of fluorosis detected on the central maxillary incisor teeth (permanent teeth only, and only if at least half erupted) • Intra-rater agreement kappa: 0.87 • Inter-rater agreement kappa: 0.77	• 2018-2019: 19.4 (16.3-22.9) Coefficient (95% CI) for difference of changes: -0.1 [-0.2 to -0.1], P<0.001).	
Musculoskeletal Health	Calgary			
& Arthritis), the Public	Bearspaw plant:			
Health Agency of	2005: 0.6-0.8			
Canada, and Alberta	2006: 0.7-0.7			
Innovates—Health	2007: 0.6-0.7			
Solutions (CIHR ID CPP-137907)	2008: 0.7-0.7			

²⁶ Fluoridation of drinking water in Calgary ceased on May 19, 2011. Water fluoride values for year 2011 in Calgary are underlined.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Dr Weijs was supported	2009: 0.7-0.7			
by a CIHR Health	2010: 0.7-0.7			
System Impact	<u>2011: 0.1-0.7</u>			
Fellowship, 2017-2020	2012: 0.1-0.1			
(Award # 403867).	2013: 0.1-0.2			
Author declaration of	2014: 0.1-0.3			
interest: No COI	2015: 0.1-0.1 (0.1)			
	2016: 0.1-0.1 (0.1)			
	2017: 0.1-0.2 (0.1)			
	2018: 0.1-0.2 (0.1)			
	2019: 0.1-0.3 (0.2)			
	Glenmore plant:			
	2005: 0.7-0.8			
	2006: 0.6-0.8			
	2007: 0.7-0.7			
	2008: 0.6-0.7			
	2009: 0.6-0.8			
	2010: 0.6-0.9			
	<u>2011: 0.1-0.7</u>			
	2012: 0.2-0.3			
	2013: 0.1-0.3			
	2014: 0.1-0.3			
	2015: 0.2-0.3 (0.3)			

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	2016: 0.2-0.3 (0.2)			
	2017: <0.1-0.3 (0.2	2)		
	2018: 0.2-0.3 (0.2)			
	2019: 0.1-0.3 (0.2)			
	Edmonton			
	 Rossdale plant: 			
	2005: 0.7-1.0 (0.8)			
	2006: 0.8-0.9 (0.8)			
	2007: 0.5-0.9 (0.7)			
	2008: 0.1-0.9 (0.8)			
	2009: 0.7-0.9 (0.8)			
	2010: 0.6-0.8 (0.7)			
	2011: 0.6-0.8 (0.7)			
	2012: 0.0-0.8 (0.5)			
	2013: 0.6-0.8 (0.7)			
	2014: 0.6-0.9 (0.7)			
	2015: 0.6-0.8 (0.7)			
	2016: 0.6-0.8 (0.7)			
	2017: 0.6-0.8 (0.7)			
	2018: 0.6-0.8 (0.7)			
	2019: 0.6-0.8 (0.7)			
	• EL Smith plant:			
	2005: 0.7-0.9 (0.8)			

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	2006: 0.7-0.9 (0.8)			
	2007: 0.1-0.9 (0.8)			
	2008: 0.0-0.8 (0.4)			
	2009: 0.7-0.8 (0.7)			
	2010: 0.7-0.8 (0.7)			
	2011: 0.1-0.8 (0.6)			
	2012: 0.6-0.8 (0.7)			
	2013: 0.6-0.8 (0.7)			
	2014: 0.5-0.9 (0.7)			
	2015: 0.6-0.8 (0.7)			
	2016: 0.6-0.8 (0.7)			
	2017: 0.6-0.8 (0.7)			
	2018: 0.5-0.8 (0.7)			
	• 2019: <0.1-0.8 (0	.5)		

Risk of bias assessment			
Bias domain	Criterion	Response	
Selection	Was administered dose or exposure level	NA Not applicable	
adequately randomized	adequately randomized?	NA Not applicable	
	Was allocation to study groups adequately	NA Not applicable	
concealed?	па погаррісавіе		
	Did selection of study participants result in	++ Participants selected using same criteria. Sampling time	

Risk of bias a	Risk of bias assessment					
Bias domain	Criterion	Response				
	appropriate comparison groups?		frame reported.			
Confounding			Confounders were adjusted for.			
	important confounding and modifying variables?	++	Comounaers were adjusted for.			
Performance	Were experimental conditions identical across	NA	Not applicable			
	study groups?	14/ (Not applicable			
	Were the research personnel and human					
	subjects blinded to the study group during the	NA	Not applicable			
	study?					
Attrition	Were outcome data complete without attrition or		"We developed sampling weights that accounted for the			
	exclusion from analysis?		probability of selection (as per the sampling frame) and			
			the probability of non-response, thus increasing the			
			extent to which our samples resembled the underlying			
		++	target populations. This approach enabled us to handle			
			missing observations within the framework of our survey			
			sampling approach rather than, for example, having to			
			estimate differences between our samples and the			
			target populations"			
Detection	Can we be confident in the exposure		Water fluoridation status: Calgary (fluoridation			
	characterization?	+	cessation); Edmonton (still fluoridated). Source of			
			information unclear.			
	Can we be confident in the outcome	++	DF examined using Tooth Surface Index of Fluorosis			

Risk of bias assessment				
Bias domain	Criterion	Response		
	assessment?			
Selective	Were all measured outcomes reported?		Outcomes discussed in the methods were reported in	
reporting		++	the results	
Other	Were there no other potential threats to internal			
sources	validity (e.g., statistical methods were		None identified	
	appropriate and researchers adhered to the	++	None identified	
	study protocol)?			

Rani 2022 [12]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "The risk of dental
Original study	Fluoride levels in	Dental fluorosis	 Descriptive analysis 	fluorosis was
Study design:	 Groundwater 			significantly higher
Cross-sectional				in the areas
Country:				showing more
India				fluoride content in
Participants:	Method of exposure		Results:	drinking water."
Children aged 6-12 years	assessment:		Dean's fluorosis index (mean)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame:	Fluoride in water: Ion		by level of groundwater fluoride:	
NR	Selective Electrode		• Low (<0.7 ppm): 0.62 [1	need to improve the
Sample size:	Method using ION		village]	quality of water and
1262	check 45 m.		• Optimum (0.7–1.5 ppm): 0.72	institute
			to 1.33 [5 villages]	de-fluoridation of
Sex: N (%):	Exposure level(s):	Method of outcome	• High (1.5-4 ppm): 1.32 to 2.31	drinking water in
Boys: 615 (48.7%)	Fluoride in	ascertainment:	[19 villages]	affected areas to
Exclusions:	groundwater (ppm):	Dean's Fluorosis Index	 Very high (>4 ppm): 2.62 to 	lower the burden of
Children who were not	0.532-8.802		3.34 [5 villages]	dental fluorosis in
continuous residents of			Correlation between	the community
the study area since			groundwater fluoride and	either by making
birth			Dean's fluorosis index	alternative sources
			• r=0.922; p<0.01	available or
Source of funding /				providing water with
support:				an optimal
• None				concentration of
				fluoride."
Author declaration of				
interest: No COI				

Risk of bias assessment	
Bias domain Criterion	Response

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Res	ponse			
Selection	Was administered dose or exposure level	NA	Not applicable			
	adequately randomized?	INA	пот арріїсаріє			
	Was allocation to study groups adequately	NA	Not applicable			
	concealed?	INA	Not applicable			
	Did selection of study participants result in	+	Participants selected using same criteria. Sampling time			
	appropriate comparison groups?		frame not reported.			
Confounding	Did the study design or analysis account for		Correlation analyses, t-tests, and Chi-square tests were			
	important confounding and modifying variables?		conducted			
Performance	Were experimental conditions identical across	NA	Not applicable			
	study groups?	INA				
	Were the research personnel and human					
	subjects blinded to the study group during the	NA	Not applicable			
	study?					
Attrition	Were outcome data complete without attrition or		NR			
	exclusion from analysis?	_	IVIX			
Detection	Can we be confident in the exposure	++	Fluoride was measured in water using Ion Selective			
	characterization?	**	Electrode Method			
	Can we be confident in the outcome	++	DF examined using Dean's Fluorosis Index			
	assessment?	TT	DI GARITHEU USHIY DEATTS FIUDIOSIS HIUGA			
Selective	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the			
reporting		TT	results			

Risk of bias assessment					
Bias domain	Criterion	Res	ponse		
Other	Were there no other potential threats to internal				
sources	validity (e.g., statistical methods were		None identified		
	appropriate and researchers adhered to the	++	None identified		
	study protocol)?				

Saeed 2022 [13]

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	"Mean urinary concentrations of
Original study	Fluoride levels in	Dental fluorosis	Chi-square testIndependent samples t-test	As and F as well as the
Study design:	• Urine	Non-verbal intelligence	Spearman's rank correlation	frequency of dental
Cross-sectional	 Groundwater used for drinking 	quotient (IQ)	(according to the Methods section); Pearson correlation (according to the title of table	fluorosis were found elevated among the exposed
Country:			2)	group."
Pakistan			 Linear regression (Backward stepwise) 	 "The cases of children with lower IQ were observed
Participants:	Method of exposure		Results:	high in the exposed
Children aged 5-16 years	assessment:		Dental fluorosis	group." • "… it was revealed

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame: NR Sample size: 148 (118 exposed; 30 controls) Sex: N (%): Boys: 112 Exclusions:	 Urinary fluoride by fluoride ion-selective electrode (Hanna, Model HI-522). Water fluoride: NR Exposure level(s): Water fluoride (mg/L) Control group: 0–0.5, mean 0.15 (SD 0.13) 	Method of outcome ascertainment: • Dental fluorosis: Dean's index	Frequency and severity of dental fluorosis, n (%) Control group Normal: 28 (94.0) Questionable: 2 (6.0) Exposed group Normal: 0 Questionable: 16 (13.55) Very mild: 22 (18.65) Mild: 21 (17.80) Moderate: 25 (21.19)	that variations in dental fluorosis and IQ levels were more significantly associated with F- exposure compared to As."
 Non-permanent residents in the study area Drinking water source other than groundwater Source of funding / 	mean 0.15 (SD 0.13) • Exposed group: 0.10–15.80, mean 5.64 (SD 3.52) • P=0.000 <u>Urinary fluoride (mg/L)</u>	 Non-verbal IQ: Wechsler scale of intelligence (WISC-IV) 	• Severe: 34 (28.81) Correlation analysis Water fluoride and urinary fluoride: r=0.224; p=0.006	
support: None Author declaration of interest: No COI	 Control group: 0.40– 0.75, mean 0.24 (SD 0.15) Exposed group: 0.47–14.56, mean 3.27 (SD 2.60) P=0.000 		Water fluoride and dental fluorosis: r=0.380; p=0.000 Urinary fluoride and dental fluorosis: r=0.721; p=0.000 <u>Linear regression analysis</u>	
			Fluoride in urine as an	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			independent variable:	
			 β=0.38 (SE 0.03) [unstandardized] β=0.66 [standardized]; p=0 	.00
			Other independent variables	in
			the model: gender, family	
			economic status, arsenic in	
			urine.	
			Model summary: $F = 49.00$;	
			adjusted R ² =0.57; p=0.000	
			Non-verbal intelligence	
			quotient (IQ)	
			IQ score	
			Control group: 80.25-127.75	;
			mean 100.93 (SD 13.1)	
			Exposed group: 63.97–127.3	31;
			mean 97.26 (SD 15.39)	
			P=0.233	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Correlation analysis	
			Water fluoride and urinary fluoride: r=0.224; p=0.006	
			Water fluoride and IQ score: 0.034; p=0.683	r=-
			Urinary fluoride and IQ score r=-0.655; p=0.000	:
			Dental fluorosis and IQ score r=-0.552; p=0.000):
			Note: Levels of fluoride significantly correlated with arsenic levels.	
			Linear regression analysis	
			Fluoride in urine as an independent variable:	
			 β=-3.45 (SE 0.50) [unstandardized] β=-0.60 [standardized] P=0.00 	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Other independent variables i	n
			the model: age, gender,	
			parental education, dental	
			fluorosis.	
			Model summary: $F = 29.64$;	
			adjusted R ² =0.49; p=0.000	
			Intelligence level vs mean (SI	<u>D)</u>
			water fluoride (WF), urinary	
			fluoride (UF), water arsenic	
			(WA) and urinary arsenic (UA)
			Superior (IQ score ≥130): no	
			participants with this level	
			Above average (IQ score 120	-
			129)	
			• WF: 1.96±2.77 mg/L	
			• UF: 0.54±0.59 mg/L	
			WA: 0.02±0.05 mg/LUA: 0.68±1.54 mg/L	
			High Average (IQ score 111-	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			119)	
			• WF: 4.60±4.40 mg/L	
			• UF: 1.20±0.80 mg/L	
			• WA: 0.12±0.15 mg/L	
			• UA: 2.71±1.78 mg/L	
			Average (QI score 90-100)	
			• WF: 4.3±3.99 mg/L	
			• UF: 1.99±1.28 mg/L	
			 WA: 0.16±0.22 mg/L 	
			• UA: 3.13±2.29 mg/L	
			Low average (IQ score 80-8	9)
			• WF: 3.84±3.63 mg/L	
			 UF: 3.61±2.84 mg/L 	
			 WA: 0.14±0.16 mg/L 	
			• UA: 2.65±1.80 mg/L	
			Borderline (IQ score 70-79)	
			• WF: 6.19±4.59 mg/L	
			• UF: 7.13±2.62 mg/L	
			• WA: 0.15±0.09 mg/L	
			• UA: 3.75±1.26 mg/L	
			Retarded (IQ score <70)	
			• WF: 4.92±3.46 mg/L	
			• UF: 8.10±5.84 mg/L	

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			WA: 0.17±0.28 mg/L UA: 3.50±0.81 mg/L		

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level	N/A	Not applicable		
	adequately randomized?				
	Was allocation to study groups adequately	N/A	Not applicable		
	concealed?				
	Did selection of study participants result in	+	Participants selected using same criteria. Time frame not		
	appropriate comparison groups?		reported.		
Confounding	Did the study design or analysis account for	++	"Multiple linear (Backward stepwise) regression		
	important confounding and modifying variables?		models were used to examine the associations between		
			(a) IQ level, MDA, SOD, CAT, GR, and dental fluorosis		
			with independent variables including age, gender,		
			economic status, parent education, As and F- in the urine."		
			(p. 3936)		
Performance	Were experimental conditions identical across study	N/A	Not applicable		
	groups?				
	Were the research personnel and human subjects	N/A	Not applicable		
	blinded to the study group during the study?				

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR			
Detection	Can we be confident in the exposure	++	Fluoride was measured in urine using fluoride ion-			
	characterization?		selective electrode			
	Can we be confident in the outcome assessment?	+	IQ measured using the	++	Dental fluorosis	
			Wechsler scale of		assessed using Dean's	
			intelligence (WISC-IV).		Index.	
			Unclear blinding			
Selective	Were all measured outcomes reported?	++	Outcomes discussed in th	e met	hods were reported in the	
reporting			results			
Other sources	Were there no other potential threats to internal	++	None identified			
	validity (e.g., statistical methods were appropriate					
	and researchers adhered to the study protocol)?					

Tawfik 2022 [14]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "Correlation 	
Original study	Fluoride levels in:	 Dental fluorosis 	 Pearson's correlation 	between fluorosis status and fluoride	
Study design:	 Groundwater 			level in drinking	

Study Characteristics					
Study	Exposure	Outcome		Analysis & Results	Conclusions
Cross-sectional					water was
Country:					performed by using Pearson`s
Egypt					correlation
Participants:	Method of exposure			Results:	coefficient and
7-14 years old children	assessment:			• Dental Fluorosis – Modified	revealed strong, positive, significant
with no tooth fillings or braces, who live in the same region since birth	 Water analysis was conducted in the National Research 			Dean's Index: Mean ± SD: 2.31 ±0.94	correlation.""Nubian children recorded moderate
Sampling time frame:	Centre (method unreported).			 Dental Fluorosis (%) Normal: 0% 	and severe
December 2020- March 2021	umeportea).			Questionable: 0% Very Mild: 19.8%	fluorosis status score because on analysis of their
Sample size:				Mild: 40%	drinking water, their
202				Moderate: 30% Severe:9.9%	result showed that
Sex: N (%):	Exposure level(s):	Method of	outcome	00,0,0,0,0,0	mean fluoride level was 8 mg/L."
NR	• Fluoride Levels in	ascertainment:			•
Exclusions:	drinking water: 7.5-9.5, mean 8mg/L	 Modified Dean' 	s Index		
 Teeth covered with filling or braces Parents or children who refused to join the study. Ethical Consideration 					
Source of funding /					
support:					

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Self-funded					
Author declara interest: No COI					

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria and during the same timeframe			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on reasons for exclusion of study participants (teeth covered with fillings or braces, parents or children who refused to join the study, and other "undeclared" ethical considerations)			

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion		oonse		
Detection	Can we be confident in the exposure characterization?	+	Water analysis was conducted in the National Research Centre (method unreported).		
	Can we be confident in the outcome assessment?	++	Yes, all participants were "clinically" examined for the outcome (DF), using Modified Dean's Index. Lack of blinding of outcome assessors would not appreciably bias results.		
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Thilakarathne 2022^[15]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "The prevalence of	
Original study	Fluoride level in	Dental fluorosis	 Chi square test for trends 	dental fluorosis was	
Study design:	 Drinking water 			high and it	
Cross-sectional				increased with the	
Country:				increase in the	
Sri Lanka					

Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants:	Method of exposure		Results:	fluoride content ir
Children aged 15 years	assessment:		Prevalence of dental fluorosis	the drinking wate
Sampling time frame:	• Fluoride content in		• TF score > 0: 51.7%	source."
NR	water by		• TF score > 1: 41.5%	
Sample size:	spectrophotometry		• TF score > 2: 20.5%	
1040 [total]			Prevalence of dental fluorosis	
989 [analytical]			by TF score	
Sex: N (%):	Exposure level(s):	Method of outcome	• TF0 [normal]: 48.3%	
Boys: 45.2% of the total	• Fluoride levels in	ascertainment:	• TF1: 10.2%	
sample	water: 0.0-1.9 mg/L	Thylstrup and Ferjeskov	• TF2: 20.9%	
Exclusions:		(TF) index	• TF3: 11.8%	
Children who had not			• TF4: 5.9%	
resided in the study			• TF5: 2.3%	
area since birth			• TF6: 0.5%	
Children with learning			Association between fluoride	
difficulties, wearing			level in drinking water and	
fixed orthodontic			prevalence of dental fluorosis	
appliances and those			(TF score>0)	
who were absent on the			• Water fluoride <0.3 mg/L:	
day of the oral			42.3%	
examination			Water fluoride 0.31-0.6 mg/L:	
Source of funding /			62.8%	

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Research Grant			Water fluoride 0.61-0.9 m	g/L:
(RG/2016/84/D) fro	om the		70.1%	
University of Perad	leniya		• Water fluoride >0.9 mg/L:	88.9
Author declaration	n of		 p (Chi sq for trend) <0.001 	
interest:				
NR				

Risk of bias as	ssessment			
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?		Not applicable	
	Was allocation to study groups adequately concealed?	NA	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	+	Participants selected using same criteria. Sampling time frame not reported.	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	Chi-square test for trends was conducted	
Performance	Were experimental conditions identical across study groups?	NA	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the	NA	Not applicable	

Risk of bias a	ssessment		
Bias domain	Criterion	Res	oonse
	study?		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in water using spectrometry
	Can we be confident in the outcome assessment?	++	DF examined using the Thysltrup and Fejerskov criteria
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Al-Omoush 2021 [16]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"This study
Original study Study design:	Fluoride level in Drinking water samples from wells	Dental fluorosis prevalence and severity	Statistical significance at p = 0.05	concluded that higher fluorosis incidence and severity were present in the higher-
Cross-sectional study	Method of exposure	Method of outcome ascertainment:	Results: Frequency (%) distribution	altitude location (Ruwaished).
Country:	assessment:	Dean's index used to	of dental fluorosis by Dean's	Moreover, this study also indicated that
Jordan	Fluoride-ion selective electrode coupled with ionalyzer	determine dental fluorosis severity	the Normal ma	the preventive management of
Participants:			• N = 10 / 141 (7.1%) <u>Very mild</u>	dental fluorosis should be directed to
 School children residing in Ruwaished (age 15.3 +/- 1.4 years) and 	Exposure level: Average fluoride level in		• N = 13 / 141 (9.2%) <u>Mild</u>	de-fluoridation of drinking water in endemic areas." (p.
Kuraymah (age 16.1 +/- 1.3 years)	water (ppm) Ruwaished		• N = 21 / 141 (14.9%) <u>Moderate</u>	707 – 708)
Sampling time frame:	• 1.38 <u>Kuraymah</u>		• N = 51 / 141 (36.2) <u>Severe</u>	
NR	• 1.10			

Study Characteristic	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			• N = 46 / 141 (32.6)		
Sample size:					
• Ruwaished: 100			Frequency (%) distribution	١	
• Kuraymah: 141			of dental fluorosis by Dea	n's	
			Fluorosis Index in		
O 11 (0/)			Ruwaished		
Sex: N (%):			<u>Normal</u>		
• Ruwaished: Men: 60	0		• N = 0 / 100 (0%)		
(60%)					
• Kuraymah: Men: 85			<u>Very Mild</u>		
(39.7%)			• N = 9 / 100 (9%)		
			<u>Mild</u>		
Exclusions:			• N = 19 / 100 (19%)		
NR			<u>Moderate</u>		
			• N = 22/100 (22%)		
Source of funding /			<u>Severe</u>		
support: NR			• N = 50 / 100 (50%)		
Author declaration of	of				

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
interest: No COI						

Risk of bias assessment					
Bias domain	Criterion	Res	ponse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in	+	Yes, participants were selected using the same		
	appropriate comparison groups?		criteria. However, the sampling timeframe was not		
			reported		
Confounding	Did the study design or analysis account for	-	NR		
	important confounding and modifying variables?				
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human	N/A	Not applicable		

Risk of bias	assessment		
	subjects blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water wells using a combination of F-selective electrode (Orion model 960900), coupled with an ionalyzer (Orion mode I901, Cambridge, U.S.A.)
	Can we be confident in the outcome assessment?	++	Yes, outcome (dental fluorosis) was done by trained and calibrated examiners (no professional information reported), using Dean's fluorosis index. Lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the	++	None identified

Risk of bias assessment study protocol)?

Ayele 2021 [17]

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The study		
Original study Study design:	Fluoride levels in Ground water (community wells)	Skeletal fluorosisJoint painNeurological manifestations	Descriptive analysisUnivariate analysisMultivariable regression	demonstrates high prevalence of neuro- medical manifestations of		
Cross-sectional (part of an ongoing cohort study in the Ethiopian Rift Valley)	Method of exposure assessment: The ion-selective electrode (ISE)	(headache, paresthesia, loss of appetite, constipation, and fatigue) Method of outcome	Results: • At least one clinical sign of skeletal fluorosis was observed in 54.4% of the study participants.	fluorosis in population living in the Main Ethiopian Rift valley. Fluoride concentration in drinking water and		
Country: Ethiopia	Exposure level:	ascertainment: A comprehensive physical examination with emphasis	 For every 1 mg/L increment of fluoride in 	joint pain were independent predictors of		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
	Mean concentration: 6.8	on neurological	drinking water, the odds of	fluorosis."	
Participants:	± 4.3 mg/L	examination, conducted by	skeletal fluorosis increased		
Persons aged 10–70 years old, selected at random from those who lived and used water wells from 23 rural villages	• Range: 0.3–15.5 mg/L	two certified neurologists	by 1.15 upon adjustment for age and selected clinical variables [Adjusted OR 1.15, 95%CI (1.04–1.27); p = 0.006]. • Signs of crippling fluorosis were observed in small		
Sampling time frame:			proportion (1.6%) of participants.		
Two sampling periods (between 2018 and			 Fluoride concentration in drinking water and joint pain were found to be 		
2019)			independent predictors of skeletal fluorosis.		
Sample size:			 Headache and joint pain reported by 67.1% and 		
316			56.3% of participants as the most common		
Sex (N):			neurological manifestation, and skeletal fluorosis		

Study	Exposure	Outcome	Analysis & Results	Conclusions
Men: 176 (55.7%)			symptom, respectively.	
			 The mean fluoride level 	
			was higher for those	
xclusions:			individuals who reported	
R			paresthesia compared to	
			those with no-paresthesia	а.
	I		 Loss of appetite, 	
ource of fundin	g <i>i</i>		constipation, and fatigue	
upport:			were reported by 48.0%,	
IIEHS's career			45.6%, and 56.6% of the	
evelopment			participants, respectively	
rant			 Individuals who reported 	
			headache are most likely	
			exposed to higher fluoride	е
uthor declaration	on of		concentrations in drinking	9
nterest:			water compared to those	
lo COI			reported no-headache	
			(p<0.001).	

Risk of bias assessment

Risk of bias as	ssessment		
Bias domain	Criterion	Res	oonse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified using the same method of ascertainment, recruited within the same time frame, and using the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Yes, it accounted for age and select clinical covariates. The populations were reported as fairly homogenous with similar ethnicity, economic, and nutritional status.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (participation in the pilot testing of the field

Risk of bias	assessment				
			questionnaire)		
Detection	Can we be confident in the exposure	++	Yes, exposure was meas	sured	in water using the ion
	characterization?		selective electrode metho	od.	
	Can we be confident in the outcome		Yes, the outcome		The outcome (multiple
	assessment?		(skeletal fluorosis) was		neurological
			assessed using		symptoms) was
			comprehensive		assessed using face-
			physical examination		to-face interviews by
			by two certified		trained field
			neurologists. Outcome		enumerators (graduate
			assessment methods		students and nurses /
		++	and lack of blinding of	_	medical doctors).
			outcome assessors		Comprehensive
			would not appreciably		physical examination
			bias results.		with a focus on
					neurological signs was
					conducted by two
					certified neurologists.
					Lack of blinding of
					outcome might have
					appreciably biased the

Risk of bias	assessment				
					results.
Selective	Were all measured outcomes reported?		Yes, primary outcome		Yes, the primary
reporting			(skeletal fluorosis)		outcome (medical
			discussed in the		conditions grouped as
			methods was		neurological) were
		++	presented in results	++	discussed in methods
			section with adequate		was presented in
			level of detail for data		results section with
			extraction		adequate level of detail
					for data extraction
Other	Were there no other potential threats to internal		None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the	++			
	study protocol)?				

Cao 2021^[18]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "The prevalence rate	
Original study	Fluoride levels in:	 Dental fluorosis 	• Rate or composition ratio	of dental fluorosis among children in	
Study design:	 Drinking water 		 Chi-square test 	each diseased area	
Cross-sectional	• Urine			is <30%."	
Country:				 "Results indicate reduction of fluoride 	
China				in Fuzhou county,	
Participants:	Method of exposure		Results: CHI SQURE tests	concluded in reduction of	
Dental fluorosis: Children	assessment:		add	endemic dental	
aged 8-<13 years	• The fluorine content		Detection rates for dental	fluorosis (with very	
<u>Urinary fluoride:</u> Age 25 and over	in water was determined by		fluorosis: (P:0.357) 2017: 1.75% (7/401)	mild and mild cases)."	
	"Standard Test		2018: 1.40% (7/500)	• "There is no	
Sampling time frame: June 2017- June 2019	Method for Drinking Water"		2019: 0.67% (3/445)	statistically	
	(GB/T5750.5-2006).		.062, P=0.357	significant difference in the detection rate	
Sample size:	Determination of		Overall, 2017-2019: 1.26%	of dental fluorosis	
Dental fluorosis: 1346	Urinary Fluorine Content Fluoride		(17/1 346)	among children in each year and	
<u>Urinary fluoride:</u> 450	Determination Ion		Total DF Index: 0.03	among children of	
	Selective Electrode Method»(WS/T89- 2015)		 Dental fluorosis cases: Suspicious: 35(2.60%) Very Mild: 12 (0.89%) 	different age. groups"	
Sex:	Exposure level(s):	Method of outcome	Mild: 5 (0.37%)		
Boys: 50%	 Drinking water 	ascertainment:	Moderate: 0		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions: Demolition victims of	<u>Fluoride range:</u> 0.05-0.76 mg/L	Dean's index [by Dental fluorosis index (fluorosis	Severe:0	
Yinpu Natural Village	Urinary Fluoride	community index, FCI)] • The grading of dental	 Highest DF in Minhou County Detection rates/years: 	
Source of funding / support:	0.04 - 3.76 mg/L (Geometric Mean: 0.8 mg/L)	fluorosis was carried out according to "Diagnosis	2017: 21.21% (7/33) 2018: 17.95% (7/39)	
NR	Upper limit of normal	of Dental Fluorosis" (WS/T208-2011).	2019: 13.04% (3/23) P=0.7	
Author declaration of interest: No COI	value is ≤1.60 mg/L.	(VV3/1200-2011).	1 –0.7	

Risk of bias as	sessment		
Bias domain	Criterion	Res	oonse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects	N/A	Not applicable

Risk of bias as	sessment		
Bias domain	Criterion	Res	oonse
	blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride exposure levels were obtained from drinking water samples that were collected from the local source of water supply in each village. Fluoride concentrations were determined using the Ion Selective Electrode Method (WS/T89-2015)
	Can we be confident in the outcome assessment?	++	The diagnosis of DF was assessed by trained investigators using Dean's fluorosis index. Blinding of exposure status may have not significantly biased the assessment
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Dong 2021 [19]

Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type: Original	Exposures:	Outcome(s):	Statistical analysis:	"Even low level of
study	Fluoride levels in • Drinking water	Dental fluorosis	 Binary logistic regression analyses were used to 	water or plasma fluoride exposure was associated with
Study design: Cross sectional	• Serum	Method of outcome ascertainment:	determine the association between fluoride exposure and dental fluorosis,	increased risk of dental fluorosis."
Country: United States	Method of exposure assessment:	Assessment of dental fluorosis conducted by	 Controlled for age, sex, race/ethnicity, BMI 	
	Water fluoride:	certified dentists,	categories, the ratio of	
Participants: US children and adolescents 6–19 years	Measured electrometrically using the ion-specific electrode (CDC, 2017a).	according to the Dean's Fluorosis Index (DFI) and assigned one of the DFI disease severity	family income to poverty and six-month time period when surveyed.	
old (NHANES survey)		categories, based on the area of the tooth surface	Results:	
Sampling time frame:	Serum fluoride:	with visible fluorosis and	 The rate of fluoride concentration in water 	
2015-2016	Measured in duplicate using the same sample	presence of pitting (NHANES Dental	above the recommended level of 0.7 mg/L was	
	and the average of two results was employed	Examiners Procedures Manual, 2016).	25%, but the prevalence	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size:	(Centers for Disease		of dental fluorosis was	
2098 children and	Control and Prevention,		70%.	
adolescents	2017b).		 Binary logistic regression 	
			adjusted for covariates	
			showed that higher water	
Sex: Men: 1,054	Exposure level:		fluoride concentrations	
(50.24%)	Water fluoride (mg/L):		(0.31–0.50, 0.51–0.70, >	
•	Mean (SD)		0.70 compared 0.00-0.30	0)
	All: 0.46 (0.40)		were associated with	
Exclusions:	lusions:		higher odds of dental	
Men: 0.48 (0.41) Survey respondents with		fluorosis		
missing any of the	Women: 0.47 (0.38)		o <u>0.31–0.50:</u> OR=1.48	
	Children: 0.52 (0.44)		(1.13–1.96), p = 0.005	
fluoride measurements, dental fluorosis	,		o <u>0.51–0.70:</u> OR=1.92,	
	Adolescents 0.43 (0.35)		(1.44–2.58, p < 0.001	
assessment or complete data for all covariates and			o > 0.70: OR=2.30 (1.75	i
	Plasma fluoride (µmol/L):		3.07), p < 0.001	
outcomes.	Mean (SD)		The pattern of regression	
	All: 0.25 (0.22)		between plasma fluoride	
Source of funding /	All: 0.35 (0.22)		and dental fluorosis was	
	Men: 0.36 (0.19)		similar.	
	Women: 0.34 (0.25)			

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Fundamental	Children: 0.38 (0.24)			
Research Funds for	Adolescents: 0.32 (0.20)			
the Central Universities	,			
(No. 3332019030)				
 Youth Program of 				
Peking Union Medical				
College Hospital				
Foundation (No.				
PUMCH 201910847),				
 National Natural 				
Science Foundation of				
China (81703198).				
Author declaration of				
interest: No COI				

Risk of bias as	ssessment	
Bias domain	Criterion	Response

Risk of bias as	ssessment		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria and during the same timeframe
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, sex, race, BMI, family income to poverty, and six month time period when surveyed
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water (the ion-specific electrode test) and serum (the ion-specific electrode and hexamethyldisiloxane [HMDS] test).

assessment		
Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was consistently
assessment?		measured by two dentists using Dean's Fluorosis
		Index, in accordance with the NHANES Dental
		Examiners Procedures Manual, 2016. Lack of
		blinding of outcome assessors would not appreciably
		bias results.
Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
		presented in results section with adequate level of
		detail for data extraction
Were there no other potential threats to internal	++	None identified
validity (e.g., statistical methods were		
appropriate and researchers adhered to the		
study protocol)?		
	Can we be confident in the outcome assessment? Were all measured outcomes reported? Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the	Can we be confident in the outcome +++ assessment? Were all measured outcomes reported? +++ Were there no other potential threats to internal +++ validity (e.g., statistical methods were appropriate and researchers adhered to the

Du 2021 [20]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "Fluoride exposure
Original study	Fluoride levels in • Urine	Thyroid hormone dysfunction:	• Linear regression	can elevate the Tvols of school-age children, especially
Study design: Cross-sectional	Method of exposure assessment:	Total triiodothyronine (TT3)Total thyroxine (TT4)	Results: Tvol (cm3)	in boys, and high levels of iodine may alleviate this effect
Country: China	 Urinary fluoride (UF): the ion-selective electrode method (Shanghai 	Thyroid-stimulating hormone (TSH)Tvols (thyroid volumes)	 All β (95% CI): 0.22 (0.14, 0.31), p-value: < 0.001 Boys 	to some extent" No significant difference between
Participants: Children aged 7–12	Exactitude Instrument, Shanghai, China).	Method of outcome ascertainment:	β (95% CI): 0.34 (0.20, 0.48), p-value: < 0.001 • Girls	boys and girls in age, maternal education, UCr, UF, UI, Tvol, TT4, and
years old	Exposure level:	 Clinical examination conducted by skilled 	β (95% CI): 0.14 (0.03, 0.24), p-value: 0.011	TT3. • BMI in boys was
Sampling time frame: 2017	Urinary fluoride (mg/l) All: 1.45 ± 0.88 Boys: 1.43 ± 0.89 Girls: 1.48 ± 0.87 t/x ² : 0.490	medical professionals • Serum TT3, TT4, TSH: radiation immunoassay using the auto biochemical analyzer	 Interaction β (95% CI): - 0.15 (- 0.30, - 0.01), p-value: 0.038 	significantly higher than that in girls (P < 0.05), TSH concentration

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size: 446 Sex (N): Boys: 237 (53.1%) Exclusions:	P-value: 0.624	(Cobas C501, Roche Diagnostics, Basel, Switzerland) • The B-mode ultrasound was performed to assess thyroid volumes (Tvols).	TT4 (nmol/l) was • All β (95% CI): 1.44 (- 1.28, 4.16), p-value: 0.297 • Boys: β (95% CI): 2.13 (- 2.89, 7.14), p-value: 0.404 • Girls • Tyo	was significantly lower in boys than girls (P < 0.001) Tvols increased by 0.22 (95% CI: 0.14, 0.31) cm³ with each standard deviation increment of UF. Tvols in boys were
• Children with a history of the thyroid-related diseases (such as hyperthyroidism, hypothyroidism, thyroid nodules, thyroid goiters,			 β (95% CI): 0.89 (- 2.27, 4.04), p-value: 0.580 Interaction β (95% CI): - 1.46 (- 6.17, 3.24), p-value: 0.542 	more susceptible to fluoride exposure than those in girls Tvols of children with high urinary iodine are less
 and Hashimoto's thyroiditis) Children with urinary iodine < 100 μg/l) 			 TT3 (nmol/l) All β (95% CI): - 0.05 (- 0.10, 0.01), p-value: 0.087 Boys β (95% CI): - 0.08 (- 0.17, 	susceptible to fluoride exposure (P for interaction < 0.05). TT3 levels were negatively related

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
support:			0.01), p-value: 0.072	concentrations at
 National Natural Science Foundation of China The Henan Department of Science and Technology, China 			 Girls β (95% CI): - 0.03 (- 0.10, 0.04), p-value: 0.381 Interaction β (95% CI): 0.01 (- 0.08, 0.10), p-value: 0.795 	moderate urinary iodine levels (≤ 300 μg/l).
Zhengzhou University			TSH (μIU/mI)	
Author declaration of interest: No COI			 All-β (95% CI): - 0.07 (- 0.20, 0.07) p-value: 0.316 Boys-β (95% CI): 0.06 (- 0.04, 0.17) p-value: 0.229 Girls-β (95% CI): - 0.15 (- 0.38, 0.08) p-value: 0.202 Interaction-β (95% CI): - 0.11 (- 0.33, 0.12) p-value: 0.363 	

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria and during the same timeframe	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, gender, BMI, maternal education, urinary creatinine, urinary iodine and urinary fluoride	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR	
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water (the ion-specific electrode test) and serum (the ion-specific	

Risk of bias assessment				
	characterization?		electrode and hexamethyldisiloxane [HMDS] test).	
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was consistently	
	assessment?		measured by two dentists using Dean's Fluorosis	
			Index, in accordance with the NHANES Dental	
			Examiners Procedures Manual, 2016. Lack of	
			blinding of outcome assessors would not appreciably	
			bias results.	
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were	
reporting			presented in results section with adequate level of	
			detail for data extraction	
Other	Were there no other potential threats to internal	++	None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the			
	study protocol)?			

Farmus 2021 [21]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Our results suggest
Original study Study design: Cohort study	 Fluoride levels in Maternal urine (MUF): prenatal exposure Children urine (CUF): Childhood exposure 	 Intelligence at 3 to 4 years of age Method of outcome ascertainment: 	 Generalized estimating equations (GEE) used to assess association of interest Statistical significance at α 	the associations of prenatal and postnatal fluoride exposure with cognitive development may be
Country: Canada	Method of exposure assessment:	 Assessed by trained research assistants using the Wechsler Preschool and Primary Scale of 	 = 0.05 for two-tailed test Pint: interaction between exposure timing and fluoride level was 	modified by sex, though further replication of this finding is needed.
Participants: Mother-child pairs in the Maternal-Infant Research on Environmental Chemicals (MIREC) study	 Specific gravity used to adjust for urinary dilution Prenatal exposure acquired by taking the mean trimester-specific fluoride level Childhood exposure acquired by measuring 	and Primary Scale of Intelligence-III (WPPSI- III) • Specific outcome measures include: Performance IQ (PIQ), Verbal IQ (VIQ), and Full- Scale IQ (FSIQ)	assessed • Adjusted covariates: maternal education, maternal race, total HOME score, age at urine sampling, and prenatal second-hand smoke	These results indicate that it is important to balance the risks of fluoride exposure during early brain development with its potential to prevent
Sampling time frame: 2008 to 2011	fluoride levels between 1.9 and 4.4 years of age		Results: Change (95% CI) in age-	caries, especially for pregnant women and infants." (p. 7)

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	• Infant fluoride intake (IFI)		normed in FSIQ scores per	
Sample size:	estimated over first year		unit increase in standardized	
•	of life using water fluoride		fluoride exposure	
596	level and formula-feeding		<u>Males</u>	
	duration		• MUF: -1.86 (-3.22, -0.49)	
Sex N (%):			• IFI: -0.01 (-1.67, 1.65)	
Female: 305 (51.2%)	Exposure level:		• CUF: 0.07 (-1.66, 1.80)	
,	•		• Pint: .012	
Exclusions:	Median (range) fluoride		<u>Females</u>	
Exclusions.	levels		• MUF: -0.23 (-2.06, 1.60)	
 Fetal abnormalities 	MUF T1 (mg/L)		• IFI: -0.72 (-2.34, 0.89)	
 Medical complications 	• 0.31 (0.01 – 4.29)		• CUF: -0.41 (-2.07, 1.24)	
 Gestational illicit drug 	MUF T2 (mg/L)		• Pint: 0.77	
use	• 0.37 (0.03 – 5.28)		Overall	
	MUF T3 (mg/L)		• MUF: -1.28 (-2.37, -0.18)	
Source of funding /	• 0.49 (0.08 – 5.56)		• IFI: -0.38 (-1.53, 0.78)	
support:	IFI (mg F)		• CUF: -0.18 (-1.38, 1.02)	
National Institute of	• 0.09 (0.00 – 0.61)		• Pint: -0.23	
	CUF (mg/L)			
Environmental	• 0.39 (0.05, 2.89)		Change (95% CI) in age-	
Sciences (NIEHS)			normed in PIQ scores per	
Chemicals Management Plan at			unit increase in standardized	
Management Plan at				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Health Canada, the			fluoride exposure	
Ontario Ministry of the	he		<u>Males</u>	
Environment, and th	ne		• MUF: -3.01	
Canadian Institutes	for		• IFI: -1.45 (-3.40, 0.49)	
Health Research	Health Research		• CUF: -1.49 (-3.50, 0.53)	
			• Pint: 0.01	
Author declaration of	of		<u>Females</u>	
interest:			• MUF: -1.18 (-3.32, 0.96)	
No COI			• IFI: -2.71 (-4.59, -0.83)	
No COI			• CUF: -1.53 (-3.45, 0.39)	
			• Pint: 0.01	
			<u>Overall</u>	
			• MUF: -2.36 (-3.63, -1.08)	
			• IFI: -2.11 (-3.45, -0.76)	
			• CUF: -1.51 (-2.90, -0.12)	
			• Pint: <0.001	
			Change (95% CI) in age-	
			normed in VIQ scores per	
			unit increase in standardized	
			fluoride exposure	
			<u>Males</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• MUF: -0.25 (-1.57, 1.07)	
			• IFI: 1.22 (-0.39, 2.83)	
			• CUF: 1.61 (-0.06, 3.29)	
			• Pint: 0.12	
			<u>Females</u>	
			• MUF: 0.87 (-0.91, 2.64)	
			• IFI: 1.31 (-0.25, 2.87)	
			• CUF: 0.63 (-0.98, 2.23)	
			• Pint: 0.30	
			<u>Overall</u>	
			• MUF: 0.15 (-0.91, 1.20)	
			• IFI: 1.27 (0.15, 2.39)	
			• CUF: 1.10 (-0.06, 2.26)	
			• Pint: 0.04	
			Change (95% CI) in FSIQ	
			scores per unit increase (0	.5
			mg/L MUF; 0.1 mg/day IFI	•
			0.5 mg/L CUF) in fluoride	
			exposure	
			<u>Males</u>	
			• MUF: -2.48 (-4.30, -0.66)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• IFI: -0.01 (-1.25, 1.24)	
			• CUF: 0.09 (-2.10, 2.28)	
			• Pint: 0.12	
			<u>Females</u>	
			• MUF: -0.31 (-2.76, 2.14)	
			• IFI: -0.54 (-1.75, 0.66)	
			• CUF: -0.52 (-2.62, 1.58)	
			• Pint: 0.77	
			<u>Overall</u>	
			• MUF: -1.71 (-3.17, -0.24)	
			• IFI: -0.28 (-1.15, 0.58)	
			• CUF: -0.23 (-1.75, 1.29)	
			• Pint: 0.23	
			Change (95% CI) in PIQ	
			scores per unit increase (0	0.5
			mg/L MUF; 0.1 mg/day IF	;
			0.5 mg/L CUF) in fluoride	
			exposure	
			<u>Males</u>	
			• MUF: -4.02 (-6.15, -1.89)
			• IFI: -1.09 (-2.54, 0.37)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• CUF: -1.89 (-4.44, 0.67)	
			• Pint: 0.01	
			<u>Females</u>	
			• MUF: -1.58 (-4.43, 1.28)	
			• IFI: -2.03 (-3.43, -0.63)	
			• CUF: -1.94 (-4.37, 0.50)	
			• Pint: 0.01	
			<u>Overall</u>	
			• MUF: -3.15 (-4.85, -1.44)	
			• IFI: -1.58 (-2.59, -0.57)	
			• CUF: -1.91 (-3.68, -0.15)	
			• Pint: <0.001	
			Change (95% CI) in VIQ	
			scores per unit increase ().5
			mg/L MUF; 0.1 mg/day IF	•
			0.5 mg/L CUF) in fluoride	
			exposure	
			<u>Males</u>	
			• MUF: -0.34 (-2.10, 1.43)	
			• IFI: 0.92 (-0.29, 2.12)	
			• CUF: 2.05 (-0.08, 4.16)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• Pint: 0.12	
			<u>Females</u>	
			• MUF: 1.16 (-1.22, 3.53)	
			• IFI: 0.98 (-0.19, 2.15)	
			• CUF: 0.79 (-1.24, 2.82)	
			• Pint: 0.30	
			<u>Overall</u>	
			• MUF: 0.20 (-1.22, 1.61)	
			• IFI: 0.95 (0.11, 1.79)	
			• CUF: 1.39 (-0.08, 2.86)	
			• Pint: 0.04	
			Sensitivity analysis where	
			influential mother-child	
			dyads were removed was	
			conducted	
			 Association of MUF and 	
			FSIQ in boys became	
			weaker and not statistica	lly
			significant	
			 No change in status of 	
			statistical significance fo	r

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			other associations tested	d

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion	Res	oonse		
Selection	Was administered dose or exposure level	N/A	Not applicable		
	adequately randomized?				
	Was allocation to study groups adequately	N/A	Not applicable		
	concealed?				
	Did selection of study participants result in	++	"We used data from the Maternal-Infant Research on		
	appropriate comparison groups?		Environmental Chemical (MIREC) longitudinal cohort, which		
			recruited 2001 pregnant women between 2008 and 2011.		
			Women were recruited from prenatal clinics if they were at		
			least 18 years old, less than 14 weeks gestation, and spoke		
			English or French. Exclusion criteria included fetal		
			abnormalities, medical complications, and illicit drug use during		
			pregnancy; further details have been previously described" (p.		
			2)		
Confounding	Did the study design or analysis account for	++	"Covariates include maternal education, maternal		
	important confounding and modifying variables?		race, total HOME score, age at urine sampling, and prenatal		
			second-hand smoke" (p. 5)		
Performance	Were experimental conditions identical across study	N/A	NA		
	groups?				

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion	Res	oonse		
	Were the research personnel and human subjects	N/A	NA		
	blinded to the study group during the study?				
Attrition	Were outcome data complete without attrition or	++	Reasons for exclusion were provided.		
	exclusion from analysis?		"Our sample included 601 mother-child dyads who completed		
			the follow-up phase of the study (MIREC-Child Development		
			Plus) when children's neurodevelopmental		
			testing was conducted at 3-4 years of age. Data from five		
			mother-child dyads were excluded due to the mothers'		
			declining prenatal and birth data collection (i.e., trimester		
			fluoride exposures, demographic information, covariates, and		
			offspring date of birth), leaving N = 596 mother-child dyads for		
			our full analytic sample (Fig. 1). Other mother-child pairs		
			missing some data on fluoride exposure, outcomes, or		
			covariates were retained due to the flexibility of GEE to		
			incorporate missing data. On outcomes and covariates, no		
			more than 4.6% of data was missing (M = 1.08, range 0–4.6)."		
			(p. 2)		
Detection	Can we be confident in the exposure	++	"Urinary fluoride concentrations were analyzed using a		
	characterization?		modification of the hexamethydisiloxane"		
	Can we be confident in the outcome assessment?	++	"Trained research assistants assessed children's intellectual		
			abilities at the age of 3–4 years using the Wechsler Preschool		
			and Primary Scale of Intelligence-III (WPPSI-III; Canadian		
			norms; Wechsler, 2002). Outcomes included Performance IQ		

Risk of bias ass	Risk of bias assessment				
Bias domain	Criterion	Res	oonse		
			(PIQ), a measure of nonverbal reasoning, Verbal IQ (VIQ), a		
			measure of verbal reasoning and comprehension, and Full-		
			Scale IQ (FSIQ), a measure of overall intellectual ability.		
			Examiners administered the WPPSI between 2012 and 2015,		
			prior to proposing our fluoride research; examiners are		
			therefore considered blinded to exposure status."		
Selective	Were all measured outcomes reported?	++	Outcomes discussed in methods were reported in the results		
reporting					
Other sources	Were there no other potential threats to internal	++	None identified		
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Fernandes 2021 [22]

s			
Exposure	Outcome	Analysis & Results	Conclusions
Exposures	Outcome(s):	Statistical analysis:	 The authors pointed
Fluoride levels in	Dental fluorosis	Chi-square test	to the high
 Water collected from 	n	 Fisher's exact test 	prevalence of
school water			dental fluorosis
fountains			among children
	Exposure Exposures Fluoride levels in Water collected from school water	Exposure Outcome Exposures Outcome(s): Fluoride levels in Dental fluorosis Water collected from school water	Exposure Outcome Analysis & Results Exposures Outcome(s): Statistical analysis: Fluoride levels in Dental fluorosis • Chi-square test • Water collected from school water • Fisher's exact test

Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants:	Method of exposure		Results:	exposed to water
Children aged 6-12 years	assessment:		Group I (water fluoride ≤0.7	fluoride ≤0.7 ppm,
Sampling time frame:	Water fluoride:		ppm):	which may be "an
April-September 2019	combined ion-		• Fluorosis absent: 306 (63.1%)	indication of other
Sample size:	specific fluoride		children.	sources of fluoride
610	electrode (ORION—		• Fluorosis present: 179 (36.9%)	(F-toothpaste 1500
	9409BN) and a		children	ppm) in this region,
	reference electrode		Group II (water fluoride >0.7	which was
	(900200) connected		ppm):	previously observed
	to an ion analyser		 Fluorosis absent: 69 (55.2%) 	in other studies".
	710 A (ORION)		children.	
Sex: N (%):	Exposure level(s):	Method of outcome	• Fluorosis present: 56 (44.8%)	
Boys: 329 (53.9%)	Water fluoride (ppm):	ascertainment:	children	
Exclusions:	0.06-1.98	Thysltrup and Fejerskov	P=0.10	
• Children who used a	Group I (≤0.7): 485	criteria	Fluorosis absent: OR=1.02	
fixed orthodontic	children		(95% CI: 0.983-1.168)	
appliance or had	Group II (>0.7): 125		Fluorosis present: 0.77 (0.565-	
reading difficulties,	children, including:		1.055)	
tooth malformation	• 0.7-1.0: 111 children			
(such as amelogenesis	• >1.0-1.98: 14			
imperfecta,	children			
dentinogenesis				
imperfecta, or dentinal				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
dysplasia)					
Source of funding	g <i>/</i>				
support:					
• NR					
Author declaratio	n of				
interest: No COI					

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	NA	Not applicable		
	Was allocation to study groups adequately concealed?	NA	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Participants selected using same criteria. Sampling time frame reported.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		
Performance	Were experimental conditions identical across study groups?	NA	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the	NA	Not applicable		

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Response			
	study?				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided		
Detection	Can we be confident in the exposure characterization?	++	"a fluoride concentration mapping of the school water supplies was prepared, and water fountains were sampled and analysed using a combined ionspecific fluoride electrode (ORION—9409BN) and a reference electrode (900200) connected to an ion analyser 710 A (ORION)." (p. 476)		
	Can we be confident in the outcome assessment?	++	DF examined using the Thysltrup and Fejerskov criteria		
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Helte 2021 [23]

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type: Original study	Exposures: Fluoride levels in	Outcome(s): Bone mineral density and	Statistical analysis: • Spearman's rank	"In this cohort of postmenopausal		
Study design: Cohort study [clinical	WaterDietUrine	fracture incidence in postmenopausal women	correlational (rho). • Multivariable linear regression.	women, the risk of fractures was increased in association with two		
sub-cohort of The Swedish Mammography	Method of exposure	Method of outcome ascertainment:	Results:	separate indicators of fluoride exposure. Our findings are		
Country: Sweden Participants: All SMC participants who were <85 years of age and residing in the city of Uppsala or nearby	 Tap water: Geological Survey of Sweden, and the Swedish Water and Wastewater Association), Food: Swedish National Food Agency, U.S. Department of Agriculture's National Fluoride Database of Selected Beverages and Foods 	BMD: measured at the lumbar spine and femoral neck using dual energy X-ray absorptiometry (DXA; Lunar Prodigy; Lunar Corp.) Bone fractures: National Patient Register (NPR)	 At baseline: Mean urinary fluoride:	Our findings are consistent with RCTs and suggest that high consumption of drinking water with a fluoride concentration of ~1 mg=L may increase both BMD and skeletal fragility in older women"		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
surrounding areas	Tea: scientific literature),		ascertained.	
	Urine: ion-selective		 Baseline BMD was slight 	ly
O	electrode (Combined ISE		higher among women in	
Sampling time frame:	F 800 DIN; WTW; Xylem		the highest vs. lowest	
Baseline: 2004-2009	Analytics Germany		tertiles of exposure.	
Follow-up: 2017	GmbH)).		 Fluoride exposures were 	
·			positively associated with	1
			incident hip fractures, wit	h
Sample size:	Exposure level:		multivariable-adjusted	
4,306	Water: ≤1 mg/L		hazard ratios of 1.50 (95	%
	 Mean urinary fluoride at 		CI: 1.04, 2.17) and 1.59	
	baseline: 1.2 mg/g		(95% CI: 1.10, 2.30), for	
Sex (N):	creatinine (0.1-7.3 mg/g		the highest vs. lowest	
Women only (100%)	creatinine)		tertiles of urine fluoride a	nd
	 Mean estimated dietary 		dietary fluoride,	
	fluoride intake: 2.2 mg/d		respectively.	
Exclusions:	(0.3-8.4 mg/d).		 Associations with other 	
• Women who completed			fractures were less	
a short version of the			pronounced for urine	
FFQ			fluoride, and null for dieta	ıry
With incomplete FFQ			fluoride.	
data			 Restricting the analyses 	0

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
With implausible energy	,		women with consistent	
intakes (>3S Dab over			long-term drinking water	
or below the log-			exposures prior to baseling	ne
transformed mean)			strengthened association	5
Without data on dietary			between fractures and	
fluoride, urine for			urinary fluoride.	
element analysis,				
urinary creatinine, or				
DXA scans on either				
side				
With urine creatinine				
concentrations <0.3 or				
>3.0 mg/L				
Not constantly drinking				
water fluoride from				
1982 to baseline				
Source of funding /				
support:				
• Formas, the Swedish				
Research Council for				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Environment					
Agricultural Scientific	ences				
and Spatial Plar	nning				
• Swedish Resea	rch				
Council					
Author declarati	on of				

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately concealed?	N/A Not applicable N/A Not applicable				
	Did selection of study participants result in	++ Yes, participants were identified using the same method of ascertainment, recruited within the same				

Risk of bias as	ssessment		
	appropriate comparison groups?		time frame, and using the same criteria.
Confounding	Did the study design or analysis account for	++	Yes, it accounted for major confounders such as age,
	important confounding and modifying variables?		education, height, total fat mass, lean body mass,
			parity, smoking, physical activity, alcohol intake,
			prevalent diabetes at baseline, eGFR, urinary calcium
			or dietary calcium intake, use of calcium
			supplements, use of vitamin D supplements, ever use
			of postmenopausal hormones, ever use of
			corticosteroids.
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(women who completed a short version of the FFQ,
			with incomplete FFQ data, with implausible energy
			intakes (>3S Dab over or below the log-transformed
			mean), without data on dietary fluoride, urine for
			element analysis, urinary creatinine, or DXA scans on

Risk of bias	assessment		
			either side, with urine creatinine concentrations <0.3
			or >3.0 mg/L, or not constantly drinking water fluoride
			from 1982 to baseline)
Detection	Can we be confident in the exposure	++	"Yes, fluoride exposure levels were obtained for
	characterization?		fluoride in food (Swedish National Food Agency, U.S.
			Department of Agriculture's National Fluoride
			Database of Selected Beverages and Foods), in tea
			(scientific literature), in tap water (Geological Survey
			of Sweden, and the Swedish Water and Wastewater
			Association), and urine (ion-selective electrode
			(Combined ISE F 800 DIN; WTW; Xylem Analytics
			Germany GmbH)).
	Can we be confident in the outcome	++	"Yes, the outcome was assessed for BMD (measured
	assessment?		at the lumbar spine and femoral neck using dual
			energy X-ray absorptiometry [DXA; Lunar Prodigy;
			Lunar Corp.]) and bone fractures (using records from
			the National Patient Register [(NPR]). Outcome
			assessment methods and lack of blinding of outcome
			assessors would not appreciably bias results.
Selective	Were all measured outcomes reported?	++	Yes, primary outcome (bone mineral density and

Risk of bias assessment					
reporting			bone fractures) discussed in the methods was		
			presented in results section with adequate level of		
			detail for data extraction		
Other	Were there no other potential threats to internal	++	None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the				
	study protocol)?				

James 2021 [24]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"In 2017, fluorosis
Original study	Community water fluoridation (CWF)	Dental fluorosis	 Association of interest was assessed using 	prevalence was 18% in Dublin (full CWF) and 12% in Cork-
Study design:		Method of outcome	multivariate logistic	Kerry (full CWF).
Before-and-after study	Method of exposure assessment: Exposure group	ascertainment:Examinations were completed at school by	regressionModel adjusted for the following covariates: age,	Fluorosis was predominantly "very mild" with no

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Country:	categories:	dental examiners and	gender, ownership of	statistically significant		
Ireland	Full CWF: lifetime exposure	nurses; this was performed from Jan to Jun 2002 and from Nov	medical card, and age of first toothpaste use	difference between 2017 and 2002." (p. 507)		
Participants: Children (7 to 9 years of age) from Dublin and Cork-Kerry in the year 2002 and 2017	 No CWF: no exposure Part CWF: sporadic exposure Unknown: unknown CWF exposure 	 2016 to May 2017 Same methods of assessment were applied in 2007 as 2002 Permanent teeth were 	Results: Odds (95% CI) of fluorosis prevalence in the year 2017 compared to 2002			
Sampling time frame: 2002 and 2014	Exposure level: CWF before and after introduction of policy	assessed, and fluorosis was determined using Dean's index scores of "very mild" or higher	Dublin Full CWFOR = 16 (-13, 56);p = 0.312Cork-Kerry Full CWF			
Sample size (N): Year 2000 Dublin = 679 Cork-Kerry = 565	measures Before in 2002: • 0.8 to 1.0 ppm After in 2007:		 OR = -7 (-41, 48); p = 0.771 Cork-Kerry No CWF OR = 97 (-18, 373); 			
Year 2017 • Dublin = 707 • Cork-Kerry = 1,148	• 0.6 to 0.8 ppm		p = 0.129 "Among children with full			

Study	Exposure	Outcome	Analysis & Results	Conclusions	
			CWF in Dublin, fluorosis		
Sex N (%):			prevalence was 18% in		
			2017 and 15% in 2002, an	d	
(2002)			in Cork-Kerry, it		
• Dublin Full CWF			was 12% in 2017 and 13%		
Men: 360 (53%)			in 2002 Fluorosis		
 Cork-Kerry Full C 	WF		prevalence among childrer	1	
Men: 149 (45%)			with no CWF in Cork-Kerry	,	
Cork-Kerry No C\	WF		was 5% in		
Men: 103 (44%)			2017 and 3% in 2002. Non	Δ	
			of the differences were	C	
(2017)			statistically Significant"		
Dublin Full CWF			otationidally digilliouriti		
Men: 324 (46%)					
• Cork-Kerry Full C	WF				
Men: 178 (47%)					
• Cork-Kerry No C\	WF				
Men: 380 (49%)					
Exclusions:					
NR					

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Source of funding /					
support:					
• Health Research B	oard				
• Department of Hea	lth				
and the National O	ral				
Health Office of the	•				
Health Services					
Executive					
Author declaration	of				
interest:					
• No COI					

Risk of bias a	Risk of bias assessment						
Bias domain	Criterion	Response					
Selection	Was administered dose or exposure level	N/A Not applicable					

Risk of bias a	ssessment						
	adequately randomized?						
	Was allocation to study groups adequately	N/A	Not applicable				
	concealed?						
	Did selection of study participants result in	++	Yes, participants were selected during the same				
	appropriate comparison groups?		timeframe and according to the same criteria.				
Confounding	Did the study design or analysis account for	++	Yes, it accounted for major confounders such as age,				
	important confounding and modifying variables?		gender, medical card ownership, and age first used				
			toothpaste				
Performance	Were experimental conditions identical across	N/A	Not applicable				
	study groups?						
	Were the research personnel and human	N/A	Not applicable				
	subjects blinded to the study group during the						
	study?						
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants				
	exclusion from analysis?		(no consent to follow up, no clinical data, School				
			refused, child moved away, fluoride status unknown,				
			fluoride tablets/drops)				
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from				
	characterization?		public water supply records				

Risk of bias assessment					
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by		
	assessment?		dental examiners assisted by dental nurses, and		
			using Dean's Fluorosis Index. Lack of blinding of		
			outcome assessors would not appreciably bias		
			results.		
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were		
reporting			presented in results section with adequate level of		
			detail for data extraction		
Other	Were there no other potential threats to internal	++	None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the				
	study protocol)?				

Meghe 2021 [25]

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "Out of the total 3268		
Original study	Fluoride levels in	Skeletal fluorosis	Descriptive analysis	subjects 2445 subjects		
	Ground water			included in the 'normal' grade, which does not		
Study design:		Method of outcome	Results:	show indications of		
Cross-sectional	Method of	ascertainment:	Relation of skeletal fluorosis	skeletal fluorosis."		
	exposure	Using physical tests	with F- level in drinking water	• " as the concentration		
	assessment:	designed for assessing joint pain. Classification	• Normal (74.8%):	of fluoride increases the cases of 'normal' grade		
Country:	Data from the		o ≤1 ppm: 29.73%			
India	Groundwater Survey	of skeletal fluorosis was	o 1.01–2.00: 28.14%	decreases."		
	and Development	based on the clinical and	o 2.01–4.00: 24.21%			
Participants:	Agency	radiological examinations	o >4.00: 17.92%			
Residents with no	(GSDA)	given by Teotia, M. and Singh, K.P.	• Mild (13.2%):			
evidence of skeletal		Omgn, R.i .	o ≤1 ppm: 13.9%			
fluorosis			o 1.01–2.00: 16.47%			
	Exposure level:		o 2.01–4.00: 22.7%			
	•≤1mg/L		o >4.00: 46.87%			
Sampling time	• 1.01-2.0 mg/L		• Moderate (6.0%):			
frame:	• 2.01-4.0 mg/L		o ≤1 ppm: –			
			o 1.01–2.00: 18.46%			

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
NR	● >4.0 mg/L		o 2.01–4.00: 25.13%				
			o >4.00: 56.41%				
0			• Severe (4.1%):				
Sample size:			o ≤1 ppm: –				
3,268			o 1.01–2.00: 15.55%				
			。 2.01–4.00: 31.11%				
0 (1) 14	4.700		o >4.00: 53.34%				
Sex (N): Men: 1,760	1,760		Very severe (1.9%):				
(53.86%)			o ≤1 ppm: –				
			o 1.01–2.00: 17.74%				
Exclusions:			。 2.01–4.00: 25.81%				
Radiological			o > 4.00: 56.45%				
evidence of							
skeletal fluoro	neie						
Social reason							
 Lack of availar of time 	ionity						
or time							
Source of fund	ding /						
support:							

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Datta Meghe						
Institute of Medi	cal					
Sciences						
Author declara	tion					
of interest:						
No COI						

Risk of bias assessment							
Bias domain	Criterion	Res	ponse				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable				
	Was allocation to study groups adequately concealed?	N/A	Not applicable				
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected using the same criteria. However, the sampling timeframe was not				
			reported				

Risk of bias as	Risk of bias assessment					
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	+	Study provided some reasons for exclusion of participants (social reasons, lack of availability of time)			
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride exposure levels were obtained from the Groundwater Survey and Development Agency (GSDA).			
	Can we be confident in the outcome assessment?	-	Yes, the outcome was assessed using physical tests designed for assessing joint pain. Classification of skeletal fluorosis based on the clinical and radiological examinations given by Teotia, M. and Singh, K.P. (only for 360 out of 3268).			
Selective	Were all measured outcomes reported?	++	Yes, primary outcome (skeletal fluorosis) discussed			

Risk of bias assessment							
reporting			in the methods was presented in results section with				
			adequate level of detail for data extraction				
Other	Were there no other potential threats to internal	++	None identified				
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?						

Meng 2021 [26]

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"fluoride could impact		
Original study	Fluoride levels in	• Genotoxicity (5-	• Statistical significance at p =</td <td>5-mC level in human and rat. The U-shaped</td>	5-mC level in human and rat. The U-shaped		
	Drinking waterUrine	methylcytosine (5-mC) level)	0.05	relationship was found		
Study design: Cross-sectional study	· omic		Results:	between fluoride and 5-mC in the population and		
Country:	Method of exposure assessment:	Method of outcome ascertainment:	Mean (SD) of 5-mC by water quartile groups in mg/L	in the rats with 3 months fluoride treatments. These results clued that		
-		Extraction and		olada trat		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
China	F-ion selective electrode	purification of genome DNA from blood:	• Q1: 0.15 (0.09)	the disruption of DNA methylation in mammals
Participants: Adults (> 18 years of	Exposure level:	Universal cylindrical genomic DNA extraction kit	 Q2: 0.11 (0.08) Q3: 0.11 (0.08) Q4: 0.14 (0.07) p = 0.001 	may has a certain association with fluoride in natural exposures." (p.
age) born in one of	Fluoride quartiles in	• Measured 5-mC level:	p 0.000.	5 – 6)
five villages (Hongguang, Xiaoshan, Fushan, Wanfa, and Leye) Sampling time frame: April – September 2016	drinking water: • Q1 (≤ P25): 1.4559 mg/L • Q2 (P25 ~ P50): 1.4559 ~ 2.2434 mg/L • Q3 (P50 ~ P75): 2.2434 ~ 3.2342 mg/L • Q4 (>P75): 3.2342 mg/L	Methyl Flash TM Global DNA Methylation ELISA Kit	Association between fluoride and 5-mC with cubic curve fitted • R ² = 0.061 • F = 6.045 • p = 0.001	
Sample size:				
281	Median levels of fluoride in drinking water			

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex (N):	• 2.2434 mg/L			
Men: 90 (32%)				
Exclusions : NR	P50 (P25, P75) levels of fluoride in water by quartile (mg/L) $\underline{\text{Q1 (N = 70)}}$			
Source of funding / support:	• 1.100 (0.767, 1.414) Q2 (N = 71)			
 National Natural Science Foundation of China The Wu Liande Science Foundation of Harbin Medical 	 1.853 (1.629, 2.069) Q3 (N = 70) 2.691 (2.400, 2.949) Q4 (N = 70) 4.123 (3.600, 5.200) 			
University • Post-doctoral Scientific Research Developmental Fund of Heilongjiang Province	P50 (P25, P75) levels of fluoride in urine by quartile (mg/L) Q1 (N = 70)			

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
	• 2.040 (1.612, 3.331)					
Author declaration	Q2 (N = 71)					
of interest:	• 2.432 (1.981, 3.083)					
No COI	Q3 (N = 70)					
	• 2.432 (1.788, 3.169)					
	Q4 (N = 70)					
	• 3.780 (2.940, 5.692)					

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable		
	Was allocation to study groups adequately concealed?	N/A Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++ Yes, participants were identified from the same population and recruited within the same time fr		

Risk of bias as	ssessment		
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	-	NR
	exclusion from analysis?		
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water and serum
	characterization?		using the fluoride ion-selective electrode method
	Can we be confident in the outcome	++	Yes, the outcome (CKDu) was assessed using biopsy
	assessment?		proven renal tubulointerstitial disease, uncontrolled
			hypertension or diabetes at the time of initial
			diagnosis, negative immunofluorescence for IgG,
			IgM, IgA, and C3, serum creatinine >1.2 mg/dL
			and/or A1M > 15.5 mg/L, HbA1C<6.5%
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods
reporting			were presented in results section with adequate level

Risk of bias	Risk of bias assessment				
			of detail for data extraction		
Other	Were there no other potential threats to internal	++	None identified		
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?				

Mohd Nor 2021 [27]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	● "Fluorosis was
Original study	Fluoride levels in public drinking water	Dental fluorosis	Chi-squared analysesLogistic regression	lower among children born after
Study design: Cross sectional	supply	Method of outcome ascertainment:	Results:	the adjustment of fluoride concentration in
study Country: Malaysia	Method of exposure assessment: Water fluoride: State	 Assessment of dental fluorosis was conducted by trained clinical and calibrated examiners (NAMN). 	 "Fluorosis prevalence was lower (31.9 percent) among the younger children born after the reduction of fluoride 	the water." • "Fluoridated water remained as a strong risk factor

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	and national water	Assessment of fluorosis was	concentration in the water,	for fluorosis after
Participants:	quality reports	conducted by examining the	compared to a prevalence of	downward
Lifelong residents aged 9- and	Exposure level:	maxillary central incisors using Dean's Fluorosis Index. • Consensus on outcome	(38.4 percent) in the older cohort."	adjustment of its fluoride concentration."
12-year-olds	Original: 0.7 ppmReduced: 0.5 ppm	assessment must be achieved by agreement of two	Simple logistic regression of fluorosis and infant feeding	"Early tooth brushing practices
Sampling time		additional examiners, who did	(n=830)	and fluoridated
frame:		not participate in children's examination, with the initial	Fluorosis (Deans ≥ 2),	toothpaste were not statistically
2015 (calculated		examiner.	Type of water used to prepare	associated with
using the following			formula	fluorosis status."
information			Bottled water	"However, the
reported by the authors) • 9-year-old			Fluorosis: 3 (9.4%)No fluorosis: 29 (90.6%)	prevalence of fluorosis was significantly
children (born			• Reference	associated with
between 1			Tap water	parents' education
January and 31			• Fluorosis: 162 (25.7)	level, parents'
December 2006			• No fluorosis: 469 (74.3)	income, fluoridated
● 12-year-old			• OR (95% CI): 3.34 (1.0–11.11)	water, type of infant
children (born			• P-value: 0.049*	feeding method, age

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
between 1			Filtered tap water	breast feeding
January and 31 December 2003)			 Fluorosis: 47 (28.1%) No fluorosis: 120 (71.9%) OR (95% CI): 3.79 (1.1–13.03) 	ceased, use of formula milk, duration of formula
Sample size:			• P-value: 0.035*	milk intake, and type of water used to
1143 children aged 9-12 years old			Simple logistic regression of fluorosis and water fluoride	reconstitute formula milk"
Sex: Boys: 491			(n=1,143)	
(43%)			Fluorosis (Deans ≥ 2),	
			<u>0 lifetime</u>	
Exclusions:			• Fluorosis: 30 (12.30%)	
• Children who			No fluorosis: 517 (57.4%)Reference	
missed clinical examination.			0.5 ppm lifetime	
 Children with 			• Fluorosis: 100 (41.2%)	
unerupted,			• No fluorosis: 204 (22.7%)	
partially			•OR (95% CI): 8.45 (5.45-	
unerupted or			13.10)	
fractured			• P-value: 0.001	

Study Charact	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
incisor(s), or			0.7 ppm for first 2 years and	then_	
have a fixed			<u>0.5 ppm</u>		
orthodontic			• Fluorosis: 113 (46.5%)		
appliance.			• No fluorosis: 179 (19.9%)		
			• OR (95% CI): 10.88 (7.03–		
Source of fund	ding		16.84)		
/ support:	_		• P-value: 0.001		
Ministry of High	ner				
Education,			Multiple logistic regression	of	
Malaysia			fluorosis (n=830)		
			Fluorosis (Deans ≥ 2),		
Author			Type of water used to prepar	e	
declaration of			formula		
interest:			Bottled water		
No COI					
			• Reference		
			<u>Tap water</u>		
			•OR (95% CI): 9.90 (1.28-		
			76.38)		
			P-value: 0.028		

Study Charac	teristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Filtered tap water	
			• OR (95% CI): 8.78 (1.11–	
			69.71) 0.040	
			• P-value: 0.040	
			Multiple logistic regression	of
			fluorosis and water fluoride	9
			(n=1,143)	
			<u>0 lifetime</u>	
			• Reference	
			0.5 ppm lifetime	
			• Adjusted OR (95% CI): 5.9	7
			(3.32–10.72)	
			• P-value: <0.001	
			0.7 ppm for first 2 years and	<u>then</u>
			<u>0.5 ppm</u>	
			• Adjusted OR (95% CI): 9.12	2
			(5.15–16.14)	
			• P-value: <0.001	

Risk of bias a	ssessment		
Bias domain	Criterion	Res	oonse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected at random, during the same timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as fluoridated toothpaste, age started toothbrushing, formula use, feeding method, parents education, and family incomes
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants (children who missed clinical examination, those with

Risk of bias	assessment		
	exclusion from analysis?		unerupted, partially unerupted or fractured incisor(s),
			or have a fixed orthodontic appliance.)
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from
	characterization?		state and national water quality reports
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by
	assessment?		digital images of the maxillary incisors were taken to
			enable blind scoring of dental fluorosis. Images were
			uniquely coded to enable blind scoring. Examiners
			were trained on fluorosis scoring, and were blinded
			from the status of child's area of residence.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Rojanaworarit 2021 [28]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "In fluoride endemic
Original study	Fluoride levels in	Dental fluorosis	 A Wilcoxon-type test for trend 	areas, groundwater
Study design:	Groundwater used		to examine the trend in dental	containing natural
Cross-sectional	for household water		fluorosis prevalence across	fluoride utilized for
Country:	supply.		ordered levels of water fluoride	household
Thailand			concentration.	consumption
			 Poisson regression with robust 	resulted in high
			standard errors to estimate	dental fluorosis
			dental fluorosis prevalence	prevalence,
			ratios (PR).	particularly in the
Participants:	Method of exposure	-	Results:	groundwater with
Children aged 6-10 years	assessment:		Prevalence of dental fluorosis	fluoride
Sampling time frame:	 Annual records of 		(%) by subdistrict	concentrations of ≥
2015	fluoride		∙ Sai Ngam: 50.77	1.5 ppm."
Sample size:	concentrations in the		● Bang Sai Pa: 42.50	• "The finding of
289	groundwater used for		• Hin Mun: 64.18	23.3% prevalence
	the household water		● Bang Luang: 59.43	with only the very
	supply		• Nin Phet: 9.09	mild dental fluorosis
	corresponding to the		Prevalence of dental fluorosis	among children with
	residence of each		(%) by water fluoride level	time-averaged
	child from 2008 to			fluoride

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	2015 were obtained		•<0.7 ppm: 23.3%	concentrations of <
	from the database at		• 0.7–1.49 ppm: 37.7%	0.7 ppm (the
	Nakhon Pathom		•≥1.5 ppm: 64.1%	referent category)
	Provincial Public		Exact probability test; P <	was evidence that
	Health Office		0.001	reassured the
Sex: N (%):	Exposure level(s):	Method of outcome	Severity of dental fluorosis by	safety of this
Boys: 153 (52.9%)	Time-averaged	ascertainment:	water fluoride level (number of	recommended
Exclusions:	fluoride concentration	 Children were examined 	cases; prevalence)	optimal fluoride
Children who had not	(ppm) by dental	by an "authorized dentist".	•<0.7 ppm: 1 (3.4%)	level"
resided within the study	fluorosis status	• Dean's index was applied	questionable; 7 (23.3%) very	• "When the fluoride
area since birth	Normal (no fluorosis)	to classify the severity of	mild	concentrations
Source of funding /	• Mean (SD): 2.0±1.6	dental fluorosis.	• 0.7-1.49 ppm: 5 (8.2%)	increased to the
support:	Median (IQR): 1.6		questionable; 14 (23.0%) very	range of 0.7-1.49
Fogarty International	(1.1)		mild; 6 (9.8%) mild; 3 (4.9%)	ppm, the
Center of the National	• Range: 0.4-9.4		moderate	prevalence among
Institutes of Health under	Questionable fluorosis		• ≥1.5 ppm: 8 (4.1%)	children in this
Award Number	Mean (SD): 1.7±0.6		questionable; 96 (48.4%) very	group also
U2RTW010088.	• Median (IQR): 1.7		mild; 21 (10.6%) mild; 10	increased to 37.7%,
Author declaration of	(0.6)		(5.1%) moderate	with the additional
interest: No COI	• Range: 0.6-3.0		PR (95% CI) by time-averaged	higher levels of mild
	Very mild fluorosis		water fluoride concentrations	and moderate
	• Mean (SD): 2.8±2.2		Univariable analysis	severity. Although the fluoride

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	• Median (IQR): 2.0			concentrations in
	(1.4)		• 0.7–1.49 ppm: 1.62 (0.78;	this range did not
	• Range: 0.4-9.4		3.34); p=0.195	surpass the WHO's
	Mild fluorosis		•≥1.5 ppm: 2.75 (1.42; 5.31);	recommended limit
	• Mean (SD): 2.8±2.3		p=0.003	of 1.5 ppm, the
	• Median (IQR): 2.1		Multivariable analysis; adjusted	results of this study
	(1.4)		for child's demographic factors	were concerning as
	• Range: 1.1-9.4		<0.7 ppm: reference	the prevalence
	Moderate fluorosis		• 0.7–1.49 ppm: 1.62 (0.79;	exceeded one-third
	• Mean (SD): 4.1±3.5		3.32); p=0.190	of the children and
	• Median (IQR): 2.0		•≥1.5 ppm: 2.78 (1.45; 5.32);	14.7% of the
	(7.1)		p=0.002	severity was
	• Range: 1.2-9.4		Multivariable analysis; adjusted	beyond the very
	<u>All</u>		for caregiver factors	mild level."
	• Mean (SD): 2.4±2.1		<0.7 ppm: reference	• "In the extreme
	• Median (IQR): 1.9		• 0.7–1.49 ppm: 1.61 (0.28;	group with the
	(0.9)		9.21); p=0.592	fluoride ≥ 1.5 ppm
	• Range: 0.4-9.4		•≥1.5 ppm: 2.81 (0.51; 15.51);	the prevalence
	Time-averaged		p=0.235	further rose to
	fluoride concentration		Multivariable analysis; adjusted	64.1% or
	(ppm) by subdistrict		for breastfeeding	approximately 2.8
	<u>Sai Ngam</u>		■ <0.7 ppm: reference	times the prevalence of those

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	• Mean (SD): 3.72		• 0.7–1.49 ppm: 3.08 (0.47;	in the reference
	(3.71)		20.04); p=0.238	group. The severity
	• Median (IQR): 1.40		•≥1.5 ppm: 5.30 (0.84; 33.45);	beyond the very
	(8.20)		p=0.076	mild level also grew
	• Range: 0.39-9.38		Multivariable analysis; adjusted	to 15.7%."
	Bang Sai Pa		for oral health behaviors	
	• Mean (SD): 3.06		<0.7 ppm: reference	
	(1.00)		• 0.7–1.49 ppm: 3.44 (0.48;	
	• Median (IQR): 3.35		24.62); p=0.218	
	(0.95)		•≥1.5 ppm: 6.46 (0.94; 44.48);	
	• Range: 1.07-3.94		p=0.058	
	<u>Hin Mun</u>		Multivariable analysis; adjusted	
	• Mean (SD): 2.31		for all covariates	
	(1.20)		<0.7 ppm: reference	
	• Median (IQR): 1.97		• 0.7–1.49 ppm: 1.64 (0.24;	
	(0.58)		11.24); p=0.615	
	• Range: 1.13-5.94		•≥1.5 ppm: 2.85 (0.44; 18.52);	
	Bang Luang		p=0.273	
	• Mean (SD): 1.76			
	(0.36)			
	• Median (IQR): 1.82			
	(0.51)			

Study	Exposure	Outcome	Analysis & Results	Conclusions
	• Range: 0.84-2.2	0		
	Nin Phet			
	• Mean (SD): 0.44			
	(0.05)			
	• Median (IQR): 0.	46		
	(0.10)			
	• Range: 0.37-0.5	1		

Risk of bias as	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	NA	Not applicable
	Was allocation to study groups adequately concealed?	NA	Not applicable
	Did selection of study participants result in	++	Participants selected using same criteria. Sampling time
	appropriate comparison groups?		frame reported.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Confounders were adjusted for.
Performance	Were experimental conditions identical across study groups?	NA	Not applicable

Risk of bias a	ssessment		
Bias domain	Criterion	Res	ponse
	Were the research personnel and human		
	subjects blinded to the study group during the	NA	Not applicable
	study?		
Attrition	Were outcome data complete without attrition or		None of the students declined to paritionate
	exclusion from analysis?	++	None of the students declined to pariticpate
Detection	Can we be confident in the exposure		"annual records of fluoride concentrations in the
	characterization?		groundwater used for the household water supply
		++	corresponding to the residence of each child from 2008
			to 2015 were retrieved from the database at Nakhon
			Pathom Provincial Public Health Office."
	Can we be confident in the outcome	++	DF examined using Dean's Fluorosis Index
	assessment?		Di examined using bearts i luorosis index
Selective	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in
reporting			the results
Other	Were there no other potential threats to internal		
sources	validity (e.g., statistical methods were	++	None identified
	appropriate and researchers adhered to the	TT	NONE INCHINEU
	study protocol)?		

Sharma 2021 [29]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"This study
Original study	Fluoride levels in Ground water samples	Dental fluorosis	 Disease prevalence is presented as percentages by group 	confirms the positive association
Study design:		Method of outcome		between the
Cross-sectional study	Method of exposure assessment:	ascertainment:Determined using Deans	Results:	presence of fluoride-rich rocks
Country:	 Samples from 3 water sources were randomly 	Fluorosis Index	Positive association between drinking water	around the water source and the
India	acquired per village Ion-selective electrode		fluoride levels and dental fluorosis prevalence	prevalence of fluorosis in the population of the
Participants: Children (age 6 - 19 years) residing in 12 villages from the Rudraprayag District	Exposure level: Low-risk area		Percent of children with dental fluorosis by drinking water fluoride levels	area." (p. 126)
Sampling time frame:	<0.6ppmIntermediate risk area0.6 – 1.5 ppm		<0.7mg/L: 1%> 1mg/L: 92%p-value: <0.001	
NR	<u>High-risk area</u>		F 13.00.	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
	>1.5ppm		Prevalence of dental		
Sample size:			fluorosis by geological		
-			categories (fluoride level)		
558			Low-risk area (< 0.6ppm)		
			 No fluorosis 		
Sex:			Intermediate risk area (0.6	<u>=</u>	
NR			<u>1.5ppm)</u>		
			• Dental fluorosis: 59.9%		
Exclusions:			• Severe grade: 3.2%		
 Not "residents of s 	selected		Community fluorosis index:		
villages in their firs			1.05		
years of life" (p. 12			High-risk area (>1.5ppm)		
 Not "eldest child . 	,		Dental fluorosis: 93%		
each house" (p. 1	-		• Severe grade: 25.9%		
			 Community fluorosis inde 	ex:	
Source of funding	1		2.59		
support:	, •				
Self					

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Author declaration	n of				
interest:					
No COI					

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in	+	Yes, participants were selected using the same		
	appropriate comparison groups?		criteria. However, the sampling timeframe was not		
			reported		
Confounding	Did the study design or analysis account for	-	NR		
	important confounding and modifying variables?				
Performance	Were experimental conditions identical across	N/A	Not applicable		

Risk of bias	assessment		
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	-	NR
	exclusion from analysis?		
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the ion-
	characterization?		selective electrode (Orion company A324pH
			benchtop model) using the EPA-approved ISE test
			procedures.
	Can we be confident in the outcome	-	NR (no info on the type and/or training status of the
	assessment?		assessors)
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Silva 2021 [30]

Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	Adolescents
Original study	Fluoride levels in:	• Dental fluorosis	Descriptive analysis	consuming fluoridated water
Study design:	 Drinking water 		Logistic Regression	were 5 to 11 times
Cross-sectional	(water fountains of schools/ daycares)			more likely than
Country:	scrioois/ daycares)			those of consuming non-fluoridated water
Brazil				to develop very mild/
Participants:	Method of exposure		Results:	mild and moderate fluorosis.
5 and 12 years old	assessment:		Data for 12-year-old children	
Sampling time frame:	• Fluoride levels in		[No dental fluorosis was observed in 5-year-old children	
NR	drinking water: Ion Electrode Orion		in either group]	
Sample size:	model No. 96-09,		Dental Fluorosis in FW	
692	Orion Research Inc. coupled to Orion Star		n(%)/NW n(%):	
5 years old: 330 (47.6%)	A214 Analyzer		Absent: 72 (40.4)/150(81.5)	
12 years old: 362			Very Mild/Mild:	
(52.4%)			74(41.6)/28(15.2)	
Sex: N (%):	Exposure level(s):	Method of outcome	Moderate: 32(18.0)/6(3.3) P<0.001	
Girls: 342 (49.4%)	Fluoridated Water	ascertainment:	1 40.001	
Exclusions:	<u>(FW)</u>	Thylstrup-Fejerskov index (TE)	Kappa index: 0.90	
Use of fixed orthodontic	Conc:<0.05 µg/mL	(TF)	 <u>Logistic regression</u> Very mild/mild DF vs. FW 	
appliance Teeth with	Non- Fluoridated		(Desviance Test: p=0,088):	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
amelogenesis	Water (NFW)		OR:5.45	
imperfectaNot being born or	Conc: 0.5-0.6 µg/mL		CI 95%: 3.23-9.19	
raised in subjected			P: <0.001	
area (Teresina) or not having access to public water supply.		Moderate DF vs. FW (Desviance Test: p=0,088): OR:11.11		
			CI 95%: 4.43-27.87	
Source of funding / support:			P: <0.001	
 Coordination of Improvement of Higher 			Reference: NFW for both Mil and moderate fluorosis	d
Education Personnel (Capes) Author declaration of interest: No COI			Multiple analysis controlled be socioeconomic and demographics.	у

Risk of bias assessment							
Bias domain	Criterion	Response					
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable					
	Was allocation to study groups adequately concealed?	N/A Not applicable					
	Did selection of study participants result in appropriate comparison groups?	+ Yes, participants were selected according to the same criteria and from the same eligible population. Time frame					

Bias domain	Criterion	Door	2000
Bias domain	Criterion	Res	ponse
			was not reported in the study.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for important confounders such as sex, socioeconomic and other demographic characteristics including mother's education, and family income.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study provided reasons for exclusion of participants (use of fixed orthodontic appliance, teeth with amelogenesis imperfecta, those who were not born or raised in the target area, Teresina, and those with no access to public water supply)
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water wells using a combination of ion electrode Orion (model 96-09), coupled with Orion Star analyzer (model A214)
	Can we be confident in the outcome assessment?	++	Yes, outcome (dental fluorosis) was done by examiners (no professional information reported), using Thylstrup-Fejerskov index (TF). Lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Tkachenko 2021 [31]

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "The children		
Original study	Fluoride levels in • Drinking water	Blood level of the lipid peroxidation biomarkers (lipid acyl hydroperoxides,	 Kolmogorov-Smirnov test Kruskal-Wallis test 	had higher blood TBARS levels, while the acyl		
Study design: Cross-sectional	Method of exposure assessment:	2-thiobarbituric acid reactive substances (TBARS)) in the blood of children with chronic	Spearman's correlation analysisResults:	hydroperoxide levels were non- significantly increased in		
Country: Ukraine	Exposure level:	fluorosis Method of outcome	 Children with chronic fluorosis had by 25% higher blood TBARS levels (p < 0.05) than the healthy 	comparison with healthy children living in the non- fluorosis area."		
Participants: Children aged 7–10 years old with clinically diagnosed fluorosis from endemic fluorosis areas (exposed to drinking water fluoride (> 1.5 ppm) for >5 years.)	Drinking water: >1.5 ppm		 (p < 0.05) than the healthy subjects living in the nonfluorosis areas There was a nonsignificant 17.5% increase (p > 0.05) in the primary products of lipid peroxidation (acyl hydroperoxides) in the 	nuorosis area.		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sampling time fra	me:		blood of children from the	e	
2014 (date of the p	roject's		endemic fluorosis areas,		
ethics approval)	,		compared with the value	S	
,			obtained in the blood of	the	
			healthy children from the		
Sample size:			non-fluorosis area		
31					
Sex (N):					
Boys: 15 (48.4%)					
Exclusions:					
• Known cardiac, lu	ıng, liver,				
kidney diseases o	or				
diabetes mellitus					
• Use of cardiac dru	ugs				
• Consumption of a	iny				
vitamin or mineral	I				
supplements for a	at least 2				
weeks before bloc	bo				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
samples withdraw	'n				
Source of funding	1				
support: NR					
Author declaration	n of				
interest: No COI					

Risk of bias assessment					
Bias domain	in Criterion Respo		ponse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not Applicable		
	Was allocation to study groups adequately concealed?	N/A	Not Applicable		
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were identified using the same criteria and the same method of outcome ascertainment. Time frame was implied based on the approval of the respective ethics committee.		

Risk of bias a	ssessment		
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(known cardiac, lung, liver, kidney diseases or
			diabetes mellitus, use of cardiac drugs, or
			consumption of any vitamin or mineral supplements for
			at least 2 weeks before blood samples withdrawn)
Detection	Can we be confident in the exposure	+	Study used Dean's Fluorosis Index as a tool for
	characterization?		diagnosis of dental fluorosis, which RSI considered a
			proxy for fluoride level exposure
	Can we be confident in the outcome	++	Yes, the blood levels of the selected elements and
	assessment?		lipid biomarkers were measured using the X-ray
			fluorescence method. Dental fluorosis was assessed
			using Dean's Fluorosis Index. Outcome assessment
			methods and lack of blinding of outcome assessors

Risk of bias	Risk of bias assessment				
			would not appreciably bias results.		
Selective	Were all measured outcomes reported?	++	Yes, primary outcome [blood levels of lipid		
reporting			peroxidation biomarkers (lipid acyl hydroperoxides, 2-		
			thiobarbituric acid reactive substances (TBARS))]		
			discussed in the methods was presented in results		
			section with adequate level of detail for data extraction		
Other	Were there no other potential threats to internal	++	None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the				
	study protocol)?				

Wang 2021 [32]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposure:	Outcome(s):	Statistical analysis:	• "low-to-moderate	
Original study	Drinking water fluoride:	• IQ	Descriptive analysis	fluoride exposure	
Study design:	0.20–3.90 mg/L	Dental fluorosis	Multiple linear regression models	was associated with	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Cross-sectional Country: China Participants: 6.7–13 years old school children from Tianjin, China Sampling time frame: 2015 Sample size: 709 Sex: N (%): Girls: 328 (46.26%) Exclusions:	 Urinary fluoride: 0.02–5.41 mg/L Urine creatinine: 0.30–2.99 mg/L Method of exposure assessment: Fluoride concentrations in water and urine were measured by ion analyzer with a fluoride selective electrode (INESA, Shanghai, China). Creatinine in urine (for urinary fluoride) using early morning urine samples: Creatinine determination kit (Mindray, Shenzhen, 	(DF) Method of outcome ascertainment: Combined Raven's Test-The Rural in China (CRT-RC2), which is widely for cognitive ability verification test, because of less influenced by language, culture, ethnic, and religion differences. Dean's	 Multiple logistic regression model Adjustment for: age, gender, BMI, low birth weight, paternal education, maternal education, family incomes, urine creatinine (for urinary fluoride). Results: IQ, Linear regression Water fluoride (mg/L): IQ scores, β (95% CI) Q1 (≤ 0.30): Reference Q2 (0.30-1.00) All: 1.77 (-0.73, 4.27) Boys: 1.40 (-2.29, 5.08) Girls: 2.51 (-1.42, 6.45) Q3 (1.00-1.60) All: -2.77 (-5.44, -0.10) Boys: -4.45 (-8.41, -0.50) Girls: -1.72 (-5.91, 2.47) Q4 (> 1.60) 	the alteration of cholinergic system, DF and IQ" • "AChE partly mediated the elevated prevalence of DF and the lower probability of developing superior and above intelligence caused by fluoride."

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding /	China)	classification	Boys: -5.74 (-9.57, -1.91)	
support:	Enzyme-linked	system for dental	Girls: -5.27 (-9.32, -1.22)	
 National Natural Science Foundation of China (Grants No. 82073515 and No. 81773388) The State Key Program of National Natural Science of China (Grant No. 	immunosorbent assays (Shanghai Enzyme- linked Biotechnology, Shanghai, China) were used to detect the expression of cholinergic system.	fluorosis	 Urinary fluoride (mg/L): IQ scores, β (95% CI) Q1 (≤ 0.20): Reference Q2 (0.20-0.48) All: -1.99 (-4.64, 0.66) Boys: -1.62 (-5.65, 2.42) Girls: -3.29 (-7.34, 0.77) Q3 (0.48-0.90) All: -3.02 (-5.71, -0.33) Boys: -3.54 (-7.60, 0.52) Girls: -1.86 (-6.01, 2.29) 	
81430076)			○ Q4 (> 0.90)	
Author declaration of interest:	Exposure level(s): • Normal fluoride-		All: -4.49 (-7.21, -1.77) Boys: -6.09 (-10.29, -1.90) Girls: -5.98 (-9.99, -1.96)	
No COI	exposure group: water fluoride ≤1.0 mg/L • High-fluoride-exposure group: water fluoride >1.0 mg/L		 IQ, Logistic regression Water fluoride (mg/L) and IQ scores [OR (95% CI)] Superior and above (≥120): 0.69 (0.54, 	

Study	Exposure	Outcome	Analysis & Results	Conclusions
	,		0.90)	
			,	
			o High normal (110-119): 0.86 (0.70,1.06)	
			,	
			o Normal (90-109): 1 (control)	
			o Dull normal and below (≤89): 1.42	
			(1.08, 1.88)	
			 Urinary fluoride (mg/L) and IQ scores 	
			[OR (95% CI)]	
			o Superior and above (≥120): 0.67 (0.	46,
			0.97)	
			o High normal (110-119): 0.90 (0.68,	
			1.18)	
			o Normal (90-109): 1 (control)	
			o Dull normal and below (≤89): 1.39	
			(0.97, 2.00)	
			 AChE (nmol/L) and IQ scores [OR (95 	%
			CI)]	
			o Q1 (≤0.30): Reference	
			∘ Q2 (0.30−1.00)	
			Superior and above (≥ 120): 1.67	
			(0.92, 3.02)	
			High normal (110-119): 1.22 (0.73	3

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			2.04)	
			Normal (90-109): 1 (control)	
			Dull normal and below (≤ 89): 0).96
			(0.40, 2.27)	
			∘ Q3 (1.00−1.60)	
			Superior and above (≥ 120): 0.4	47
			(0.24, 0.94)	
			High normal (110-119): 0.78 (0	.47,
			1.30)	
			Normal (90-109): 1 (control)	
			Dull normal and below (≤ 89): 0	0.63
			(0.27, 1.47)	
			∘ Q4 (>1.60)	
			Superior and above (≥ 120): 0.	54
			(0.29, 1.00)	
			High normal (110-119): 0.92 (0	.53,
			1.57)	
			Normal (90-109): 1 (control)	
			Dull normal and below (≤ 89): 1	.68
			(0.77, 3.64)	
			DF, Prevalence	

Study Charac	teristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Water fluoride (mg/L): dental fluoros	is,
			PR <i>(95% CI)</i>	
			∘ Q2 (0.30−1.00)	
			Crude: 1.21 (0.86, 1.70)	
			Adjusted: 1.20 (0.85, 1.69)	
			∘ Q3 (1.00−1.60)	
			Crude: 3.78 (2.90, 4.94)	
			Adjusted: 3.79 (2.90, 4.95)	
			⊙ Q4 (>1.60)	
			Crude: 3.90 (3.00, 5.08)	
			Adjusted: 3.97 (3.04, 5.17)	
			 Urinary fluoride (mg/L): dental fluore 	osis,
			PR <i>(95% CI)</i>	
			o Q1 (≤0.20): Reference	
			∘ Q2 (0.20−0.48)	
			Crude: 1.42 (1.09, 1.86)	
			Adjusted: 1.66 (1.28, 2.14)	
			∘ Q3 (0.48−0.90)	
			Crude: 2.18 (1.72, 2.75)	
			Adjusted: 2.73 (2.17, 3.44)	
			∘ Q4 (>0.90)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
			Crude: 2.56 (2.04, 3.21)	
			Adjusted: 3.24 (2.58, 4.07)	
			• Cholinergic system AChE (nmol/	L) and
			DF/IQ [PR (95% CI)]	
			Either DF or IQ <120	
			o Q1 (≤ 133.66): Reference	
			∘ Q2 (133.66–157.97)	
			Crude: 1.09 (0.94,1.26)	
			Adjusted: 1.06 (0.92,1.22)	
			∘ Q3 (157.97–184.03):	
			Crude: 1.14 (1.00,1.31)	
			Adjusted: 1.12 (0.97,1.28)	
			○ Q4 (>184.03)	
			Crude: 1.21 (1.06,1.38)	
			Adjusted: 1.22 (1.07,1.38)	
			DF and IQ <120	
			o Q1 (≤ 133.66): Reference	
			∘ Q2 (133.66–157.97)	
			Crude: 1.29 (1.08,1.54)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Adjusted: 1.27 (1.07,1.50)	
			∘ Q3 (157.97–184.03):	
			Crude: 1.37 (1.16,1.62)	
			Adjusted: 1.37 (1.17,1.62)	
			∘ Q4 (>184.03)	
			Crude: 1.46 (1.25,1.72)	
			Adjusted: 1.44 (1.23,1.68)	
			 "Sensitivity analyses were condu 	ucted for
			the association between fluoride	}
			exposure, DF, IQ, and cholinerg	ic
			system by adjusting for the cova	riates
			among demographics, developn	nent,
			socioeconomics, and delivery co	onditions.
			We obtained similar results to w	hat we
			found in the present analyses."	

Risk of bias assessment					
Bias domain	domain Criterion Response				
Selection	Was administered dose or exposure level	N/A Not applicable			
	adequately randomized?				
	Was allocation to study groups adequately	N/A Not applicable			

Risk of bias assessment						
Bias domain	Criterion	Res	ponse			
	concealed?					
	Did selection of study participants result in	++	Yes, participants were selected during the same timeframe,			
	appropriate comparison groups?		according to the same criteria and from the same eligible			
			population.			
Confounding	Did the study design or analysis account for	++	Yes, it was adjusted for major confounders such as age, sex,			
	important confounding and modifying variables?		BMI, low birth weight, paternal education, maternal education,			
			family incomes, and urine creatinine (for urinary fluoride).			
Performance	Were experimental conditions identical across study	N/A	Not applicable			
	groups?					
	Were the research personnel and human subjects	N/A	Not applicable			
	blinded to the study group during the study?					
Attrition	Were outcome data complete without attrition or	++	Reported data was complete with no attrition or exclusion from			
	exclusion from analysis?		analysis.			
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from drinking			
	characterization?		water samples that were collected from the local source of			
			water supply in each village. Fluoride concentrations in water			
			and urine were measured by ion analyzer with a fluoride			
			selective electrode (INESA, Shanghai, China).			

Risk of bias assessment					
Bias domain	Criterion	Response			
	Can we be confident in the outcome assessment?	++	Yes, IQ was consistently	++	DF was independently
			assessed by trained		assessed by two trained
			teachers who were		dentists who were blinded
			blinded to the children's		to the children's exposure
			exposure status using the		status independently The
			Combined Raven's Test-		diagnosis of DF was
			The Rural in China (CRT-		estimated by Dean's
			RC2), which is widely for		fluorosis index.
			cognitive ability		
			verification test, because		
			of less influenced by		
			language, culture, ethnic,		
			and religion differences.		
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes	discuss	sed in methods were
reporting			presented in the results sec	tion wit	h adequate level of detail for
			data extraction		
Other sources	Were there no other potential threats to internal	++	None identified		
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Yani 2021^[33]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type: Original study Study design: Cross-sectional Country: Indonesia Participants: 6–12 years old students from two different areas with different levels of drinking water fluoride in Palu City, with no history of head trauma, chronic disease, or were not undergoing treatment.	Exposure: • Ground water Method of exposure assessment: • NR	Outcome(s): • IQ • Dental fluorosis	Analysis & Results Statistical analysis: • Univariate analysis • Bivariate analysis Results: Dental fluorosis • High-fluoride area: ○ Total: 37 (61.7%) ○ Questionable (score 1): 1 (0%) ○ Very mild (score 2): 10 (0%) ○ Mild (score 3): 11 (11%) ○ Moderate (score 4): 8 (8%)	 "There is a relationship between Fluoride level in well water and the incidence of fluorosis in students, where the incidence of fluorosis was higher in the high fluorine area than in the low fluorine area." "The intelligence of children who suffered from fluorosis is lower than the intelligence
Sampling time frame:			o Severe (score 5): 7 (7%)	of children who do not suffer from fluorosis."

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size:			• Low-fluoride area:	• "The level of
Sex: N (%): Females: 64 (64.0%) Exclusions: NR Source of funding / support: NR Author declaration of interest: No COI	Exposure level(s): • High fluoride area: 1.6 ppm • Low fluoride area: 0.10 ppm	Method of outcome ascertainment: • Dental fluorosis was assessed using Dean's fluorosis index • IQ was assessed using Raven's Color Progressive Matrix component.	 ○ Total: 3 (7.5%) ○ Questionable (score 1): 2 (%) ○ Very mild (score 2): 1 (1%) ○ Mild (score 3): 0 (0%) ○ Moderate (score 4): 0 (0%) ○ Severe (score 5): 0 (0%) IQ • High-fluoride area: ○ Low: 17 (28.3%) ○ High: 43 (71.7%) • Low-fluoride area: ○ Low: 0 (0%) ○ High: 40 (100%) 	intelligence of students who live in the high-fluorine area is lower than students who live in low fluorine area."
			IQ and Dental fluorosis	
			Dental fluorosis:	
			o Low: 15 (37.5%)o High: 25 (62.5%)	

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			No dental fluorosis:	
			∘ Low: 2 (3.3%)	
			o High: 28 (96.6%)	

Risk of bias assessment				
Bias domain	Criterion	Resp	oonse	
Selection	Was administered dose or exposure level	N/A	Not applicable	
	adequately randomized?			
	Was allocation to study groups adequately	N/A	Not applicable	
	concealed?			
	Did selection of study participants result in	+	Yes, participants were selected according to the same criteria	
	appropriate comparison groups?		and from the same eligible population. However, the timeframe	
			was not reported.	
Confounding	Did the study design or analysis account for	-	NR	
	important confounding and modifying variables?			
Performance	Were experimental conditions identical across study	N/A	Not applicable	
	groups?			
	Were the research personnel and human subjects	N/A	Not applicable	
	blinded to the study group during the study?			
Attrition	Were outcome data complete without attrition or	++	Reported data was complete with no attrition or exclusion from	
	exclusion from analysis?		analysis.	
Detection	Can we be confident in the exposure	-	NR	

Risk of bias assessment					
Bias domain	Criterion	Response			
	characterization?				
	Can we be confident in the outcome assessment?	+	Yes, IQ was consistently	+	Yes, DF was consistently
			assessed by a trained		assessed by a trained
			philology using the		dentist using Dean's
			Raven's Coloured		fluorosis index. No
			Progressive Matrices. No		information reported on
			information reported on		assessor blindness
			assessor blindness		
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes	discuss	sed in methods were
reporting			presented in the results section with adequate level of detail for		
			data extraction		
Other sources Were there no other potential threats to internal ++ None identified					
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Yu 2021^[34]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	• Exposure:	Outcome(s):	Statistical analysis:	• "Our study
Original study	Fluoride content in • Drinking water	• IQ	LASSO Binomial regressionLinear regression model	suggests that fluoride is inversely
Study design:	G		G	associated with
Cross-sectional	UrineHair and nail		 The Adaptive Rank Truncated Product (ARTP) for 	intelligence."
Country:			investigating the associations	 "The interactions of fluoride with
China			of intelligence with genetic variations at the gene or pathway level.	mitochondrial function-related
Participants:	Method of exposure		Results:	SNP-set, genes
School children aged 7	assessment:		Water fluoride (mg/L)	and pathways may also be involved in
to 13 years old	 Water samples were 		o High (IQ ≥ 120): 0.70 (0.40–	high intelligence
Sampling time frame:	collected from each		1.00)	loss."
2015	public supply in the		o Non-high (70 ≤ IQ<120):	
	villages.		1.00 (0.50–1.90)	
Sample size:	Fluoride			
952	concentration was		 Urinary fluoride (mg/L) 	
Cov. N (0/).	assessed using the		o High (IQ ≥ 120): 0.33 (0.13–	
Sex: N (%):	national standardized		0.81)	
Girls: 481 (50.5%)	ion-selective		0.01)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions:	electrode method in		o Non-high (70 ≤ IQ <120).	
 Non-respondents Congenital or acquired diseases affecting intelligence. Neurologic disorders Refused to provide blood, hair or nail samples Low genotypic detection rate Hair permed or dyed, or with hair samples less than 0.2 g (n = 250). Nails dyed or with nails samples less than 0.2 g (n = 340). 	China • An early-morning spot urine sample was collected from each subject. • Hair samples were collected from the occipital zone of the scalp.		 0.60 (0.16–2.22) Hair fluoride (μg/g) High (IQ ≥ 120): 8.26 (5.10.48) Non-high (70 ≤ IQ <120): 14.39 (10.25–20.56) Nail fluoride (μg/g) High (IQ ≥ 120): 11.71 (8.53–14.64) Non-high (70 ≤ IQ <120): 19.76 (14.16–27.32) Fluoride exposure and high intelligence: OR (95% CI) 	72–

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding /	Exposure level(s):	Method of outcome	Water fluoride (mg/L)	
support: • The State Key Program of National Natural Science Foundation of China (Grant No. 81430076). • The National Program for Support of Top- notch Young Professionals and Health commission of Hubei Province Author declaration of interest: No COI	 Exposure level(s): Water fluoride (mg/L) Tertile 1 (≤0.60) Tertile 2 (0.61–	Method of outcome ascertainment: • IQ scores were measured by the second edition of Combined Raven's Test – The Rural in China (CRT- RC2) for children aged 7 to 13 years.	 Water fluoride (mg/L) Tertile 1 (≤0.60) Reference Tertile 2 (0.61–1.40) Crude: 0.95 (0.65, 1.38) Adjusted: 0.94 (0.64, 1.37) Tertile 3 (>1.40) Crude: 0.38 (0.24, 0.59) Adjusted: 0.39 (0.25, 0.61) Urinary fluoride (mg/L) Tertile 1 (≤0.22) Reference Tertile 2 (0.23–1.80) Crude: 1.26 (0.87, 1.83) Adjusted: 1.26 (0.87, 1.84) Tertile 3 (>1.80) Crude: 0.41 (0.26, 0.65) 	
	• Nail fluoride (μg/g)		Adjusted: 0.41 (0.26, 0.66)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
	o Tertile 1 (≤14.6	64)	• Hair fluoride (μg/g)	
	o Tertile 2 (14.65	-	o Tertile 1 (≤10.40)	
	23.41)		Reference	
	○ Tertile 3 (>23.4)	1 1)	o Tertile 2 (10.41–17.02)	
			Crude: 0.16 (0.10, 0.2	9)
			Adjusted: 0.16 (0.09,	
			0.29)	
			∘ Tertile 3 (>17.02)	
			Crude: 0.08 (0.04, 0.1	6)
			Adjusted: 0.08 (0.04,	
			0.16)	
			 Nail fluoride (μg/g) 	
			o Tertile 1 (≤14.64)	
			Reference	
			o Tertile 2 (14.65–23.41)	
			Crude: 0.15 (0.08, 0.2	9)
			Adjusted: 0.15 (0.08,	
			0.29)	
			o Tertile 3 (>23.41)	
			Crude: 0.09 (0.04, 0.1	8)
			Adjusted: 0.09 (0.04,	
			0.19)	

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Does-response relations	<u>hips</u>
			of IQ scores with fluoride	<u>9</u>
			<u>exposures</u>	
			• β and 95% CI for every 0.5	50
			mg/L increment of water	
			fluoride or urinary fluoride	
			• β and 95% CI for every 1.0	00
			μg/g increment of hair fluor	ride
			or nail fluoride.	
			 Adjustment: age, sex, 	
			maternal education and	
			paternal education.	
			Water fluoride (mg/L)	
			○ 0.20-3.40	
			Crude: -1.24 (-1.48, -0).99)
			Adjusted: -1.16 (-1.41	, -
			0.91)	
			∘ 3.40-3.90	
			Crude: -5.36 (-8.54, -2	2.18)
			Adjusted: -4.21 (-7.54	, -

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			0.87)	
			Urinary fluoride (mg/L)	
			○ 0.01-1.60	
			Crude: 0.96 (0.29, 1.6	63)
			Adjusted: 1.01 (0.34,	
			1.68)	
			∘ 1.60-2.50	
			Crude: -5.08 (-6.94, -	3.22)
			Adjusted: -5.23 (-7.07	7, -
			3.39)	
			o 2.50-5.54	
			Crude: -0.50 (-1.13, 0	0.14)
			Adjusted: -0.34 (-0.98	3,
			0.30)	
			 Hair fluoride (µg/g) 	
			o 3.23-10.50	
			Crude: -2.34 (-2.69, -	1.99)
			Adjusted: -2.34 (-2.69	
			1.99)	•

	_			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			○ 10.50-45.04	
			Crude: -0.41 (-0.49, -0	0.34)
			Adjusted: -0.42 (-0.50	, -
			0.34)	
			 Nail fluoride (μg/g) 	
			○ 2.08-14.50	
			Crude: -1.11 (-1.41, -0).81)
			Adjusted: -1.10 (-1.41	, -
			0.80)	
			○ 14.50-99.60	
			Crude: -0.50 (-0.56, -0).44)
			Adjusted: -0.49 (-0.55	, -
			0.43)	
			Interaction of SNP-set so	<u>core</u>
			with fluoride exposure or	<u>1</u>
			high intelligence OR (95	<u>%</u>
			<u>CI).</u>	
			• The P-value for interaction	(p-
			inter) was adjusted for age	,
			sex, maternal education ar	nd
			paternal education.	
			High SNP: -set score group	p (-

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			1.59 to 0.00):	
			 Low SNP-set score group 	(-
			2.90 to -1.59):	
			 Water fluoride (binary varia 	able
			based on the limit of 1.00	
			mg/L)	
			o Sample size: 952	
			o High SNP: 0.33 (0.20, 0).55)
			o Low SNP: 0.27 (0.14, 0	.54)
			o p-inter: 0.030	
			Urinary fluoride (binary	
			variable based on the limit	of
			1.60 mg/L)	
			o Sample size: 952	
			o High SNP: 0.37 (0.22, 0	0.62)
			o Low SNP: 0.32 (0.16, 0	.63)
			o p-inter: 0.040	
			 Hair fluoride (binary variab 	le

Study	Exposure	Outcome	Analysis & Results	Conclusions
			based on the median level	of
			14.00 μg/g)	
			o Sample size: 719	
			o High SNP: 0.17 (0.08, 0	0.34)
			o Low SNP: 0.12 (0.04, 0	.35)
			o p-inter: 0.010	
			 Nail fluoride (binary variable) 	е
			based on the median level	of
			19.60 µg/g)	
			o Sample size: 638	
			o High SNP: 0.13 (0.06, 0	0.31)
			o Low SNP: 0.12 (0.04, 0	.37)
			o p-inter: 0.242	

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable				
	Was allocation to study groups adequately concealed?	N/A Not applicable				
	Did selection of study participants result in appropriate comparison groups?	++ Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible				

Risk of bias as	sessment		
Bias domain	Criterion	Res	oonse
			population.
Confounding	Did the study design or analysis account for	++	Yes, it was adjusted for major confounders such as age, sex,
	important confounding and modifying variables?		maternal education and paternal education
Performance	Were experimental conditions identical across study	N/A	Not applicable
	groups?		
	Were the research personnel and human subjects	N/A	Not applicable
	blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants (non-
	exclusion from analysis?		respondents, congenital or acquired diseases affecting
			intelligence, neurologic disorders, those who refused to
			provide blood, hair or nail samples, low genotypic detection
			rate, permed or dyed hair, or with hair samples less than 0.2
			g (n = 250), and dyed nails or with nails samples less than
			0.2 g (n = 340).). There were no significant differences
			between those included compared to those excluded in both
			"high" and "non-high" intelligence groups in most
			characteristics, except for parental education and family
			income, where the numbers excluded were appreciably
			higher than those included. Similarly those excluded were
			more likely to have experienced maternal drinking, smoking
			or anemia during pregnancy, or encountered a problematic
			delivery.
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from drinking

Risk of bias ass	sessment			
Bias domain	Criterion	Response		
	characterization?		water samples that were collected from the local source of	
			water supply in each village. Fluoride concentration in water	
			was assessed using the national standardized ion-selective	
			electrode method in China.	
	Can we be confident in the outcome assessment?	+	Yes, IQ was consistently assessed by professionals (no	
			credentials reported) who supervised the children during the	
			assessment. IQ scores were measured using the second	
			edition of Combined Raven's Test – The Rural in China	
			(CRT-RC2) for children aged 7 to 13 years. No information	
			reported on assessor blindness	
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were	
reporting			presented in the results section with adequate level of detail	
			for data extraction.	
Other sources	Were there no other potential threats to internal	++	None identified.	
	validity (e.g., statistical methods were appropriate			
	and researchers adhered to the study protocol)?			

Zhao 2021[35]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposure:	Outcome(s):	Statistical analysis:	"Dopamine relative	
Original study Study design: Cross-sectional Country:	Fluoride concentration in Drinking water Urine Method of exposure	• IQ	 Multivariable linear regression models (associations between fluoride and IQ scores) Multiplicative and additive models (appraising single gene-environment interaction) Generalized multifactor 	genes may modify the association between fluoride and intelligence, and a potential interaction among fluoride exposure	
China Participants: children, aged 6–11 years old, from endemic and non-endemic fluorosis areas in Tianjin, China. Sampling time frame: 2018 Sample size:	assessment: • Urinary fluoride: The national standardized method ion analyzer EA940 with F-ion selective electrode (Shanghai constant magnetic electronic technology Co, Ltd, China)		dimensionality reduction, GMDR (evaluating high- dimensional interactions of gene-gene and gene- environment).	and DA relative genes on IQ." • "fluoride exposure is inversely related to children's IQ; DA related genes polymorphism (ANKK1 Taq1A, COMT rs4680, DAT1 40 bp VNTR and MAOA uVNTR) have modifying	

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
•	Exposure level(s): Fluoride in drinking water: • High fluoride areas: 1.53–2.84 mg/L • Non-endemic fluorosis area (WF: 0.15–0.37 mg/L Fluoride in urine: • Urinary fluoride concentration was	Method of outcome ascertainment: The Combined Raven's Test (modified in China)	Results: Associations between UF and IQ scores Overall: Log_UF were inversely linear associated with IQ score (P < 0.05) in both crude model and adjusted model β (95% CI): Crude: - 5.159 (- 8.996, - 1.321) Adjusted: - 5.957 (- 9.712, -	effects of fluoride exposure on IQ; UF, ANKK1 Taq1A, COMT Val 158 Met and MAOA uVNTR have a high- dimensional interaction on IQ."		
genotyping measurement Source of funding / support: The National Natural Science Foundation of China (Grant No.	not normally distributed, with a median (quantile 1, quantile 3) of 1.03 (0.72, 1.47) mg/L • After log transformation, the		2.202)Bootstrapped estimation of the variance: (95% CI: - 10.356, - 1.834; p=0.006)			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
81573107, 81372934).	mean (±SD) Log	_UF			
	was 0.015 (±0.25	52)			
Author declaration of					
interest:					
No COI					

Risk of bias assessment					
riterion	Resp	oonse			
as administered dose or exposure level	N/A	Not applicable			
dequately randomized?					
as allocation to study groups adequately	N/A	Not applicable			
oncealed?					
id selection of study participants result in	++	Yes, participants were selected during the same timeframe,			
ppropriate comparison groups?		according to the same criteria and from the same eligible			
		population.			
id the study design or analysis account for	++	Yes, it was adjusted for major confounders such age, gender,			
nportant confounding and modifying variables?		BMI, paternal education level, maternal education level,			
		household income, abnormal birth and maternal age at			
		delivery.			
ere experimental conditions identical across study	N/A	Not applicable			
roups?					
ii o	as administered dose or exposure level equately randomized? as allocation to study groups adequately ncealed? d selection of study participants result in propriate comparison groups? d the study design or analysis account for portant confounding and modifying variables? ere experimental conditions identical across study	as administered dose or exposure level equately randomized? as allocation to study groups adequately ncealed? d selection of study participants result in propriate comparison groups? d the study design or analysis account for portant confounding and modifying variables? ere experimental conditions identical across study N/A			

Risk of bias as	sessment		
Bias domain	Criterion	Res	oonse
	Were the research personnel and human subjects	N/A	Not applicable
	blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants (negative
	exclusion from analysis?		long-term residence, mental retardation in an immediate family
			member, missing IQ test, questionnaire or physical
			examination, or no results of genotyping measurement).
Detection	Can we be confident in the exposure	++	Yes, fluoride concentration in water was assessed using the
	characterization?		national standardized method ion analyzer EA940 with F-ion
			selective electrode (Shanghai constant magnetic electronic
			technology Co, Ltd, China) .
	Can we be confident in the outcome assessment?	++	Outcome was consistently assessed using The Combined
			Raven's Test (modified in China). Test administrators were
			blinded to participants' drinking water fluoride exposure levels.
			All participant assessments were conducted by trained
			professionals and under the supervision of qualified teachers,
			and public health and medical doctors.
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were
reporting			presented in the results section with adequate level of detail for
			data extraction.
Other sources	Were there no other potential threats to internal	++	None identified
	validity (e.g., statistical methods were appropriate		
	and researchers adhered to the study protocol)?		

Bai 2020 [36]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The data indicated
Original study	Fluoride levels in • Drinking water	Sex steroid hormones [testosterone, estradiol and sex hormone-binding	 Analysis of variance and Chi-square test for continuous and categorical 	gender- and age- specific inverse associations of
Study design: Cross-sectional	• Serum	globulin (SHBG)]	variables, respectively. • Adjusted linear regression	fluoride in plasma and water with sex
Country: USA	Method of exposure assessment: Levels of fluoride in water and serum were tested	Method of outcome ascertainment: • Total testosterone and	(age, gender, race, family PIR, serum cotinine, BMI category, seasonal period when surveyed and	steroid hormones of total testosterone, estradiol and SHBG in U.S.
Participants: US children and	using the ion-specific electrode method	estradiol: isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-	session of blood sample collection) Results:	children and adolescents."
adolescents 6–19 years old (NHANES survey)	• Water fluoride (mg/L) • Total: 0.36 (0.30, 0.42)	MS/MS) • SHBG: reaction of SHBG with immuno-antibodies and chemo-luminescence	 Compared with subjects at the first tertile of plasma fluoride, percent changes (95% CI) in testosterone 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame:	o Male children: 0.40	measurements of the	were:	
2013 – 2016	(0.32, 0.47)	reaction products	○ Second tertile: –8.08%	
	 Male adolescents: 		(-17.36%, 2.25%)	
	0.34 (0.28, 0.40)		○ Third tertile: –21.65%	
Sample size:	 Female children: 0.3 	7	(-30.44%, -11.75%)	
3,392	(0.29, 0.44)		P trend <0.001	
	 Female adolescents: 		 Male adolescents at the 	
	0.35 (0.28, 0.41)		third tertile of plasma	
Sex (N): Males	o p-value: 0.143		fluoride had decreased	
Total: 780 (50.6%)			levels of testosterone: -	
Children: 936 (50.6%)	 Plasma fluoride 		21.09% (-36.61% to -	
Offiliateri. 950 (50.070)	(umol/L)		1.77%).	
Adolescents: 1,716 (50.6%)	o Total: 0.35 (0.33,		 Similar inverse 	
	0.37)		associations were also	
Exclusions:	o Male children: 0.38		found when investigating	
	(0.36, 0.41)		the relationships between	
Participants missing	 Male adolescents: 		plasma fluoride and	
information on fluoride	0.34 (0.32, 0.36)		estradiol.	
levels in plasma or water,	o Female children: 0.3	6	 Decreased levels of SHBG 	
sex steroid hormones of	(0.34, 0.37)		associated with water and	
testosterone, estradiol,	 Female adolescents: 		plasma fluoride	
SHBG, or the examined	0.33 (0.31, 0.35)		Male adolescents (third)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
covariates.	o p-value: <0.001		tertile): -9.39% (-	
			17.25% to -0.78%)	
Course of funding /			 Female children 	
Source of funding /			(second tertile): -	
support:			10.78% (–17.55% to	_
National Natural			3.45%)	
Science Foundation of			Percent change in	
China			testosterone (95% CI) at	
			tertiles T2 and T3,	
Author declaration of			compared to T1:	
interest: No COI			<u>Total</u>	
			• T2: -7.95 (-20.47, 6.56)	
			• T3: -8.11 (-15.84, 0.33)	
			• p trend = 0.069	
			Male Children	
			• T2: 10.90 (-8.11, 33.85)	
			• T3: -7.56 (-21.80, 9.27)	
			• p trend = 0.458	
			Male Adolescents	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• T2: -2.35 (-19.83, 18.94)	
			• T3: -7.43 (-24.79, 13.94)	
			• p trend = 0.461	
			Female Children	
			• T2: -1.07 (-14.11, 13.96)	
			• T3: -3.97 (-15.95, 9.72)	
			• p trend = 0.549	
			Female Adolescents	
			• T2: -2.08 (-11.75, 8.66)	
			• T3: -3.58 (-14.75, 9.06)	
			• p = trend 0.540	
			Percent change in	
			Estradiol (95% CI) at	
			tertiles T2 and T3,	
			compared to T1:	
			<u>Total</u>	
			• T2: -4.55 (-16.08, 8.56)	
			• T3: 1.48 (-6.97, 10.70)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• p trend = 0.896	
			Male Children	
			• T2: 2.08 (-2.97, 7.39)	
			• T3: 0.72 (-4.07, 5.75)	
			• p trend = 0.705	
			Male Adolescents	
			• T2: -4.56 (-19.04, 12.52)	
			• T3: -1.25 (-14.54, 14.10)	
			• p trend = 0.823	
			Female Children	
			• T2: -15.59 (-32.04, 4.84)	
			• T3: -7.25 (-22.74, 11.35)	
			• p trend = 0.337	
			Female Adolescents	
			• T2: 3.50 (-21.43, 36.33)	
			• T3: 9.49 (-13.47, 38.53)	
			• p trend = 0.457	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Percent change in SHB0 (95% CI) at tertiles T2 an T3, compared to T1:	
			<u>Total</u>	
			 T2: 2.71 (-4.84, 10.86) T3: -2.75 (-9.69, 4.74) p = trend 0.557 	
			Male Children	
			 T2: 5.38 (-2.14, 13.48) T3: -4.14 (-10.65, 2.85) p trend = 0.322 	
			Male Adolescents	
			T2: 0.38 (-7.95, 9.47)T3: -9.39 (-17.25, -0.78)p trend = 0.038	
			Female Children	
			 T2: -1.74 (-11.50, 9.10) T3: 0.12 (-7.47, 8.34) p trend = 0.984 	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			Female Adolescents		
			• T2: 2.09 (-13.3, 19.98)		
			• T3: -0.37 (-12.06, 12.88)		
			• p trend = 0.996		

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Res	ponse		
Selection	Was administered dose or exposure level	N/A	Not applicable		
	adequately randomized?				
	Was allocation to study groups adequately	N/A	Not applicable		
	concealed?				
	Did selection of study participants result in	++	Yes, participants were identified using the same method		
	appropriate comparison groups?		of ascertainment, recruited within the same time frame,		
			and using the same criteria.		
Confounding	Did the study design or analysis account for	++	Yes, it accounted for major confounders such as age,		
	important confounding and modifying variables?		gender, race, family PIR, serum cotinine, BMI category,		
			seasonal period when surveyed and session of blood		
			sample collection		

Risk of bias a	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (participants missing information on fluoride levels in plasma or water, sex steroid hormones of testosterone, estradiol, SHBG, or the examined covariates.)
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride exposure levels in water and serum were measured using the ion-specific electrode method
	Can we be confident in the outcome assessment?	++	Yes, the outcome was assessed for Total testosterone and estradiol using the isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS); and for SHBG using the reaction of SHBG with immuno-antibodies and chemo-luminescence measurements of the reaction products. Outcome assessment methods and lack of blinding of outcome assessors would not appreciably bias results.

Risk of bias assessment						
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome (steroid sex hormones) discussed in the methods was presented in results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Cui 2020 [37]

Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	Although fluoride was
Original study	Fluoride levels in	• IQ scores	Descriptive statistics	not the main focus ²⁷ ,
ong		Thyroid Stimulating	Doompare stationed	the study reported
	• Urine	, c		non-significant
Study design:		Hormone (TSH)	Results:	frequency differences
Cross-sectional study	Method of exposure	Dopamine (DA)	Mean (±SD) IQ by urinary	between urinary

²⁷ RSI conclusion provided as the author's reported conclusion did not include information on effects caused by exposure to fluoride

Study Characteristics								
Study	Exposure	Outcome	Analysis & Results	Conclusions				
	assessment:		fluoride levels	fluoride levels and IQ				
Country:	• Fluoride ion selective	Method of outcome	< 1.6 mg/L	scores, and TSH and DA levels				
China	electrode method	ascertainment:	• 112.16 (±11.50)	D/ (levels				
		 IQ: Combined Raven's Test (CRT) 	<u>1.6 – 2.5 mg/L</u>					
Participants:	Exposure level:	• TSH: measured in serum	• 112.05 (±12.01)					
School aged children (7 –	Distribution by urinary fluoride levels (N; %)	using electrochemical	≥ 2.5 mg/L					
12 years) from Tianjin	< 1.6 mg/L	i liminascanca mathod	• 110.00 (±14.92)					
Sampling time frame:	• N = 396 (79.52)	using ELISA and DA kit	<u>p-value</u>					
2014 - 2018	<u>1.6 – 2.5 mg/L</u>		• 0.578					
	• N = 66 (13.25)							
Sample size:	≥ 2.5 mg/L		Median (q1-q3) TSH in uIU/mL by urinary fluoride					
498	• N = 36 (7.23)		levels					
			< 1.6 mg/L					
Sex:			• 2.81 (2.21 – 3.81)					
Boys: 248 (49.8%)			<u>1.6 – 2.5 mg/L</u>					
			• 2.82 (2.01 – 3.82)					

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions:			≥ 2.5 mg/L	
Had incomplete			• 3.29 (2.30 – 4.48)	
information			<u>p-value</u>	
 Insufficient samples of blood 			• 0.287	
Source of funding /			Median (q1-q3) DA in ng/l	-
support:			by urinary fluoride levels	
National Nature Science			< 1.6 mg/L	
Foundation of China			• 5.62 (3.08 – 12.15)	
Tianjin Health Inspection	ı		1.6 – 2.5 mg/L	
Fund			• 5.77 (3.01 – 12.59)	
			≥ 2.5 mg/L	
Author declaration of interest:			• 7.24 (2.16 – 15.23)	
No COI			<u>p-value</u>	
110 001			0.925	

Risk of bias as	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified from the same population and recruited within the same time frame.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants such as insufficient blood samples or incomplete data
Detection	Can we be confident in the exposure characterization?	++	Exposure was measured in urine using fluoride ion selective electrode method (Chinese standard WS/T 89-

Risk of bias	Risk of bias assessment							
			2015).					
	Can we be confident in the outcome	+	IQ measured	++	TSH measured	++	DA measured	
	assessment?		using		in serum using		in plasma using	
			Combined		electrochemical		ELISA and DA	
			Raven's Test		luminescence		kit	
			(CRT).		method			
			Unclear					
			blinding					
Selective	Were all measured outcomes reported?	++	Yes, all primar	y out	comes (IQ, thyroid	horn	nones and	
reporting			dopamine) discussed in methods were presented in results				sented in results	
			section with adequate level of detail for data extraction				a extraction	
Other	Were there no other potential threats to	++	None identified					
sources	internal validity (e.g., statistical methods were							
	appropriate and researchers adhered to the							
	study protocol)?							

Das 2020 [38]

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The results revealed			
Original study	Fluoride levels in • Water wells	Dental Fluorosis	NR	that fluoride levels varied between 0.03 and 3.8 ppm. People			
Study design:	 Filtration plants 	Method of outcome	Results:	who drank well water			
Cross-sectional study	 Commercial brand water bottles 	ascertainment:Assessments were	Association between dental fluorosis and sources of	displayed increased fluoride levels (>0.81 ppm). The			
Country: Saudi Arabia	Method of exposure assessment:	completed by two dentists and two dental assistants	drinking water Well Water	prevalence of dental fluorosis was			
Participants:	 Collected samples (N= 63) from 12 regions/cities 	 Severity was determined using Dean's index 	 None: 163 Questionable: 141 	established to be 20.43% among the			
Dental college patients	and 9 water bottle brands		Very Mild: 105Mild: 71	total number of examined patients.			
(aged 9 to 50 years)	Exposure level:		Moderate: 12Severe: 3	The findings of this study show very mild			
Sampling time frame: July – December 2019	Mean (SD) Fluoride levels in ppm by water source		• Total: 495 <u>Filtered Water</u>	to moderate dental fluorosis prevail among the patients			
oal, Doodlinger 2010	type		None: 414Questionable: 197	who consume well			

Study Characteristics	Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Sample size:	• Well Water		• Very Mild: 36	water in the Asir			
1,150	1.97 (0.20)		• Mild: 5	region."			
	Filtered Water		Moderate: 3				
Sex N:			• Severe: 0				
	1.05 (0.69)		● Total: 665				
Men: 609 (53%)	 Bottled Water 		<u>Total</u>				
	1.09 (0.10)		• None: 577				
Exclusions:			• Questionable: 338				
Patients without primary	or		Very Mild: 141				
permanent teeth fully			• Mild: 76				
erupted			Moderate: 15				
			• Severe: 3				
			● Total: 1150				
Source of funding / support:			<u>p-value</u>				
Deanship of Scientific			• <0.002				
Research							
Author declaration of							
interest: No COI							

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			

Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		

Risk of bias	assessment		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water using the ion chromatography system (ExStik® FL700 Fluoride Meter, USA).
	Can we be confident in the outcome assessment?	++	Yes, outcome (dental fluorosis) was done by 2 dentists and 2 dental assistants, using Dean's fluorosis index. Lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Fernandes 2020 [39]

Study Characteristics								
Study	Exposure	Outcome	Analysis & Results	Conclusions				
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The prevalence				
Original study	Fluoride level in	Dental fluorosis	NR	of dental fluorosis in				
	Water samples			group II [>0.7				
Study design:		Method of outcome	Results:	ppm F] was				
Cross-sectional study	Method of exposure	ascertainment:	N (%) dental fluorosis	higher (44.8%), but it was not				
Country: Brazil Participants:	"Combined ion-specific fluoride electrode and a reference electrode connected to an ion analyser 710 A" (p. 476)	 Single examiner with notetaker determined dental fluorosis using the Thysltrup and Fejerskov criteria 	absent • ≤0.7 ppm F: 306 (63.1) • >0.7 ppm F: 69 (55.2)	significantly different from group I [<0.7 ppm F] (36.9%)." (p. 477)				
Children (6 to 12 years of age) from rural public schools in São João do Rio do Peixe, Poço José de Moura, Marizópolis, and Uiraúna	Exposure level: Level of residual fluoride in water (ppm): Range: 0.06 – 1.98		N (%) dental fluorosis present • ≤0.7 ppm F: 179 (36.9%) • >0.7 ppm F: 56 (44.8%)					

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Sampling time fra	ame:					
NR						
Sample size:						
610						
Sex N (%):						
Men: 329 (53.9%)						
Exclusions:						
Use fixed orthod	ontic					
appliance						
Have reading diff						
Have tooth malformation	ormations					
Source of funding	g /					
support:						

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
NR					
Author declaration	n of				
interest: No COI					

Risk of bias assessment					
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected using the same criteria. However, the sampling timeframe was not reported		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		
Performance	Were experimental conditions identical across	N/A	Not applicable		

Risk of bias assessment				
	study groups?			
	Were the research personnel and human	N/A	Not applicable	
	subjects blinded to the study group during the			
	study?			
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants	
	exclusion from analysis?		(using fixed orthodontic appliance, have reading	
			difficulties, or have tooth malformations)	
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the	
	characterization?		combined ion specific fluoride electrode (ORION—	
			9409BN) and a reference electrode (900200)	
			connected to an ion analyser 710 A (ORION).	
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by a	
	assessment?		single examiner with notetaker using the Thysltrup and	
			Fejerskov criteria. Lack of blinding of outcome	
			assessors would not appreciably bias results.	
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were	
reporting			presented in results section with adequate level of	
			detail for data extraction	

Risk of bias assessment				
Other	Were there no other potential threats to internal	++	None identified	
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?			

Godebo 2020 [40]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome: Skeletal	Statistical analysis:	Negative associations
Original study	Fluoride levels in	fluorosis	 Bivariate and multivariable 	between F- exposure and
	Drinking water		linear regression analyses	bone quality at all three bone
Study design:	• Urine	Method of outcome	adjusted for age, sex, BMI,	sites
Cross-sectional		ascertainment:	smoking, current tooth paste	Fluoride-induced deterioration
	Exposure	 Bone scan in multiple 	use	of bone quality in humans,
Country:	assessment:	skeletal sites, using a		likely reflecting a combination
Ethiopia	24-hour urinary F-	novel mobile non-	Results:	of factors related to SOS: net
	content was	ionizing ultrasound	• 1 mg/L increase in F- in	bone loss, abnormal
Participants:	determined using the	device. Results were	drinking water was related to	mineralization and collagen
Adolescents and adult	ion selective electrode	examined using the	reduction of 15.8 m/s (95% CI:	formation, or altered

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
farmers living in the	and the	same assessment	−21.3 to −10.3) of adult tibial	microarchitecture.	
MER rural area	hexamethyldisiloxane (HMDS)-facilitated	criteria • X-ray validation for a	SOS. • 1 mg/L increase in 24-h urinary		
Sampling time frame: 2018-2019	diffusion method (Rango et al. 2017).	subset of participation, where radiographs were	F- (range: 0.04–39.5 mg/L) was linked to a reduction of 8.4 m/s		
Study population: 341	Water F- concentrations: Mean (SD)	analyzed by a radiologist/co-author with a specialization in skeletal fluorosis	 (95% CI: −12.7, −4.12) of adult tibial SOS. Adolescents: weaker and non-significant inverse associations 		
Sex: (men): 55.1%	• Water intake		between F- exposure and SOS Age, gender, and BMI were		
individuals who were	(liter/day): 1.3 ± 0.63		more significant predictors than in adults		
judged as incapable of undergoing detailed health	 FI in groundwater (mg/L): 6.8 ±4.30 FI intake (mg/day): 				
examinations.	9.13 ± 7.30				
Source of funding/ support: National Institute of Environmental Health	Urinary F- concentrations: Mean (SD) F- in 24-h urine				

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Sciences	(mg/L):					
	8.2 ± 7.6					
Author declaration	ı					
of interest:	F- excretion (mg)	:				
Not reported	5.01 ± 4.5					

Bias domain	Criterion		ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Participants were enrolled during 2 sampling periods (between 2018 and 2019), from 25 rural communities in the Main Ethiopian Rift (MER), each of which were primarily dependent on a single groundwater well.
Confounding	Did the study design or analysis account for	++	Yes (age, sex, BMI, smoking, current toothpaste use)

Risk of bias a	ssessment		
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Not considered a risk of bias as there were few eligible participants who got excluded based on a judgment that they would be incapable of undergoing detailed health examinations.
Detection	Can we be confident in the exposure characterization?	++	Yes, 24-hour urinary F- content was determined for all groups, within the same time-frame, and using the same tool: ion selective electrode and the hexamethyldisiloxane (HMDS)-facilitated diffusion method
	Can we be confident in the outcome assessment?	++	Yes, all participants underwent the same bone scan on the same 3 skeletal sites for adults, and 2 sites for children, using a standard "novel" mobile non-ionizing ultrasound device. Results were examined using the

Risk of bias assessment				
Selective	Were all measured outcomes reported?		same. Validation using X-ray radiographs was completed for a subset of participants by a radiologist/co-author with a specialization in skeletal fluorosis Yes, primary outcomes discussed in methods were	
reporting	vvere un medeured editormes reported:	++	presented in results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Kim 2020 [41]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Findings from this
Original study	Fluoride levels in	Osteosarcoma (bone	 Conditional logistic regression to assess the 	study demonstrated that

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design:	• Water	cancer)	association of community water fluoridation with osteosarcoma.	community water fluoridation is not associated with an
Case-control	Method of exposure assessment:	Method of outcome ascertainment:	odioodarooma.	increased risk for osteosarcoma."
Country: USA	NR	Phase 1: histological confirmation of diagnosis	Results:	
	Exposure level:	followed by phone interviews	 A modestly significant interaction existed 	
Participants: Phase 1	Lived in a fluoridated area (0.7 ppm)	Phase 2: pathology reports	between fluoridation living status and bottled water	
 Cases: all patients younger than 40 years old, who were diagnosed with osteosarcoma 	 No Cases: 58 (24.6%) Controls: 81 (19.8%) Reference 		 use (P = 0.047). Risk of osteosarcoma (adjusted): For ever having lived in 	
Controls: patients with other bone tumors or non-neoplastic conditions, identified during the same periods, and from the same orthopedic surgery	 Yes Cases: 178 (75.4%) Controls: 328 (80.2%) OR: 0.76, 95% CI: (0.52 to 1.11), p-value: 0.156 		a fluoridated area for nonbottled water drinkers: [OR= 0.51 (95% CI: 0.31 - 0.84) P = 0.008)]. • For bottled water drinkers: [OR=1.86	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
department as cases.			(95% CI: 0.54 - 6.41)	P	
Controls were matched to			= 0.326).		
cases on sex, age ±5					
years, and distance from					
the hospital					
Sampling time frame:					
• Phase 1: 1989–1993					
• Phase 2: 1994–2000					
Sample size:					
• Phase 1: cases (209),					
controls (440)					
• Phase 2: cases (108),					
controls (296)					
Sex (N):					
Phase 1 & 2 combined:					
• Cases: men: 142 (60.2%)					

Study Characteris	Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions			
• Controls: men 24	8						
(60.6%)							
Exclusions:							
Phase 1							
Patients older tha	n 40						
years of age at di	agnosis						
 Prior radiotherapy 	y						
 Renal dialysis 							
Phase 2							
 Radiotherapy 							
 Renal dialysis 							
 Foreign nationals 	who						
were in the United	d States						
solely for treatme	nt						
Source of funding	g <i>/</i>						
support:							
Statistical analysi	s: CDI						

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Research, Inc.				
Phase 1: the National				
Institute of Environmen	tal			
Health Sciences (NIH).				
Data collection: the Nev	W			
England Research				
Institute.				
Phase 2 was funded by	•			
the National Cancer				
Institute (NIH) and the				
National Institute of De	ntal			
and Craniofacial				
Research (NIH).				
Author declaration of				
interest:				
Declaration of interest				
provided				

Risk of bias as	ssessment			
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	++	Cases and controls were recruited from the same population, within the same time frame timeframe, and with the same eligibility criteria other than by outcome of interest	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, race, ethnicity, income, ever lived in urban residence, distance from hospital, and ever drank bottled water (included only when bottled water * fluoridation exposure interaction was not significant), family income (via zip code and Census data)	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the	N/A	Not applicable	

Risk of bias	Risk of bias assessment				
	study?				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (age >40, radiotherapy, renal dialysis, missing residential history, non matching cases or controls)		
Detection	Can we be confident in the exposure characterization?	+	Yes, fluoride exposure levels were obtained from state dental directors, state level administrators and from the 1992 CDC Fluoridation Census if needed.		
	Can we be confident in the outcome assessment?	++	Yes, the outcome was assessed in cases and controls using medical records and histopathology reports. Outcome assessment methods and lack of blinding of outcome assessors would not appreciably bias results.		
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome discussed in methods was presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Krishna 2020 [42]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	
Original study Study design: Case-control study Country:	Fluoride levels in Serum Method of exposure assessment: ISE Thermo Scientific Orion-5 Instrument	Diabetes Mellitus and Diabetic nephropathy using serum renal parameters Method of outcome ascertainment:	 Analysis conducted using one way Analysis of Variance test Statistical significance at p<0.05 Results:	showed that Fasting, post prandial blood glucose values and serum Fluoride were significantly higher in T2DM without CKD group
Participants: Patients (45 – 75 years of age) from RL Jalappa Hospital and Research Center	Exposure level: Mean (SD) levels of fluoride in ppm by study groups Controls • 0.0949 (0.12)	"Vitros 5.1 FS dry chemistry auto analyzer from Ortho Clinical Diagnostics (OCD) United States, based on the principle of "reflectance photometry".	Pearson correlation between serum fluoride and parameters (N = 30). Fasting Blood Sugar • 0.28 Postprandial Blood Sugar • 0.44*	as compared to the controls and T2DM with CKD." (p. 571) • "This study also supports the hypothesis of increase serum Fluoride increases DM and DN which
Sampling time frame: July 2019 – September	T2DM without CKD • 0.6318 (0.59)		<u>Urea</u> • 0.107	is evident from the results." (p. 575)

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
2019	T2DM with CKD		Serum Creatinine	
	• 0.5128 (0.30)		• 0.08	
Sample size:	<u>p-value</u>		<u>Albumin</u>	
90	0.001		• 0.102	
			<u>Sodium</u>	
Sex:			• 0.005	
NR			<u>Potassium</u>	
			• 0.101	
Exclusions:				
Non Kolar resident, with				
diabetes mellitus (DM),				
and no fluoride exposure				
• Use of drugs				
• Use of other factors that				
can result in diabetes or				
diabetic nephropathy				
Going through dialysis				
Has acute kidney injury				
Has hepatobiliary				

Study	Exposure	Outcome	Analysis & Results	Conclusions
disorder that result i	n			
proteinuria or album	inuria			
 Has gestational DM 	, type			
1 DM, or monogenic				
diabetic syndrome				
Source of funding /				
support:				
NR				
	_			
Author declaration of	of			
interest:				

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level	N/A Not applicable				

Risk of bias a	ssessment						
	adequately randomized?						
	Was allocation to study groups adequately N/A Not applicable						
	concealed?						
	Did selection of study participants result in	++	Yes, participants were identified from the same				
	appropriate comparison groups?		population and recruited within the same time frame.				
Confounding	Did the study design or analysis account for	+	Yes, it accounted for some confounders as age and				
	important confounding and modifying variables?		sex				
Performance	Were experimental conditions identical across	N/A	Not applicable				
	study groups?						
	Were the research personnel and human	N/A	Not applicable				
	subjects blinded to the study group during the						
	study?						
Attrition	Were outcome data complete without attrition or	++	Yes, the study provided reasons for exclusion of				
	exclusion from analysis?		participants (non-residents, with diabetes mellitus				
			(DM), and no fluoride exposure, use of drugs, use of				
			other factors that can result in diabetes or diabetic				
			nephropathy, dialysis, acute kidney injury,				
			hepatobiliary disorder resulting in proteinuria or				
			albuminuria, gestational DM, DM type I, or				

Risk of bias	assessment		
			monogenic diabetic syndrome)
Detection	Can we be confident in the exposure	++	Yes, fluoride in serum was measured in serum using
	characterization?		the ISE Thermo Scientific Orion-5 Instrument
	Can we be confident in the outcome	++	Yes, the outcome (DM serum/renal parameters) was
	assessment?		measured using Vitros 5.1 FS dry chemistry auto
			analyzer from Ortho Clinical Diagnostics (OCD)
			United States, based on the principle of reflectance
			photometry
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods
reporting			were presented in results section with adequate level
			of detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Lee 2020 [43]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"These findings	
Original study Study design:	Fluoride levels in • Water	Hip fractureOsteoporosisBone cancer	 Standardized incidence ratios to estimate the disease risk. Hierarchical Bayesian 	suggest that CWF is not associated with adverse health	
Ecological study	Method of exposure assessment:	Method of outcome ascertainment:	Poisson spatio-temporal regression model to	risks related to bone diseases."	
Country: South Korea Participants:	Data from the Korean Microdata Integrated Service (MIDS) of Statistics Korea.	Data from the National Health Insurance Service (NHIS) for select ICD-10 codes.	investigate the association between select bone diseases and CWF considering space and time interaction		
All residents in the Cheongju region	Exposure level: NR		Results: • The posterior relative risks (RR):		
Sampling time frame: 1 January 2004 - 31 December 2013			 Hip fracture: RR: 0.95, 95% CI: 0.87- 1.05 		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size: Fluoridated areas: 4,406,021 Non-fluoridated areas: 2,270,959			 Os≥≥teoporosis RR: 0.94, 95% CI: 0.87-1.02 Bone cancer RR: 1.20, 95% CI: 0.89-1.61 (a little high due to smaller sample size compared to the other bone diseases) 	е
Sex (N): • Fluoridated areas: Men: 2,200,104 (49.99) • Non-fluoridated areas: Men: 1,126,495 (49.69)	:		The RR of the selected bo diseases increased over time but did not increase in the CWF area compared to non-CWF areas.	ne n
Exclusions: Reported no exclusions to use of customized da from the NHIS				

Study Characterist	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Source of funding	I					
support:						
Division of Oral Hea	lth					
Policy, Ministry of H	ealth					
and Welfare, Repub	lic of					
Korea						
Author declaration	of					
interest:						
No COI						

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable				
	Was allocation to study groups adequately	N/A Not applicable				

Risk of bias assessment						
	concealed?					
	Did selection of study participants result in	Yes, participants were identified using the same				
	appropriate comparison groups?		method of ascertainment, recruited within the same			
			time frame, and using the same criteria.			
Confounding	Did the study design or analysis account for	+	Study accounted only for age and sex			
	important confounding and modifying variables?					
Performance	Were experimental conditions identical across	N/A	Not applicable			
	study groups?					
	Were the research personnel and human	N/A	Not applicable			
	subjects blinded to the study group during the					
	study?					
Attrition	Were outcome data complete without attrition or	++	Study reported no missing information on any of the			
	exclusion from analysis?		study participants due to extraction of customized			
			data from the Korean NHIS.			
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from the			
	characterization?		Microdata Integrated Service (MIDS) of Statistics			
			Korea.			
	Can we be confident in the outcome	++	Yes, the outcome was assessed using the respective			
	assessment?		ICD-10 codes from the National Health Insurance			

Risk of bias assessment						
			Service (NHIS) records. Outcome assessment methods and lack of blinding of outcome assessors would not appreciably bias results.			
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome discussed in methods was presented in results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Nanayakkara 2020 [44]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "CKDu patients
Original study	Fluoride levels in • Serum	CKDu	 Analysis conducted using the analysis of variance (ANOVA) test 	showed significantly higher serum fluoride

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Study design:	• Water	Method of outcome	Statistical significance at p	concentrations than	
Cross-sectional		ascertainment:	≤ 0.05	the healthy	
Country: Sri Lanka Participants:	Method of exposure assessment: • Drinking water samples from Girandurukotte and Medawachchiya	 Diagnosed CKDu ("biopsy proven renal tubulointerstitial disease, uncontrolled hypertension or diabetes at the time of initial 	Results: Mean serum fluoride level (SD) by CKDu stage Stage 0 (N = 276)	controls." • "The estimated glomerular filtration level was inversely proportional to the serum fluoride	
Men with chronic kidney disease of uncertain aetiology (CKDu) and healthy controls	 Blood samples from males with CKDu and healthy controls Samples analyzed using fluoride ion-selective electrode 	diagnosis, negative immunofluorescence for IgG, IgM, IgA, and C3, serum creatinine >1.2 mg/dL and/or A1M > 15.5 mg/L, HbA1C<6.5%")	 35.5 μg/L (16.3) Stage 1 (N = 10) 38.1 μg/L (18.1) Stage 2 (N = 60) 53.9 μg/L (34.2)* 	concentration, indicating the accumulation of fluoride in the body with the progression of CKDu, which can	
Sampling time frame: NR	Exposure level: Mean (SD) levels of	 Healthy controls ("no history of hypertension, diabetes or renal impairment, blood 	Stage 3 (N = 160) • 82.8 μg/L (41.9)*	further aggravate renal tissue damage." (p. 4)	
Sample size (N): • Men with CKDu = 311 • Healthy Controls = 276	fluoride in drinking water • 0.68 mg/L (0.48)	pressure not more than 140/90 mmHg, no proteinuria or glycosuria based on the dipstick	Stage 4 (N = 72) • 123.4 μg/L (59.9)* Stage 5 (N = 9)		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
	Mean (SD) levels of	urine test, HbA1C<6.5%,	• 123.9 μg/L (52.6)*		
Sex:	fluoride in serum by stages	serum creatinine <1.2			
NR	of CKD	mg/dL and/ or A1M <	* p<0.05 compared to		
NIX.	Stage 0 (N = 276)	15.5 mg/L")	controls		
Exclusions:	• 35.5 µg/L (16.3)				
NR	<u>Stage 1 (N = 10)</u>				
	• 38.1 (18.1)				
Source of funding /	<u>Stage 2 (N = 60)</u>				
support:	• 53.9 (34.2)				
Special Coordination					
Funds for Promoting					
Science and Technology					
from the Ministry of					
Education, Culture, Sports,					
Science and Technology					
Author declaration of					
interest:					

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
No COI				

Risk of bias as	Risk of bias assessment						
Bias domain	Criterion	Response					
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable				
	Was allocation to study groups adequately concealed?	N/A	Not applicable				
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected using the same criteria. However, the sampling timeframe was not				
	appropriate companson groups:		reported				
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR				
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable				
	Were the research personnel and human subjects blinded to the study group during the	N/A	Not applicable				

Risk of bias	assessment		
	study?		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Exposure measured in water and serum using the fluoride ion-selective electrode method
	Can we be confident in the outcome assessment?	++	Yes, the outcome (CKDu) was assessed using biopsy proven renal tubulointerstitial disease, uncontrolled hypertension or diabetes at the time of initial diagnosis, negative immunofluorescence for IgG, IgM, IgA, and C3, serum creatinine >1.2 mg/dL and/or A1M > 15.5 mg/L, HbA1C<6.5%
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Russ 2020 [45]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome: Dementia	Statistical analysis:	■ "Higher levels of	
Original study Study design:	Aluminum and fluoride levels in drinking water	Method of outcome ascertainment:	 Cox proportional hazards models for the association between 	aluminium and fluoride were related to dementia risk in a	
Cohort study	Method of exposure assessment:	Any mention of <u>ICD-9</u> <u>codes</u> 290.0–290.4,	aluminium and fluoride levels in drinking water with dementia in men	population of men and women who	
Country: Scotland	Data from the Drinking Water Quality Regulator for Scotland (DWQR)	290.8, 290.9, 291.1, 291.2, 294.1, 294.2, 294.8, 294.9, and	 Age in years over the 	consumed relatively low drinking-water	
Participants: all people born in 1921 and at school in Scotland in June 1932 who took part in a comprehensive national intelligence test at a mean age of 11 years	Fluoride in drinking water: • Mean: 53.4 µg/L ±16.0 • Range: 23.8–181.1	331.0–331.912 and ICD-10 codes: F00- F05.1, F09, G30, and G3113 recorded on electronic medical records or death certificates after 2004, or from primary care records, specifically the	 age of 84 years was the timescale All models were additionally adjusted for IQ at age 11 years Sensitivity analysis was conducted, adjusting for SIMD rank. 	 No statistical interaction between aluminium and fluoride levels in relation to dementia. 	

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
(Scottish Mental Survey 1932)		Greater Glasgow & Clyde Nursing Homes Medical Practice, which	 Additional model for the interaction between aluminium and fluoride. 	• A dose-response		
Sampling time frame: 2005-2014		exclusively treated residents of nursing homes	Results: Out of an analytic sample	pattern was observed between mean fluoride levels and		
Sample size (N): Initial: 37,597			of 2728 men and 4262 women alive in 2005:	dementia in women [HR: 1.34 (95% CI: 1.28–		
Analysis: 6,980			 622 men and 1350 women developed dementia. 	1.41, P <0.001)] and men [HR: 1.30 (95% CI: 1.22–		
Sex: N (%) Men: Initial: 19,272 (51%)			 All participants were approximately 84 years old at start of the 	1.39), P <0.001], with dementia risk more than doubled in the highest		
Analysis: 2,728 (39%)			exposure periodFollow-up duration:Mean: 2.7 years	quartile compared with the lowest.		
Exclusions:						

Study Characteris				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants missir	ng		o SD: 2.1 years	
residential location	,		○ Range: 0–7 years	
died before the			• Fluoride	
monitoring period			•i idolide	
began in 2005, or			o Mean: 53.4 μg/L	
missing childhood	IQ		o SD: 16.0	
test results			o Range: 23.8–181.	1
Source of funding	g/			
support:				
Alzheimer Scotlan	d			
through the Marjor	ie			
MacBeath beques	t			
Author declaratio	n of			
interest: None				

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Res	ponse		
Selection	Was administered dose or exposure level adequately randomized?	N/A			
	Was allocation to study groups adequately concealed?	N/A			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, using the same inclusion/exclusion criteria, and using the same methods for ascertainment of exposure and outcome, identified participants included all people born in 1921 and at school in Scotland in June 1932 who took part in a comprehensive national intelligence test at a mean age of 11 years (Scottish Mental Survey 1932).		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Yes, Cox proportional hazards models was used to assess the association between fluoride (and aluminum) levels in drinking water with dementia in men and women separately, adjusting for childhood IQ and SIMD. Given the narrow age cohort (all born in 1921) reflected a homogenous sample with no major factors to		

Risk of bias a	Risk of bias assessment				
Performance	Were experimental conditions identical across study groups? Were the research personnel and human subjects blinded to the study group during the study?	N/A	confound the findings. No information could be identified regarding participants' exposure to drinking water before 2005, i.e., for the first 84 years of their lives.		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (missing residential location, died before the monitoring period began in 2005, or missing childhood IQ test results), which were not related to the outcome		
Detection	Can we be confident in the exposure characterization?	++	Yes, data on levels of fluoride exposure were consistently drawn within the same timeframe, from the same source: Drinking Water Quality Regulator for Scotland (DWQR). Sampling sites were identified by longitude and latitude and were widely distributed across		

Risk of bias	assessment		
	Can we be confident in the outcome assessment?		Scotland, particularly where the population is more concentrated Yes, outcome was determined using relevant ICD9/10 codes for dementia, as recorded in on
	assessment:	++	electronic medical records or death certificates after 2004, or from primary care records, specifically the Greater Glasgow & Clyde Nursing Homes Medical Practice, which exclusively treated residents of nursing homes
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome (dementia) discussed in methods were presented in results section with adequate level of detail
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Stangvaltaite-Mouhat 2020 [46]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Signs of fluorosis
Original study	Fluoride levels in drinking water	Dental fluorosis	 Prevalence for each age group was calculated using 	were detected in 2% of participants
Study design: cross- sectional (part of the	Method of exposure assessment:	Method of outcome ascertainment:	descriptive statistics (chi- square test, likelihood ratio, and the independent-	(N=21) and the presence of fluorosis did not associate
Lithuanian National Oral Health Survey)	Fluoride levels in drinking water were provided by the water suppliers.	 Assessments were conducted by one trained and calibrated examiner, 	sample t-test). • Analytical methods for DF were not reported	significantly with higher levels of fluoride in the
Country: Lithuania	Exposure level:	assisted by a dental assistant.DF was assessed using	Results:	drinking water (data not shown)."
Participants: Adults between 35 and 74 years old	• ≤ 1 ppm • > 1 ppm	the WHO index [World Health Organization, 2013]	Dental fluorosis prevalence by age group and gender	
			35-44 years	
Sampling time frame:			Males	
NR			Yes: 5 (4%)No: 125 (96%)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size: 1,39	97		Females	
			• Yes: 8 (4%)	
Sex: Men 462 (33	3.1%)		• No: 215 (96%)	
			<u>45–54 years</u>	
Exclusions: NR			Males	
			• Yes: 2 (2%)	
Source of fundin	a l		• No: 102 (98%)	
support:	9,		Females	
The Borrow Found	dation		• Yes: 3 (1%)	
			• No: 204 (99%)	
Author declarat	ion of		<u>55–64 years</u>	
interest: No COI			Males	
			• Yes: 1 (1%)	
			• No: 111 (99%)	
			Females	
			• Yes: 0 (0%)	
			• No: 248 (100%)	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			65-74 years		
			Males		
			• Yes: 2 (2%)		
			• No: 114 (98%)		
			Females		
			• Yes: 0 (0%)		
			• No: 253 (100%)		
			Dental fluorosis		
			prevalence by water		
			fluoride level		
			≤ 1 ppm		
			35–44 years		
			• Males: 121 (93%)		
			• Females: 198 (88%)		
			45-54 years		
			• Males: 95 (91%)		
			• Females: 181 (87%)		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			55-64 years	
			• Males: 100 (89%)	
			• Females: 201 (80%)	
			65-74 years	
			• Males: 96 (83%)	
			• Females: 204 (80%)	
			>1ppm	
			35-44 years	
			• Males: 9 (7%)	
			• Females: 26 (12%)	
			45-54 years	
			• Males: 9 (9%)	
			• Females: 26 (13%)	
			55-64 years	
			• Males: 12 (11%)	
			• Females: 49 (20%)	
			65-74 years	
			• Males: 20 (17%)	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			• Females: 50 (20%)		

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in	+	Yes, participants were selected using the same	
	appropriate comparison groups?		criteria. However, the sampling timeframe was not	
			reported	
Confounding	Did the study design or analysis account for	-	NR	
	important confounding and modifying variables?			
Performance	Were experimental conditions identical across	N/A	Not applicable	
	study groups?			
	Were the research personnel and human	N/A	Not applicable	
	subjects blinded to the study group during the			

Risk of bias assessment				
	study?			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR	
Detection	Can we be confident in the exposure characterization? Can we be confident in the outcome assessment?	++	Yes, fluoride exposure levels were obtained from public water suppliers Yes, outcome (dental fluorosis) was done by one trained and calibrated examiner, and a dental assistant, using the WHO index. Lack of blinding of outcome assessors would not appreciably bias results.	
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Sun 2020 [47]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"decreased BMD in	
Original study Study design:	Fluoride levels in • Urine	 Reduction of bone mineral density (BMD) via CALCA gene methylation 	 Statistical significance at p<0.05 Associations of fluoride with CALCA exon 1 	women may be associated with exposure to excessive fluoride in	
Cross-sectional	Method of exposure assessment:	Method of outcome	methylation levels and T- scores stratified by age	an age-specific manner, which may	
Country:	Fluoride ion-selective electrode	ascertainment: • BMD: Standalone	groups were adjusted for age, menopause, BMI,	be modified by methylation of CALCA exon 1."	
- Crimia		ultrasound bone	high-density lipoprotein- cholesterol (HDL-C) and		
Participants: Female farmers (20 – 60 years of age) from 6 villages (3 endemic fluorosis villages with fluoride levels > 1.0 mg/L;	Exposure level: NR	densitometer CALCA methylation: Quantitative methylation- specific polymerases chain reaction	alkaline phosphatase (ALP) Results: Adjusted association of fluoride with CALCA exon 1		
3 control villages with fluoride levels < 1.0 mg/L)			methylation levels • r = 0.022		

Study	Exposure	Outcome	Analysis & Results	Conclusions
in Tongxu County			• p = 0.576	
Sampling time frame:			Adjusted association (β; 95% CI) of fluoride (mg/L) with CALCA exon 1	
Sample size:			methylation levels by age groups	
722			<u>20 − 60 yrs</u> (N = 722) • 0.270 (-0.621, 1.162)	
Sex (%): Women: 100%			<u>20 − 39 yrs</u> (N = 135) • 1.656 (-1.464, 4.776)	
Exclusions:			<u>40 − 44 yrs</u> (N = 70) • 4.953 (1.162, 8.743)	
 Had "history of chronic bone disease, bone fracture, cognitive 			<u>45 − 49 yrs</u> (N = 139) • -0.152 (-2.673, 2.369)	
impairment, chronic kidney disease"			<u>50 − 54 yrs</u> (N = 220) • 0.405 (-0.797, 1.607)	
• Were using			<u>55 – 60 yrs</u> (N = 158)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
bisphosphonates			• -1.643 (-3.657, 0.370)	
Had incomplete data				
			Correlation between fluori	de
Source of funding /			and T-score	
support:			• r = 0.019	
 National Natural Scien 	ce		• p = 0.611	
Foundation of China				
 Scientific and 			Adjusted association (β;	
Technological Project	of		95% CI) of fluoride (mg/L)	
Henan Province			with T-score by age group	
			20 - 60 yrs (N = 722)	
Author declaration of interest:			• 0.010 (-0.032, 0.051)	
No COI			<u>20 – 39 yrs</u> (N = 135)	
			• 0.001 (-0.139, 0.139)	
			40 - 44 yrs (N = 70)	
			• 0.106 (-0.021, 0.233)	
			45 - 49 yrs (N = 139)	
			• 0.095 (-0.022, 0.212)	
			• 0.095 (-0.022, 0.212)	

Study Characteri	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>50 – 54 yrs</u> (N = 220)	
			• -0.063 (-0.129, -0.002)	
			<u>55 – 60 yrs</u> (N = 158)	
			• 0.035 (-0.044, 0.114)	
			Interaction between fluoric	le
			and CALCA exon 1	
			methylation on BMD was	
			assessed	
			• "found evidence of a	
			significant association, a	S
			manifested by increased	
			BMD in women aged 45-	
			49 years induced by the	
			interactive effect of the	
			highest methylation of	
			CALCA exon 1 (tertile 3)	
			and fluoride exposure (β	=
			5.338, P = 0.016)"	

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions

Risk of bias as	ssessment		
Bias domain	Criterion	Res	oonse
Selection	Was administered dose or exposure level	N/A	Not applicable
	adequately randomized?		
	Was allocation to study groups adequately	N/A	Not applicable
	concealed?	IN//A	
	Did selection of study participants result in		Yes, participants were selected using the same
	appropriate comparison groups?	+	criteria. However, the sampling timeframe was not
			reported
Confounding	Did the study design or analysis account for		Yes, it accounted for major confounders such as age,
	important confounding and modifying variables?	++	menopause, BMI, high-density lipoprotein-cholesterol
			(HDL-C) and alkaline phosphatase (ALP)
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?	1 N/ / ⁻ 1	
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the	•	

Risk of bias	assessment		
	study?		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (history of chronic bone disease, bone fracture, cognitive impairment, chronic kidney disease, use of bisphosphonates, or incomplete data)
Detection	Can we be confident in the exposure characterization?	++	Yes, the urinary levels of fluoride was measured by a fluoride ion-selective
	Can we be confident in the outcome assessment?	++	Yes, the outcome BMD was assessed using a standalone ultrasound bone densitometer. CALCA methylation was assessed using quantitative methylation-specific polymerases chain reaction method.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome (BMD reduction) discussed in methods were presented in results section with adequate level of detail
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Till 2020 [48]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes: Intellectual	Statistical analysis:	"Exposure to
Original study	Fluoride levels in	function	• Linear regression for the	increasing levels of
	Drinking water		association between	fluoride in tap water
Study design:	Urine samples	Method of outcome	fluoride and IQ scores	was associated with
Cohort study	(maternal)	ascertainment:	• Impact of feeding status	diminished non-
		• IQ scores were	(breast-fed versus	verbal intellectual
Country: Canada	Method of exposure	measured by the	formula-fed) and fetal	abilities; the effect
	assessment:	Wechsler Primary and	fluoride exposure on the	was more
Participants:	 Water fluoride 	Preschool Scale of	association	pronounced among
English-/French-	concentrations	Intelligence-III at 3-4	 Adjusted for child's sex 	formula-fed
speaking women,	recorded in municipal	years using United	and age at testing,	children.
>17 years old, and less	water reports.	States population-	maternal education,	
than 14 weeks gestation	 Maternal urinary 	based normative data	maternal race, second-	
were recruited from	fluoride (MUF) adjusted	(mean=100, SD=15).	hand smoke in the	
prenatal clinics in 10	for specific gravity as a		home, and quality of the	
Canadian cities	proxy of fetal fluoride	 Outcomes included 	child's home	
(Maternal-Infant	exposure.	Full Scale IQ, Verbal	environment	
Research on		IQ, and Performance		
Environmental	Water Fluoride	IQ (PIQ)	Results:	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Chemicals program)	concentration (mg/L)		Thirty-eight percent of	
	<u>Breastfed≥6 mo.</u>		mother-child dyads lived	
Sampling time frame:	• Fluoridated:		in fluoridated	
2008-2011	0.58 (0.08)		communities.	
	Non- Fluoridated:			
Sample size (N):	0.13 (0.06)		An increase of 0.5 mg/L	
398 mother-child pairs			in water fluoride	
(67.3% of those who	Formula-fed		concentration (almost	
completed testing)	• Fluoridated:		equal to the difference	
reported drinking tap	0.59 (0.07)		between fluoridated and	
water, had water	Non- Fluoridated:		non-fluoridated regions)	
fluoride data and	0.13 (0.05)		corresponded to	
complete covariate data			reduction in	
(BF: n=200; FF: n=198)	P-value: 0.18		performance IQ:	
			o <i>Formula-fed:</i>	
Sex:	Infant fluoride intake		9.3-point (95% CI:	
Children: girls	(mg/day)		<i>−13.77, −4.76)</i>	
Breastfed, fl: 51%	Breastfed≥6 mo.			
Breastfed, non-fl: 53%	• Fluoridated:		o <u>Breastfed:</u>	
Formula, fl: 54%	0.12 (0.07)		6.2-point (95% CI:	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Formula, non-fl: 47%	Non- Fluoridated:		−10.45, −1.94).	
	0.02 (0.02)			
Exclusions:			 Association remained 	
Participants with known	<u>Formula-fed</u>		significant upon	
fetal abnormality, had	Non- Fluoridated:		controlling for fetal	
any medical	0.34 (0.12)		fluoride exposure	
complications, or known	Non- Fluoridated:		∘ <i>Formula-fed:</i>	
illicit drug use during	0.08 (0.04)		(B=-7.93, 95% CI:	
pregnancy.			-12.84, -3.01)	
	P-value: <.001			
Source of funding/			○ Breastfed:	
support:			(B=-6.30, 95% CI:	
 National Institute of 			-10.92, -1.68)	
Environmental Health				
Science (NIEHS)				
Health Canada				
Ontario Ministry of the				
Environment,				
• CIHR				

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declaratio	n of			
interest:				
No COI				

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Res	ponse		
Selection	Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately concealed?	N/A N/A			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, mothers were selected using the same criteria, during the same timeframe, from the same cities, with similar race, mean age at delivery, and employment.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, analysis was adjusted for child's sex and age at testing, maternal education, maternal race, second-hand smoke in the home, and quality of the child's home environment		

Risk of bias a	Risk of bias assessment				
Performance	Were experimental conditions identical across study groups? Were the research personnel and human subjects blinded to the study group during the study?	N/A N/A			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Of all children who completed IQ testing, 398 pairs (67.3%) reported drinking tap water, had water fluoride data and complete covariate data (breastfed=200; formula-fed: n=198) Characteristics of women included in the analysis (398) were not substantially different from the original cohort (N=1945) or the subset without complete water fluoride and covariate data (n=203)		
Detection	Can we be confident in the exposure characterization?	+	Yes, data on levels of fluoride exposure were consistently drawn within the same timeframe, from the same source: municipal water reports. Maternal urinary fluoride (MUF) adjusted for specific gravity (non-validated) was used as a		

Risk of bias assessment						
			proxy of fetal fluoride exposure			
	Can we be confident in the outcome		Yes, IQ scores were measured by the Wechsler			
	assessment?	++	Primary and Preschool Scale of Intelligence-III			
		**	at 3-4 years using United States population-			
			based normative data (mean=100, SD=15).			
Selective	Were all measured outcomes reported?		Yes, primary outcome discussed in methods			
reporting		++	was presented in results section with adequate			
			level of detail for data extraction			
Other	Were there no other potential threats to internal		Possibility of recall or response bias of mothers			
sources	validity (e.g., statistical methods were	+	completing the questionnaire			
	appropriate and researchers adhered to the	-				
	study protocol)?					

Wang 2020 [49]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	"low-moderate
Original study	Fluoride levels in	Thyroid hormone	 Multi-variable linear and 	fluoride exposure is
	Drinking water	dysfunction (TT3, TT4,	logistical regression	associated with
Study design:	Urine samples	FT3, FT4 and TSH	models for the	alterations in
Cross-sectional		levels in serum)	associations among	childhood thyroid
	Method of exposure		fluoride exposure,	function that may
Country:	assessment:	• Intelligence (IQ)	thyroid function and IQ	modify the
China	 Water samples were 		scores	association between
	collected randomly from	Method of outcome	 Sensitivity analyses 	fluoride and
Participants:	the public water	ascertainment:	were conducted by	intelligence"
Resident children, aged	supplies in each village	 Chemiluminescent 	modifying covariates	
7–13 years, randomly	• Urine samples for every	microparticle	adjusted in multivariable	
selected from endemic	child were collected in	immunoassay on the	models: age, sex, BMI,	
and non-endemic	the early morning	ARCHITECT i4000SR	maternal education,	
fluorosis areas in	before breakfast.	was employed to	paternal education,	
Tianjin, China.	• Fluoride levels in water	quantify thyroid	household income, low	
	and urine were	hormone levels in	birth weight	
Sampling time frame:	measured using an ion	serum.		
2015	analyzer EA940 with a		Results:	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	fluoride ion selective	 A Combined Raven's 	(Mean ± SD)	
Sample size (N):	electrode (Wu et al.,	Test for Rural China		
571	2015).	(CRT-RC2) was taken	<u>Fluoride</u>	
		to evaluate the IQ of	Water fluoride (mg/L)	
Sex:	Water fluoride level:	each child	o 1.39 ± 1.01	
Boys: 292 (51.1%)	Mean (mg/L): 1.39		Urinary fluoride (mg/L)	
	±1.01		○ 1.28 ± 1.30	
Exclusions:				
 Not long- term 			Thyroid hormones:	
residents of the area			•TT3 (ng/mL):	
 Had congenital or 			○ 1.32 ± 0.19	
acquired diseases			• FT3 (pg/mL):	
affecting intelligence,			o 3.28 ± 0.32	
History of cerebral			∙ TT4 (μg/dL):	
trauma and			o 6.86 ± 1.16	
neurological disorders			• FT4 (ng/dL):	
• Positive screening test			○ 1.13 ± 0.12	
(e.g. hepatitis B,			•TSH (uIU/mL):	
Treponema palladium,			o 2.57 ± 1.29	
Down's syndrome)				

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
• Exposure to smoking			Every 1 mg/L incremen	t		
and drinking during		of water fluoride was				
maternal pregnancy			associated with			
		○ 0.006 ng/mL				
Source of funding/ increase in TT3						
support: 0.013 pg/mL						
• State Key Program of		increase in FT3				
National Natural		○ 0.083 ng/mL				
Science of China			decrease in TT4			
 National Natural 			o 0.01 ng/mL			
Science Foundation of			decrease in FT4			
China			ο 0.13 μIU/mL			
 Fundamental 			increase in TSH			
Research Funds for						
the Central			Every 1 mg/L increment	t		
Universities			of urinary fluoride was			
associated with						
Author declaration of		o 0.007 ng/mL				
interest:			increase in TT3			
No COI			o 0.02 pg/mL			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			increase in FT3		
			o 0.09 ng/mL		
			decrease in TT4		
			o 0.009 ng/mL		
			decrease in FT4		
			ο 0.11 μIU/mL		
			increase in TSH		
			• Fluoride exposure was		
			inversely related to IQ		
			scores		
			Water fluoride:		
			B=-1.59 (95% CI:		
			-2.61, -0.57)		
			Urinary fluoride:		
			B=-1.21 (95% CI:		
			−1.99, −0.44) .		
		● Higher TT3, FT3 were			
			related to the increased		

odds of children having high normal intelligence TT3 OR=3.41 (95% CI: 1.04, 11.12) FT3 OR=3.277 (95% CI: 1.62, 6.62) • A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid	Characteristic	:s			
high normal intelligence TT3 OR=3.41 (95% CI: 1.04, 11.12) FT3 OR=3.277 (95% CI: 1.62, 6.62) • A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid	1	Exposure	Outcome	Analysis & Results	Conclusions
 TT3 OR=3.41 (95% CI: 1.04, 11.12) FT3 OR=3.277 (95% CI: 1.62, 6.62) A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid 				odds of children having	
OR=3.41 (95% CI: 1.04, 11.12) • FT3 OR=3.277 (95% CI: 1.62, 6.62) • A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid				high normal intelligence)
1.04, 11.12) FT3 OR=3.277 (95% CI: 1.62, 6.62) • A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid				o <i>TT</i> 3	
 FT3				OR=3.41 (95% CI:	
OR=3.277 (95% CI: 1.62, 6.62) • A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid				1.04, 11.12)	
 1.62, 6.62) A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid 				o FT3	
A significant modification effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid				OR=3.277 (95% C	I:
effect by TSH on the association between urinary fluoride and IQ scores, without mediation by thyroid				1.62, 6.62)	
association between urinary fluoride and IQ scores, without mediation by thyroid				 A significant modification 	on
urinary fluoride and IQ scores, without mediation by thyroid				effect by TSH on the	
scores, without mediation by thyroid				association between	
mediation by thyroid				urinary fluoride and IQ	
				scores, without	
				mediation by thyroid	
hormones				hormones	

Bias domain	Criterion	Outo	come 1: Thyroid	Outcome 2: IQ	
		dyst	unction		
Selection	Was administered dose or exposure level adequately randomized?	N/A			
	Was allocation to study groups adequately concealed?	N/A			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, children were selected using the same criteria, durin the same timeframe, from villages that were similar in population and general demographics, and assessed for exposure and outcome using the same methods		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, the analysis was adjusted for age, sex, BMI, matern education, paternal education, household income, low bit weight		
Performance	Were experimental conditions identical across study groups?	N/A			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	N/A		
Attrition	Were outcome data complete without	++	There was no loss of partici	pants due to attrition	

Risk of bias	assessment				
	attrition or exclusion from analysis?				
Detection	Can we be confident in the exposure characterization?		,		d urine were within the same
	characterization?	++	9		method: ion analyzer EA940 ctrode (Shanghai constant
			magnetic electronic tec	hnology	Co, Ltd, China), and in
			accordance with the na	tional st	andardized method in China
			(Wu et al., 2015).		
	Can we be confident in the outcome		Yes, thyroid hormone		Yes, a Combined Raven's
	assessment?		levels in serum were		Test for Rural China (CRT-
			assessed for all		RC2) was taken to evaluate
			children using the		the IQ of each child
		++	same method:	++	
			Chemiluminescent		
			microparticle		
			immunoassay on the		
			ARCHITECT i4000SR		
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were		
reporting		++	presented in results section with adequate level of detail for		
			data extraction		

Risk of bias assessment				
Other	Were there no other potential threats to		None identified	
sources	internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++		

An 2019 [50]

Study Characteristic	Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Reference type:	Exposures:	Outcomes:	Statistical analysis:	chronic fluoride			
Original study	Fluoride levels in • Community	Levels of reproductive hormones (SHBG and ABP) in serum	 Independent sample t- tests, one-way ANOVA and multivariate linear 	exposure from drinking water is associated with			
Study design: Cross-sectional	• Urine	Method of outcome ascertainment:	regression analyses • A generalized linear model was used to	alterations of serum SHBG and ABP concentrations in local male farmers			
Country: China (Henan Pr)	Method of exposure assessment:	An enzyme-linked immunosorbent assay	calculate gene- environment and gene- gene effects.	and that the effect of fluoride exposure on			

Study Exposure Outcome Analysis & Results Conclusions	Study Characteristics						
electrode (Shanghai	Study	Exposure	Outcome	Analysis & Results	Conclusions		
Exactitude, Shanghai, used to measure serum among control subjects who were born or lived for at least 5 years before marriage in one of the 7 villages (Henan Province) Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the standard of national drinking water quality (1.0 mg L-1 GB5749-2006). Exactitude, Shanghai, used to measure serum among control subjects accorded with the acconcentrations of SHBG accorded with the acconcentrations of SHBG accorded with the acconcentrations of SHBG accorded with the acconcentrations of SHBG accorded with the acco		a fluoride ion-selective	(R&D systems,	• The genotypic	ABP levels vary		
• 18-55 male farmers who were born or lived for at least 5 years before marriage in one of the 7 villages (Henan Province) • Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the standard of national drinking water quality (1.0 mg L-1 GB5749-2006). China) assay was used concentrations of SHBG accorded with the to measure urine fluoride and ABP. Hardy-Weinberg equilibrium (P=0.193, Pvull; P=0.050, Xbal; P=0.410, rs3798577). • Analysis adjusted for age, diet, exercise habits, tobacco use, alcohol and tea consumption Results: Water fluoride (Mean ± SD) • Group of villages with	Participants:	electrode (Shanghai	Minneapolis, USA) was	distribution of ESRα	depending on $ESR\alpha$		
• Group of villages with	 18-55 male farmers who were born or lived for at least 5 years before marriage in one of the 7 villages (Henan Province) Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the standard of national drinking water quality 	China) assay was used to measure urine fluoride	concentrations of SHBG	accorded with the Hardy-Weinberg equilibrium (P=0.193, Pvull; P=0.050, Xbal; P=0.410, rs3798577). • Analysis adjusted for age, diet, exercise habits, tobacco use, alcohol and tea consumption Results: Water fluoride (Mean ±	gene polymorphisms		
	2006).						

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time f	rame:		2.44±1.88 mg/L	
2011-2012				
			 Group of villages with 	
Sample size (N)	:		low exposure (LEG):	
348			0.37± 0.15 mg/L	
Sex:			<u>Urinary fluoride (Mean ±</u>	
Males (100%)			SD)	
Waloo (10070)			• Fluoride (mg/L)	
Exclusions:			○ HEG 2.66 ± 1.03	
			○ LEG 0.95 ± 0.31	
Participants who resided in other p			P-value: <0.001	
for at least 1 year				
history of chronic	bone		Reproductive hormones	
disease, underwe	ent		(Mean ± SD)	
bisphosphonate,				
hormonal or calc	itonin		• ABP (nmol/L)	

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
therapy, or suffer	ed		○ HEG 19.86 ± 22.46	
from colds over th	ne two		o LEG 24.04 ± 26.94	
weeks prior to stu	ıdy		D	
initiation			P-value= 0.144	
Source of fundir	ng/		• SHBG (nmol/L)	
support:			o HEG 30.07 ± 28.32	
National Natural	I		o LEG 35.90 ± 28.58	
Science Founda	ation of		P-value= 0.012	
China				
• Henan Departm	ent of			
Science and				
Technology, Chi	ina			
Author declarati	on of			
interest:				
No COI				

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately	N/A N/A			
	concealed?				
	Did selection of study participants result in appropriate comparison groups?	++	 Yes, farmers were selected using the same inclusion/exclusion criteria, cluster sampling method, ascertainment methods, within the same timeframe from 7 villages in Henan Province, China. Participants were comparable between the high exposure group (4 villages with endemic fluorosis), and low exposure group (3 control villages), based on water fluoride concentration in relation to the standard of national drinking water quality (1.0 mg L-1 GB5749-2006). Overall participation rate was 96.94%. 		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Analyses were adjusted for age, urinary fluoride level, diet, exercise habits, tobacco use, alcohol and tea consumption		

Risk of bias as	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	Other indicators reflective of male reproductive function, including sexual life quality or adverse newborn birth outcomes were not accounted for due to small sample size.
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Overall non-participation rate was less than 4% and is unlikely to have biased the results of the analyses.
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride levels in urine were measured for all participants using the same fluoride ion-selective electrode (Shanghai Exactitude, Shanghai, China)
	Can we be confident in the outcome assessment?	++	Yes, levels of reproductive hormones (SHBG and ABP) in serum were measured for all participants using an enzyme-linked immunosorbent assay (R&D systems, Minneapolis, USA)
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of

Risk of bias	Risk of bias assessment				
reporting			detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Crnosija 2019 [51]

Study Characteristic	cs .			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	We found no
Original study	Fluoride levels in drinking water	Secondary bone cancer	Ordinary least squares regression and	evidence of an association between
Study design:		Method of outcome	diagnostic tests to determine the necessity	community water
Ecological study	Method of exposure assessment:	ascertainment: Data on inpatient	of a spatial regression using GeoDa 1.8.16.4,	fluoridation category and
Country:	Data from the water quality reports from	cancer patients admitted with an ICD9	and queen firstorder contiguity for generating	secondary bone cancer from 2008

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
USA (NY State)	individual providers in	code for secondary	spatial weights.	to 2010 at the
	the different NY State	bone cancer (198.5) to	Series of regression	county level in New
Darticinanta	counties	a New York State	models with county-level	York State
Participants:		hospital for relevant	percentage of secondary	
+18 years old		care, which was	bone cancer as the	
inpatients with		extracted from the	dependent variable	
metastatic bone cancer		Statewide Planning and		
who were admitted to a		Research Cooperative		
New York State		System (SPARCS)	Results:	
hospital for receiving		database; an	Fluoride in drinking water:	
care		inpatient/outpatient	• 0.7 mg/L (45 counties)	
		record of all hospital	• 0.8 mg/L (2 counties)	
Sampling time frame:		admissions collected	• 0.5 mg/L (1 county)	
-		and curated by New	• 0.4 mg/L (1 county)	
January 1, 2008 –		York State's	5 (),	
December 31, 2010		Department of Health		
		(NYSDOH)	Percentage of population	
Sample size (N):			in county with fluoridation	
24,661			•<25%	

Study Characteristics	3			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			o No. counties: 27	
Sex:			o 2 ^{ry} bone cancer:	
			12.9%	
			o Coefficient: ref	
Exclusions:			o p-value: -	
Patients with				
incomplete zip code,			• 25%-75%	
patient identification			o No. counties: 16	
code, patient's New			o 2 ^{ry} bone cancer:	
York State residency			12.9%	
status or less than 18				
years old			o Coefficient: 0.02	
			o <i>p-value: 0.96</i>	
Source of funding/				
support:			•>75%	
Not reported			o No. counties: 19	
			o 2 ^{ry} bone cancer: 12.	9

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declara	tion of		%	
interest:			o Coefficient: 0.02	
Not reported			o p-value: 0.97	

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately concealed?	N/A N/A		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified using the same method of ascertainment, recruited within the same time frame, and using the same inclusion and exclusion criteria	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	No accounting for confounders or appropriate standardization reported	

Risk of bias a	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	There was no loss of participants due to attrition
Detection	Can we be confident in the exposure characterization?	++	 No information on whether individuals worked or went to school in a different county with a different water source, when they may have changed residences in their past or the degree to which the community fluoridation levels changed over time, or fluoride supplementation in counties without access to water fluoridation. Study only assessed counties' municipal water fluoride content, excluding private wells and assuming their fluoride level to be zero.
	Can we be confident in the outcome assessment?	++	Yes, outcome was assessed based on data on inpatient cancer patients admitted with an ICD9 code for secondary bone cancer (198.5) to a New York

Risk of bias assessment				
			State hospital for relevant care, which was extracted	
			from the Statewide Planning and Research	
			Cooperative System (SPARCS) database; an	
			inpatient/outpatient record of all hospital admissions	
			collected and curated by New York State's	
			Department of Health (NYSDOH)	
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were	
reporting		++	presented in results section with adequate level of	
			detail for data extraction	
Other	Were there no other potential threats to internal		None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the	++		
	study protocol)?			

Fernando 2019 [52]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Higher fluoride
Original study	Fluoride level in serum	Chronic kidney disease of unknown origin	Descriptive statistics	exposure via drinking water is
Study design: Case-control Country:	Method of exposure assessment: ion-selective electrode (94-09 BNWP) with Orion	(CKDu), using fluoride level in urine Method of outcome	Results: • Water fluoride • Fluoride in ground water: 1.33 - 5.30	possibly the reason for higher fluoride in serum, while excessive urinary excretion would be
Sri Lanka	Star A329 Ionalizer (Thermo Orion MA, USA) after dilution with an equal volume of	one hundred milliliters of a random urine sample from each	mg/L o Fluoride MAC in drinking water: 0.60 mg/L	due to deterioration of the kidney, suggesting a
Participants: Cases: 19-76 years old, non-dialysis, biopsy- proven definite CKDu cases, recruited from Girandurukotte and Wilgamuwa renal	commercially available TISAB III buffer (Thermo Orion 940911).	subject was collected into sterile, screw-capped containers, and the supernatant was removed by centrifugation.	Serum fluoride: Mean ±SD [range] mg/L	possible nephrotoxic role of environmental fluoride exposure.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
clinics.			○ <i>p</i> = 0.000 (showed a	
Controls (matched):			significant difference	
,			based on CKDu stage)
Healthy volunteers			but not with sex or	
			age)	
Sampling time frame:				
Nor reported			Urinary fluoride: Mean	
			±SD [range] mg/L	
Sample size (N):			o CKDu patients: 1.53 ±	-
193 (116 cases and 77			0.8 [0.45 – 6.92]	
controls)			o Controls: 1.26 ± 0.63	
			[0.36 – 3.80]	
			p = 0.004	
Sex:				
Cases: Men (81.1%)			Patients in the age	
Controls: Men (70.1%)			group 19–29 years	
			showed lower serum	
			fluoride levels than other	
Exclusions:				

Study Characteri	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Not reported			age groups	
Source of fundin	g/			
National Research	n			
Council (NRC) Ta				
Orient research G	rant			
Author docloretic	of			
Author declaration	on or			
interest:				
No COI				

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A			

Risk of bias assessment				
	Was allocation to study groups adequately	N/A		
	concealed?			
	Did selection of study participants result in		Cases and controls were recruited from the same	
	appropriate comparison groups?	+	population, but with difference in age (cases older). No	
		•	info on timeframe, ethnicity or eligibility criteria other	
			than by outcome of interest	
Confounding	Did the study design or analysis account for	++	No accounting for confounding reported	
	important confounding and modifying variables?	++		
Performance	Were experimental conditions identical across	N/A		
	study groups?			
	Were the research personnel and human	N/A		
	subjects blinded to the study group during the			
	study?			
Attrition	Were outcome data complete without attrition or		Yes, only one case was not included in the analysis	
	exclusion from analysis?	++		
Detection	Can we be confident in the exposure		Serum and urine fluoride levels for all cases and	
	characterization?	++	controls were measured during the same timeframe	
			and by the same ion-selective electrode method.	
	Can we be confident in the outcome	+	Yes, the outcome was assessed in cases and controls	

Risk of bias assessment				
	assessment?		using a confirmed biopsy and dialysis status. Outcome assessment methods and lack of blinding of outcome assessors would not appreciably bias results.	
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	Descriptive analysis with no adjustment to potential confounders	

Jimenez-Cordova 2019 [53]

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	• Fluoride exposure
Original study	Fluoride levels in • Drinking water	 Vascular alterations using the carotid 	Multiple linear regression	is related to early vascular alterations, which

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design:	• Urine samples	intima media thickness	Adjusted for urinary	may increase the
Cross-sectional		(cIMT) and serum	specific gravity, BMI,	susceptibility of
Country:	Method of exposure assessment:	concentrations of vascular adhesion molecule 1 (VCAM-1),	age and sex	cardiovascular diseases in adult life.
Mexico (Chihuahua)	 Water samples were provided by each participant. 	intracellular adhesion molecule 1 (ICAM-1), endothelin 1(ET-1) and	• Water fluoride: Mean (IQR):	 Inconclusive results regarding fluoride exposure
Participants:	• F concentrations in	cystatin-C (sCys-C)	o 0.3 mg/mL (0.01–1.9)	and kidney injury
5-12 years old Mexican school children, who commonly drink tap water with a minimum of 2 years of residence	water and urine samples were assessed by a potentiometric method using an ion selective electrode	 Kidney dysfunction, using Kidney injury biomarkers [glomerular filtration rate (eGFR), and the urinary 	Maximum permissible limit: o 1.5	
in Hidalgo del Parral (fl:	(Orion 9609BNWP,	concentrations of	Urinary fluoride showed	
0.18 mg/L) or Aldama (fl: 2 mg/L), where	Thermo Fisher Scientific Inc., USA);	kidney injury molecule 1 (KIM-1) and cystatin-	 Positive association with eGFR (β=1.3, 	
there is no concurrent	Del Razo et al., 1993.	C (uCys-C)]	p=0.015),	
exposure to arsenic	F concentration in urine was measured by	Method of outcome	νCAM-1 (β=111.1,	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame:	reference material (U-F-	ascertainment:	p=0.019)	
November 2015	0907 and U-F1510), Centre de Toxicologie du Quebec) and	 eGFR was determined by the Creatinine- Cystatin C-Based 	 ICAM-1 (β=57, p=0.032) cIMT (β=0.01, 	
Sample size (N): 374	controls were used for quality control.	CKiD Equation (Schwartz et al., 2012) • Urine and serum	p=0.032) • Inverse association with	
Sex:	Blood analysis	biomarkers are	υCys-C (β=-8.5,	
Boys: 46.8%	 Biochemical analysis (glucose, lipid profile, uric acid and creatine) 	measured using a custom human Magnetic Luminex	p=0.043)sCys-C (β=-9.6,p=0.021)	
Exclusions: Children with a	was performed by an automatic analyser	Screening Assay (R&D Systems, Inc., Minneapolis MN, USA)	 No significant association with 	
previous diagnosis of chronic diseases	(Prestige 24i, Tokyo Boeki Medical System Ltd., Tokyo, Japan).	that was read on a Luminex xMAP®	ET-1 (β=0.069,p=0.074)	
Source of funding/ support:	<u>Urine analysis</u>	Instrument (MAGPIX®, Luminex Corp., Austin TX, USA).	KIM-1 (β=29.1,p=0.212)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Children's	• First morning void urine			
Environmental Health	was used			
Network	 Specific gravity was 			
 National Council of 	measured immediately			
Science and	using a refractometer			
Technology, Mexico	(PAL-10S, ATAGO®,			
	Tokyo, Japan)			
Author declaration of	Urine analysis was			
interest:	performed with a urine			
mileresi.	analyser (U-66, Mindray	,		
No COI	Co., Shenzhen, China).			

Risk of bias a	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A				
	Was allocation to study groups adequately	N/A				

Risk of bias a	ssessment		
	concealed?		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, children were selected using the same criteria, and within the same timeframe
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, the analysis was adjusted for urinary specific gravity, BMI, age and sex
Performance	Were experimental conditions identical across study groups?	N/A	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Not considered a risk of bias as it listed the exclusion was due to incomplete data or unavailability of samples
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was consistently assessed during the same timeframe and using the same tools for assessing fluoride levels in water and urine
	Can we be confident in the outcome assessment?	++	Yes, outcome was consistently measured in serum and urine. Lack of blinding of outcome assessors would not appreciably bias results.

Risk of bias	Risk of bias assessment					
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of			
			detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Jimenez-Cordova 2019a [54]

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Fluoride exposure
Original study	Fluoride levels in drinking water	Urinary concentrations of inorganic arsenic	Multiple linear regressionAdjusted for urinary	decreases Arsenic methylation capacity, and
Study design: Cross-sectional	Method of exposure assessment:	Method of outcome ascertainment:	specific gravity, age, sex, BMI and smoking	increases its toxicity

Study Characteristics	Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions			
	The Fluoride	Concentrations were					
Country: Mexico Participants: Adult participants residing in Chihuahua	concentration in water and urine was assessed by a potentiometric method using an ion selective electrode (Orion 9609BNWP, Thermo Fisher Scientific Inc., USA).	measured by hydride generation- cryotrapping-atomic absorption spectrometry using a Perkin Elmer Analyst 400 spectrometer (Perkin Elmer, Norwalk, CT)	Results: Water fluoride: $1.6 \ mg/L \pm 1.6$ Urinary fluoride: $2.8 \ \mu g/L \pm 2.8$				
for 1 or more years, were directly recruited from information sessions		equipped with a multiatomizer as previously described (Hernández-Zavala et al., 2008).	A statistically significant interaction of F and As exposure on the following was observed: • Increase in MAs% (β =				
Sampling time frame: 2013			0.16, p = 0.018) • Decrease in DMAs%				
Sample size (N): 236			 (β = -0.3, p = 0.034), Decrease in PMI (β=-0.07, p=0.052) Decrease in SMI 				

Study	Exposure	Outcome	Analysis & Results	Conclusions
			(β=-0.13, p=0.097)	
Sex:				
Men: 29%				
Exclusions:				
Non-residents of				
Chihuahua provir	nce			
Source of fundir	ng/			
support:				
National Council	of			
Science and				
Technology, Mex	ico			
Author declarati	on of			
interest:				
No COI				

Bias domain	Criterion	Resi	ponse
Selection	Was administered dose or exposure level	N/A	
Selection	'	IN/A	
	adequately randomized?		
	Was allocation to study groups adequately	N/A	
	concealed?		
	Did selection of study participants result in		Yes, participants were selected using the same
	appropriate comparison groups?	++	criteria, during the same timeframe, and assessed for
			exposure and outcome using the same methods
Confounding	Did the study design or analysis account for		Yes, the analysis was adjusted for urinary specific
	important confounding and modifying variables?	++	gravity, age, sex, BMI and smoking
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or		Not considered a risk of bias as it listed the reason for
	exclusion from analysis?	++	exclusion: non-residents of target location or
			unavailability of samples
Detection	Can we be confident in the exposure		Yes, exposure was consistently assessed during the
	characterization?	++	same timeframe and using the same tools for
			assessing fluoride levels in water and urine

Risk of bias	assessment		
	Can we be confident in the outcome		Yes, outcome was consistently measured in urine.
	assessment?	++	Lack of blinding of outcome assessors would not
			appreciably bias results.
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Khanoranga 2019 [55]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The relationship
Original study	Fluoride levels in	Dental fluorosis	 Relationship between fluoride level and DF was 	among the groundwater fluoride
Study design:	 Ground water samples Urinary samples	Method of outcome	conducted using Pearson's	concentration, urinary F, and dental

Study	Exposure	Outcome	Analysis & Results	Conclusions
Cross-sectional study		ascertainment:	correlation	fluorosis was
Country: Pakistan Participants: Male brick kiln workers and controls (17 to 45 years of age) from three districts of Balochistan. Controls were office and university workers residing in locations with no fluoride exposure	Method of exposure assessment: Ion selective electrode method Exposure level: Fluoride levels (mg/L) found in groundwater samples of the three districts (Quetta Pishin, and Mastung) • Range: 0.87 – 1.59	 Single dentist conducted DF examination using the WHO Dean's Index CFI was calculated as: ∑ (Number of people x Dean numerical weight) / Total number of people examined 	Results: • Correlation between groundwater fluoride levels and CFI r = 0.90 • Correlation between urinary fluoride levels and CFI r = 0.96	assessed through Pearson's correlations. A strong positive relationship was determined by the aforementioned parameters (groundwater F, urinary F, and dental fluorosis)" (p. 419)
Sampling time frame: August – September 2017	Mean (SD) Fluoride levels (mg/L) found in urinary samples of participants from the three districts and controls			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sample size:	Quetta (n = 25)				
Brick kiln workers	• Mean: 0.17 (0.15)				
100	• Range: 0.013 – 0.54				
Controls	Pishin $(n = 50)$				
20	• Mean: 0.19 (0.21)				
	• Range: 0.002 - 0.842				
Sex:	Mastung (n = 25)				
Men: 100%	• Mean: 0.30 (0.19)				
	• Range: 0.092 – 0.811				
Exclusions: NR	Control $(n = 20)$				
EXClusions: NR	• Mean: 0.003 (0.002)				
	• Range: 0.0003 - 0.007				
Source of funding /					
support: NR					
Author declaration	of				
interest: NR					

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR			
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water using the US- EPA ion selective electrode (CRISON, GLP 22+).			

Risk of bias assessment				
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by a	
	assessment?		single dentist using the WHO Dean's Index. Lack of	
			blinding of outcome assessors would not appreciably	
			bias results.	
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were	
reporting			presented in results section with adequate level of	
			detail for data extraction	
Other	Were there no other potential threats to internal	++	None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the			
	study protocol)?			

Liu 2019 [56]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	• low-to-moderate
Original study	Fluoride levels in ground	age- and sex-	 Multivariable linear and 	fluoride exposure

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design:	water and urine	standardized height, weight and BMI z-	logistic regression analyses	is associated with overweight and
Cross-sectional	Method of exposure assessment:	scores, and childhood overweight/obesity (BMI z-score > 1)	 Adjusted for maternal age at delivery, second hand tobacco smoke, 	obesity in children.Gender and paternal education
Country: China	concentrations of Fluoride in water samples and morning urine samples were	Method of outcome ascertainment:	maternal education, paternal education, household income, child age, gender and low	level may modify the relationship
Participants: Randomly selected 7– 13 years old residents from low to-moderate fluorosis, ground water- supplied areas of Baodi District, Tianjin, China	measured by ion selective electrode (PF- 202-CF, INESA, Shanghai) using the national standardized method in China (WS/T 89-2006) (Wu et al., 2015; Yu et al., 2018)	 Study entry standardized anthropometric survey by a trained investigator without knowledge of the children's fluoride levels. Height was measured 	birth weight • Sensitivity analysis conducted after excluding children born to women with smoking, drinking, diabetes, under-nourishment and anaemia at pregnancy, and children with	
Sampling time frame: May - October 2015		using a stadiometer, and weight was	dystocia, hypoxia, premature birth and	

Study Characteristic	s			
Study	Exposure	Outcome	Analysis & Results	Conclusions
		measured using a	post-term birth	
Sample size (N):		standard dual reading		
2,430		scale. • Standardized specific	Results:	
		z-scores were	Water fluoride:	
Sex:		calculated using	o 0.83 mg/L (95%CI:	
Boys: 51.1%		WHO's Child Growth	0.81, 0.86)	
		standards, and for	o <i>p-value: 0.414</i>	
		weight using CDC's	Urinary fluoride	
Exclusions:		reference standards	o 0.43 mg/L (95%CI:	
History of chronic		(WHO standards are	0.41, 0.46)	
medical illness (e.g.		unavailable for this	o <i>p-value: 0.003</i>	
renal, hepatic, and		age group)		
endocrine disorders)	,		• linear dose-dependent	
• Long-term medicatio	n		positive association	
related to overweight	t		between water fluoride	
and obesity were not			levels and height z-	
included			score, as indicated by	
			the trend across fluoride	
			quartiles	

Study Characteristic	s			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding/			(Ptrend=0.022).	
support:			Each log unit (roughly	
National Natural			10-fold) increase in	
Science of China			urinary fluoride	
National Natural			concentration was	
Science Foundation	of		associated with a	
China			o 0.136 unit increase in	1
Fundamental			weight z-score (95%	
Research Funds for			CI: 0.039, 0.233)	
the Central			o 0.186 unit increase in	1
Universities			BMI z-score (95% CI:	•
			0.058, 0.314)	
			o 1.304-fold increased	
Author declaration o	f		odds of	
interest:			overweight/obesity	
No COI			(95% CI: 1.062,	
			1.602)	
			o These associations	
			were stronger in girls	
			than in boys (P	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			interaction= 0.016)	
			 Children of fathers 	
			with lower education	
			levels were more	
			vulnerable to fluoride	e
			(P interaction=0.056)
			● Each log unit (roughly	
			10-fold) increase in	
			water fluoride	
			concentration was	
			associated with a 0.129)
			unit increase in height z	<u>z</u> -
			score (95% CI: 0.005,	
			0.254), but not with	
			other anthropometric	
			measures.	

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level	N/A			
	adequately randomized?				
	Was allocation to study groups adequately	N/A			
	concealed?				
	Did selection of study participants result in		Yes, participants were selected at random from the		
	appropriate comparison groups?	++	same areas, using the same criteria and during the		
			same timeframe		
Confounding	Did the study design or analysis account for		Yes, it accounted for major confounders such as		
	important confounding and modifying variables?	++	maternal age at delivery, second hand tobacco smoke,		
		++	maternal education, paternal education, household		
			income, child age, gender and low birth weight		
Performance	Were experimental conditions identical across	N/A			
	study groups?				
	Were the research personnel and human	N/A			
	subjects blinded to the study group during the				
	study?				
Attrition	Were outcome data complete without attrition or	++	Not considered a risk of bias as it listed the exclusion		
	exclusion from analysis?		was due to those with extremes of BMI scores		
Detection	Can we be confident in the exposure	++	Yes, exposure was consistently assessed during the		
	characterization?		same timeframe and using the same tools for assessing		
			fluoride levels in water and urine		

Risk of bias	assessment		
	Can we be confident in the outcome	++	Yes, outcome was consistently assessed by a trained
	assessment?		investigator without knowledge of the children's fluoride
			levels, in accordance with WHO and CDC standards
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of detail
			for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Malin 2019 [57]

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Fluoride exposure
Original study	Fluoride in drinking water and serum	Estimated glomerular filtration rate	Multiple linear regression	may contribute to complex changes in
Study design:		Serum uric acid	 Adjusted for age, sex, 	kidney and liver related parameters

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Cross-sectional	Method of exposure	Albumin to creatinine	race, BMI, family	among US		
	assessment:	ratio	income, daily protein	adolescents		
Country:	 Water samples were 	 Blood urea nitrogen 	intake and serum			
J	measured via an ion-	• AST/ALT	cotinine (biomarker of			
United States	specific electrode	• ALP	tobacco smoke			
		Gamma-glutamyl	exposure)			
Participants:	 Plasma fluoride was 	transferase				
US adolescents: 12–19	measured via an ion-	 Serum albumin 	Results:			
years old (NHANES	specific electrode and		 Tap water fluoride 			
survey)	hexamethyldisiloxane (HMDS) method	Method of outcome	0.48 mg/L \pm 0.03			
		ascertainment:	Plasma fluoride			
Sampling time frame:	Tap water and blood	 Serum was analyzed 	0.40 μ mol/L \pm 0.01			
2013–2016	collection times were	for markers of kidney	A 1 mg/L increase in			
2013-2010	not standardized	and liver function as	water fluoride was			
		part of a standard	associated with:			
Sample size (N):		biochemistry profile.	o 0.93 mg/dL lower			
4,470		From 2013 to 2016 a	blood urea nitrogen			
.,		Beckman Coulter	concentration (95%			
		UniCel DxC 800	CI: -1.44, -0.42;			

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex:		Synchron chemistry	p=0.007).	
Men: 52.7%		analyzer was utilized;	o eGFR: -1.03	
		while from 2015 to	mL/min/m2 (95% CI: -	
		2016 a Beckman	2.93, 0.87); p > 0.99;	
Exclusions:		Coulter UniCel DxC	water fluoride was	
 Institutionalized 		660i Synchron Access	log2 transformed in	
persons		chemistry analyzer	this model.	
 Suggestive kidne 	э у	was utilized as well.	o SUA: 0.05 mg/dL	
diseases	-	Urine samples were	(95% CI: -0.07, 0.18);	
 Not drinking tap 	water	analyzed for albumin	<i>p</i> > 0.99	
• insufficient or		and creatinine using a	o ACR: -0.01 mg/g	
excessive protei	n	Turner Digital	(95% CI: -0.07, 0.06);	
intake		Fluorometer, Model	p = > 0.99; water	
		450 and Roche Cobas	fluoride and outcome	
		6000 Analyzer	variables were log2	
Source of funding	g/	respectively. Urine	transformed.	
support:		sample collection time	●1 μmol/L increase in	
Mount Sinai Chil	dren's	was not standardized.	plasma fluoride was	
Center Foundati	on		associated with:	
• NIH/NIEHS			o 10.36 mL/min/1.73m2	

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			lower estimated	
Author declarati	on of		glomerular filtration	
interest:			rate (95% CI: −17.50	,
			-3.22; p=0.05)	
No COI			o 0.29 mg/dL higher	
			serum uric acid	
			concentration (95%	
			CI: 0.09, 0.50;	
			p=0.05)	
			o 1.29 mg/dL lower	
			blood urea nitrogen	
			concentration	
			(95%CI: −1.87,	
			-0.70; p < 0.001)	

Risk of bias assessment			
Bias domain	Criterion	Response	
Selection	Was administered dose or exposure level	N/A	
	adequately randomized?		

Risk of bias as	ssessment				
	Was allocation to study groups adequately	N/A			
	concealed?				
	Did selection of study participants result in	++	Yes, participants were	sele	cted using the same criteria,
	appropriate comparison groups?	++	during the same timef	rame	
Confounding	Did the study design or analysis account for		Yes, it accounted for r	najor	confounders such as age,
	important confounding and modifying	++	sex, race, BMI, family	incon	ne, daily protein intake and
	variables?		serum cotinine (bioma	ırker d	of tobacco smoke exposure)
Performance	Were experimental conditions identical across	N/A			
	study groups?	IN/A			
	Were the research personnel and human				
	subjects blinded to the study group during the	N/A			
	study?				
Attrition	Were outcome data complete without attrition		Study provided reasor	ns for	exclusion of participants
	or exclusion from analysis?		(institutionalized perso	ons, k	idney diseases, not drinking
		++	tap water and insuffici	ent o	r excessive protein intake),
			which were not related	d to th	ne outcome
Detection	Can we be confident in the exposure	++	Yes, exposure was co	nsiste	ently measured in serum
	characterization?		and urine using gold s	tanda	ard tests.
	Can we be confident in the outcome		Yes, outcome		Outcome (liver
	assessment?	++	(kidney dysfunction)	+	dysfunction) was
			was consistently		consistently assessed with
			measured in serum		results showing no

Risk of bias a	ssessment				
			and urine. Lack of		correlation (human
			blinding of outcome		evidence) but reported as
			assessors would not		having correlation with
			appreciably bias		exposure (based on
			results.		animal evidence)
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were		
reporting		++	presented in results se	ection	with adequate level of
			detail for data extraction	on	
Other	Were there no other potential threats to internal		None identified		
sources	validity (e.g., statistical methods were	++			
	appropriate and researchers adhered to the	7.7			
	study protocol)?				

Malin 2019a [58]

Study Characteristic	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Fluoride exposure
Original study	Fluoride level in drinking	Self-reported sleep	 Survey-weighted linear 	may contribute to changes in sleep

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	water and serum	outcome measures	and multinomial logistic	cycle regulation and
Study design:			regression analyses	sleep behaviors
Cross-sectional	Method of exposure assessment:	Method of outcome ascertainment:	 Adjusted for age, sex, body mass index (BMI), race/ethnicity, and the 	among older adolescents in the US.
Country: US	 Fluoride concentrations were measured in blood plasma and household tap water. 	 Sleep habits and sleep disorders were ascertained through questionnaires in 	ratio of family income to poverty	
Participants:	 Collection times of 	participants' homes by	Results:	
16-19 years old adolescents with fluoride biomonitoring data and self-reported	blood and tap water were not standardized • Plasma fluoride concentrations were	trained staff using the Computer-Assisted Personal Interview (CAPI) system.	• Tap water fluoride mean (SE): 0.39 mg/L (0.05)	
sleep outcome measures (NHANES 2015–2016)	measured using an ion- specific electrode and hexamethyl-disiloxane method	 The questions included in the sleep questionnaire were not validated 	• Plasma fluoride mean (SE): 0.35 µmol/L (0.02)	
Sampling time frame:	Tap water samples were measured		Median (IQR) for: • Water fluoride:	

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
2015–2016	electrometrically w	ith an	0.27 (0.52) mg/L			
	ion-specific electro	de	 Plasma fluoride 			
Sample size (N):			0.29 (0.19) μmol/L			
419			 An IQR increase in water fluoride was 			
Sex:			associated with 1.97 times higher			
Men: 49.08			odds of reporting symptoms suggestiv	ve		
Exclusions:			of sleep apnea (95%	ó		
Not consuming tap water			Cl: 1.27, 3.05; p = 0.02)			
Consuming sleep medications			 24 min later bedtime (B = 0.40, 95% CI: 			
No fluoride samples			0.10, 0.70; p = 0.05) ○ 26 min later morning wake time (B = 0.43)	7		
Source of funding/			95% CI: 0.13, 0.73;			
support:			=0.04)			

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
NIH/NIEHS			o Among males, a 389	%
			reduction in the odd	s
			of reporting snoring	
Author declarat	tion of		(95% CI: 0.45, 0.87,	p
interest:			=0.03).	
No COI				

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Res	ponse			
Selection	Was administered dose or exposure level adequately randomized?	N/A				
	Was allocation to study groups adequately concealed?	N/A				
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria, during the same timeframe			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, sex, body mass index (BMI), race/ethnicity, and the ratio of family income to poverty			
Performance	Were experimental conditions identical across study groups?	N/A				

Risk of bias	assessment		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or		Not considered a risk of bias as study documented the
	exclusion from analysis?		reasons for exclusion of participants (not drinking tap
		++	water, consuming sleep medications, and lack of
			plasma or water samples)
Detection	Can we be confident in the exposure		Yes, exposure was consistently measured in serum and
	characterization?	+	urine. However, the questions included in the sleep
			questionnaire were not validated.
	Can we be confident in the outcome		Yes, outcome was consistently measured in serum and
	assessment?	++	urine. Lack of blinding of outcome assessors would not
			appreciably bias results.
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of detail
			for data extraction
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Pei 2019 [59]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Multiple signaling
Original study	• Fluoride levels in	Genetic biomarkers of	 Descriptive statistics 	pathways were
	drinking water	skeletal fluorosis		found to be
Study design:	Skeletal fluorosis		Results:	regulated by the differentially
Cross-sectional		Method of outcome	Water fluoride groups:	expressed miRNAs
	Method of exposure	ascertainment:	o 1.2 mg/L	Dysregulation of
	assessment:	• Serum miRNAs were	o >1.2 mg/L - ≤2 mg/L	molecular signaling
Country:	• Fluoride levels in	extracted with	o >2 mg/L - ≤4 mg/L	pathways are
China	drinking water, blood,	miRNeasy Mini Kit	○ <i>>4 mg/L</i>	involved in the
	and urine samples	(Qiagen, Valencia, CA,	C	process of fluoride-
Participants:	 Fluoride in drinking 	USA).		induced damage of
-	water was detected by	 After assessing the 	•31 miRNAs were	osteoblasts and
Residents aged 16 or	a F-ion selective	RNA's quality and	significantly and	osteoclasts.
older who lived in one of	electrode (Yingke	quantity, the miRNA	differentially expressed	However, the
five villages that are	Crystal Materials	microarray analysis	between cases and	regulatory
endemic in skeletal	Company) using a	(Affymetrix microRNA	controls. Of these, 21	mechanism of
fluorosis, (Zhao Dong	China national standard	4.0 Array, Santa Clara,	miRNAs were up-	fluoride on

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
County, Heilongjiang	(GB 5750.5-2006,	CA, USA) was	regulated and 10	molecular
Province)	China).	performed according	miRNAs were down-	pathways is still
	Urinary fluoride was	to the manufacturer's	regulated	not very clear
	also assessed by using	instructions.	• 3 additional miRNAs	
Sampling time frame:	the standard (WS/T 89-	• Quantitative PCR was	(miR-200c-3p, miR-1231	
NR	2015, China).	performed using a	and miR-3185) were	
	 Skeletal fluorosis was 	TaqMan miRNA PCR	significantly up-	
Sample size (N):	diagnosed using the	kit (Haigene, Harbin,	regulated in the cases	
Sample size (N):	national diagnostic	China) on an ABI7500		
302	standard for endemic	Fast Realtime PCR		
	skeletal fluorosis	system (ABI, USA).		
Sex:	(WS192-2008)			
Man. 200/	 Subjects were 			
Men: 30%	investigated using a			
	questionnaire, and were			
Exclusions:	face-to-face interviewed			
Bone diseases	by well-trained staff.			
	 Every subject received 			
Hypertension Atheres sleres is	a clinical examination,			
• Atherosclerosis	including X-ray			
Heart disease	· · · · · · · · · · · · · · · · · · ·			

Study	Exposure	Outcome	Analysis & Results	Conclusions
• Diabetes	investigation			
Source of fundi	ng/			
support:				
National Natura	al			
Science Founda	ation of			
China				
 Translational M 	edicine			
Special Founda	ation of			
China-Russia M	Medical			
Research Cente	er			
• Harbin Medical				
University, Chir	na			
Science Founda	ation			
for Distinguishe	ed			
Young Scholars	s of			
Heilongjiang Pr	ovince,			
China				

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declara	tion of			
interest:				
No COI				

Risk of bias a	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?					
	Was allocation to study groups adequately concealed?	N/A				
	Did selection of study participants result in appropriate comparison groups?	+	Whereas participants were selected using the same criteria, recruitment time frame was not reported			
Confounding	Did the study design or analysis account for important confounding and modifying variables?		Not reported			
Performance	Were experimental conditions identical across study groups?	N/A				
	Were the research personnel and human subjects blinded to the study group during the study?	N/A				

Risk of bias assessment				
Attrition	Were outcome data complete without attrition or		There was no attrition of exclusion of participants from	
	exclusion from analysis?	++	the analysis in this study	
Detection	Can we be confident in the exposure		Yes, exposure was consistently measured in drinking	
	characterization?	++	water, blood, and urine samples using national standard	
			tests	
	Can we be confident in the outcome		Yes, outcome was assessed using national standards.	
	assessment?	++	Lack of blinding of assessors of skeletal fluorosis does	
			not seem to appreciably bias results	
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were	
reporting		++	presented in results section with adequate level of detail	
			for data extraction	
Other	Were there no other potential threats to internal		None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the	++		
	study protocol)?			

Riddle 2019 [60]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures	Outcome	Statistical analysis:	Higher tap water	
Original study	Fluoride levels in	Attention-related	 Logistic regression to 	fluoride levels were	
	 Community source 	outcomes	examine the associations	associated with a	
Study design	Tap water		between fluoride	higher risk of ADHD	
Cross-sectional study	• Urine	Method of outcome	exposure measure	and increased	
		ascertainment	(UF _{SG} , CWF, tap water)	symptoms of	
Country	Method of exposure	 Attention deficit 	and ADHD	hyperactivity and	
Canada	ascertainment	hyperactivity disorder	 Linear regression used, 	inattention, especially	
	Community water	(ADHD) diagnosed by	with the same covariates	among adolescents.	
Participants	fluoridation status (CWF)	physician	to examine the		
Persons Youth 6-17 years	Acquired from city website	Hyperactivity/inattention	associations between the	Tap water fluoride	
old from the Canadian	reports or water treatment	subscale score	(UF _{SG} , CWF, tap water)	concentration was	
Health Measures Survey	plant	acquired using	and SDQ	significantly	
(Cycles 2 and 3).		Strengths and	hyperactivity/inattention	associated with	
	Urinary fluoride (UF _{SG}):	Difficulties	subscale score.	ADHD, adjusting for	
Study name	non-fasting spot samples	Questionnaire (SDQ)	 Adjusted covariates: sex, 	covariates	
Canadian Health		 Information on both 	age, ethnicity, BMI,		
Measures Survey	Tap water fluoride	outcomes were	highest parental		
(CHMS)	Samples from participants'	acquired from	education, household		
	home during Cycle 3	parents/guardians for	income, cigarette smoke		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sampling timeframe		participants 6 to 11	exposure at home, and		
• 2009–2011	Mean (SD) concentration	years of age	log ₁₀ -transformed lead		
• 2012–2013	of urinary fluoride	 Among those 12 to 17 	level in blood)		
	adjusted for specific	years of age, outcome			
Sample size (N)	gravity (mg/L)	information was	Results		
• Cycle 2:	• Urinary fluoride – sample	acquired from the	 Water fluoride 		
N=2,520	<u>1</u>	participants themselves	Mean ±SD: 0.23 mg/L		
• Cycle 3:	0.61 (0.39)		± 0.24 (cycles 3 only)		
N=2,667	• CWF status - sample 2		 Urinary fluoride 		
	0.64 (0.45)		Mean ±SD: 0.61 mg/L		
Sex (%)	 Tap water fluoride – 		±0.39 (cycles 2 & 3)		
Men: 50.8%-52.7%	sample 3				
	• 0.62 (0.48)		An increase of 1.0 mg/L		
Exclusion criteria			in water fluoride		
• Resided in home for ≤ 2	Mean (SD) concentration		concentration was		
years	of water fluoride (mg/L)		associated with 6.1 times		
 Reside in place with 	• <u>Urinary fluoride – sample</u>		higher odds of an ADHD		
mixed city fluoridation	<u>1</u>		after accounting for		
status Consume bottled	0.23 (0.24)		potential confounders		
water	 <u>CWF status – sample 2</u> 				
 Consume well rather 	0.26 (0.26)		• UF _{SG} did not significantly		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
than municipal water	• Tap water fluoride –		predict ADHD	
Remove fluoride with	sample 3		aOR=0.96 (95% CI: 0.63,	
home filtration system	0.23 (0.24)		1.46); p=0.84	
	Mean (SD)		• UF _{SG} did not significantly	
Source of funding:	 Urinary fluoride 		predict SDQ hyperactive/	
Faculty of Health, York	11.3 (3.4)		inattentive subscale	
University	 CWF status 		scores	
	11.3 (3.3)		aOR = 0.31 (-0.04, 0.66);	
Conflict of interest:	 Tap water fluoride 		p = 0.08	
No COI	11.2 (3.5)			
			• An increase of 1.0 mg/L	
			in water fluoride	
			concentration was	
			associated with 6.1 times	
			higher odds of an ADHD	
			after adjusting for	
			potential confounders	
			• UF _{SG} did not significantly	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			predict ADHD		
			aOR=0.96 (95% CI: 0.6	3,	
			1.46); p=0.84		
			 UF_{SG} did not significantl 	y	
			predict SDQ hyperactive	e/	
			inattentive subscale		
			scores		
			aOR = 0.31 (-0.04, 0.66);	
			p = 0.08		
			ADHD diagnosis & tap		
			water fluoride		
			• aOR = 6.10 (1.60, 22.8)	•	
			p < 0.05		
			 Exposure-response 		
			relationship: yes		
			<u>SDQ</u>		
			hyperactive/inattentive		
			subscale score & tap wat	<u>er</u>	

Study Character	Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions			
			<u>fluoride</u>				
			• aOR = 0.31 (0.04, 0.58));			
			p < 0.05				
			 Exposure-response 				
			relationship: yes				
			ADHD diagnosis & UF _{SG}				
			• aOR = 0.96 (0.63, 1.46));			
			p < 0.05				
			• Exposure-response				
			relationship: yes				
			<u>SDQ</u>				
			Hyperactive/Inattentive				
			Subscale Score & UF _{SG}				
			• aOR = 0.31 (-0.04, 0.66	5);			
			p = 0.05				
			Exposure-response				
			relationship: yes				

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in		Participants who lived in private households across		
	appropriate comparison groups?	++	Canada were randomly selected from Cycle 2 (2009–		
			2011) and Cycle 3 (2012–2013) of the CHMS.		
Confounding	Did the study design or analysis account		Yes (child's sex, age at interview, ethnicity (white or		
	for important confounding and modifying		other), BMI, highest level of parental education, total		
	variables?	++	household income, smoking at home [yes/no], concurrent		
			blood lead level [log10-transformed], specific gravity of		
			urinary fluoride concentration)		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human	N/A	Not applicable		
	subjects blinded to the study group during				
	the study?				
Attrition	Were outcome data complete without	++	Not considered a risk of bias as it documented the		

Risk of bias	Risk of bias assessment					
	attrition or exclusion from analysis?		exclusion of those who reported drinking bottled water as their main source of water, or those who lived in their residence location for less than 3 years.			
Detection	Can we be confident in the exposure characterization?	++	Yes, urinary fluoride was measured in non-fasting spot samples, adjusted for specific gravity (UFSG), and analyzed using an Orion PH meter with a fluoride ion selective electrode after being diluted with an ionic adjustment buffer. Samples were not standardized though with respect to collection time.			
	Can we be confident in the outcome assessment?	++	Yes, hyperactivity/inattention subscale score from the Strengths and Difficulties Questionnaire (SDQ; Goodman, 2001) and a physician-made diagnosis of ADHD were measured for all participants in both Cycles 2 and 3 of the CMHS.			
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered	++	None identified			

Risk of bias a	ssessment	
	to the study protocol)?	

Shaik 2019 [61]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Long term intake of
Original study	Fluoride levels in drinking water	Thyroid function biomarkers (TSH, T3,	Descriptive analyses	fluoridated drinking water (0.02 -1.4 ppm) did not show
Study design:		T4 in serum)	Results:	effect on the thyroid
Cross-sectional	Method of exposure assessment:	Method of outcome	Water fluoride mean:	function in the children with normal
Country: India	 Water analysis was carried out using OAKTON Fluoride 	Serum T3, T4 wasdetermined with	Group I (0.01-0.6 ppm): 0.22 Group II (0.7-1.2 ppm): 0.89	nutritional status and optimal iodine intake
Participants:	Ion Selective Electrode Equipment, USA.	Competitive Chemi Luminescent Immunoassay kits	Group III (1.3-2.0 ppm): 1.44	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Children 9-13 years old		• Serum TSH was	•TSH: 40% of children of	
with lifelong residence in		determined with Ultra-	group I had deranged	
one of 19 villages in		Sensitive Sandwich	levels followed by group	
Mysore Taluk, with water		Chemi-Luminescent	III (20%) and Group II	
fluoride levels 0.01-1.8		Immunoassay with	(16%)	
ppm). Children must have		analyzer according to	T4: 24% of children of	
had good general health,		the manufacturer	both groups I and III had	
normal nutritional status,		recommendation.	deranged levels followed	
and were consuming			by group II (20%)	
lodized salt			• Inter group correlation of	
			drinking water fluoride	
Once the ending forms			levels to number of	
Sampling time frame:			deranged serum T3, T4,	
NR			and TSH of the children	
Sample size (N):			showed non-significant	
293			association	
200				
Sex:				
Boys: 46%				

Study Characteristics	5			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions:				
Non-resident children,				
and those with				
substandard growth or				
health status				
Source of funding/				
support:				
NR				
Author declaration of	:			
interest:				
No COI				
140 001				

Risk of bias assessment				
Bias domain	Criterion	Response		

Risk of bias a	ssessment		
Selection	Was administered dose or exposure level	N/A	
	adequately randomized?		
	Was allocation to study groups adequately	N/A	
	concealed?		
	Did selection of study participants result in	+	Whereas participants were selected using the same
	appropriate comparison groups?		criteria, recruitment time frame was not reported
Confounding	Did the study design or analysis account for		Not reported
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	There was no attrition of exclusion of participants from
	exclusion from analysis?		the analysis in this study
Detection	Can we be confident in the exposure	++	Yes, exposure was consistently measured in drinking
	characterization?		water using specialized tests
	Can we be confident in the outcome		Outcome was assessed using specialized standards.
	assessment?	++	Study was double-blinded with no likelihood to bias
			results.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting		77	presented in results section with adequate level of

Risk of bias assessment					
			detail for data extraction		
Other	Were there no other potential threats to internal		None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the	++			
	study protocol)?				

Soto-Barreras 2019 [62]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "No evidence was
Original study Study design:	Fluoride levels in • Drinking water samples • Urine samples	Intellectual abilityDental fluorosis	 Statistical significance at p<0.05 	found for fluoride- associated cognitive deficits. As the level of
Cross-sectional study	Method of exposure	Method of outcome ascertainment:	Results: • Mean (±SD) water fluoride	fluoride consumption
Country: Mexico	assessment:lon selective electrode	 Intellectual ability: Raven's Colored Progressive Matrices 	levels (mg/L) by dental fluorosis categories o TF 0: 0.75 ± 0.95	remains a public health concern and its implications for health are still

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants: Children (9 to 10 years of age) in grade 4 attending public elementary schools in Chihuahua Sampling time frame: May – December 2017 Sample size: 161	Exposure level: See results for exposure levels by dental fluorosis and intellectual ability categories	(RCPM) Dental fluorosis: Thylstrup- Fejerskov (TF) Index used to examine vestibular, occlusal, and lingual surfaces	 TF 1 – 2: 0.67 ± 0.15 TF 3 – 4: 1.22 ± 1.09 TF > 5: 1.66±0.93 p-value: 0.008 Mean (±SD) urinary fluoride levels (mg/L) by dental fluorosis categories TF 0: 0.48 ± 0.23 TF 1 – 2: 0.51 ± 0.38 TF 3 – 4: 0.62 ± 0.32 TF > 5: 0.67±0.41 p-value: 0.088 	uncertain, further research is needed to clarify whether or not fluoride may possibly have adverse effects on brain development." (p. 481) • "The fluoride content in the drinking water and the exposure dose were significantly higher in the moderate-to-severe
Sex: Men: 88 (54.7%) Exclusions: • Received topical fluoride			 Mean (±SD) exposure dose to fluoride (EDI) (mg/kg bw/day) by dental fluorosis categories TF 0: 0.016 ± 0.02 TF 1 − 2: 0.017 ± 0.02 TF 3 − 4: 0.035 ± 0.03 	fluorosis cases. The urinary fluoride level increased as the level of the severity of the dental fluorosis increased but no

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
application in last 6			○ TF > 5: 0.047±0.03	statistically		
months			o <i>p-value: 0.001</i>	significant		
• Have different reside	nce			difference was		
since time of pregnar	ncy			present." (p. 477 –		
Have mental illness			• Mean (±SD) water fluoride	478)		
diagnosis			levels (mg/L) by IQ			
Have systemic disord	der		categories			
diagnosis			o Grade I: 1.48 ± 1.13			
			o Grade II: 1.05 ± 1.06			
			o Grade III: 1.04 ± 1.06			
Source of funding /			○ Grade IV: 0.97 ± 1.10			
support:			○ Grade V: 0.79 ± 1.17			
PRODEP program of t	he		∘ <i>p–value: 0.645</i>			
Mexican Minister of						
Education (SEP)			 Mean (±SD) urinary fluoride 			
			levels (mg/L) by IQ grade			
Author declaration of	•		categories			
			○ Grade I: 0.45 ± 0.34			
interest:			○ Grade II: 0.54 ± 0.29			
No COI			○ Grade III: 0.61 ± 0.38			
			○ Grade IV: 0.56 ± 0.33			
			○ Grade V: 0.35 ± 0.19			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			○ <i>p–value: 0.559</i>		
			 Mean (±SD) exposure 		
			dose/daily intake by IQ	grade	
			categories		
			○ Grade I: 0.03 ±0.03		
			○ Grade II: 0.026 ±0.03		
			○ Grade III: 0.027 ±0.03	3	
			○ Grade IV: 0.029 ±0.0	3	
			○ Grade V: 0.016 ±0.02		
			∘ <i>p–value: 0.3</i> 89		

Risk of bias a	Risk of bias assessment						
Bias domain	Criterion	Res	ponse				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable				
	Was allocation to study groups adequately	N/A	Not applicable				

Risk of bias a	ssessment		
	concealed?		
	Did selection of study participants result in	++	Yes, participants were selected during the same
	appropriate comparison groups?		timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(received topical fluoride application in last 6 months,
			have different residence since time of pregnancy, have
			mental illness diagnosis, or have systemic disorder
			diagnosis)
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the ion
	characterization?		selective electrode (Orion 9609BNWP, Ionplus Sure-
			Flow Fluoride Electrode, Thermo Scientific, USA)
	Can we be confident in the outcome	++	Yes, outcome ++ Yes, outcome (dental

Risk of bias	Risk of bias assessment					
	assessment?		(IQ/intellectual ability)		fluorosis) was measured	
			was measured by an		by a single examiner,	
			independent		assisted by a recorder,	
			examiner, using the		using the Thysltrup and	
			Raven's Colored		Fejerskov Index. Lack of	
			Progressive Matrices		blinding of outcome	
			(RCPM). Lack of		assessors would not	
			blinding of outcome		appreciably bias results.	
			assessors would not			
			appreciably bias			
			results.			
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes	discu	ssed in methods were	
reporting			presented in results se	ction v	vith adequate level of detail	
			for data extraction			
Other	Were there no other potential threats to internal	++	None identified			
sources	validity (e.g., statistical methods were					
	appropriate and researchers adhered to the					
	study protocol)?					

Zhang 2019 [63]

Exposure	Outcome	Analysis & Results	Conclusions
Exposures:	Outcomes:	Statistical analysis:	Women who had
 Dental cleaning during pregnancy (DC) alone Community water fluoridation (CWF) alone DC and CWF combined 	Prevalence of preterm births (birth < 37 weeks gestation) Method of outcome ascertainment:	 Multivariate logistic regression Adjusted for maternal sociodemographic characteristics (age, race, nativity, education, 	dental cleaning during pregnancy and lived in a community with water fluoridation had lower prevalence of
Method of exposure assessment:	Derived from the infant's birth certificate	insurance), previous medical risk (diabetes,	preterm birth.
DC: PRAMS survey questionnaireCWF: MA Dept. of		behavioral factors (BMI)	
Public Health, Office of Oral Health		Results:Water fluoride levels:NR	
	Exposures: • Dental cleaning during pregnancy (DC) alone • Community water fluoridation (CWF) alone • DC and CWF combined Method of exposure assessment: • DC: PRAMS survey questionnaire • CWF: MA Dept. of Public Health, Office of	Exposures: Outcomes: Prevalence of preterm births (birth < 37 weeks gestation) Community water gestation) DC and CWF combined Method of exposure assessment: Derived from the infant's birth certificate CWF: MA Dept. of Public Health, Office of	Exposures: Outcomes: Statistical analysis: Multivariate logistic regression Community water gestation) Outcome Method of outcome ascertainment: Derived from the infant's birth certificate assessment: Derived from the combination of the public Health, Office of Oral Health Outcomes: Multivariate logistic regression Adjusted for maternal sociodemographic characteristics (age, race, nativity, education, income, health insurance), previous medical risk (diabetes, preterm births) and behavioral factors (BMI) Results: Water fluoride levels:

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Assessment			Prevalence of preterm		
Monitoring System)			birth among women with	า	
3 , ,			a singleton live birth wa	S	
			8.5% in Massachusetts.		
Sampling time frame	9 :		Overall, 58.7% of		
2009-2016			women had dental		
			cleaning during		
			pregnancy, and 63.6%		
Sample size (N):			lived in CWF.		
9,234			 Compared to women 		
			without DC and CWF		
Sex:			and adjusting for		
			potential confounders:		
Women: 100%			 Dental cleaning along 	9	
			and preterm birth:		
Exclusions:			significant (aRR =		
			0.74 [95% CI 0.55–		
Women with multiple	Э		0.98])		
births			o CWF alone and		
Missing data for der	ital		preterm birth: non-		

Study Characteri	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
cleaning during			significant (aRR =	
pregnancy, CWF	=,		0.81 [95% CI 0.63–	
and/or gestation	al age		1.05])	
 Missing data on 			○ DC–CWF and	
relevant materna	al		preterm birth:	
characteristics			significant (aRR =	
			0.74 [95% CI 0.57–	
	,		0.95]) were significar	nt
Source of fundin	ig/			
support:				
CDC				
Author declaration	on of			
interest:				
NR				

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level	N/A				

Risk of bias as	ssessment		
	adequately randomized?		
	Was allocation to study groups adequately	N/A	
	concealed?		
	Did selection of study participants result in		Yes, participants were selected using the same
	appropriate comparison groups?	++	criteria, during the same timeframe
Confounding	Did the study design or analysis account for		Yes, it accounted for major confounders such as
	important confounding and modifying variables?		maternal sociodemographic characteristics (age, race,
		++	nativity, education, income, health insurance), previous
			medical risk (diabetes, preterm births) and behavioral
			factors (BMI)
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or		Not considered a risk of bias as study reported that
	exclusion from analysis?		nonresponse adjustment factors were incorporated to
		++	address the increased likelihood of non-response from
			certain groups of women, such as those who had < 12
			years of education.
Detection	Can we be confident in the exposure	++	Yes, exposure was consistently measured using the

Risk of bias	Risk of bias assessment				
	characterization?		PRAMS survey questionnaire (DC), and the MA Dept.		
			of Public Health records (CWF)		
	Can we be confident in the outcome	++	Yes, outcome was retrieved from state infant birth		
	assessment?	T T	certificates		
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were		
reporting		++	presented in results section with adequate level of		
			detail for data extraction		
Other	Were there no other potential threats to internal		None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the	++			
	study protocol)?				

Zhou 2019 [64]

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	High intake of
Original study	Fluoride levels in drinking water	Prevalence of one of seven eye diseases	 Multiple logistic regression analysis 	fluoride may act directly and/or indirectly on the

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design:			Adjusted for age,	eyeball.
Cross-sectional Country: China	Method of exposure assessment: Fluoride levels in the blood, urine, and	Method of outcome ascertainment: Complete ocular examination	smoking, drinking habits, blood pressure, BMI, education, and annual income.	 Significant positive association of water fluoride levels with pterygium and
Participants:	drinking-water		Results: • Drinking-water fluoride:	arteriosclerotic retinopathy, and significant inverse
Residents (for ≥10 years) of the Han			>1.2 mg/L	association with cataract.
nationality in 1 of 12 villages in north east China, aged ≥40 years			 Fluoride in the drinking water was closely associated with: 	 Non-significant associations with primary angle
old, with no congenital eye disease or ocular trauma			 Cataract: OR: 0.543 (95% CI 0.310– 0.845). 	closure glaucoma, diabetic retinopathy, age-
Sampling time frame:			 Pterygium: OR: 1.991 (95% CI 1.931– 3.622). 	related macular degeneration, and strabismus.

Study Characte	Study Characteristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
NR			o Arteriosclerotic	
			retinopathy: OR:	
O	\ _		2.011 (95% CI 1.121	_
Sample size (N):		3.637).	
1,813			 Primary angle closure 	Э
			glaucoma: OR:1.179	
Savi			(95% CI: 0.788–	
Sex:			1.489).	
Men: 30%			 Diabetic retinopathy: 	
			OR: 1.845 (95% CI:	
Exclusions:			0.931–3.120).	
			o Age-related macular	
Less than 10 y	rears of		degeneration: OR:	
residence			1.048 (95% CI:	
congenital eye			0.735–2.221).	
disease or ocu	lar		○ Strabismus: OR:	
trauma			1.598 (95% CI:	
			0.936–2.689).	
Source of fund	ing/			
support:			 Compared to the contro 	I

Study Characteristics	Study Characteristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Center for Endemic			group:	
Disease Control			 Significant decrease 	
Chinese Center for			for cataract (14.9% in	
Disease Control and			exposed group,	
Prevention			24.7% in control	
			group)	
			 Significant increases 	
Author declaration of			for pterygium (7.7%	
interest:			in exposed group,	
No COI			3.2% in control	
			group)	
			 Significant increases 	
			for arteriosclerotic	
			retinopathy (17.6% in	
			exposed group, 6.4%	
			in control group).	
			 Non-significant 	
			associations with	
			primary angle closure	
			glaucoma, diabetic	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			retinopathy, age-		
			related macular		
			degeneration, and		
			strabismus		

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A			
	Was allocation to study groups adequately concealed?	N/A			
	Did selection of study participants result in	+	Whereas participants were selected using the same		
	appropriate comparison groups?	_	criteria, recruitment time frame was not reported		
Confounding	Did the study design or analysis account for		Except for gender (P<0.001), there was no significant		
	important confounding and modifying variables?		difference between the two groups (exposed vs		
		++	control) for the other the confounders such as age,		
			smoking and drinking habits, blood pressure, body		
			mass index, education, and the annual income.		
Performance	Were experimental conditions identical across study groups?	N/A			

Risk of bias	assessment		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	There was no attrition of exclusion of participants from the analysis in this study
Detection	Can we be confident in the exposure characterization?	+	Whereas the exposure was measured in drinking water, serum and urine, no information was provided on the methods/tests used in that regard
	Can we be confident in the outcome assessment?	+	Outcome was assessed using standard examinations. With no information provided, lack of blinding might have an impact on ocular assessments conducted on study participants.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Zhou 2019a [65]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"In conclusion, we
Original study Study design:	Fluoride levels in Drinking water samples Urine samples	Genotoxicity (Mitochondrial DNA (mtDNA) levels)	 Multivariable linear and logistic regression models Fluoride categorized into 	have showed that low-to-moderate concentrations of water fluoride and
Cross-sectional study	Method of exposure	Dental fluorosis (DF)Method of outcome	tertiles (T)Association of mtDNA with water and urinary fluoride	urinary fluoride were positively associated with DF prevalence,
Country: China	National standardized ion selective electrode method	ascertainment:mtDNA: quantitative real- time polymerase chain	levels were adjusted for age, gender, BMI, LBW, maternal education, paternal education, and	while inversely associated with circulating mtDNA levels. Additionally,
Participants: Children (7 to 13 years to age), from rural areas with low-to-moderate fluoride exposure in Tianjin Sampling time frame:	Exposure level in mg/L (P25 – P75): Non-DF group • Water: 0.70 (0.40 – 0.80) • Urine: 0.17 (0.09 – 0.31)	reaction assay • <u>DF</u> : Dean's classification system. Two independent experts conducted each examination. DF index was determined using the most serious form of fluorosis on ≥ 2 teeth	family income • Association of DF with water and urinary fluoride levels were adjusted for age, gender, BMI, LBW, maternal education, paternal education, and family income	our study indicates that the gender potentially modifies the associations of DF prevalence with relative mtDNA levels and low-to-moderate fluoride exposure,

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
2015	DF group			and that the reduced
	• Water: 1.60 (1.20 –	2.60)	Results:	mtDNA levels may
Sample size:	• Urine: 2.11 (0.45 –	,	mtDNA	partly mediate the
Sample Size.	`	,	IIIDNA	elevated prevalence
616			Change (95% CI) in	of moderate DF in
			mtDNA levels among	children under such
Cov N (0/)			those with water fluoride	exposure."
Sex N (%):			levels in T2 and T3	
Non-DF group			compared to T1 (mg/L)	
Men: 109 (45.4%)			<u>T1 (≤ 0.70)</u>	
,			Reference	
			<u>T2 (0.71 – 1.50)</u>	
DF group			B = -0.24 (-0.32, -0.15)	
Men: 202 (53.7%)			P = 0.035	
,			<u>T3 (> 1.50)</u>	
			B = -0.32 (-0.39, -0.24)	
Exclusions (from			P <0.001	
analysis):			Trend test	
Have cavities			P <0.001	
Have orthodontic			Change (95% CI) in	
appliances			mtDNA levels per 1 mg/L	
11			increase in water fluoride	

Study Characteristics	Study Characteristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			level	
Source of funding /			B = -0.10 (-0.14, -0.06)	
support:			P <0.001	
-			Change (95% CI) in	
• The State Key Program of			mtDNA levels among	
National Natural Science			those with urinary fluoride	
of China			levels in T2 and T3	
 The National Natural 			compared to T1 (mg/L)	
Science Foundation of			<u>T1 (≤ 0.21)</u>	
China			Reference	
The Fundamental Research			<u>T2 (0.22 – 2.08)</u>	
Funds for the Central			B = -0.03 (-0.12, 0.06)	
Universities			P = 0.516	
			<u>T3 (> 2.08)</u>	
			B = -0.27 (-0.35, -0.20)	
Author declaration of			P <0.001	
interest:			Trend Test	
NR			P <0.001	
			• Change (95% CI) in	
			mtDNA levels per 1 mg/L	
			increase in urinary fluoride)
			level	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			B = -0.12 (-0.14, -0.09)		
			P <0.001		
			Total DF		
			Odds (95% CI) of total D	F	
		among those with water			
			fluoride levels in T2 and	T3	
			compared to T1 (mg/L)		
			<u>T1 (≤ 0.70)</u>		
			Reference		
			<u>T2 (0.71 – 1.50)</u>		
			OR = 2.58 (2.02, 3.30)		
			P <0.001		
			<u>T3 (> 1.50)</u>		
			OR = 3.64 (2.91, 4.55)		
			P <0.001		
			Trend Test		
			P <0.001		
			 Odds (95% CI) of total D 	F	
			per 1 mg/L increase in		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			water fluoride level	
			OR = 1.47 (1.40, 1.55)	
			P <0.001	
			 Odds (95% CI) of total D 	F
			among those with urinary	/
			fluoride levels in T2 and	T3
			compared to T1 (mg/L)	
			<u>T1 (≤ 0.21)</u>	
			Reference	
			<u>T2 (0.22 – 2.08)</u>	
			OR = 1.49 (1.26, 1.77)	
			P <0.001	
			<u>T3 (> 2.08)</u>	
			OR = 3.16 (2.53, 3.95)	
			P <0.001	
			Trend Test	
			P <0.001	
			 Odds (95% CI) of total D 	F
			per 1 mg/L increase in	
			urinary fluoride level	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			OR = 1.39 (1.32, 1.46)	
			P <0.001	
			Very Mild DF	
			• Odds (95% CI) of very m	ild
			DF among those with	
			water fluoride levels in T	2
			and T3 compared to T1	
			(mg/L)	
			<u>T1 (≤ 0.70)</u>	
			Reference	
			<u>T2 (0.71 – 1.50)</u>	
			OR = 2.33 (1.55, 3.51)	
			P <0.001	
			T3 (> 1.50)	
			OR = 4.93 (3.48, 6.98)	
			P <0.001	
			Trend Test	
			P <0.001	
			• Odds (95% CI) of very m	ild
			DF per 1 mg/L increase	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			water fluoride level	
			OR = 1.85 (1.63, 2.11)	
			P <0.001	
			• Odds (95% CI) of very m	ild
			DF among those with	
			urinary fluoride levels in	T2
			and T3 compared to T1	
			(mg/L)	
			<u>T1 (≤ 0.21)</u>	
			Reference	
			T2 (0.22 – 2.08)	
			OR = 1.31 (0.92, 1.86)	
			P = 0.135	
			<u>T3 (> 2.08)</u>	
			OR = 4.02 (2.81, 5.74)	
			P <0.001	
			Trend Test	
			P <0.001	
			• Odds (95% CI) of very m	ild
			DF per 1 mg/L increase	n
			urinary fluoride level	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			OR = 1.57 (1.41, 1.76)	
			P <0.001	
			Mild DF	
			• Odds (95% CI) of mild D	F
			among those with water	
			fluoride levels in T2 and	Т3
			compared to T1 (mg/L)	
			<u>T1 (≤ 0.70)</u>	
			Reference	
			<u>T2 (0.71 – 1.50)</u>	
			OR = 4.17 (2.80, 6.20)	
			P <0.001	
			<u>T3 (> 1.50)</u>	
			OR = 6.88 (4.78, 9.92)	
			P <0.001	
			Trend Test	
			P <0.001	
			• Odds (95% CI) of mild D	F
			per 1 mg/L increase in	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			water fluoride level	
			OR = 1.68 (1.57, 1.79)	
			P <0.001	
			• Odds (95% CI) of mild D	F
			among those with urinary	/
			fluoride levels in T2 and	T3
			compared to T1 (mg/L)	
			<u>T1 (≤ 0.21)</u>	
			Reference	
			T2 (0.22 – 2.08)	
			OR = 1.79 (1.44, 2.23)	
			P <0.001	
			<u>T3 (> 2.08)</u>	
			OR = 5.99 (4.15, 8.66)	
			P <0.001	
			Trend Test	
			P <0.001	
			• Odds (95% CI) of mild D	F
			per 1 mg/L increase in	
			urinary fluoride level	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			OR = 1.56 (1.45, 1.67)	
			P <0.001	
			Moderate DF	
			• Odds (95% CI) of	
			moderate DF per 1 mg/L	
			increase in water fluoride)
			level	
			OR = 3.85 (3.01, 4.92)	
			P <0.001	
			• Odds (95% CI) of	
			moderate DF per 1 mg/L	
			increase in urinary fluorio	de
			level	
			OR = 2.85 (2.39, 3.39)	
			P <0.001	

Risk of bias assessment					
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, gender, BMI, low birth weight, maternal education, paternal education and family income		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (children with cavities or had orthodontic appliances during the investigarion period)		

Risk of bias	Risk of bias assessment				
Detection	Can we be confident in the exposure characterization? Can we be confident in the outcome assessment?		Yes, exposure was measured in water using the national standardized ion selective electrode method * Yes, outcome (dental fluorosis) was measured independently by two dentists using Dean's Fluorosis Index. * Yes, outcome (mitochondrial DNA) was measured using DNA samples extracted from lymphocytes using the DNA extraction kit (GK1042, Shanghai Generay Biotech Co., Ltd., Shanghai, China), and quantified using		
			the Nanodrop ND1000 (Thermo scientific, Wilmington, DE, USA). * Lack of blinding of outcome assessors would not appreciably bias results.		
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Bashash 2018 [66]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Positive association	
Original study Study design: Prospective cohort	 Fluoride levels in Maternal urinary samples (prenatal fluoride exposure 	 Attention-deficit/ hyperactivity disorder (ADHD) related symptoms in children between 6 to 12 years 	 Multivariate gamma regression models were used Models were adjusted for child 	between higher prenatal fluoride exposure and symptoms of inattention, but not	
study Country: Mexico	Method of exposure assessment: •≥ 1 second morning	of age Method of outcome ascertainment:	characteristics (gestational age, birth weight, sex, parity, age at outcome assessment) and	hyperactivity or impulse control, in a large Mexican cohort of children, suggesting neurotoxicity of early-	
Participants: Mother-child pairs residing in Mexico City enrolled in two of four cohorts of the Early Life Exposures to Environmental	void spot urine sample from gestational period was used and adjusted for creatinine • Number of participants (N) with	Conners' Rating Scales-Revised (CRS-R) Completed by mothers Used to evaluated ADHD related	maternal characteristics (smoking history, marital status, education, socioeconomic status, and cohort)	life exposure to fluoride	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Toxicants (ELEMENT)	maternal urinary	behaviours		
study; specifically, participants from cohorts 2A and 3 were included in the analysis.	fluoride measures adjusted for creatinine by trimester: 1st Trimester: N = 175 2nd Trimester:	• Scores the following: Cognitive Problems + Inattention, Restless- Impulsive, Hyperactivity, ADHD Index, DSM-IV	Results: Change (95% CI) in outcome per 0.5 mg/L unit increase in maternal urinary fluoride levels adjusted	
Sampling time frame:	N = 80	Inattention, DSM-IV Hyperactivity-	for creatinine	
Cohort 2A:	3 rd Trimester:	Impulsivity, and DSM-	• CRS-R scores (N =	
•1997 to 1999	N = 62	IV ADHD Total	210)	
Cohort 3:	Number of	Conners' Continuous	Cognitive Problems +	
•2001 to 2003	participants (N) by number of measurements	Performance Test, 2 nd edition (CPT-II) • Completed by children	Inattention β= 2.54 (0.44, 4.63) p= 0.0178	
Sample size (N): 213 Mother-child pairs	3 measurements: N = 14 2 measurements:	 Used to evaluate sustained attention and inhibitor control Scores the following: 	Restless-Impulsive β= 1.92 (-0.07, 3.91) p= 0.0586 Hyperactivity	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex: Girls:	N = 78 1 measurement:	Omission Errors, Commission Errors,	β= 1.05 (-0.91, 3.00) p= 0.2953	
•N (%) = 116 (54)	N = 122	and Hit Reaction Time Other Details	ADHD Index $\beta = 2.47 (0.43, 4.50)$	
Exclusions:	Exposure levels:	 CRS-R and CPT-II were completed 	p= 0.0175 <u>DSM-IV Inattention</u> β= 2.84 (0.84, 4.84)	
 No gestational urine sample available > 14 gestational weeks at recruitment Child behavioral tests not conducted during specified time period (6 to 12 years of age) History of psychiatric disorder(s) Medical complications 	 Mean (95% CI) level of fluoride in maternal urine adjusted for creatinine 0.85 mg/L (0.81, 0.90) 	 during the same visit Age and sex standardization were applied to outcome measures Experienced psychologist oversaw the psychometric tests performed 	p= 2.84 (0.84, 4.84) p= 0.0054 DSM-IV Hyperactivity- Impulsivity β = 1.69 (-0.33, 3.70) p= 0.1016 DSM-IV ADHD Total β = 2.38 (0.42, 4.34) p= 0.0176 • CPT-II scores (N = 210)	
Gestational use of alcohol/illegal drugs			Omission Errors β = 0.22 (-2.30, 2.74)	

Study Characteristics	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
by the mother Source of funding/			p= 0.8643 <u>Commission Errors</u> β = -0.43 (- 2.38 ,	
support: U.S. NIH, NIEHS/EPA, and the National Institute of Public Health/Ministry of Health of Mexico; facilities provided by the American British Cowdray Hospital	,		1.51) p= 0.6641 <u>Hit Reaction Time</u> β= 1.07 (-1.19, 3.32) p= 0.3546	
Author declaration of interest: NR	f			

Risk of bias assessment					
Bias domain	Criterion	Res	oonse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in		Participants were maternal-child pairs from Mexico		
	appropriate comparison groups?		City, and consisted of two of four cohorts from the		
			Early Life Exposure in Mexico to Environmental		
		++	Toxicants (ELEMENT) study. Time of recruitment was		
			from 1997 to 1999 for cohort 2A and 2001 to 2003 for		
			cohort 3; however, mean maternal urinary fluoride		
			levels adjusted for creatinine was not significantly		
			different between groups.		
Confounding	Did the study design or analysis account for		Yes, regression models were adjusted for child		
	important confounding and modifying variables?		characteristics (gestational age, birth weight, sex,		
			parity, and age at outcome assessment), and maternal		
		++	characteristics (smoking history, marital status,		
			education, socioeconomic status, and cohort).		
			Interaction between sex and maternal urinary fluoride		
			levels adjusted for creatinine was assessed in		

Risk of bias a	ssessment			
			sensitivity analysis.	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	231 mothers with a minimum of one MUFcr and a matching outcome (CRS-R or CPT-II) were identified for this project. However, complete demographic and outcome information were missing among 17 mother-child pairs, leaving 214 participants for our analyses, of whom 210 mother-child pairs had data for the CRS-R and CPT-II analyses (206 had data for both) (Fig. 1).	
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in maternal urinary samples collected during pregnancy. No difference in exposure assessment methods were reported between study participants.	
	Can we be confident in the outcome assessment?	+	Participants were recruited at 14 Participants were recruited at 14 recruited	

Risk of bias assessment		
	gestational weeks or	less, and outcomes were
	less, and outcomes	measured in children
	were measured in	between 6 to 12 years of
	children between 6	age; regression models
	to 12 years of age;	were adjusted for the age
	regression models	at outcome assessment.
	were adjusted for	Conners' Continuous
	the age at outcome	Performance Test (CPT-II)
	assessment.	was completed by the
	Conners' Rating	child. An experienced
	Scales-Revised	psychologist oversaw the
	(CRS-R) was	psychometric tests.
	completed by the	
	mother. " parents	
	were unaware of	
	their offspring's	
	fluoride exposure	
	status, removing	
	reporting bias as a	
	limitation. An	
	experienced	

Risk of bias a	ssessment		
			psychologist
			oversaw the
			psychometric tests.
			However, missing
			teacher assessment
			report is a major
			limitation.
Selective	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the methods section
reporting		++	were reported on in the results section.
Other	Were there no other potential threats to internal		None identified.
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Cui 2018 [67]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	• In the overall
Original study	Fluoride levels in urine samples	Intelligence quotient (IQ)	 Multiple linear regression models were used 	participants, the DRD2 Taq 1A polymorphism itself
Study design:			Model for overall were	was not related to IQ
Cross-sectional study	Method of exposure assessment:	Method of outcome ascertainment:	adjusted for age of child, maternal	scores in children who had a high level of
Country: China	Morning urine samples were collectedMeasured using ion	 Determined using the Combined Raven's Test – The Rural in China (CRT-RC) 	education, smoker in the family, stress, and anger • Model for DRD2 SNP	urine fluoride. In the CC/CT subgroup, urine fluoride levels and IQ
Participants: Children (7 to 12 years of age) from four schools in Tianjin found in locations with historic endemic (1.52 – 2.49 mg/L fluoride level in	selective electrode method Exposure levels: Median (interquartile range) levels of fluoride	method • Test was administered by professionals • Age-specific groups of the CRT-RC: Low: ≤ 69	of CC or CT was adjusted for age of child, maternal education, smoker in the family, stress, and anger • Model for DRD2 SNP	scores in children were unrelated. • Among the participants carrying the TT genotype, there was a strong and robust negative

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
drinking water) and non-endemic (0.20 – 1.00 mg/L levels of fluoride in drinking water) fluorosis. Sampling time frame:	in urine by DRD2 single nucleotide polymorphism (SNP) • <u>CC (N = 103)</u> 1.3 (0.9 – 1.6) • <u>CT (N = 179)</u> 1.2 (0.8 – 1.8) • <u>TT (N = 44)</u>	Borderline: 70 – 79 Low average: 80 – 89 Average: 90 – 109 High average: 110 – 119 Good: 120 – 129 Excellent: ≥ 30	of TT was adjusted for age of child and having a cold • Robust estimates of variance were acquired using a bootstrap procedure	linear relationship between log-urine fluoride and IQ scores in children after adjusting for child age and have a cold more than 5 times a year.
2014 – 2015	1.3 (1.0 – 2.0)		Result: • Change (95% CI) in	
Sample size (N): 323			IQ score per log-unit increase in urinary	
Sex:			fluoride among all participants and by	
Boys:			subgroups	
• N (%) = 177 (54.8) Exclusions:			Overall (N = 323) β = -2.47 (-4.93, -0.01) p = 0.049	

Study Characteristi	cs		
Study	Exposure	Outcome	Analysis & Results Conclusions
Informed consent			[Bootstrapped
forms not signed by	/		estimate: 95%CI = -
guardians			4.97, 0.03;
• Moved			p = 0.053
No measurement o	f		DRD2 SNP of CC or
dopamine receptor-	-2		CT (N = 279)
(DRD2) genotyping			β = - 1.59 (- 4.24,
			1.05)
Source of funding/			p = 0.236
support:			[Bootstrapped
			estimate:
National Nature			95%CI = -4.14, 0.95;
Science Foundation	n of		p = 0.220
China			DRD2 SNP of TT (N =
Scientific and			<u>44)</u>
Technological Proje			β = -12.31 (-18.69, -
of Tianjin Medicine	in		5.94)
2014			,
Scientific and			p = < 0.001
Technological Proje	ect		[Bootstrapped

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
of Tianjin Centers for			estimate:	
Disease Control and			95%CI = -19.66, -	
Prevention			4.96;	
			p = 0.001	
Author declaration of			•"the safety	
interest: None			threshold of urine	
			fluoride levels in the	
			subgroup TT was 1.73	
			mg/L (95% CI = (1.51	
			mg/L, 1.97 mg/L))" (p.	
			276)	

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately	N/A	Not applicable	

Risk of bias a	ssessment		
	concealed?		
	Did selection of study participants result in	++	Participants were children (7 to 12 years of age) from
	appropriate comparison groups?		four schools in Tianjin (2014-2015) found in locations
			with historical endemic (1.52 - 2.49 mg/L fluoride level
			in drinking water) and non-endemic (0.20 - 1.00 mg/L
			levels of fluoride in drinking water) fluorosis.
Confounding	Did the study design or analysis account for	++	Model for overall was adjusted for age of child,
	important confounding and modifying variables?		maternal education, smoker in the family, stress, and
			anger. Model for DRD2 SNP of CC or CT was
			adjusted for age of child, maternal education, smoker
			in the family, stress, and anger. Model for DRD2 SNP
			of TT was adjusted for age of child and having a cold.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human		Not applicable
	subjects blinded to the study group during the	N/A	
	study?		
Attrition	Were outcome data complete without attrition or	++	Reasons for exclusion were provided. A total of 400
	exclusion from analysis?		children (7-12 years old) were enrolled. Children who
			had no informed consent form signed by their

Risk of bias	assessment		
			guardians or moved out (n = 35) and no DRD2 genotyping measurement (n = 42) were excluded, leaving 323 children for the study.
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in urine. No differences in exposure assessment methods were reported between participants.
	Can we be confident in the outcome assessment?	++	The Combined Raven's Test - The Rural in China (CRT-RC) method was used by professionals to determine child IQ. Outcome unlikely to be affected by blinding status.
Selective reporting	Were all measured outcomes reported?	++	The outcome mentioned in the study objective was reported on in the results section.
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.

Jimenez-Cordova 2018 [68]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcomes:	Statistical analysis:	•"urinary excretion of	
Original study	Fluoride levels in • Drinking water	Kidney injury • Urine levels of	Multiple linear regression analysis	4 early kidney injury biomarkers (ALB, Cys-C, KIM-1 and	
Study design: Cross-sectional study	samples • Urine samples	albumin (ALB), cystatin-C (Cys-C), kidney injury molecule	was usedInteraction analysisbetween fluoride and	OPN) is related to environmental F exposure in an adult	
Country: Mexico	Co-exposure: Arsenic levels in Urine samples	1 (KIM-1), clusterin (CLU), osteopontin (OPN), and trefoil factor 3	 tAS was conducted Results considered significant at p < 0.05 and marginally 	population, without an As interaction effect. Our results suggest a	
Participants: Adult (18	o o mo odmpioo	(TIFF-3))	significant at p < 0.1	possible tubular	
to 77 years of age) residents of 3 Chihuahua	Method of exposure assessment:	Kidney functionGlomerular filtration	 ALB models were adjusted for specific gravity, protein (15 	dysfunction from F exposure that might increase susceptibility	
communities (El Sauz, Aldama, and Gpe.	Fluoride levels in water and urine samples	rate (eGFR)	mg/dL), protein (30 mg/dL), mine-worker,	to the future development of CKD." (p. 104)	
Victoria) exposed to fluoride via drinking	Potentiometric method using ion	Method of outcome	Diabetes, urine leucocytes, Age, sex	(6. 101)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
water	selective electrode Inorganic arsenic and	ascertainment:	 Cys-C models were adjusted for specific 	
Sampling time frame: July 2013	corresponding metabolite levels in urine samples • Hydride generation-	 eGFR Estimated using levels of creatinine (Creat) in serum and the Chronic Kidney 	gravit, protein (15 mg/dL), protein (30 mg/dL) amorphous urate crystals, and	
Sample size (N): 239	cryotrapping-atomic absorption	Disease Epidemiology Collaboration (CKD-	ageOPN models wereadjusted for specific	
Sex:	spectrometry using Perkin Elmer Analyst	EPI) formula • Commercial kit used	gravity, amorphous	
<u>Men</u>	400 spectrometer and	to determine Creat	urate crystals, age, and sex	
• N (%) = 68 (28.8)	multi-atomizer Total urinary arsenic	levels in urine Urinary kidney damage	• CLU models were	
Exclusions:	(tAS) is the sum of inorganic arsenic and	<u>biomarkers</u>	adjusted for specific gravity, protein (15	
< 18 years of ageInfrequent	corresponding	First morning void samples used	mg/dL), protein (30 mg/dL), smoking	
consumption of tap water	metabolites monomethylarsonic acid (MAs) or	Luminex xMAPTechnology usingMILLIPLEX MAP	index, age, and sex • KIM-1 models were	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Live in study area for< 1 year	dimethylarsinic acid (DMAs)	Human Kidney Toxicity panel 3 and 4	adjusted for specific gravity, amorphous	
Have cancer or kidney disease	Normalization of fluoride and tAS levels in urine	 Biomarker levels in urine were adjusted for specific gravity and 	urate crystals, mucoprotein, atherogenic index,	
Source of funding/ support: Mexican National	 Levine-Fahy method and urinary strip specific gravity 	Creatinine	and ageTFF-3 models wereadjusted for specificgravity, diabetes, age,	
Council of Science and Technology	Exposure levels: • Geometric mean		and sex •eGFR models were	
Author declaration of interest: None	(Interquartile range; IQR) level of water fluoride (mg/L); N =		adjusted for vascular diseases, cholesterol, alkaline phosphatase, and nephrotoxic drug	
	1.5 (0.19 – 1.8) • Geometric mean (IQR) level of urinary fluoride (μg/mL); N =		Results: • Change in outcome	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	236		(p-value) per unit	
	2.0 (1.1 – 3.5)		increase of fluoride in	
	 Geometric mean 		water (mg/L) and	
	(IQR) level of urin	nary	urine (µg/mL)	
	tAS (ng/mL); N =	236	<u>ALB (μg/mL)</u>	
	18.55 (10.6 – 34	1.1)	Water: β = 1.20 (p=	
	 Geometric mean 		<0.001)	
	(IQR) level of urin	nary	Urine: β = 0.56 (p=	
	inorganic As (ng/ı	mL);	<0.001)	
	N = 236		Cys-C (μg/mL)	
	1.8 (0.91 – 4.4)		Water: β = 0.03 (p=	
			0.005)	
			Urine: β = 0.022 (p=	
			0.001)	
			OPN (μg/mL)	
			Water: β= 0.10 (p=	
			0.028)	
			Urine: β = 0.038 (p=	
			0.041)	

Study Characte	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			CLU (μg/mL)		
			Water: β = 0.09 (p=		
			0.118)		
			Urine: β = 0.07 (p=		
			0.100)		
			KIM-1 (ng/mL)		
			Water: β = 0.045 (p=		
			0.162)		
			Urine: β = 0.048 (p=		
			0.008)		
			TFF-3 (ng/mL)		
			Water: β = 2.88 (p=		
			0.010)		
			Urine: β = 1.14 (p=		
			0.115)		
			eGFR (mL/min/1.73		
			<u>m²)</u>		
			Water: β = 0.19 (p=		

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results Conclusions			
			0.675)			
			Urine: β = 0.49 (p=			
			0.030)			

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in	++	Participants consisted of adult residents of 3	
	appropriate comparison groups?		Chihuahua communities in Mexico. The study was	
			conducted in July 2013.	
Confounding	Did the study design or analysis account for	++	Multiple linear regression models were adjusted for	
	important confounding and modifying variables?		several confounders. List of confounders vary by	
			outcome. See Table 4 on p. 102 for details. Arsenic	

Risk of bias a	Risk of bias assessment				
			was assessed for potential interaction with fluoride.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided for the study. "Adults who reported cancer or kidney disease were excluded from the study." (p. 98) Three participants without samples of urine were excluded.		
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in water and urine. No difference in exposure assessment methods were found between study participants.		
	Can we be confident in the outcome assessment?	++	Kidney injury biomarkers were measured in urine, and eGFR was estimated using levels of creatinine in serum and the Chronic Kidney Disease Epidemiology Collaboration formula. Blinding status unlikely to affect outcome assessment.		
Selective	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the abstract were		

Risk of bias assessment					
reporting			reported on in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

Kumar, V 2018 [69]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	■ Mean TSH, water
Original study	Fluoride levels in	Thyroid functional	• Chi-square and Mann	fluoride levels, urine fluoride levels and
	• water	<u>activity</u>	Whitney tests	serum fluoride levels
Study design:	SerumUrine	 Serum levels of free triiodothyronine (T3), 	 Results considered significant at p<0.05 	of subjects of group 1 were found to be
Cross-sectional study	Method of exposure	free thyroxine (T4), and thyroid stimulating hormone	Results:	significantly higher than that of subjects

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country: India Participants: Children (8 to 15 years of age) from endemic fluorosis	 assessment: Manual titration method, automatic analyzer, and radiometer 	(TSH) Method of outcome ascertainment: • Immuno	 Mean free T3 (pg/ml) by study group A: 3.125; B: 2.698 p = 0.26 Mean free T4 (ng/dL) 	of group 2 (p-value < 0.05). • Fluorosis and thyroid functional activity are positively correlated
area and fluorosis non- endemic area	Exposure levels: • Mean (range) level of	Chemiluminescence Mircroparticle Assay with Autoanalyzer	by study group A: 1.282; B: 1.193 p = 0.41 • Mean TSH (μIU/m) by	with each other. • Excessive fluoride levels also lead to alteration in thyroid
Sampling time frame: NR	water fluoride (ppm) by study groups A1: 1.1 (1.5 – 5)		study group A: 3.849; B: 2.588 p = 0.02	hormones activity
Sample size (N): 400 Group A (N = 200):	A2: 3.3 (1.8 – 5.8) B: 0.99 (0.94 – 1.08) • Range of urinary		Mean water fluoride (ppm) by study group	
Subjects from endemic fluorosis area	fluoride (ppm) level by study groups		A: 2.877; B: 1.020 p = 0.01 • Mean urinary fluoride	
• A1 (N = 100): Subjects with dental	A1: 0.27 – 8.6 A2: 0.6 – 7.64 B: 0.22 – 1.07		(ppm) by study group A: 2.982; B: 0.761	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
fluorosis	Range of serum		p = 0.02	
• A2 (N = 100):	fluoride (ppm) level		Mean serum fluoride	
Subjects with no	by study groups		(ppm) by study group	
dental fluorosis	A1: 0.05 – 0.71		A: 0.195; B: 0.059	
	A2: 0.05 – 0.71		p = 0.03	
Group B (N = 200):	B: 0.03 – 0.10		Percent (%) of thyroid	
Subjects from fluorosis			hormone level	
non-endemic area			derangement by study	
(controls)			group	
• Subjects with no			A: 67.5; B: 54	
dental fluorosis				
dental huorosis				
Cass ND				
Sex: NR				
Fuelveiene				
Exclusions:				
•≥ 15 years of age				
History of cancer,				
chronic disease, other				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
type of dental					
staining, and					
medication use tha	at				
interferes with thyr	roid				
Source of funding/	1				
support: None					
Author declaration	ı of				
interest: None					

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Res	oonse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		

Risk of bias as	ssessment		
	Did selection of study participants result in	+	Participants consisted of children 8 to 15 years of age.
	appropriate comparison groups?		Information on recruitment time frame and
			participation rate not found.
Confounding	Did the study design or analysis account for	_	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Subjects more than 15 years of age, or having history of the presence of any other form of dental staining, cancer/chronic disease and having thyroid-interfering medication were excluded from the study. Sample sizes were the same between study groups.
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in water, urine, and serum. No differences in exposure assessment methods were found between study groups.
	Can we be confident in the outcome	++	Thyroid hormones were measured in serum, and

Risk of bias	Risk of bias assessment				
	assessment?		therefore are unlikely to be affected by blinding status.		
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the introduction section were reported on in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

Kumar, S 2018 [70]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The severity of
Original study Study design:	Fluoride levels in • Water samples	Severity of Dental Fluorosis (DF)	 Logistic regression analysis conducted to examine association 	dental fluorosis is positively correlated with the fluoride content in the water.
Cross-sectional study	Method of exposure assessment:	Method of outcome ascertainment:	between DF and potential risk factors • Model variables include	The water fluoride content is the

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Country: India Participants: Adolescents (12 to 15 years of age) from 16 schools in Jhabua and Dhar districts	Electrochemical probe method IS-3025 (Part 60). Exposure level: Mean (SD) water fluoride levels Jhabua: 1.29 (±0.52) Dhar: 1.23 (±0.39)	 DF severity was determined using the Modified Dean Index Examinations were conducted by trained dentists Instruments included mouth mirror and community periodontal index probe 	location, water storage method, and water fluoride content • Statistical significance at p < 0.05 Results: Correlation between water	strongest predictor for dental fluorosis." (p. 6)	
Sampling time frame: January 2015 to July 2015			fluoride levels (ppm) and DF severity • r = 0.967; p = 0.000		
Sample size:			Odds (95% CI) of DF at >1.2ppm compared to ≤ 1.2ppm		
Sex N (%):			• OR = 1.764 (1.309, 2.377); p < 0.0001		

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Boys: 398 (49.75%	6)			
Exclusions:				
Medically compro	omised			
 Unwilling to partic 	cipate			
No parental cons	ent			
Source of funding	g /			
support:				
None that would				
influence the resul	ts			
Author declaration	on of			
interest:				
No COI				

Risk of bias a	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level	N/A	Not applicable
	adequately randomized?		
	Was allocation to study groups adequately	N/A	Not applicable
	concealed?		
	Did selection of study participants result in	++	Yes, participants were selected during the same
	appropriate comparison groups?		timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for	++	Yes, it considered for major confounders such as sex,
	important confounding and modifying variables?		residency, storage of water, dental hygiene, diet
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(unwilling to participate, medically compromised, or
			whose parents did not give consent)
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the

Risk of bias assessment				
characterization?		electrochemical probe me	thod IS	-3025 (Part 60).
Can we be confident in the outcome	++	Yes, outcome (dental	++	Yes, outcome
assessment?		fluorosis) was done by		(mitochondrial DNA)
		trained dentists, using	,	was measured
		Dean's modified index.		using DNA samples
		Lack of blinding of		extracted from
		outcome assessors		lymphocytes using
		would not appreciably		the DNA extraction
		bias results.		kit (GK1042,
				Shanghai Generay
				Biotech Co., Ltd.,
				Shanghai, China),
				and quantified using
				the Nanodrop
				ND1000 (Thermo
				scientific,
				Wilmington, DE,
				USA). Lack of
				blinding of outcome
				assessors would not
				appreciably bias

Risk of bias	Risk of bias assessment				
			results.		
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Malin 2018 [71]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures	Outcome(s)	Statistical analysis:	"Adults living in	
Original study	Fluoride levels in	Thyroid function	 Linear regression was 	Canada who have	
	Drinking water		used to model TSH levels	moderate-to-severe	
Study design:	• Urine	Method of outcome	as a function of urinary	iodine deficiencies and	
Cross-sectional study		ascertainment	fluoride and iodine levels	higher levels of urinary	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
	lodine level in	Serum TSH	• Adjusting for age, sex	fluoride may be at an	
Country:	• Urine		BMI, serum calcium)	increased risk for	
Canada				underactive thyroid	
	Method of exposure		Results	gland activity."	
Sampling period	ascertainment		Water fluoride (mg/L)		
Cycle 3 (2012 – 2013)	Water fluoride		Mean ±SD: 0.22 ±0.24		
	Basic anion exchange				
Participants:	chromatography.		Urinary fluoride (mg/L)		
Canadians (3-79) from 16			Mean ±SD: 0.94 ±1.05		
cities (CHMS)	<u>Urinary fluoride</u>				
	Non-fasting spot samples,		Change (95%CI) in serur	m	
Sample size:	analyzed using an Orion		TSH (mIU/L) per unit		
6,914,124	PH meter with a fluoride		increase in UFsg (mg/L)		
	ion selective electrode				
Sex (%):	after being diluted with an		No iodine deficiency		
Men: 51.54%	ionic adjustment buffer		ß = -0.02 (-0.19, 0.15)		
			p = 0.43		
Exclusions:	<u>lodine</u>				
 People living in the 3 	Colorimetric		<u>lodine deficiency</u>		
territories, remote areas,	microplate assay (using		$B = 0.36 \ (-0.03, \ 0.75)$		
reserves, or aboriginal	spot urine samples)		p = 0.03		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
settlements, full-time					
Canadian military, and	Water fluoride				
institutionalized persons	0.22 mg/L ±0.24				
 Use of thyroid drugs 					
 Prior thyroid diseases 	Urinary fluoride				
 Pregnancy with excess 	0.94 mg/L \pm 1.05				
iodine levels (> 2.37					
μmol/L)					
Source of funding:					
• SSHRC					
• CIHR					
• CFI					
Statistics Canada					
Conflict of interest:					
No COI					

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Were the comparison groups appropriate?	++	Participants 3-79 years old were recruited from 16 sites across all provinces from Cycle 3 (2012–2013) of the CHMS. Exclusions included: people living in the 3 territories, on reserves or other aboriginal settlements in the provinces, full-time members of the Canadian forces, institutionalized people, and those living in remote areas, pregnant women, those with thyroid conditions or abnormally high iodine levels. The overall response rate for all aspects of Cycle 3 was 79%	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes (sex, age, BMI, total household income, serum calcium level, specific gravity of urinary fluoride concentration)	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	

Risk of bias	assessment		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Missing data were<5% in all analyses except for household income which was reported by 77% of respondents; however, Statistics Canada provided imputed estimates for these missing values.
Detection	Can we be confident in the exposure characterization?	++	Yes, urinary fluoride was measured in non-fasting spot samples, adjusted for specific gravity (UFSG), and analyzed using an Orion PH meter with a fluoride ion selective electrode after being diluted with an ionic adjustment buffer. Samples were not standardized though with respect to collection time.
	Can we be confident in the outcome assessment?	++	TSH was measured in blood samples collected by a phlebotomist using a standard venipuncture method. Serum TSH was measured using a 3 rd generation assay analyzer equipped with a chemiluminescent detection system. Serum free T4 was analyzed using a competitive chemiluminescent immunoassay. Thyroid hormones were analyzed at the INSPQ on the Siemens ADVIA Centaur XP analyzer. Iodine

Risk of bias assessment					
			level was measured in spot urine samples by colorimetric microplate assay.		
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Mohd Nor 2018 [27]

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type: Original	Exposures:	Outcome(s):	Statistical analysis:	"Findings indicate	
study	Fluoride levels in public	Dental fluorosis	Binary logistic regression	that the change in	
	drinking water supply			fluoride level from 0.7	
	3 3 3 3 1 7 7			to 0.5 ppm has	
Study design: Cross		Method of outcome	Results:	reduced fluorosis and	

Study	Exposure	Outcome	Analysis & Results	Conclusions
sectional	Method of exposure	ascertainment:	• "The prevalence of	maintains a
Country: Malaysia Participants: Lifelong residents aged 9- and 12-year-olds	assessment: Water fluoride: NR Exposure level: Original: 0.7 ppm Reduced: 0.5 ppm	 Assessment of dental fluorosis was conducted by trained clinical and calibrated examiners (NAMN). Assessment of fluorosis was conducted by 	fluorosis (Dean's score ≥ 2) among children in the fluoridated area (35.7%, 95% CI: 31.9%-39.6%) was significantly higher (P < 0.001) than children in the nonfluoridated area	caries-preventive effect. Although there is a reduction in fluorosis prevalence, the difference was not statistically significant."
Sampling time frame: 2015 (calculated using the following information reported by the authors) • 9-year-old children (born between 1 January and 31 December 2006 • 12-year-old children (born between 1 January and 31 December 2003)		examining the maxillary central incisors using Dean's Fluorosis Index. • Consensus on outcome assessment must be achieved by agreement of two additional examiners, who did not participate in children's examination, with the initial examiner.	(5.5%, 95% CI: 3.6%-7.4%)." • "Of those in the fluoridated area, the prevalence of fluorosis decreased from 38.4% (95% CI: 33.1% 44.3%) for 12-year-olds to 31.9% (95% CI: 27.6%-38.2%) for 9-year-olds, although this difference was not statistically significant (P = 0.139)."	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sample size:			Fluorosis prevalence no		
1,143 children aged 9-12			(%)		
years old			(0) Normal		
Sex: Boys: 491 (43%)			Fluoridated: 342 (56.3)Nonfluoridated: 494 (90.	1)	
			(1) Questionable		
Exclusions:			• Fluoridated: 41 (6.8)		
 Children who missed clinical examination. 			Nonfluoridated: 23 (4.2)(2) Very mild		
 Children with unerupted, partially unerupted or 			Fluoridated:95 (15.7)Nonfluoridated: 23 (4.2)		
fractured incisor(s), or have a fixed orthodontic			(3) Mild		
appliance.			Fluoridated: 65 (10.7)Nonfluoridated: 5 (0.9)		
Source of funding /			(4) Moderate		
support:			Fluoridated:53 (8.7)		
Ministry of Higher			Nonfluoridated: 2 (0.4)		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Education, Malaysia			(5) Severe	
			• Fluoridated:0	
Author declaration of			Nonfluoridated: 0	
interest:			Not able to score	
No COI			• Fluoridated:11 (1.8)	
			• Nonfluoridated: 1 (0.2)	
			<u>Total</u>	
			• Fluoridated:607 (100.0)	
			Nonfluoridated: 548	
			(100.0)	
			Fluorosis (Deans > 0)	
			Fluoridated: 254 (42.6),	
			P<0.001	
			Nonfluoridated: 53 (9.7)	
			<u>Fluorosis (Deans ≥ 2)</u>	
			Fluoridated:213 (35.7),	
			P<0.001	
			Nonfluoridated: 30 (5.5)	

Study Characteris	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			Bivariate analysis of fluorosis prevalence with different fluoride exposures	n	
			<u>Fluorosis Deans ≥2</u>		
			0 ppm lifetimeN (%): 30 (12.30%)OR (95% CI), p-value:Ref.		
			0.5 ppm lifetime		
			N (%): 100 (41.2%)OR (95% CI), p-value: 8.45 (5.45-13.10), 0.001		
			0.7 ppm for first 2 years anthen 0.5 ppm	nd	
			N (%): 113 (46.5%)OR (95% CI), p-value: 10.88 (7.03-16.84), 0.00	1	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Any fluorosis: Deans > 0	
			0 ppm lifetime	
			• N (%): 53 (9.7%)	
			• OR (95% CI), p-value:	
			Ref.	
			0.5 ppm lifetime	
			• N (%): 123 (40.5%)	
			◆ OR (95% CI), p-value:	
			6.33 (4.40-9.12), 0.001	
			0.7 ppm for first 2 years a	nd
			then 0.5 ppm	
			• N (%): 161 (55.1%)	
			• OR (95% CI), p-value:	
			7.58 (5.26-10.93), 0.001	
			Fluorosis prevalence aft	er
			fluoride concentration in	1
			the water supply was	
			reduced	

Study Characteris	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			Fluorosis (Deans > 0)		
			% Prevalence 12-year-old	1	
			(PreReduction)		
			• Fluoridated: 44.6		
			 Nonfluoridated (control): 		
			10.3		
			% Prevalence 9-year-old		
			(PostReduction)		
			• Fluoridated: 39.3		
			Nonfluoridated (control):		
			8.9		
			% Difference (post-pre)		
			Fluoridated: −5.3		
			 Nonfluoridated (control): 		
			-1.4		
			% Difference (pre)		
			• Fluoridated: 34.3		
			% Difference (post)		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• Fluoridated: 30.4	
			Fluorosis (Deans ≥ 2)	
			% Prevalence 12-year-old	1
			(PreReduction)	
			• Fluoridated: 38.4	
			 Nonfluoridated (control): 	
			4.7	
			% Prevalence 9-year-old	
			(PostReduction)	
			Fluoridated: 31.9	
			Nonfluoridated (control):	
			6.5	
			% Difference (post-pre)	
			Fluoridated: −6.5	
			 Nonfluoridated (control): 	
			1.8	
			% Difference (pre)	

Study Characteristics					
Exposure	Outcome	Analysis & Results	Conclusions		
		• Fluoridated: 33.7			
		% Difference (post)			
		• Fluoridated: 25.4			
	Exposure	Exposure Outcome	• Fluoridated: 33.7 % Difference (post)		

Risk of bias as	ssessment		
Bias domain	Criterion		ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across	N/A	Not applicable

Risk of bias	assessment		
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(children who missed clinical examination, or children
			with unerupted, partially unerupted or fractured incisor(s),
			or have a fixed orthodontic appliance).
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from public
	characterization?		water supply records
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured using the
	assessment?		Dean's Index by 1 clinical examiner and verified by 2
			trained examiners who were not involved in the clinical
			examination. The diagnosis of dental fluorosis was
			confirmed only based on agreement of three out of four
			dentists of each group agreed. conditions. All examiners
			were blinded to the exposure status, with unique coding
			of each photograph.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
			presented in results section with adequate level of detail

Risk of bias	Risk of bias assessment					
reporting			for data extraction			
Other	Were there no other potential threats to internal	++	None identified			
sources	validity (e.g., statistical methods were					
	appropriate and researchers adhered to the					
	study protocol)?					

Mustafa 2018 [72]

Study Characteristics	5			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	Life-long fluoride
Original study	Fluoride levels in	• Schooling	• Pearson correlation	intake from combined
	 Groundwater samples 	performance (average	analysis was	sources for adolescents in the
Study design:		score and high score	conducted	
Otady acoign.		[> 70%] prevalence)		United States were
Ecological study	Method of exposure		Decultor	not strongly
	assessment:	Mart - Lafauta	Results:	associated with pQCT
	Rainy and dry season	Method of outcome	Ground water fluoride	bone measures at age

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country: Sudan	samples were	ascertainment:	<u>Dry season</u>	17.
	acquired from rural	Subjects assessed	0.14 – 2.07 mg/L	Findings provide
Participants: primary	parts of Khartoum	• Islamic studies I		support to the
school students (6 to	state	Islamic studies II	Rainy season	assertion that fluoride
14 years of age)	• A sample of 16	Arabic	0.01 – 1.34 mg/L	intakes, within these
residents of rural areas	groundwater wells were collected per	• English	Correlation between	ranges, are not associated with
in Khartoum state	season	Mathematics	average level of	adverse
	Analyzed "using	Sciences	fluoride in drinking	consequences on
Sampling time frame:	SPADNS reagent as	History	water (mg/L) and	bone outcome
NR	described by	Technology	average school	measures by age 17.
	Standard Methods."	Primary examination	performance score	
	(p. 105)	<u>results</u>	(%) by subject	
Sample size (N):		 Acquired from the 	Islamic studies I	
N = 775	Exposure levels:	Ministry of Education-	r = -0.50; p = 0.008	
	 Range for levels of 	Khartoum State	Islamic studies II	
Sex:	fluoride in	 Obtained for schools in locations sampled 	r = -0.47; p = 0.013	
● Boys N = 315	groundwater by season	for groundwater	<u>Arabic</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions: NR	Dry season		r = -0.32; p = 0.11	
	0.14 – 2.07 mg/L <u>Rainy season</u>		<u>English</u>	
Source of funding/	0.01 – 1.34 mg/L		r = -0.46; $p = 0.016$	
support:			<u>Mathematics</u>	
Primary school results			r = - 0.33; p = 0.097	
from the Ministry of			<u>Sciences</u>	
Education-Khartoum			r = -0.53; p = 0.005	
State			•	
• Financial support from			<u>History</u>	
the Department of Research, Ministry of			r = -0.59; $p = 0.001$	
Higher Education and			<u>Technology</u>	
Scientific Research,			r = -0.30; $p = 0.158$	
Sudan			Overall score	
			r = -0.51; p = 0.007	
Author declaration of				
interest: NR			 Correlation between 	
			average level of	

Study Characte	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			fluoride in drinking		
			water (mg/L) and the		
			prevalence of high		
			school performance		
			score (%) by subject		
			Islamic studies I		
			r = -0.59; $p = 0.001$		
			Islamic studies II		
			r = -0.35; $p = 0.078$		
			<u>Arabic</u>		
			r = -0.47; $p = 0.014$		
			<u>English</u>		
			r = -0.41; $p = 0.034$		
			Mathematics		
			r = -0.39; $p = 0.045$		
			<u>Sciences</u>		
			r = -0.60; $p = 0.001$		
			<u>History</u>		
			r = -0.46; p = 0.016		
			Technology		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			r = -0.22; p = 0.265		
			Overall score		
			r = -0.48; p = 0.012		

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	+	Participants consisted of children (6 to 14 years of age) in primary school who resided in rural areas of Khartoum state. The recruitment timeframe was not found.	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	_	NR	

Risk of bias a	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	No mention of excluding participants or missing data.
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in groundwater. No difference in exposure assessment methods was found between study areas.
	Can we be confident in the outcome assessment?	++	Primary examination results provided by the Ministry of Education-Khartoum State were used to determine school performance. "The examinations are set and organized by the educational authorities of each state" (p. 105). Outcome unlikely to be affected by blinding status.
Selective reporting	Were all measured outcomes reported?	++	Outcomes mentioned in the abstract were also reported on in the results section.
Other	Were there no other potential threats to internal	+	Exposure was assessed at each study area. As

Risk of bias assessment				
sources	validity (e.g., statistical methods were		individual levels of exposure were not measured, the	
	appropriate and researchers adhered to the		possible variation between participants within a study	
	study protocol)?		area could not be accounted for in the analysis (i.e.	
			the potential exposure difference between those who	
			drink more water than those who drink less water).	

Oweis 2018 [73]

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	●"In summary, the
Original study	Period-specific daily intake of fluoride	Radial and tibial bone characteristics	Multivariate regression models	findings show that the effects of life-long fluoride intake from
Study design: Prospective cohort study	 Birth to 8.5 years 8.5 to 14 years 14 to 17 years Birth to 17 years Cumulative average 	 Cortical content Cortical density Trabecular content Trabecular density Compression strength 	were used • Models were adjusted for height, weight, calcium and protein intake, time since	combined sources for adolescents in the United States were not strongly associated with pQCT

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country: USA	daily intake of fluoride Birth to 17 years	Torsion strength	peak height velocity (PHV), and physical	bone measures at age 17 the study
Participants: Adolescents (17 years of age) whose families	Method of exposure assessment:	Method of outcome ascertainment: • Peripheral quantitative	Results wereconsidered significant	support to the assertion that fluoride
were recruited into the lowa Fluoride Study (IFS) from hospitals following birth	 Questionnaires were administered to determine fluoride 	computed tomography (pQCT) used to acquire measurements at 17	at p < 0.01 • Results were considered suggestive at 0.01 <p<0.05< td=""><td>intakes, within these ranges, are not associated with adverse</td></p<0.05<>	intakes, within these ranges, are not associated with adverse
Sampling time frame:	intake frequency and amounts, and were distributed at the following time periods: " ages 1.5, 3, 6, and 9	years of age The total compression strength of the bone was calculated using	Results: RADIAL BONE - GIRLS	consequences on bone outcome measures by age 17." (p. 9)
1992 to 1995 lowa Bone Development Study (IBDS) – IFS Subset 1998 to 2000	months, then every four months up to age 4 years, and then every 6 months up to age 17 years." (p. 5) • Sources of exposure	the total area and total density Radiographic imaging was performed by technicians (N = 2) who were certified	 Change (SE) in trabecular content (mg) per 1 mg unit increase in daily fluoride intake during the specified time 	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size (N): 380 Sex (N):	assessed include " water, other beverages, selected foods, dietary fluoride supplements, and	with the International Society of Clinical Densitometry (ISCD) • "The non-weight bearing, non-	period among girls 0 to 8.5 years (N = 140) β = -2.60 (2.53) p = 0.31	
• Boys N = 176 Exclusions: NR	ingested fluoride toothpaste" (p. 4) • Assays of individual and filtered water, select foods, and	dominant arm, and the weight-bearing left leg were selected for imaging." (p. 4)	8.5 to 14 years (N = $\frac{125}{125}$) $\beta = -0.15$ (2.21) $\beta = 0.95$ 14 to 17 years (N =	
Source of funding/	beverages were		<u>122)</u>	
 support: NIH grants Wright-Bush Shreves Endowed Professor Fund University of Iowa 	performed to determine the amount of fluoride • State health department records were used to determine levels of fluoride in public water		β = 0.09 (1.84) p = 0.96 0 to 17 years (N = 112) β = 0.59 (3.30) p = 0.86 • Change (SE) in trabecular density	
Author declaration of	·		Taboodial delisity	

Study characteri	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
interest: NR	Exposure levels: • Range for level of fluoride intake Women: 0.7 - 0.7 /day Men: 0.7 - 0.9 m /day.	of .8 mg	Analysis & Results (mg/cm^3) per 1 mg unit increase in daily fluoride intake during the specified time period among girls 0 to 8.5 years (N = 140) $\beta = 2.22 (9.50)$ $p = 0.82$ 8.5 to 14 years (N = 125) $\beta = -3.79 (8.08)$	Conclusions	
			p = 0.64 14 to 17 years (N = 122) β = 3.70 (6.59) p = 0.58 0 to 17 years (N = 112)		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = 0.99 (12.14)		
			p = 0.94		
			Change (SE) in		
			cortical content (mg)		
			per 1 mg unit increase)	
			in daily fluoride intake		
			during the specified		
			time period among		
			girls		
			0 to 8.5 years (N =		
			<u>140)</u>		
			β = -5.79 (2.54)		
			p = 0.03		
			8.5 to 14 years (N =		
			<u>125)</u>		
			β = -0.74 (2.19)		
			p = 0.74		
			14 to 17 years (N =		
			<u>122)</u>		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = -1.19 (1.76)		
			p = 0.50		
			0 to 17 years (N =		
			<u>112)</u>		
			β = -3.19 (3.33)		
			p = 0.34		
			Change (SE) in		
			cortical density		
			(mg/cm ³) per 1 mg		
			unit increase in daily		
			fluoride intake during		
			the specified time		
			period among girls		
			<u>0 to 8.5 years (N = </u>		
			<u>140)</u>		
			$\beta = 5.30 (4.44)$		
			p = 0.24		
			8.5 to 14 years ($N =$		
			<u>125)</u>		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = -4.30 (3.63)		
			p = 0.24		
			14 to 17 years (N =		
			<u>122)</u>		
			$\beta = 0.42 (3.05)$		
			p = 0.89		
			<u>0 to 17 years (N = </u>		
			<u>112)</u>		
			β = -2.28 (5.46)		
			p = 0.68		
			Change (SE) in		
			compression strength		
			(mg ² /mm ⁴) per 1 mg		
			unit increase in daily		
			fluoride intake during		
			the specified time		
			period among girls		
			0 to 8.5 year (N =		
			<u>140)</u>		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = -1.08 (2.42)		
			p = 0.66		
			8.5 to 14 year (N =		
			<u>125)</u>		
			β = -1.21 (2.12)		
			p = 0.57		
			14 to 17 years (N =		
			<u>122)</u>		
			$\beta = 0.09 (1.76)$		
			p = 0.96		
			0 to 17 years (N =		
			<u>112)</u>		
			β = -2.00 (3.10)		
			p = 0.52		
			Change (SE) in		
			torsion strength (mm ³	3)	
			per 1 mg unit increas	e	
			in daily fluoride intake	•	
			during the specified		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			time period among		
			girls		
			<u>0 to 8.5 years (N = $\frac{1}{2}$ = $\frac{1}{2}$) = $\frac{1}{2}$ $\frac{1}{$</u>		
			<u>140)</u>		
			β = -31.42 (12.28)		
			p = 0.02		
			8.5 to 14 years (N =		
			<u>125)</u>		
			β = -3.76 (9.95)		
			p = 0.71		
			14 to 17 years (N =		
			<u>122)</u>		
			β = -7.34 (7.73)		
			p 0.35		
			0 to 17 years (N =		
			<u>112)</u>		
			β =-21.00 (14.95)		
			p = 0.17		
			1		

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			RADIAL BONE -	
			BOYS	
			Change (SE) in	
			trabecular content	
			(mg) per 1 mg unit	
			increase in daily	
			fluoride intake during	
			the specified time	
			period among boys	
			0 to 8.5 years (N =	
			<u>125)</u>	
			β = -4.83 (3.85)	
			p = 0.21	
			8.5 to 14 years (N =	
			<u>112)</u>	
			β = -1.79 (3.52)	
			p = 0.61	
			14 to 17 years (N =	
			<u>115)</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 1.41 (2.57)	
			p = 0.59	
			0 to 17 years ($N =$	
			<u>105)</u>	
			β =-5.63 (4.28)	
			p = 0.19	
			Change (SE) in	
			trabecular density	
			(mg/cm ³) per 1 mg	
			unit increase in daily	
			fluoride intake during	
			the specified time	
			period among boys	
			<u>0 to 8.5 years (N = </u>	
			<u>125)</u>	
			β = 0.36 (10.77)	
			p = 0.98	
			8.5 to 14 years (N =	
			<u>112)</u>	

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = -3.36 (9.22)		
			p = 0.72		
			14 to 17 years (N =		
			<u>115)</u>		
			$\beta = 1.27 (7.00)$		
			p = 0.86		
			0 to 17 years ($N =$		
			<u>105)</u>		
			β = -7.88 (11.51)		
			p = 0.50		
			Change (SE) in		
			cortical content (mg)		
			per 1 mg unit increase	е	
			in daily fluoride intake)	
			during the specified		
			time period among		
			boys		
			<u>0 to 8.5 years (N = </u>		
			<u>125)</u>		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = 2.94 (4.04)		
			p = 0.47		
			8.5 to 14 years (N =		
			<u>112)</u>		
			β = -0.36 (3.49)		
			p = 0.92		
			14 to 17 years (N =		
			<u>115)</u>		
			β = 1.82 (2.63)		
			p = 0.49		
			<u>0 to 17 years (N = </u>		
			<u>105)</u>		
			$\beta = 0.37 (4.10)$		
			p = 0.93		
			Change (SE) in		
			cortical density		
			(mg/cm ³) per 1 mg		
			unit increase in daily		
			fluoride intake during		

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			the specified time	
			period among boys	
			<u>0 to 8.5 years (N = </u>	
			<u>125)</u>	
			β = 11.64 (6.09)	
			p = 0.06	
			8.5 to 14 years (N =	
			<u>112)</u>	
			$\beta = 0.92 (4.94)$	
			p = 0.86	
			14 to 17 years (N =	
			<u>115)</u>	
			β = -0.51 (3.73)	
			p = 0.90	
			0 to 17 years (N =	
			<u>105)</u>	
			β = -0.21 (6.16)	
			p = 0.98	
			∙ Change (SE) in	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			compression strength	
			(mg ² /mm ⁴) per 1 mg	
			unit increase in daily	
			fluoride intake during	
			the specified time	
			period among boys	
			0 to 8.5 years (N =	
			<u>125)</u>	
			β = 2.70 (4.29)	
			p = 0.53	
			8.5 to 14 years (N =	
			<u>112)</u>	
			β = -0.79 (3.65)	
			p = 0.83	
			14 to 17 years (N =	
			<u>115)</u>	
			$\beta = 1.83 (2.80)$	
			p = 0.52	
			0 to 17 years (105)	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			$\beta = 0.72 (4.43)$	
			p = 0.88	
			Change (SE) in	
			torsion strength (mm ³)	
			per 1 mg unit increase	•
			in daily fluoride intake	
			during the specified	
			time period among	
			boys	
			<u>0 to 8.5 years (N = </u>	
			<u>125)</u>	
			β = -1.08 (19.57)	
			p = 0.96	
			8.5 to 14 years (N =	
			<u>112)</u>	
			β = -2.02 (16.68)	
			p = 0.91	
			14 to 17 years (N =	
			<u>115)</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 14.60 (12.40)	
1			p = 0.24	
			0 to 17 years (N =	
			<u>105)</u>	
			$\beta = 8.05 (19.62)$	
			p = 0.69	
			TIBIAL BONE - GIRLS	3
			• Change (SE) in	
			trabecular content	
			(mg) per 1 mg unit	
			increase in daily	
			fluoride intake during	
			the specified time	
			period among girls	
			0 to 8.5 years (N =	
			<u>136)</u>	
			$\beta = 2.77 (7.78)$	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			p = 0.73	
			8.5 to 14 years (N =	
			<u>121)</u>	
			β = 2.86 (6.37)	
			p = 0.66	
			14 to 17 years (N =	
			<u>119)</u>	
			β = -0.25 (5.60)	
			p = 0.97	
			<u>0 to 17 years (N = </u>	
			<u>109)</u>	
			$\beta = 0.24 \ (10.07)$	
			p = 0.98	
			Change (SE) in	
			trabecular density	
			(mg/cm ³) per 1 mg	
			unit increase in daily	
			fluoride intake during	
			the specified time	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			period among girls	
			0 to 8.5 years (N =	
			<u>136)</u>	
			$\beta = 0.38 \ (9.28)$	
			p = 0.97	
			8.5 to 14 years (N =	
			<u>121)</u>	
			β = -1.97 (7.70)	
			p = 0.80	
			14 to 17 years (N =	
			<u>119)</u>	
			$\beta = 1.24 (6.10)$	
			p = 0.84	
			<u>0 to 17 years (N = </u>	
			<u>109)</u>	
			β = -8.66 (11.63)	
			p = 0.46	
			Change (SE) in	
			cortical content (mg)	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			per 1 mg unit increase	•
			in daily fluoride intake	
			during the specified	
			time period among	
			girls	
			0 to 8.5 years (N =	
			<u>136)</u>	
			β = -11.97 (9.97)	
			p = 0.23	
			8.5 to 14 years (N =	
			<u>121)</u>	
			β = 14.18 (8.01)	
			p = 0.08	
			14 to 17 years (N =	
			<u>119)</u>	
			$\beta = 11.49 (6.25)$	
			p = 0.07	
			0 to 17 years (N =	
			109)	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 14.24 (11.95)	
			p = 0.24	
			Change (SE) in	
			cortical density	
			(mg/cm ³) per 1 mg	
			unit increase in daily	
			fluoride intake during	
			the specified time	
			period among girls	
			<u>0 to 8.5 years (N = </u>	
			<u>136)</u>	
			$\beta = 6.44 \ (4.91)$	
			p = 0.19	
			8.5 to 14 years (N =	
			<u>121)</u>	
			β = -6.64 (3.84)	
			p = 0.09	
			14 to 17 years (N =	
			<u>119)</u>	

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = -1.11 (3.10)	
			p = 0.72	
			<u>0 to 17 years (N = </u>	
			<u>109)</u>	
			β = -0.86 (6.07)	
			p = 0.89	
			Change (SE) in	
			compression strength	
			(mg ² /mm ⁴) per 1 mg	
			unit increase in daily	
			fluoride intake during	
			the specified time	
			period among girls	
			0 to 8.5 years (N =	
			<u>136)</u>	
			β = -5.39 (5.56)	
			p = 0.34	
			8.5 to 14 years (N =	
			<u>121)</u>	

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			$\beta = 0.96 (4.67)$	
			p = 0.84	
			14 to 17 years (N =	
			<u>119)</u>	
			$\beta = 3.17 (3.72)$	
			p = 0.40	
			0 to 17 years (N =	
			<u>109)</u>	
			β = -1.62 (6.82)	
			p = 0.82	
			Change (SE) in	
			torsion strength (mm ³	()
			per 1 mg unit increase	е
			in daily fluoride intake)
			during the specified	
			time period among	
			girls	
			0 to 8.5 years (N =	
			<u>136)</u>	

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = -111.79 (60.22)	
			p = 0.07	
			8.5 to 14 years (N =	
			<u>121)</u>	
			β = 111.99 (49.32)	
			p = 0.03	
			14 to 17 years (N =	
			<u>119)</u>	
			$\beta = 44.73 \ (38.60)$	
			p = 0.25	
			0 to 17 years (N =	
			<u>109)</u>	
			β = 64.15 (74.10)	
			p = 0.39	
			TIBIAL BONE - BOYS	
			∙ Change (SE) in	
			trabecular content	

Study character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			(mg) per 1 mg unit	
			increase in daily	
			fluoride intake during	
			the specified time	
			period among boys	
			0 to 8.5 years (N =	
			<u>124)</u>	
			β = -1.95 (9.08)	
			p = 0.84	
			8.5 to 14 years (N =	
			<u>111)</u>	
			$\beta = 0.02 (7.82)$	
			p = 0.99	
			14 to 17 years (N =	
			<u>114)</u>	
			$\beta = 9.77 (5.84)$	
			p = 0.10	
			0 to 17 years (N =	
			<u>104)</u>	

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = -5.82 (9.37)	
			p = 0.54	
			Change (SE) in	
			trabecular density	
			(mg/cm ³) per 1 mg	
			unit increase in daily	
			fluoride intake during	
			the specified time	
			period among boys	
			<u>0 to 8.5 years (N = </u>	
			<u>124)</u>	
			$\beta = 9.91 \ (9.63)$	
			p = 0.31	
			8.5 to 14 years (N =	
			<u>111)</u>	
			β = 2.65 (8.43)	
			p = 0.76	
			14 to 17 years (N =	
			<u>114)</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 6.64 (6.32)	
			p = 0.30	
			0 to 17 years (N =	
			<u>104)</u>	
			β = 7.31 (10.37)	
			p = 0.49	
			Change (SE) in	
			cortical content (mg)	
			per 1 mg unit increas	е
			in daily fluoride intake)
			during the specified	
			time period among	
			boys	
			0 to 8.5 years (N =	
			<u>124)</u>	
			β = 13.74 (13.05)	
			p = 0.30	
			8.5 to 14 years (N =	
			<u>111)</u>	

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 13.18 (11.40)	
			p = 0.25	
			14 to 17 years (N =	
			<u>114)</u>	
			$\beta = 21.40 \ (8.38)$	
			p = <0.01	
			<u>0 to 17 years (N = </u>	
			<u>104)</u>	
			β = 16.19 (13.63)	
			p = 0.24	
			Change (SE) in	
			cortical density	
			(mg/cm ³) per 1 mg	
			unit increase in daily	
			fluoride intake during	
			the specified time	
			period among boys	
			<u>0 to 8.5 years (N = </u>	
			<u>124)</u>	

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			$\beta = 7.37 (5.50)$	
			p = 0.19	
			8.5 to 14 years (N =	
			<u>111)</u>	
			β = -7.16 (4.37)	
			p = 0.11	
			14 to 17 years (N =	
			<u>114)</u>	
			β = -3.52 (3.46)	
			p = 0.31	
			0 to 17 years (N =	
			<u>104)</u>	
			β = -0.06 (5.52)	
			p = 0.99	
			Change (SE) in	
			compression strength	
			(mg ² /mm ⁴) per 1 mg	
			unit increase in daily	
			fluoride intake during	

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			the specified time	
			period among boys	
			<u>0 to 8.5 years (N = </u>	
			<u>124)</u>	
			β = 10.96 (7.81)	
			p = 0.17	
			8.5 to 14 years (N =	
			<u>111)</u>	
			β = 7.53 (6.92)	
			p = 0.28	
			14 to 17 years (N =	
			<u>114)</u>	
			β = 10.58 (5.22)	
			p = 0.05	
			0 to 17 years (N =	
			<u>104)</u>	
			$\beta = 9.37 \ (8.34)$	
			p = 0.27	
			• Change (SE) in	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			torsion strength (mm ³)	
			per 1 mg unit increase	
			in daily fluoride intake	
			during the specified	
			time period among	
			boys	
			0 to 8.5 years (N =	
			<u>124)</u>	
			β = 93.65 (87.79)	
			p = 0.29	
			8.5 to 14 years (N =	
			<u>111)</u>	
			β = 72.06 (74.95)	
			p = 0.34	
			14 to 17 years (N =	
			<u>114)</u>	
			β = 175.06 (56.42)	
			p = <0.01	
			0 to 17 years (N =	

Study character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>104)</u>	
			$\beta = 90.24 \ (95.28)$	
			p = 0.35	

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in	++	Participants were adolescents (17 years of age),	
	appropriate comparison groups?		whose families were recruited from lowa hospitals	
			following birth. The time of sampling for the lowa	
			Fluoride Study (IFS) was from 1992 to 1995, and for	
			the Iowa Bone Development Study (IBDS), a subset of	
			IFS, was from 1998 to 2000.	
Confounding	Did the study design or analysis account for	++	Mutlivariable regression models were adjusted for height, weight, time since PHV [Peak Height Velocity],	

Risk of bias a	Risk of bias assessment				
	important confounding and modifying variables?		calcium and protein intake, and physical activity		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion and missing data were reported. Specifically, [n]ine tibial scans at 4% and 38% combined had movement artifacts and were excluded from the analyses. [a] 20% lower sample size resulted when calcium, protein, and physical activity were added to the model due to missing data."		
			Interpolation was used when assessing fluoride intake: period-specific daily fluoride intakes in mg F/day were determined using area-under-the-curve (AUC). Each AUC required data at the upper and lower endpoints, with endpoints allowed to be interpolated from estimates within 7 months of the stated endpoints. The		

Risk of bias a	Risk of bias assessment			
Detection	Can we be confident in the exposure characterization?		cumulative 'average' daily fluoride intake in mg from birth to age 17 years was calculated using AUC, with the requirements that each participant have at least one daily fluoride intake estimate recorded, obtained or interpolated for each of the period-specific fluoride intakes. If a time point was missing, linear interpolation using the nearest two points to the required time point was done. Fluoride intake was assessed using multiple questionnaires, and considered the following sources of exposure: water, other beverages, selected foods, dietary fluoride supplements, and ingested	
	Can we be confident in the outcome	++	fluoride toothpaste. The study authors state that "[f]luoride intakes for the study participants were based on parent and adolescent reports of ingested fluoride- containing products, which is an indirect method of quantifying intake, limited to fluoride assay results, and possesses several limitations in terms of its reliability and validity. Participants were followed from birth to 17 years of age. Trabecular and cortical bone characteristics of	

Risk of bias a	Risk of bias assessment				
	assessment?		the radial and tibial bone were determined using peripheral quantitative computed tomography (pQCT). Radiographic imaging was performed by certified technicians.		
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the methods section were reported on in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

Quadri 2018²⁸ [74]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	• Increased levels of
Original pilot study	Fluoride levels in • Urine samples	Nephrotoxicity: Renal tubule	 One-way analysis of variance (ANOVA) or 	apoptosis were observed in high fluoride group (Gp 2)
Study design:	Serum samples	ultrastructural changes	Student's t test used to statistically	compared to normal
Case-control (Only cross-sectional analysis results relevant to the	Method of exposure assessment:	Renal tubule apoptosis	compare groups • Results were identified as	fluoride group (Gp 1), which leads to cell death and renal
review are included)	 Measured using potentiometric method with fluoride selective 	Method of outcome ascertainment:	statistically significant at p <0.05	injury. • Various degrees of fluoride-associated
Country: India	ion electrode	Renal biopsy • Suggested for G-1	Results:	damages to the architecture of tubular
Participants: Children (4 to 12 years of age) with nephrotic	Exposure levels: Urinary fluoride,	and G-2 participants who had kidneys of	Ultrastructural changesTEM images showed accumulation of	epithelia, such as cell swelling and lysis, cytoplasmic

²⁸ Quadri et al. 2018: Although study is designed primarily as case-control studies, only results from the cross-sectional analysis were relevant to this review. Therefore, study was assessed for quality as cross-sectional using the OHAT risk of bias tool.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
syndrome minimal change disease (NS- MCD) from All India	mean ±SD • Gp 0: 0.56 ppm ±0.15	regular size with no blockage and proteinuria, but the	multiple dark spherical microparticles within the tubular basement	vacuolation, nuclear condensation, apoptosis, and
Institute of Medical Sciences' department	• Gp 1: 0.61 ppm ±0.17 • Gp 2: 4.01 ppm ±1.83	cause was unknown • Ultrasounds were	membranes and basement membrane	necrosis, were observed.
for pediatric outpatients	Serum fluoride, mean ±SD	used to guide the procedure	disintegration in Gp 2	
Sampling time frame: June 2012 - January 2015	• Gp 0: 0.07 ppm ±11 • Gp 1: 0.07 ppm ±0.01 • Gp 2: 0.1 ppm ±0.013	 Biopsy gun was used to acquire kidney tissues A nephrologist and/or 	 Glycogen lysis, rarefactions of cytoplasmic ground substances, 	
Sample size (N): 156 Group 1 (G-1): Nephrotic syndrome patients (NSP) with normal fluoride levels in urine (≤ 1 ppm)	 Significantly higher level of fluoride in urine was reported among participants in G-2 than those in G-1 and G-0 (p = 0.001) Significantly higher 	interventional radiologist conducted the procedure Ultrastructural changes of kidney tissues • Transition electron microscopy (TEM) Renal tubule apoptosis	hypervacuolation, and chromosome condensation were observed frequently in the renal tubule of Gp 2 while the same was less frequent in Gp1.	

Exposure	Outcome	Analysis & Results	Conclusions
level of fluoride in	Terminal	• The increased levels	
serum was reported	deoxynucleotidyl	of nuclear swelling,	
among participants in	transferase	chromatin	
G-2 than those in G-1	deoxyuridine	disintegration, and	
and G-0 ($p = 0.001$)	triphosphate (dUTP)	other signs of	
	nick end labeling	apoptosis were	
	(TUNEL) assay	observed in G-2 as	
		compared to Gp 1.	
		The pyknotic changes	
		in the cells of the	
		renal tubules of G-2	
		observed but it was	
		only occasional.	
		Renal tubule apoptosis	
		• Level of renal tubule	
		apoptosis among	
		participants in G-1	
		and G2	
	level of fluoride in serum was reported among participants in G-2 than those in G-1	level of fluoride in serum was reported deoxynucleotidyl among participants in G-2 than those in G-1 and G-0 (p = 0.001) • Terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling	level of fluoride in serum was reported among participants in G-2 than those in G-1 and G-0 (p = 0.001) The increased levels of nuclear swelling, chromatin disintegration, and other signs of apoptosis were observed in G-2 as compared to Gp 1. The pyknotic changes in the cells of the renal tubules of G-2 observed but it was only occasional. Renal tubule apoptosis Level of renal tubule apoptosis among participants in G-1

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
support: None			G-1 = 7%				
			G-2 = 22%				
Author declarati	ion of		p = 0.001				

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in	++	Participants were children (4 to 12 years of age) with	
	appropriate comparison groups?		nephrotic syndrome minimal change disease (NS-	
			MCD) from All India Institute of Medical Sciences'	
			department of pediatric outpatients. The study period	
			was from June 2012 to January 2015. Each study	
			group has the same number of participants.	

Risk of bias as	Risk of bias assessment				
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	ANOVA or t-tests were used to conduct statistical comparisons between study groups.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	N of childhood nephrotic syndrome patients recruited = 156; however, N in group 1 = 32, N in group 2 = 32, and N in healthy controls or group 0 = 32		
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in urine and serum samples. No differences in exposure assessment methods were reported between study groups.		
	Can we be confident in the outcome assessment?	+	Ultrastructural and apoptotic analysis was conducted with transmission electron microscopy and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labelling, respectively. Blinding status unlikely to affect outcome assessment.		
Selective	Were all measured outcomes reported?	+	Ultrastructural changes in kidney tissues and		

Risk of bias assessment					
reporting			apoptosis in kidney tubules were mentioned in the methods section. Ultrastructural changes were described in more specific details in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	+	Insufficient information on participants available (i.e. patient characteristics, general place of residence, etc.).		

Rathore 2018 [75]

Study Characteristic	s			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	When serum FT3,
Original Study	Fluoride levels in	Thyroid hormone	NR	FT4 and TSH of
	Drinking water	derangement		different category of our study were
Study design:	samples Urine samples	Serum levels of free T4 (FT4), free T3	Results:	compared we found

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Cross-sectional study	Blood samples	(FT3), and thyroid stimulating hormone	Free T3: mean, ±SD,[range] (pg/mL)	significant difference between these.
Country: India Participants: Children (8 to 14 years of age) from Jodhpur district	Method of exposure assessment: Drinking water samples: • Electrochemical	(TSH) Method of outcome ascertainment: • Chemiluminescence	<u>Gp 1:</u> 2.66 pg/mL ±0.46, [2.11 − 3.89] <u>Gp 2:</u> 2.73 pg/mL ±0.36, [2.13 − 3.56] <u>Gp 3:</u> 2.84 pg/mL ±0.46, [2.02 − 4.26]	• FT3 levels was highest in gp 4 with minor difference in other groups; concentration of FT4 levels was maximum
villages of Rajasthan Sampling time frame: NR	method <u>Urine and blood</u> <u>samples</u> • F ion specific electrode <u>Exposure groups</u>	Assay	Gp 4: 3.06 pg/mL ±0.78, [1.91 − 4.42] • Free T4: mean ±SD, [range] (ng/dL) Gp 1: 0.98 ±0.21, [0.79 − 1.79]	in gp 3, whereas TSH levels were significantly higher in gp 4. • As the level of fluoride increases in drinking
Sample size (N): 100 • N = 25 per exposure group	 Villages were categorized based on fluoride levels in drinking water, yielding the following 		Gp 2: 1.02 ±0.26, [0.78 – 1.89] Gp 3: 1.11 ±0.28, [0.76 – 1.98] Gp 4: 1.22 ± 0.33,	water, levels of thyroid hormones were also increased but the levels were not as significantly higher as

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex: NR	exposure groups:		[0.75 – 1.89]	other studies.
	Gp 1: <1ppm			
Exclusions: "Children	Gp 2: 1-1.9 ppm		$ullet$ TSH: Mean \pm SD,	
	Gp 3: 2-3.9 ppm		[range] (µIU/mL)	
who were not the	Gp 4: ≥ 4ppm		<u>Gp 1:</u> 1.33 ±0.78,	
permanent residents of			[0.4 – 2.99]	
that particular area and	Francisco leveler		<u>Gp 2:</u> 1.64 ±0.88),	
with a change of source	Exposure levels:		[0.29 – 3.76]	
of drinking water, those	• Urinary fluoride, mean		- <u>Gp 3:</u> 1.86 ±0.77,	
with orthodontic	±SD		[0.76 – 3.74]	
brackets, dentofacial	○ <i>Gp 1: 1.25 mg/L</i>		<u>Gp 4:</u> 1.91 ±1.10,	
deformities or any	±0.42		<u>06 4.</u> 1.31 ±1.10, [0.75 – 4.99]	
syndromes or	○ <i>Gp 2: 1.23 mg/</i> L		[0.75 – 4.99]	
uncooperative,	<i>±</i> 0.32			
medically and	o Gp 3: 3.03 mg/L			
physically	<i>±</i> 0.58			
compromised	o Gp 4: 4.49 mg/L			
patients" (p. 328)	±1.21			
	• Serum fluoride, mean			
	±SD			

Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding/	o Gp 1: 0.046 mg/L			
support: NR	±0.02			
	o Gp 2: 0.046 mg/L			
Author declaration of	±0.02			
Author declaration of interest: NR	○ Gp 3: 0.11 mg/L			
interest: NR	±0.09			
	o Gp 4: 0.20 mg/L			
	<i>±</i> 0.13			

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	

Risk of bias as	ssessment		
	Did selection of study participants result in	+	Participants were children from Jodhpur district
	appropriate comparison groups?		villages of Rajasthan. Recruitment time frame and
			participation rate between exposure groups not found.
Confounding	Did the study design or analysis account for	_	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or	++	Children who were not the permanent residents of that
	exclusion from analysis?		particular area and with a change of source of drinking
			water, those with orthodontic brackets, dentofacial
			deformities or any syndromes or uncooperative,
			medically and physically compromised patients were
			excluded from the study. Sample sizes were the same
			across exposure groups (N = 25).
Detection	Can we be confident in the exposure	++	Fluoride levels were measured in drinking water, urine,
	characterization?		and blood. No difference in exposure assessment
			methods were found between exposure groups.

Risk of bias assessment				
	Can we be confident in the outcome assessment?	++	FT3, FT4, and TSH were measured in serum, and therefore are unlikely to be affected by blinding status.	
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the abstract were reported on in the results section.	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	+	No description of the statistical methods used in the analysis.	

Shruthi 2018 [76]

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	Higher proportion of
Original study	Fluoride levels in	Non-skeletal	Frequency between	study subjects with
	Drinking water samples	manifestations of fluoride toxicity	study groups	clinical manifestations of non-skeletal

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design:			Result:	fluorosis compared to
Country: India Participants: Individuals living in randomly selected villages of Bangarpet taluk, Kolar. Study groups are comprised of areas with high (Thimmasandra and Batwarahalli) and normal (Maddinayakanahalli) levels of fluoride in water. The median	Method of exposure assessment: • Measured using ion- electrode method • Used to calculate exposure dose which takes into consideration Fluoride level (mg/L) Water intake/day (L/day) Body weight (kg) Exposure levels: High fluoride group > 1.5 mg/L fluoride in water	Method of outcome ascertainment: Evaluated using clinical history for the following: • Dyspepsia with nausea, vomiting, abdomen pain, constipation, or diarrhea • Muscle weakness • Tiredness • Fatigue • Polyuria • Polydipsia • Recurrent abortions or stillbirths	• Number (%) of participants with non-skeletal manifestations of fluorosis by study groups Dyspepsia = 32 (100.0) High fluoride group = 24 (75.0) Normal fluoride group = 8 (25.0) Muscle weakness = 13 (100.0) High fluoride group = 9 (69.23)	those without clinical manifestations of non-skeletal fluorosis at nearly same doses of fluoride exposure in both high and normal fluoride groups indicates that these manifestations may be due to fluoride exposure through water or other sources like food. • Participants with dyspepsia in the high fluoride group are three-times higher than those in the normal fluoride group.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
(interquartile range)	Normal fluoride group		Normal fluoride	
age of participants is 30	< 1.0 mg/L fluoride in		group =	
(18.75 – 45) years in	water		4 (30.77)	
the high fluoride group,			Fatigue = 32 (100.0)	
and 33 (20 – 45) years			-	
in the normal fluoride			High fluoride group =	
group.			19 (59.38)	
			Normal fluoride	
Sampling time frame:			group =	
Study duration of 1			13 (40.62)	
year				
			"None of the study	
Sample size (N):			participants had	
High fluoride group			complaints of polyuria,	
			polydipsia, repeated	
• N = 486			abortions, and	
Normal fluoride group			repeated stillbirths"	
• N = 417			(p. 1225)	
			"The study subjects	

Study Character	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			with clinical	
Sex:			manifestations of	
			non-skeletal fluorosis	
High fluoride grou	<u>ıb</u>		were higher compared	
• Men N (%): 245	(55.1)		to those without	
Normal fluoride g	roup		clinical manifestations	
●Men (%) = 200 ((44.9)		of non-skeletal	
	,		fluorosis at nearly	
Exclusions:			same doses of	
exclusions:			fluoride exposure in	
 Has no teeth, 			both high and normal	
 Has artificial tee 	th		fluoride groups" (p.	
Is pregnant			1225)	
Is bedridden				
• Is not available				
following the sec	cond			
visit				
Source of fundir	ng/			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
support:					
None					
Author declarati	ion of				
interest:					
None					

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	++	Participants consisted of individuals living in villages that were randomly selected from Bangarpet taluk, Kolar. Study groups were comprised of areas with high	
			and normal levels of fluoride in water. The median	

Risk of bias as	ssessment		
			(interquartile range) age of participants is 30 (18.75 –
			45) years in the high fluoride group, and 33 (20 – 45)
			years in the normal fluoride group. The study duration
			was 1 year.
Confounding	Did the study design or analysis account for	_	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human		Not applicable
	subjects blinded to the study group during the	N/A	
	study?		
Attrition	Were outcome data complete without attrition or	++	Persons with no teeth, artificial teeth, pregnant women,
	exclusion from analysis?		bedridden, and the persons who were not available
			even after two visits were excluded from the study. No
			mention of missing data.
Detection	Can we be confident in the exposure	++	Fluoride was measured in drinking water. No difference
	characterization?		in exposure assessment methods were reported
			between participants.
	Can we be confident in the outcome	-	Clinical history of select conditions were used to
			determine non-skeletal fluorosis manifestations.

Risk of bias assessment					
	assessment?		Uncertain if outcome assessors were blinded to exposure status.		
Selective reporting	Were all measured outcomes reported?	++	Outcomes mentioned in the methods section were also reported on in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

Yu 2018 [77]

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	●"In our study, urinary
Original study	Fluoride levels in Urine samples	Intelligence quotient (IQ)	Piecewise linear regression and	fluoride levels presented a positive relationship with water
Study design:	Drinking water		multiple logistic regression models	fluoride concentration,

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Cross-sectional study	samples	Method of outcome ascertainment:	were used to assess associations of interest	indicating that fluoride from drinking water makes important
Country: China	Method of exposure assessment:	Second edition of the Combined Raven's Test – The Rural in	Stepwise linear regression models	contribution to urinary fluoride." (p. 120)
Participants: Random sample of children (7 to 13 years of age) from rural areas of Tianjin city with high and normal levels of fluoride Sampling time frame:	 Water samples Public water supplies were randomly sampled per village (N = 168) Measured using the national standardized ion selective electrode method 	China (CRT-RC2) • Used to determine IQ scores which was grouped as: Retarded: ≤ 69 Marginal: 70 – 79 Dull normal: 80 – 89 Normal: 90 – 109	used to identify possible confounders • Models were adjusted for age, sex, paternal education, maternal education, and low birth weight Results:	"chronic exposure to excessive fluoride, even at a moderate level, was inversely associated with children's intelligence scores, especially excellent intelligence
Sample size (N): 2,886 Normal-fluoride exposure (water	Urine samples: • Early morning spot urine samples were acquired from participants (N =	High normal: 110 – 119 Superior: 120 – 129 Excellent: ≥ 130 • The validated test was independently	• Threshold effect analysis: Change (95% CI) in IQ scores per 0.5 mg/L increment of fluoride	performance, with threshold and saturation effects observed in the dose- response relationships." (p. 123)

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
fluoride ≤ 1.0 mg/L) • N = 1,636 High-fluoride exposure (water fluoride > 1.0 mg/L) • N = 1,250	2,380) • Measured using the national standardized ion selective electrode method Exposure levels:	completed by participants within 40 minutes and this was overseen by four trained professionals	in water by concentration ranges $0.20 - 3.40 \text{ mg/L}$ $\beta = -0.04 \text{ (- 0.33, 0.24)}$ $3.40 - 3.90 \text{ mg/L}$ $\beta = -4.29 (- 8.09, -$	
Sex: Normal-fluoride exposure Boys N (%): 849 (51.9) High-fluoride exposure Boys N (%): 667 (53.4)	 Mean (SD) levels of fluoride in water (mg/L) (p <0.001) Normal-fluoride exposure 0.50 (0.27) High-fluoride exposure 2.00 (0.75) 		• Threshold effect analysis: Change (95% CI) in IQ scores per 0.5 mg/L increment of fluoride in urine by concentration ranges 0.01 – 1.60 mg/L	
Exclusions:	 Mean (SD) levels of fluoride in urine 		$\beta = 0.36 \text{ (- 0.29,}$ 1.01)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Were not lifetime	(mg/L) (p <0.001)		<u>1.60 – 2.50 mg/L</u>	
residents of the study	Normal-fluoride		β = -2.67 (-4.67, -	
area	<u>exposure</u>		0.68)	
Has a disease that	0.41 (0.49)		<u>2.50 – 5.54 mg/L</u>	
impacts intelligence	High-fluoride		β = -0.84 (-2.18,	
(congenital or	<u>exposure</u>		0.50)	
acquired)	1.37 (1.08)			
Has history of			0.11 (0.70(.01) (1.0	
cerebral trauma or			• Odds (95% CI) of IQ	
neurological disorders			level among children	
Has history of a			exposed to high water	
positive screening test			fluoride (> 1.0 mg/L)	
for Down's syndrome			compared to normal	
or hepatitis			water fluoride (≤ 1.0	
B/treponema			mg/L); normal IQ is	
palladium infection			the control	
Gestational exposure			Excellent IQ	
to maternal smoking			OR = 0.47 (0.32,	
Gestational exposure			0.71)	
·			Superior IQ	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
to maternal drinking			OR = 0.89 (0.69,			
			1.15)			
Source of funding/			High normal IQ			
support:			OR = 0.96 (0.80,			
			1.15)			
State Key Program of			<u>Dull normal IQ</u>			
National Natural			OR = 0.85 (0.62,			
Science of China, and	1		1.17)			
the Fundamental			Marginal IQ			
Research Funds for			OR = 1.25 (0.69,			
the Central			2.26)			
Universities						
			• Odds (95% CI) of IQ			
Author declaration of			level among children			
interest: None			exposed to high urine			
			fluoride (> 1.60 mg/L)			
			compared to normal			
			urine fluoride (≤ 1.60			
			mg/L); normal IQ is			
			the control			

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Excellent IQ	
			OR = 0.49 (0.26,	
			0.93)	
			Superior IQ	
			OR = 0.84 (0.58,	
			1.20)	
			High normal IQ	
			OR = 0.87 (0.68,	
			1.12)	
			<u>Dull normal IQ</u>	
			OR = 0.63 (0.39,	
			1.01)	
			Marginal IQ	
			OR = 1.44 (0.72,	
			2.91)	
			Stratified threshold	
			effect analysis: Odds	
			(95% CI) of IQ level	

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			per 0.5 mg/L	
			increment of fluoride	
			in water; normal IQ is	
			the control	
			Excellent IQ (Fluoride	
			<u>level of 0.20 – 1.40</u>	
			mg/L)	
			OR = 0.60 (0.47,	
			0.77)	
			Excellent IQ (Fluoride	
			<u>level of 1.40 – 3.90</u>	
			mg/L)	
			OR = 1.09 (0.88,	
			1.36)	
			Superior IQ	
			OR = 0.99 (0.93,	
			1.06)	
			High normal IQ	
			OR = 0.98 (0.94,	
			1.03)	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>Dull normal IQ</u>	
			OR = 0.96 (0.88,	
			1.05)	
			Marginal IQ	
			OR = 1.04 (0.89,	
			1.23)	
			 Stratified threshold 	
			effect analysis: Odds	
			(95% CI) of IQ level	
			per 0.5 mg/L	
			increment of fluoride	
			in urine; normal IQ is	
			the control	
			Excellent IQ	
			OR = 0.87 (0.76,	
			1.01)	
			Superior IQ	
			OR = 0.96 (0.89,	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			1.04)	
			High normal IQ	
			OR = 0.99 (0.94,	
			1.04)	
			Dull normal IQ	
			OR = 0.90 (0.81,	
			1.00)	
			Marginal IQ	
			OR = 1.07 (0.91,	
			1.25)	

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately	N/A	Not applicable	

Risk of bias as	ssessment		
	concealed?		
	Did selection of study participants result in appropriate comparison groups?	++	Participants were a random sample of children (7 to 13 years of age) from rural areas of Tianjian City with high and normal levels of fluoride. The study was conducted in 2015 and the multistage random sampling technique, stratified by area, was performed to select representative samples among local children
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	who were permanent residents since birth. Regression models were adjusted for age, sex, paternal education, maternal education, and low birth weight.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Of the 2886 children recruited, urine samples were acquired from 2380 participants. A total of 2886 children completed the IQ assessments.

Risk of bias	assessment		
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in drinking water and urine samples. No differences in exposure assessment methods were found between participants.
	Can we be confident in the outcome assessment?	++	IQ scores were determined using the Combined Raven's Test - The Rural in China (2nd Edition) which is a validated test that was independently completed by participants within 40 minutes, and this was overseen by trained professionals. Outcome unlikely to be affected by blinding status.
Selective reporting	Were all measured outcomes reported?	++	Yes, the outcome mentioned in the abstract was reported on in the results section.
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	●The PON1 and
Original study Study design: Case-control (Only cross-sectional analysis results are relevant to current review)	Fluoride levels in Serum Method of exposure assessment: Venipuncture used to collect samples of overnight fasting	Degree of lipid peroxidation • Plasma thiobarbituric acid reactive substance (TBARS) • Erythrocyte TBARS Lipid profiles • Cholesterol	 Pearson's correlation was used Correlations at level of 0.05 and 0.01 (2-tailed) were identified as significant Results:	related activities such as ARE and lactonase were found to be reduced in fluorosis patients. It is ascribed from the findings that the toxic effect of fluoride collectively abrogates not only
Country: India Participants:	blood • Measured using Orion Ion Analyser Exposure level:	Triglyceride (TGL)High-density lipoprotein (HDL)LDLVLDL	Correlation between serum fluoride and outcomes in patients with fluorosis • Plasma TBARS r = 0.095; p = 0.019	antiatherogenic activity but also reduces lactonase activity of PON1 thereby toxic HCy may get accumulated,

²⁹ Arulkumar 2017: Although study is designed primarily as case-control study, only results from the cross-sectional analysis were relevant to this review. Therefore, study was assessed for quality as cross-sectional using the OHAT risk of bias tool.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Fluorosis (dental and	Drinking water fluoride	Enzyme activity	Erythrocyte TBARS	which support the
skeletal) cases and controls from 3 Tamil Nadu districts with high	concentration: > 1.5 mg/l	Paraoxonase (PON1)Arylesterase (ARE)	r = 0.783; p = 0.000 • <u>Cholesterol</u> r = 0.121; p = 0.003	chances of cardiovascular related complications in
levels of fluoride in water (Salem,	• Mean (SD) level of	Lactonase	• <u>TGL</u>	fluorosis patients. • Positive correlation
Dharmapuri, and Krishnagiri)	fluoride (mg/L) in serum by study groups	Method of outcome ascertainment:	r = -0.043; p = NS • <u>HDL</u> r = -0.075; p = 0.006	with erythrocyte TBARS (p < 0.01),
Sampling time frame:	Group I (controls): 0.07 (0.08) Group II (mild	 Venipuncture used to collect samples of overnight fasting blood 	• <u>LDL</u> r = 0.157; p = 0.000 • <u>VLDL</u> r = -0.038; p = NS	plasma TBARS (p < 0.05), cholesterol (p < 0.01) and LDL (p < 0.01).
Sample size (N): 508	fluorosis): 0.13 (0.02) Group III (moderate	 Biochemical assays conducted at ≤ 2 days from sample collection 	• <u>PON1</u> r = -0.738; p = 0.000	 Significant inverse association of serum fluoride levels with
Group I (controls) • N = 52 Group II (mild fluorosis)	fluorosis): 0.19 (0.03)	Erythrocyte and plasma TBARS	• <u>ARE</u> r = -0.447; p = 0.000 • <u>Lactonase</u>	PON1, ARE, and lactonase.
• N = 112	<u>Group IV (severe</u> <u>fluorosis):</u>	Creatinine kinase(CK-MB) assay	r = -0.645; p = 0.000	 No significant association of serum

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Group III (moderate fluorosis) • N = 136 Group IV (severe fluorosis) • N = 208	0.28 (0.03)	 Used to evaluate fluoride toxicity by identifying lipid peroxidation products TGL and HDL AGAPPE diagnostic 	Activity of membrane bound and pesticide scavenging enzymes in fluorosis patients. Serum level of AChE (U/I)	fluoride levels with TGL and VLDL. No observed correlation with serum HDL; however, serum fluoride modulates the activities of PON1,
Sex (N): Group I (controls) • Men = 28; Women =		kit Other parameters of blood Standard protocols PON1	 Controls: 6.29 ± 0.68 Mild: 4.64 ± 0.54 Moderate: 4.11 ± 0.4 Severe: 3.78 ± 0.35 	ARE and lactonase. Increased LDH5 isoenzyme (liver synthesized) activity is an indication of
24 Group II (mild fluorosis) • Men = 76; Women = 36 Group III (moderate fluorosis)		• p-nitrophenol released at 412 nm used to determine enzyme activity ARE	Serum level of ATPase/Na+ K+ ATPase • Controls: 2.41 ± 0.34 • Mild: 2.56 ± 0.31	possible liver damage in fluorosis patients. Therefore, it was concluded that the prolonged fluoride ingestion (observed in
•Men = 78; Women =		Enzyme activity determined using	Moderate: 2.64 ± 0.29Severe: 2.87 ± 0.4	moderate and severe

Study Characterist	tics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
58		absorbance of		groups) caused
Group IV (severe		phenylacetate at 270		continuous
fluorosis)		nm		multifaceted
•Men = 112; Wome	n =	Lactonase activity		calamities beyond the
96		UV-visible		regenerative capacity
		spectrophotometer		of the liver tissues.
Exclusions:		used to determine		Furthermore, the
Exclusions:		absorbance at 270 nm		decreased activity of
• "smoking, heart,				the erythrocyte
liver/kidney diseas	e,	0		membrane bound
cancer, chronic		Serum level of AChE		enzymes, AChE and
inflammation,		and ATPase/Na+ K+		ATPase indicates the
autoimmune and		<u>ATPase</u>		prevalence of memory
hematological		AChE: described by		loss with lower IQ
disorders." (p. 207)	Ellman et al. [17]		scores as well as
		ATPase: measured by		defect in signaling and
Source of funding/	1	estimating the		energy metabolism in
support:		liberated inorganic		fluorosis patients.
	on al	phosphorus (Pi), after		
Periyar University, a	ana	the reaction of		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Indian Council of		erythrocytes			
Medical Research		homogenate with A	TP		
		[18].			
Author doclaration	an of	Total ATPase:			
Author declaration of interest: NR		assayed using UV-vis			
		spectropho-tometer at			
		660 nm.			

Risk of bias assessment			
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	+	Participants were from 3 Tamil Nadu (India) districts with high levels of fluoride in water. Recruitment time frame not found.

Risk of bias as	Risk of bias assessment						
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR				
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable				
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided for the study. "Exclusion criteria were smoking, heart, liver/kidney disease, cancer, chronic inflammation, autoimmune and hematological disorders." (p. 207) There was no mention of missing data.				
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in serum. No difference in exposure assessment methods were found between participants.				
	Can we be confident in the outcome assessment?	++	Outcome levels were measured using blood samples, and therefore are unlikely to be affected by blinding status.				
Selective	Were all measured outcomes reported?	++	Outcomes mentioned in the methods section were				

Risk of bias assessment						
reporting			also reported on in the results section.			
Other	Were there no other potential threats to internal	++	None identified.			
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?					

Bashash 2017 [79]

Study Characteristics	5			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Higher prenatal
Original study	Fluoride levels in Maternal urinary	Neurocognitive function in children at 4 years of	Linear regression models were used	exposure to fluoride (as indicated by
Study design: Prospective cohort	samples during gestation (proxy measure of prenatal	age, and 6 to 12 years of age	 Models assessing maternal urinary fluoride levels as 	average creatinine- adjusted maternal urinary fluoride
study	exposure to fluoride) • Child urinary samples	Method of outcome	exposure were adjusted for child	concentrations during pregnancy) was

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country: Mexico Participants: Mother-	at 6 to 12 years of age (proxy measure of postnatal exposure to	ascertainment: Standardized version of McCarthy Scales of	characteristics (gestational age, birth weight, sex, parity,	associated with lower GCI scores in children at approximately 4y
child pairs from three hospitals in Mexico City that were enrolled in	fluoride) Method of exposure	Children's Abilities (MSCA) • Completed at 4 years	age at outcome assessment) and maternal	old, and with lower Full-Scale IQ scores at 6–12 y old.
two of four cohorts of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study; specifically, participants from cohorts 2A and 3 were included in the analysis	assessment: • Second morning void spot urine sample • Ion-selective electrode-based assays used to measure fluoride in most samples • Maternal fluoride	of age • Used to acquire a standardized composite score called the General Cognitive Index (GCI) Wechsler Abbreviated Scale of Intelligence (WASI)	characteristics (smoking history, marital status, delivery age, IQ, education, and cohort) • Models assessing child urinary fluoride levels were adjusted for the main	• In models that focused on the cross- sectional relationship between children's exposure to fluoride (reflected by their specific gravity— adjusted urinary fluoride levels) and IQ
Sampling time frame: Cohort 2A:	levels in urinary samples were adjusted for creatinine • Child fluoride levels in	Completed at 6 to 12 years of ageUsed to acquire Full-Scale IQ	covariates of interest Results: Change (95% CI) in	score and that contained the main covariates of interest, there was not a clear, statistically significant

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 May 1997 – July 1999 Cohort 3 2001 to 2003 Sample size (N): 299 mother-child pairs Sex: GCI analysis: Girls N (%) = 160 (56) IQ analysis: Girls 	urinary samples were adjusted for specific gravity Exposure levels: Water fluoride levels in Mexico City: o 0.15 - 1:38 mg/L (Juárez- Lópezetal.2007; Martínez-Mier et al.2005).	Other Details Experienced developmental psychologist trained and oversaw the administration of tests by three other psychologists Psychologist conducting the assessment was blinded to the child's exposure level	outcome per 0.5 mg/L increase in maternal urinary fluoride levels adjusted for creatinine • GCI β = -3.15 (-5.42, -0.87) p = 0.01 • IQ β = -2.50 (-4.12, -0.59) p = 0.01	association between contemporaneous children's urinary fluoride (CUFsg) and IQ either unadjusted or adjusting for MUFcr
N (%) = 116 (55)Exclusions:No gestational urine	Maternal urinary fluoride (Mean ±SD) o 0.88 mg/L ±0.34 Child urinary fluoride (Mean ±SD)		Change (95% CI) in outcome per 0.5 mg/L increase in child urinary fluoride levels adjusted for specific gravity	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
sample available	0.84 mg/L ±0.40		• IQ − Without	
(Cohort 1 and 2B)			adjustment of	
•> 14 gestational			maternal urinary	
weeks at recruitment			<u>fluoride levels</u>	
• Do not intend to			β = - 0.89 (-2.63,	
reside in study area			0.85)	
for ≥ 5 years			• IQ – With adjustment	
History of psychiatric			of maternal urinary	
disorders,			<u>fluoride levels</u>	
pregnancies that are			β = - 0.77 (-2.53,	
high-risk, or			0.99)	
gestational diabetes				
Daily alcohol				
consumption				
Illegal/prescription				
drug use				
• Have kidney disease,				
high blood pressure,				
preeclampsia,				

Study Characteristics Conclusions Study **Exposure Outcome Analysis & Results** circulatory disease, and seizures during gestation No neurocognitive function measurement in the child Source of funding/ support: NIH, NIEHS/EPA, and the National Institute of Public Health/Ministry of Health of Mexico; facilities provided by the American British Cowdray Hospital **Author declaration of** interest: No competing

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
financial interest	ts			

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in		Participants were mother-child pairs from three		
	appropriate comparison groups?		hospitals in Mexico City that were enrolled in two of		
			four cohorts of the Early Life Exposures in Mexico to		
		++	Environmental Toxicants (ELEMENT) study. Time of		
			recruitment was from May 1997 to July 1999 for cohort		
			2A and 2001 to 2003 for cohort 3; however, mean		
			maternal urinary fluoride levels adjusted for creatinine		
			was not significantly different between groups (Cohort		

Risk of bias as	ssessment		
			3 - Intervention; Cohort 3 - Placebo; Cohort 2A).
Confounding	Did the study design or analysis account for		Regression models were adjusted for child
	important confounding and modifying variables?		characteristics (gestational age, birth weight, sex,
			parity, and age at outcome assessment), and maternal
			characteristics (smoking history, marital status, age at
			delivery, IQ, education, and cohort).
		+	We also note that the coefficients for the associations
			between fluoride on cognition varied substantially in
			some of the sensitivity analyses, particularly with
			respect to the subgroups of participants who have
			data on SES, lead exposure, and mercury exposure
			(of which, for the latter, the effect estimates almost
			doubled).
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human		Not applicable
	subjects blinded to the study group during the	N/A	
	study?		
Attrition	Were outcome data complete without attrition or		Reasons for exclusion were documented. N = 512 for
	exclusion from analysis?		pregnant women with data on fluoride and creatinine;

Risk of bias	assessment		
			N = 312 and 234 for children with data on GCI and IQ, respectively; N = 287 for children with GCI and complete covariate data; N = 211 for children with IQ and complete covariate data. In the comparisons of participants in relation to missing data, the proportion of females was somewhat higher in the included versus excluded group for both the GCI and IQ analyses, and the mean levels of maternal blood Hg for those included were 28.5% and 24.9% higher than the mean levels for those excluded in the GCI and IQ analyses, respectively. We also note that the coefficients for the associations between fluoride on cognition varied substantially in some of the sensitivity analyses, particularly with respect to the subgroups of participants who have data on SES, lead exposure, and mercury exposure (of which, for the latter, the effect estimates almost doubled).
Detection	Can we be confident in the exposure	+	Fluoride levels were measured in maternal and child

Risk of bias as	Risk of bias assessment				
	characterization?		urinary samples. A relatively smaller number of		
			prenatal samples were	asse	ssed at a different lab
			because the quality co	ntrol	criteria for ion-selective
			electrode-based metho	ds w	ere not met.
	Can we be confident in the outcome		Participants were		Participants were
	assessment?		recruited at 14		recruited at 14
			gestational weeks or		gestational weeks or
			less. General		less. Full-Scale IQ was
			Cognitive Index (GCI)		measured using the
			was acquired using		Wechsler Abbreviated
			the standardized		Scale of Intelligence
			version of the		(WASI) at age 6 to 12.
		++	McCarthy Scales of	++	An experienced
			children's Abilities		developmental
			(MSCA) at age 4. An		psychologist trained and
			experienced		oversaw the
			developmental		administration of the
			psychologist trained		tests by three other
			and oversaw the		psychologists. As well,
			administration of the		the psychologist
			tests by three other		conducting the

Risk of bias a	Risk of bias assessment				
			psychologists. As well, the psychologist conducting the assessment was blinded to the child's exposure level. Regression models were adjusted for the age at outcome assessment.		assessment was blinded to the child's exposure level. Regression models were adjusted for the age at outcome assessment.
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mention reported on in the resu		n the abstract were also ection.
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

Chauhan 2017 [80]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type: Abstract Study design: NR Country: India Participants: Population exposed to fluoride Sample size (N): 100 Sex: Men (100%)	Exposure: • Fluoride Method of exposure assessment: NR Exposure level: NR	Outcomes: • Semen morphological parameters • Hypothalamictesticular axis hormones (LH, FSH, prolactin, testosterone) • Oxidative stress markers Method of outcome ascertainment: NR	Statistical analysis: NR Results: • "LH, FSH, testosterone and prolactin values was significantly (p<0.05) alters in fluoride exposed population." (p. S236) • "Increased lipid peroxidation and Protein carbonyl content and decreased antioxidant	• "This study suggests that hypothalamic testicular axis hormones and oxidative stress parameters can be useful as early markers for determination of disease fluorosis in population those residing in high fluoride regions." (p. S236)
			status i.e., SOD, CAT,	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions: NR			GPx and GSH was	
			observed." (p. S236)	
0	~.I		"Sperm count, motility	
Source of fundin	ig/		and viability was	
support: NR			delineated in exposed	
			population." (p. S236)	
Author declaration	on of			
interest: NR				

Risk of bias a	Risk of bias assessment					
Bias domain	Criterion	Res	ponse			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	NA	Abstract			

Risk of bias a	ssessment		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	NA	Abstract
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	NA	Abstract
Detection	Can we be confident in the exposure characterization?	NA	Abstract
	Can we be confident in the outcome assessment?	NA	Abstract
Selective reporting	Were all measured outcomes reported?	NA	Abstract
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	NA	Abstract

Stephenson 2017 [81]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference Type:	Exposure:	Outcomes:	Statistical analysis:	These results suggest
Abstract	• Fluoridated water	Suicide rates	Correlation coefficients	that fluoridation may be correlated with a decrease in the
Study design: NR	Method of exposure	Method of outcome		rate of suicide by
	assessment:	ascertainment:	Results	reducing the levels of
Country: US	 State data from the 	• NR	 Relationship between 	microorganisms found
Particle and a ND	CDC		fluoridated water and suicide rates:	in drinking water.
Participants: NR	Exposure levels: NR		<u>Year 2010</u>	
			r= -0.386; p= 0.05	
Sampling time frame:			<u>Year 2012</u>	
2010, 2012, and 2014			r= -0.324; p= 0.020	
			<u>Year 2014</u>	
Sample size (N): NR			r= -0.342; p= 0.014	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Sex: NR						
Age: NR						
Exclusions: NR						
Source of funding	ng/					
support: USTAR						
Author declaration	on of					
interest: NR						

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level	N/A Not applicable		

Risk of bias as	ssessment		
	adequately randomized?		
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	NA	Abstract
Confounding	Did the study design or analysis account for important confounding and modifying variables?	NA	Abstract
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	NA	Abstract
Detection	Can we be confident in the exposure characterization?	NA	Abstract
	Can we be confident in the outcome assessment?	NA	Abstract

Risk of bias a	Risk of bias assessment					
Selective reporting	Were all measured outcomes reported?	NA	Abstract			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	NA	Abstract			

Verma 2017 [82]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Prevalence of dental
Original study	Fluoride levels in ground water	Dental fluorosis	Chi-square testMultivariable analysis with generalized estimating	fluorosis was considerably high, affecting nearly two-
Study design:		Method of outcome	equation (GEE) regression	thirds of the students,
Cross-sectional study	Method of exposure	ascertainment:	model	and
	assessment:	 Dental examination using 		mainly in government
	The Orion method	Dean's fluorosis index		schools and long-

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Country:	(Selective Electrode	Community fluorosis	Results:	term residents of the	
India	fluoride estimation	index (CFI)	Karl Pearson correlation	area."	
	apparatus)		coefficient (all 6 villages)		
Participants:			Mean fluoride level in		
High school adolescents	Exposure level:		water: 1.4 mg/L ± 0.38		
(12–17 years) from	Mean water fluoride:		Community fluorosis index:		
randomly selected	• Holur: 0.85 mg/L.		2.3 ± 0.37		
government and private	• Other 5 villages: ≥1.2				
schools in urban and rural	mg/L		Multivariable regression		
areas of Kolar taluka (6	• All 6 villages: 1.4 ±0.38		analysis (GEE) by drinking		
villages). All students who	All o villages. 1.4 ±0.00		water source:		
were residents of the area					
since birth were included in			Fluorosis present:		
the study.			o Bore well water: 551		
·			(63.7%)		
			Pipe/tape water: 79		
Sampling time frame:			(64.8%)		
February - August 2013			• Total:		
			o Bore well water: 865		
			Pipe/tape water:122		
Sample size:			• β estimate (95%CI):		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
1,026			o Bore well water:		
			0.92(-0.32,2.16), p-		
Cov (NI)			value: 0.145		
Sex (N):			Pipe/tape water: 0		
Boys: 509 (49.6%)					
Exclusions:					
NR					
Source of funding	1				
support:					
None					
140110					
Author declaration	n of				
interest:					
• No COI					

Risk of bias assessment

Risk of bias assessment					
Bias domain	Criterion	Res	ponse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for some confounders such as fluoridated toothpaste, consumption of finger millet and tea.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	Insufficient information provided on reasons for exclusion of participants		
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the Orion method (Selective Electrode fluoride estimation		

Risk of bias assessment				
	characterization?		apparatus).	
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by a	
	assessment?		dental specialist using Dean's Fluorosis Index and	
			Community fluorosis index (CFI). Lack of blinding of	
			outcome assessors would not appreciably bias	
			results.	
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were	
reporting			presented in results section with adequate level of	
			detail for data extraction	
Other	Were there no other potential threats to internal	++	None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the			
	study protocol)?			

Cardenas-Gonzalez 2016 [83]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	Exposures:	Outcomes:	Statistical analysis:	• The correlation of
Reference type:	Fluoride levels in	Kidney injury biomarkers	 Spearman's correlation and linear 	fluoride levels between urine and
Original study	Urine samplesDrinking water	• Kidney injury	regression models were used.	water samples was significant
Study design:	samples	molecule 1 (KIM-1) • Neutrophil gelatinase-	 Model 1 was adjusted 	suggesting that water is the main source of
Cross-sectional study	Method of exposure assessment:	associated lipocalin (NGAL)	for age, sex, and BMI z-score • Model 2 was adjusted	fluoride exposure. • Urinary miR-200c was
Country: Mexico	Urine Samples One spot urine	Serum creatinine (SCr)MircroRNAs	for model 1 covariates and urinary specific	correlated with fluoride There was
Participants: Children	sample used	(miRNAs): miR-21,	gravity	no correlation between any of the
(5 to 12 years of age) residents of Villa de Reyes County of San Luis Potosi, who were	 Ion selective electrode was used to measure fluoride Water samples 	miR200c, and miR- 423 • Estimated glomerular	 Model 3 was adjusted for model 1 covariates and urinary creatinine 	other biomarkers and toxicants exposure levels.
between grades 1 to 6 at two public	Water samples were	filtration rate (eGFR) • Albumin-creatinine	Results:	 Regression models examining the

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
elementary schools	collected on March 2015	ratio (ACR)	Correlation between urinary levels of fluoride	association between urine fluoride and
Sampling time frame: June 2014	 tap and bottled water samples were acquired from 63 participants 	Method of outcome ascertainment: KIM-1 and NGAL	(ppm) and kidney injury biomarkers: • KIM-1 (pg/mL)	the kidney injury biomarkers did not show any statistically significant differences
Sample size (N): 83	 Well water samples were acquired at various depths (1 m = 	Micro-bead assaysMeasured in urine samples	r = 0.09; p = 0.38 • NGAL (ng/mL) r = -0.2; p = 0.07 • miR-21 (copies/µl)	(data not shown).
Sex: Boys	superficial; 100 m = middle; 130 m = deep)	Urinary albumin, urinary creatinine, and	r = 0.05; p = 0.67 • miR-200c (copies/μl)	
N (%) = 47 (56.63)	from three water systems that are local	• Daytona auto-	r = 0.27; p = 0.01 • miR-423 (copies/μl)	
Exclusions:	 Ion selective electrode was used to measure fluoride 	analyzer <u>miRNAs</u>	r = 0.14; p 0.22 • <u>SCr (mg/dL)</u>	
Were not lifetime residents of the study area		 RNA isolation, reverse transcription, pre- 	r = 0.07; p = 0.53 • <u>eGFR (mL/min)</u>	
Girls with menarche	Exposure level: Tap water fluoride,	amplification, qPCR, and quantification	r = - 0.19; p = 0.07 • <u>ACR (mg/gCr)</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Has congenital kidney disease or urinary tract infections Nonsteroidal anti-inflammatory drugs or antibiotics use Source of funding/support: National Council on Science and Technology Fundacion Mexico en Harvard A. C., NIH/NIEHS 	mean (range) o 2.47 ppm (2.08 - 2.94) Urinary fluoride, mean (range) 2.18 ppm (0.34 - 8.60)	Measured in urine samples	r = 0.08; p = 0.45 Regression analysis No statistically significant differences reported between fluoride levels in urine and outcome biomarkers	Conclusions
 Harvard-NIEHS Centre for Environmental Health 				
•HSPH-NIEHS				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declarat	tion of			
interest: None				

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in	++	Participants were children (5 to 12 years of age) from	
	appropriate comparison groups?		Villa de Reyes county of San Luis Potosi, who were	
			between grades 1 to 6 at two public elementary	
			schools. The time of sampling for the study was June	
			2014.	
Confounding	Did the study design or analysis account for	++	Model 1 was adjusted for age, sex, and BMI z-score.	
	important confounding and modifying variables?		Model 2 was adjusted for model 1 covariates and	

Risk of bias a	ssessment		
			urinary specific gravity. Model 3 was adjusted for
			model 1 covariates and urinary creatinine.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the	N/A	Not applicable
	study?		
Attrition	Were outcome data complete without attrition or	++	Reasons for exclusion were provided for the study. "Of
	exclusion from analysis?		the initial 107 child participants, we excluded 16 with
			no urine or blood sample and 8 with an incomplete
			questionnaire." (p. 655)
Detection	Can we be confident in the exposure	++	Fluoride levels were measured in urine and tap water
	characterization?		samples. No difference in exposure assessment
			methods were found between participants.
	Can we be confident in the outcome	++	Several kidney injury biomarkers were measured in
	assessment?		urine (KIM-1, NGAL, miR-21, miR-200c, miR-423,
			creatinine) or serum (creatinine). Other biomarkers of
			kidney injury assessed include the estimated
			glomerular filtration rate (eGFR) and albumin-
			creatinine ratio (ACR), where albumin was measured

Risk of bias	Risk of bias assessment				
			in urine.		
Selective reporting	Were all measured outcomes reported?	+	All outcomes mentioned in the methods section were reported on in the results section. Although spearman correlation coefficients and p-values were reported for the association between fluoride and outcomes, regression estimates were not provided but indicated as not being statistically different.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

de Moura 2016 [84]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The prevalence of
Original study	Fluoride levels in	Dental fluorosis	 Prevalence of dental fluorosis 	fluorosis was high, though the severity

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Study design:	• Water	Method of outcome	Descriptive data analysis	was low in individuals exposed to fluoridation since		
Cross-sectional	Method of exposure assessment:	Assessment conducted by	Results: • The prevalence of fluorosis	birth."		
Country: Brazil	NR	dental surgeons using the Thylstrup-Fejerskov (TF) Index	was 77.9% (n = 445). • 12.1% (n = 69) of all			
	Exposure level: 0.6-0.8 ppm (as reported		participants had fluorosis of TF3, and 0.4% of TF4			
Participants: 11 to 14-year-old school children with fully erupted permanent teeth, signed informed consent, and completed sociodemographic questionnaire.	by the same author in in earlier study (Moura et al. 2010), for the same city of residence of the study participants		 and TF5 (n=2). Of the participants with higher severity of fluorosis: 98.6% (n = 70) belonged to the lowest social class (≥ B2), 91.5% were born and always lived in 			
Sampling time frame: 2011			Teresina, o 94.4% consumed fluoridated water supply			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sample size:			o 76% used infant		
571 (out of 596)			toothpaste, and		
			64% reported swallowing		
Sex (N):			this toothpaste		
NR					
Exclusions:					
• Children with imperfect					
amelogenesis					
Children undergoing fixe					
orthodontic treatment at	t				
the time of the					
assessment.Children who were abse	ant				
on the day of clinical	5Ht				
examination					
Source of funding /					
support:					

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
NR						
Author declaration	n of					
interest:						
NR						

Risk of bias assessment						
Bias domain	n Criterion Response					
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			
Performance	Were experimental conditions identical across	N/A	Not applicable			

Risk of bias assessment				
	study groups?			
	Were the research personnel and human	N/A	Not applicable	
	subjects blinded to the study group during the			
	study?			
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants	
	exclusion from analysis?		(children with imperfect amelogenesis, undergoing fixed	
			orthodontic treatment at the time of the assessment, or	
			those who were absent on the day of clinical	
			examination).	
Detection	Can we be confident in the exposure	-	NR	
	characterization?			
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by dental	
	assessment?		surgeons using the Thylstrup-Fejerskov (TF) Index.	
			Dentists were blinded to participants' clinical condition	
			and residence.	
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were	
reporting			presented in results section with adequate level of detail	
			for data extraction	

Risk of bias assessment					
Other	Were there no other potential threats to internal	++	None identified		
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?				

Heck 2016 [85]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	No evidence of an
Dissertation	Fluoridated water	Trouble workingRetardation	Linear regression models used	effect of water fluoridation on general
Study design: Cross-sectional study	Method of exposure assessment:	 General health 	 Models adjusted for race, sex, urban 	health, trouble working for children or adults, retardation in children.
Cross-sectional study	Data from the 1992Fluoridation Census	Method of outcome ascertainment:	status, and income.	
Country:	and the 1990 Census were combined to	Trouble working in	Results: Change (standard	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants: Child (14 to 15 years of age) and adult (17 to 90 years of age) civilians who are not institutionalized from the National Health and Nutrition Examination Survey III (NHANES III) Sampling time frame: NR	acquire the proportion of individuals with optimally fluoridated water in a county • The same fluoridation exposure is given to all individuals in the same county Exposure levels: NR	 children and adults: Self-reported Difficulty conducting specific activities (housework, gardening, exercise, or play) Categories: No difficulty, some difficulty, moderate difficulty, and could not do Retardation in children Self-reported Physician diagnosed mental retardation General Health in 	error; SE) in outcome from the effect of residential optimal water fluoridation among children • Trouble working (N = $\frac{2.583}{0.039}$) • Retardation (N = $\frac{4.796}{0.002}$) • General Health (N = $\frac{4.618}{0.002}$) Change (SE) in outcome from the effect	
Sample size (N):		children and adults	of optimal water	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
• Counties: 35 • Populations: > 500,000 Sex: NR		 General health of participant as decided by physician Categories: Excellent, very good, good, fair, and poor 	fluoridation among adults • Trouble working (N = 7,100) β = 0.041 (0.043) • General health (N =	
Exclusions: NR			$\frac{7,088}{\beta} = -0.028 (0.143)$	
Source of funding/ support: NR				
Author declaration of interest: NR				

Risk of bias assessment						
Bias domain	Criterion	Res	ponse			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	+	Study subject were from NHANES III where "national estimates of the health and nutritional status of the United States' civilian, noninstitutionalized population aged two months and older" are provided. Recruitment time frame not found.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Models adjusted for race, sex, urban status, and income			
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without	-	Not reported.			

Risk of bias	assessment						
	attrition or exclusion from analysis?						
Detection	Can we be confident in the exposure		Fluoride ex	posure e	stimated using	g data fro	om the 1992
	characterization?	++	Fluoridation	n Census	and 1990 Ce	nsus fror	n the US Bureau of
			the Census	S.			
	Can we be confident in the outcome		Trouble		Retardation		General health
	assessment?		working is		is self-		status was
			self-		reported.		determined by an
			reported.		Outcome		examining
			Outcome		assessors		physician.
			assessors		unlikely		Outcome
			unlikely		affected by		assessors
		++	affected	++	exposure	++	unlikely affected
			by		status as		by exposure
			exposure		data were		status as data
			status as		from		were from
			data were		different		different sources.
			from		sources.		
			different				
			sources.				
Selective	Were all measured outcomes reported?	++	Yes, results	s were re	ported for gen	eral hea	th, trouble

Risk of bias assessment					
reporting			working, and retardation.		
Other	Were there no other potential threats to		Exposure was assessed at the level of the county. As		
sources	internal validity (e.g., statistical methods		individual levels of exposure were not measured, variation in		
	were appropriate and researchers		fluoride levels within the county could not be accounted for in		
	adhered to the study protocol)?	+	the analysis (i.e. potential difference in fluoride water		
			exposure among those who drink tap water sometime		
			compared to all the time).		

Kousik 2016 [86]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	 The results also
Original study Study design: Cross-sectional study/	Fluoride levels inUrine samplesGround water samples	Body mass index (BMI)Intelligence quotient (IQ)	Correlation analysisResults:Correlation between	reveal that exposure dose has a positive correlation with urinary fluoride (r=0.513, P < 0.01), a negative correlation

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
ecological study		Method of outcome	urinary fluoride and	with IQ ($r = -0.343$,
	Method of exposure	ascertainment:	exposure dose	P<0.01), and a non-
Country: India	assessment:	<u>BMI</u>	r = 0.513; p = <0.01	significant correlation
Gourny, maia	Water samples	 Information needed for calculations were 	 Correlation between urinary fluoride and 	with BMI (r = 0.083). • Children residing in
Participants: Children	Randomly acquired	acquired from 8	BMI	areas with higher than
(6 to 18 years of age) from Simlapal Block in	from 50 tube wells • Performed field	primary schools	r = 0.022; p not <0.01	normal water fluoride level demonstrated
Bankura District	investigations during November 2014	IQ • Determined using the	 Correlation between urinary fluoride and IQ 	more impaired development of
Sampling time frame:	Measured using ion- selective electrodeUsed to calculate	Combined Raven's Test for Rural China (CRT-RC)	r = -0.751; p = <0.01 • Correlation between exposure dose and	intelligence
Sample size (N): 149	'Fluoride exposure dose' (ED) which takes into	Test was independently completed in a	BMI r = -0.083; p not < 0.01	
Sex:	consideration: Fluoride level	double-blind manner in the classroom	Correlation between exposure dose and IQ	
<u>Boys</u>	Water intake/day	Scores were grouped as	r = -0.343; p = < 0.01 • Relationship between	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
• N = 66	Body weight	Retarded/low: ≤ 69	exposure dose and	
	Urine samples	Borderline: 79 - 79	BMI among boys age	
Exclusions: NR	 Measured using ion- selective electrode 	Below average: 80 – 89 Average: 90 – 109	6-8 years BMI = 13.9 - 2.7 ED r = 0.073	
Source of funding/	Exposure levels:	Above average: 110	p = 0.832	
support: NR	Mean (SD) levels of fluoride	– 119Excellent: 120 – 129Outstanding: ≥ 130	 Relationship between exposure dose and BMI among girls age 	
Author declaration of	in water samples	Garatamanng, = 100	6-8 years	
interest: NR	2.11 mg/L (1.64)		BMI = 13.3 + 29.3	
	• Levels of fluoride in		ED	
	urine samples		r = 0.092	
	Min = 0.45 mg/L		p = 0.716	
	Max = 17.00 mg/L		• Relationship between	
			exposure dose and	
			BMI among boys age 8-10 year	
			BMI = 15.3 – 12.7	
			ED	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
			r = 0.124			
			p = 0.451			
			 Relationship between 			
			exposure dose and			
			BMI among girls age			
			8-10 years			
			BMI = 14.1 - 5.69			
			ED			
			r = 0.144			
			p = 0.362			
			 Relationship between 			
			exposure dose and			
			BMI among boys age			
			>10 years			
			BMI = 17.3 - 20.1			
			ED			
			r = 0.217			
			p = 0.371			
			 Relationship between 			
			exposure dose and			

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			BMI among girls age	
			>10 years	
			BMI = 14.3 + 3.63	
			ED	
			r = 0.133	
			p = 0.575	

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	+	Participants consist of children (6 to 18 years of age) from Simlapal Block in Bankura District. Recruitment timeframe not found.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			

Risk of bias assessment						
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	No mention of excluding participants or missing data.			
Detection	Can we be confident in the exposure characterization?	++		els were measured in water and urine. No assessment methods were reported ticipants.		
	Can we be confident in the outcome assessment?	++	Eight primary schools of respective villages were used to collect age, weight and height for calculating body mass index (BMI). Outcome unlikely to be affected by	++	The intelligence quotient (IQ) of each child was measured according to Combined Raven's Test for Rural China (CRT-RC), published by Huadong Normal University in 1989. The children were administered to take the test in the classroom, working	

Risk of bias assessment						
			blinding status. independently, in a double blind manner according to)		
			the directions of the CRT-RC manual for the test administration conditions.			
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the abstract were reported on in the results section.	ed		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.			

Sabokseir 2016 [87]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "Fluorosis indices, if
Original study	Fluoride levels in	 Dental fluorosis 	 Logistic regression was used to assess the 	used alone, could result in

Study	Exposure	Outcome	Analysis & Results	Conclusions
	• Water		association between	misdiagnosis of
Study design:		Method of outcome	fluoride drinking water	dental fluorosis and
Cross-sectional study	Method of exposure	ascertainment:	levels and fluorosis	misguide health policymakers in
	assessment:	• Dentists assessed photos		their decision about
Country:	Acquired from the town's	using the Dean's Index	Results:	public health
-	primary health care trust	and Thylstrup and	Percentage of genuine	measure related to
Iran		Fejerskov (TF) Index	fluorosis by exposure	use of fluoride."
	Exposure level:		categories	"Information about
Participants:	Fluoride levels by town		High Water Fluoride:	adverse health-
Children (9 years of age)	and category of exposure:		47.7%	related conditions linked to DDEs at
randomly selected from			Optimal Water Fluoride:	specific positions
locations with high, optimal,	Gerash (high fluoride)		20.6% • Low Water Fluoride:	on teeth could help
and low fluoride drinking water levels in Fars	• 2.12 – 2.85 ppm		3.3%	to differentiate
water levels in Fais	Sepidan (low fluoride)		• p-value: <0.001	between genuine
	• 0.24 – 0.29 ppm		•	fluorosis and
Sampling time frame:	Shiraz (optimal fluoride)		0.11 (0.72) 013 (fluorosis-
NR	• 0.62 – 1.22 ppm		Odds (95% CI) of genuine fluorosis with optimal compared to high fluoride	resembling defects." (p. 8)
Sample size:			levels:	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
376			• 0.292 (0.168 – 0.506)	
Sex (N): Boys: 196 (53%)			Odds (95% CI) of genuine fluorosis with low compared to high fluoride levels: • 0.037 (0.011 – 0.127)	
Exclusions:				
 Resided in other town from birth to age 5 years for >6 months <7 permanent incisor teeth Have orthodontic brackets Have overlapping teeth Have large restorations Have severe extrinsic stains on incisors 				
Source of funding / support:				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Vice-Chancellery for					
Research of Shiraz					
University of Medical					
Science					
Author declaration of					
interest:					

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable				
	Was allocation to study groups adequately concealed?	N/A Not applicable				
	Did selection of study participants result in	+ Yes, participants were selected using the same criteria. However, the sampling timeframe was not reported				

Risk of bias as	Risk of bias assessment				
	appropriate comparison groups?				
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Study accounted only for sex		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (resided in other town from birth to age 5 years for >6 months, have <7 permanent incisor teeth, orthodontic brackets, overlapping teeth, large restorations, or severe extrinsic stains on incisors).		
Detection	Can we be confident in the exposure characterization? Can we be confident in the outcome	++	Yes, fluoride exposure levels were obtained from each town's primary health care trust records Yes, outcome (dental fluorosis) was measured by 8		
	assessment?		calibrated dentists: 4 using the Dean's Index (DI) and 4 using Thylstrup and Fejerskov (TF) Index. The diagnosis of dental fluorosis was confirmed only if three out of four		

Risk of bias assessment				
			dentists of each group agreed. Dentists were blinded to participants' clinical condition and residence.	
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Xiang 2016 [88]

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"This study suggests
Original study	Fluoride levels in Taps, deep wells, or river	Dental fluorosisDefect dental fluorosis	Prevalence of dental fluorosis and defect dental	that defluoridation of drinking water is effective for

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design: Cross-sectional study	sources	Method of outcome	fluorosis were calculated	controlling endemic fluorosis in China
Country:	Method of exposure assessment:	ascertainment: • Permanent teeth were	Results: • "The prevalence of dental	and that the role of fluoridation of public water supplies for the
China	 Fluoride ion selective electrode 	examined by dentists and endemic fluorosis control and prevention expert	fluorosis and defect dental fluorosis in 2002 had a significant positive dose–	of control dental caries needs to be further studied." (p.
Participants: Children (8 – 14 years of age) from Wamiao and Xinhuai	Exposure level: Mean fluoride level in tap water (SD) in 2013 Wamiao	 Assessment conducted using Dean's classification and the Chinese "Clinical diagnostic standard for dental fluorosis" 	response correlation with the drinking water fluoride with the coefficient correlations, regression equations, and p values	23)
Sampling time frame:	• 0.91 mg/L (0.02)	Defect dental fluorosis:	being r=0.999, y=99.552/(1+40.049×e-	
 2002: before defluoridation 2013: 10 years after defluoridation Sample size (N):	<u>Xinhuai</u> 0.89 mg/L (0.03)	"Defect means there was a small dent, or/and a large pit, or/and a larger striped area in the surface of the dental enamel. Defect dental fluorosis included some "moderate" dental	3.464x), and p=0.017; and r=0.987, y=17.520x – 6.950, and p=0.001, respectively." (p. 23) • "The prevalence of dental fluorosis and defect dental fluorosis were significantly	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
<u>2002:</u>		fluorosis (grade 3) and all	decreased with the	
• Wamiao = 236		"severe" dental fluorosis	decreased drinking water fluoride in Wamiao in 2013	
• Xinhuai = 290		(grade 4) as diagnosed by Dean's criteria" (p. 25)	after defluoridation	
2013:		2 can c cineria (p. 20)	compared with the results	
• Wamiao = 68			in 2002." (p. 23)	
• Xinhuai = 65				
Sex (N):				
Wamiao in 2002				
Men: 130 (55.1%)				
Xinhuai in 2002				
Men: 159 (54.8%)				
Exclusions:				
2013 participants				
Absent from village for				

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
>=1year				
Source of funding	g /			
support:				
National Natural So	cience			
Foundation of Chir	na			
Author declaratio	on of			
interest:				
No COI				

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable			
	Was allocation to study groups adequately concealed?	N/A Not applicable			

Risk of bias a	ssessment		
	Did selection of study participants result in	++	Yes, participants were selected during the same
	appropriate comparison groups?		timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(those who were absent from village for >=1year).
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using a fluoride
	characterization?		ion selective electrode (Manufactured by Chang Sha Yi
			Ming Experimental Instrument Co., Ltd, China).
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was assessed by 2
	assessment?		dentists and 1 expert in endemic fluorosis using Dean's
			Index and the Chinese "Clinical diagnostic standard for
			dental fluorosis" (WS/T208-2001). Lack of blinding of
			outcome assessors would not appreciably bias results.

Risk of bias assessment			
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of detail
			for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Section 4. Excluded animal studies (with reasons for exclusion)

Level	Bibliography	Reason for Exclusion
L1	Canadian Agency for Drugs and Technologies in Health. CADTH Rapid Response Reports. 2019. 10:23	One or more exclusion criteria
L1	Klein, E., Ciobanu, M., Klein, J., Machi, V., Leborgne, C., Vandamme, T., Frisch, B., Pons, F., Kichler, A., Zuber, G., Lebeau, L "HFP" fluorinated cationic lipids for enhanced lipoplex stability and gene delivery. <i>Bioconjug Chem.</i> 2010. 21:360-71	One or more exclusion criteria
L1	McInnes, S. J., Michl, T. D., Delalat, B., Al-Bataineh, S. A., Coad, B. R., Vasilev, K., Griesser, H. J., Voelcker, N. H "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System. <i>ACS Appl Mater Interfaces</i> . 2016. 8:4467-76	One or more exclusion criteria
L1	Sinha, S., Vorse, K. S., Kariya, P. B., Mallikarjuna, R 'Pitted' to 'pleasing' in 20 min. <i>BMJ Case Reports</i> . 2015. #volume#:#pages#	One or more exclusion criteria
L1	Fernandez-Maza, L., Corral, A., Becerro, A., Gonzalez, D., Parrado, A., Balcerzyk, M., Ocana, M (18)F-fluorination of BaGdF5 nanoparticles for multimodal imaging and PET/CT biodistribution in mouse. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2019. 62 (Supplement 1):S166-S168	One or more exclusion criteria
L1	Bouchlaka, M., Gordon, J., Ludwig, K., Niles, D., Bednarz, B., Fain, S., Capitini, C (19)F-MRI for tracking NK Cells after adoptive transfer. <i>Journal of Immunology. Conference</i> 101st Annual Meeting of the American Association of Immunologist, IMMUNOLOGY. 2014. 192:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chopra, A (99m)Tc-glutamate peptide 3-aminoethyl estradiol. <i>Molecular Imaging and Contrast Agent Database</i> (MICAD). 2004. #volume#:#pages#	One or more exclusion criteria
L1	Bohmer, V., Van Der Born, D., Szymanski, W., Antunes, I., Klopstra, M., Samplonius, D., Sijbesma, J., Helfrich, W., Visser, T., Feringa, B., Elsinga, P 18 F-labelled click based PSMA-tracer for prostate cancer imaging. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2019. 62 (Supplement 1):S94-S95	One or more exclusion criteria
L1	Fernandez-Maza, L.,Rivera-Marrero, S.,Balcerzyk, M.,Fernandez-Gomez, I.,Parrado-Gallego, A.,Sablon-Carrazana, M.,Perez-Perera, R.,Diaz-Garcia, O.,Perera-Pintado, A.,Prats-Capote, A.,Rodriguez-Tanty, C 18F Labeling of a new naphthalene derivative as potential alzheimer disease PET imaging agent. Synthesis and preclinical studies. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2015. 1):S282	One or more exclusion criteria
L1	Sviripa, V. M., Zhang, W., Balia, A. G., Tsodikov, O. V., Nickell, J. R., Gizard, F., Yu, T., Lee, E. Y., Dwoskin, L. P., Liu, C., Watt, D. S 2', 6'-Dihalostyrylanilines, pyridines, and pyrimidines for the inhibition of the catalytic subunit of methionine S-adenosyltransferase-2. <i>J Med Chem.</i> 2014. 57:6083-91	One or more exclusion criteria
L1	Inkster, J.,Lin, K. S.,Ait-Mohand, S.,Gosselin, S.,Benard, F.,Guerin, B.,Pourghiasian, M.,Ruth, T.,Schaffer, P.,Storr, T 2-Fluoropyridine prosthetic compounds for the 18F labeling of bombesin analogues. <i>Bioorganic & Medicinal Chemistry Letters</i> . 2013. 23:3920-6	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Connett, P 3rd Citizens Conference of the Fluoride Action Network. <i>Fluoride</i> . 2008. 41:175	One or more exclusion criteria
L1	Suzuki, M., Everett, E. T., Whitford, G. M., Bartlett, J. D 4-phenylbutyrate Mitigates Fluoride-Induced Cytotoxicity in ALC Cells. <i>Front Physiol.</i> 2017. 8:302	One or more exclusion criteria
L1	Mitra, R., Goddard, R., Pörschke, K. R 9,9-Difluorobispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin. <i>Inorg</i> <i>Chem.</i> 2017. 56:6712-6724	
L1	Ebenhan, T., Wagener, J., Suthiram, J., Marjanovic, P. B., Sathekge, M. M., Zeevaart, J. R < sup>68Ga-PSMA-11: An one-year performance experience on a singlevial kit-type preparation of a potent PETradiodiagnostic agent for prostate cancer imaging. Molecular Imaging and Biology. 2016. 18 (2 Supplement):S1173	One or more exclusion criteria
L1	Perrin, D. M [(18)F]-Organotrifluoroborates as Radioprosthetic Groups for PET Imaging: From Design Principles to Preclinical Applications. <i>Acc Chem Res.</i> 2016. 49:1333-43	One or more exclusion criteria
L1	Tibrewala, R.,Bahroos, E.,Mehrebian, H.,Foreman, S. C.,Link, T. M.,Pedoia, V.,Majumdar, S [18F]-sodium fluoride PET-MR imaging reveals bone-cartilage interactions in hip osteoarthritis. <i>Osteoarthritis and Cartilage</i> . 2019. 27 (Supplement 1):S145-S147	One or more exclusion criteria
L1	Frederic, D.,Bertrand, K.,Annelaure, D.,Camp Nadia, V.,Michael, K.,Bertrand, T.,Raphael, B [¹⁸ F]DPA-716 as a candidate for imaging the TSPO 18 kDa with PET: Radiosynthesis and comparative	One or more exclusion criteria

ו בעבו	Bibliograph	11/
Level	Dibliograpi	ıγ

Reason for Exclusion

evaluation ([¹¹ C]DPA-713 /
[¹⁸ F]DPA-714) in a rat model of
neuroinflammation. Journal of Labelled Compounds and
Radiopharmaceuticals. 2011. 1):S275

L1 Riondato, M., Pastorino, S., Giovannini, E., Ferrando, O., Lazzeri, P., Duce, V., Ciarmiello, A.. [¹⁸F]FET production with a modified gallium-68 automated synthesizer in a Radiopharmacy without cyclotron facility. European Journal of Nuclear Medicine and Molecular Imaging. 2019. 46 (1 Supplement 1):S723

One or more exclusion criteria

L1 Xiong, L., Shen, B., Gambhir, S. S., Chin, F. T., Rao, J., [¹⁸F]YF<inf>3</inf> nanoprobes: Novel 18Flabeled imaging agents for tumor targeting. Molecular Imaging and Biology. 2012. 1):S168

One or more exclusion

criteria

L1 Johanna, R., Jori, J., Cesare, F., Anniina, P., Juha, R., Merja, One or more exclusion H., Olof, S.. [C] Novel [F-18] S1P3-receptor tracer for preclinical PET imaging in Alzheimer's disease. Journal of Labelled Compounds and Radiopharmaceuticals. 2011. 1):S455

criteria

L1 Palczewska-Komsa, M.. [Comparison of fluoride concentrations in human, dog, fox and raccoon dog bones criteria from northwestern Poland]. Pomeranian J Life Sci. 2015. 61:319-28

One or more exclusion

L1 Machoy-Mokrzyńska, A., Machoy, Z.. [Current trends in fluorine research]. Ann Acad Med Stetin. 2006. 52 Suppl 1:73-7

One or more exclusion

L1 Montero, M., Rojas-Sanchez, F., Socorro, M., Torres, J., Acevedo, A. M.. [Dental caries and fluorosis in children One or more exclusion

criteria

criteria

25 March 2023 895 consuming water with different fluoride concentrations in Maiquetia, Vargas State, Venezuela]. Invest Clin. 2007. 48:5-19

L1 Golubkina, N. A., Burtseva, T. I., Gatsenko, Alu. [Drinking water quality indices in the Orenburg Region]. Gig Sanit. 2011. #volume#:70-4

One or more exclusion criteria

L1 Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Gao, J., Ma, A. H., Liu, Y., Li, H. X.. [Epidemiological investigation on endemic fluorosis along the Yellow River alluvial plain of Shandong province]. Chung-Hua Liu Hsing Ping Hsueh Tsa Chih Chinese Journal of Epidemiology. 2010. 31:1280-3

One or more exclusion criteria

L1 Varenne, B., Fournet, F., Cadot, E., Msellati, P., Ouedraogo, One or more exclusion H. Z., Meyer, P. E., Cornu, J. F., Salem, G., Petersen, P. E. [Family environment and dental health disparities among urban children in Burkina Faso]. Rev Epidemiol Sante Publique. 2011. 59:385-92

criteria

- L1 Smoliar, N. I., Bezvushko, E. V., Chukhrai, N. L., Dzhaser, A. One or more exclusion Kh. [Incidence of malocclusion in children living in areas criteria with high fluoride content in water]. [Russian]. Stomatologiia. 2014. 93:52-54
- L1 Skudarnov, S. E., Kurkatov, S. V.. [Incidence of noncommunicable diseases and health risks due to potable water quality]. [Russian]. Gigiena i sanitariia. 2011. #volume#:30-32

One or more exclusion criteria

L1 de Carvalho, R. B., Medeiros, U. V., dos Santos, K. T., Pacheco Filho, A. C.. [Influence of different concentrations of fluoride in the water on epidemiologic

One or more exclusion criteria

25 March 2023 896

ו בעבו	Bibliograph	11/
Level	Dibliograpi	ıγ

Reason for Exclusion

indicators of oral health/disease]. *Cien Saude Colet.* 2011. 16:3509-18

L1 Chen, L. W.,Gu, S.,Jia, X. Y.. [Occluding effects of desensitizer containing NovaMin combined with fluor protector on dentinal tubules:an in vitro study]. *Shanghai Kou Qiang Yi Xue.* 2015. 24:535-40

One or more exclusion criteria

L1 Wang, X. L.,Ming, J.,Qiu, B.,Liao, Y. F.,Liao, Y. D.,Wei, S. F.,Tu, C. L.,Pan, X. L.. [Relationship between fluoride exposure, orthopedic injuries and bone formation markers in patients with coal-burning fluorosis]. *Ying Yong Sheng Tai Xue Bao.* 2019. 30:43-48

One or more exclusion criteria

L1 Carvalho, R. W., Valois, R. B., Santos, C. N., Marcellini, P. S., Bonjardim, L. R., Oliveira, C. C., Barretto, S. R., Goncalves, S. R.. [Study of the prevalence of dental fluorosis in Aracaju]. [Portuguese]. *Ciencia & saude coletiva*. 2010. 15 Suppl 1:1875-1880

One or more exclusion criteria

L1 Drobnik, M., Latour, T., Sziwa, D.. [The assessment of health exposure resulted from barium, boron, and fluoride intake from therapeutic waters available for resident people in water abstraction points of health resorts]. [Polish].
Roczniki Panstwowego Zakladu Higieny. 2010. 61:373-378

One or more exclusion

criteria

L1 Romero, V., Norris, F. J., Rios, J. A., Cortes, I., Gonzalez, A., Gaete, L., Tchernitchin, A. N.. [The impact of tap water fluoridation on human health]. *Revista Medica de Chile*. 2017. 145:240-249

One or more exclusion criteria

L1 Jaudenes Marrero, J. R., Hardisson de la Torre, One or more exclusion A., Gutierrez Fernandez, A. J., Rubio Armendariz, C., Revert criteria Girones, C.. [Toxic Risk Assessment of Fluoride Presence

	Diblicarophy
Levei	Bibliography

Reason for Exclusion

in Bottled Water Consumption in the Canary Islands]. *Nutricion Hospitalaria*. 2015. 32:2261-8

- L1 Janka, Z.. [Tracing trace elements in mental functions]. One or more exclusion Ideggyogy Sz. 2019. 72:367-379 criteria
- L1 Orsini, G., Procaccini, M., Manzoli, L., Sparabombe, One or more exclusion S., Tiriduzzi, P., Bambini, F., Putignano, A.. A 3-day criteria randomized clinical trial to investigate the desensitizing properties of three dentifrices. *J Periodontol.* 2013. 84:e65-73
- L1 Choubisa, S. L.. A brief and critical review on hydrofluorosis One or more exclusion in diverse species of domestic animals in India. *Environ* criteria *Geochem Health.* 2018. 40:99-114
- L1 Chen, S.,Song, L.,Xie, X.,Han, X.,Cheng, B.. A case of One or more exclusion abdominal mesenteric Castleman's disease with left renal criteria cell carcinoma and stomach leiomyoma. *Hellenic Journal of Nuclear Medicine*, 2016, 19:285-288
- L1 Mosaferi, M., Feizi, M. A. H., Dastgiri, S., Kusha, One or more exclusion A., Mehdipour, M.. A case study of dental fluorosis criteria prevalence in rural communities in Northwest Iran. *Fluoride*. 2012. 45 (3 PART 1):185-186
- Malar, S., Karuppannan, S., Krishnaveni, M., Venkateswaran, One or more exclusion
 S.. A case study on dental fluorosis in Uthangarai Taluk, criteria
 Krishnagiri District, Tamil Nadu, India. Asian Journal of
 Microbiology, Biotechnology and Environmental Sciences.
 2011. 13:47-49
- L1 Sharma, N.,Roy, S.,Kakar, A.,Greenspan, D. C.,Scott, R.. A One or more exclusion clinical study comparing oral formulations containing 7.5% criteria calcium sodium phosphosilicate (NovaMin), 5% potassium

- nitrate, and 0.4% stannous fluoride for the management of dentin hypersensitivity. *J Clin Dent.* 2010. 21:88-92
- L1 Shruthi, M. N., Anil, N. S.. A comparative study of dental fluorosis and non-skeletal manifestations of fluorosis in areas with different water fluoride concentrations in rural Kolar. *Journal of Family Medicine & Primary Care.* 2018. 7:1222-1228

One or more exclusion criteria

- L1 Shruthi, M. N.,Santhuram, A. N.,Arun, H. S.,Kishore Kumar, One or more exclusion B. N.. A comparative study of skeletal fluorosis among criteria adults in two study areas of Bangarpet taluk, Kolar. *Indian J Public Health.* 2016. 60:203-9
- L1 Poureslami, H. R., Horri, A., Garrusi, B.. A comparative study of the IQ of children age 7-9 in a high and a low fluoride water city in Iran. *Fluoride*. 2011. 44:163-167

One or more exclusion criteria

Yu, J.,Zhou, J.,Long, A.,He, X.,Deng, X.,Chen, Y.. A comparative study of water quality and human health risk assessment in longevity area and adjacent non-longevity area. *International Journal of Environmental Research and Public Health.* 2019. 16 (19) (no pagination):#pages#

One or more exclusion criteria

- L1 Macey, R.,Tickle, M.,MacKay, L.,McGrady, M.,Pretty, I. A.. One or more exclusion A comparison of dental fluorosis in adult populations with criteria and without lifetime exposure to water fluoridation.

 Community Dent Oral Epidemiol. 2018. 46:608-614
- L1 González-Horta, C.,Ballinas-Casarrubias, L.,Sánchez- One or more exclusion Ramírez, B.,Ishida, M. C.,Barrera-Hernández, A.,Gutiérrez- criteria Torres, D.,Zacarias, O. L.,Saunders, R. J.,Drobná, Z.,Mendez, M. A.,García-Vargas, G.,Loomis, D.,Stýblo, M.,Del Razo, L. M.. A concurrent exposure to arsenic and

Level	Bibliog	graphy

Reason for Exclusion

fluoride from drinking water in Chihuahua, Mexico. *Int J Environ Res Public Health.* 2015. 12:4587-601

- L1 Ford, D.,Seow, W. K.,Kazoullis, S.,Holcombe, T.,Newman, One or more exclusion B.. A controlled study of risk factors for enamel hypoplasia criteria in the permanent dentition. *Pediatr Dent.* 2009. 31:382-8
- L1 Henry, B. J., Carlin, J. P., Hammerschmidt, J. A., Buck, R. One or more exclusion C., Buxton, L. W., Fiedler, H., Seed, J., Hernandez, O.. A criteria critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. *Integr Environ Assess Manag.* 2018. 14:316-334
- Chen, P.,He, D.,Wei, S.,Pu, G.,La, C.,Jiang, H.,Li, S.,Lu, One or more exclusion Q.,Zhao, Y.. A cross-sectional investigation of drinking criteria brick-tea fluorosis of children aged 8 12 in Qinghai Province. [Chinese]. *Chinese Journal of Endemiology*. 2014. 33:53-55
- L1 Sebastian, S. T., Sunitha, S.. A cross-sectional study to One or more exclusion assess the intelligence quotient (IQ) of school going criteria children aged 10-12 years in villages of Mysore district, India with different fluoride levels. *J Indian Soc Pedod Prev Dent.* 2015. 33:307-11
- L1 Zhang, B.,Li, M.,Zhou, S.,Dai, X.,Xiong, P.,Zhu, S.. A One or more exclusion dental fluorosis trend analysis of children aged 8 to 12 in criteria drinking-water-type endemic fluorosis areas of Hubei Province from 2010 to 2014. [Chinese]. *Chinese Journal of Endemiology.* 2016. 35:664-667
- Orsini, G., Procaccini, M., Manzoli, L., Giuliodori,
 F., Lorenzini, A., Putignano, A.. A double-blind randomized-criteria
 controlled trial comparing the desensitizing efficacy of a

- new dentifrice containing carbonate/hydroxyapatite nanocrystals and a sodium fluoride/potassium nitrate dentifrice. *J Clin Periodontol*. 2010. 37:510-7
- Li, C.,Li, F.,Li, T.,Bai, T.,Wang, L.,Shi, Z.,Feng, S.. A facile One or more exclusion synthesis and photoluminescence properties of water-dispersible Re3+ doped CeF3 nanocrystals and solid nanocomposites with polymers. *Dalton Trans.* 2012.
 41:4890-5
- L1 Ke, B., Chen, W., Ni, N., Cheng, Y., Dai, C., Dinh, H., Wang, One or more exclusion B.. A fluorescent probe for rapid aqueous fluoride detection criteria and cell imaging. *Chem Commun (Camb)*. 2013. 49:2494-6
- L1 Kotoky, P., Tamuli, U., Borah, G. C., Baruah, M. K., Sarmah, One or more exclusion B. K., Paul, A. B., Bhattacharyya, K. G.. A fluoride zonation criteria map of the Karbianglong District, Assam, India. *Fluoride*. 2010. 43:157-159
- L1 Rodnick, M. E.,Brooks, A. F.,Hockley, B. G.,Henderson, B. One or more exclusion D.,Scott, P. J. H.. A fully automated one-pot high yielding criteria synthesis of [¹⁸F]fluoromethylcholine. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2013. 1):S117
- L1 Fordyce, F. M., Vrana, K., Zhovinsky, E., Povoroznuk, One or more exclusion V., Toth, G., Hope, B. C., Iljinsky, U., Baker, J.. A health risk criteria assessment for fluoride in Central Europe. *Environ Geochem Health.* 2007. 29:83-102
- L1 Hongyong, W.,Zou, P.,Xie, M.,Liu, Y.,Wu, J.,Wu, H.. A high One or more exclusion yield automated synthesis of ¹⁸F-FLT On criteria PET-MF- 2V-IT-I module with SPE purification. *European Journal of Nuclear Medicine and Molecular Imaging*. 2019.

Level	Bibliography	Reason for Exclusion
	46 (1 Supplement 1):S853-S854	
L1	 Tanifum, E. A., Devkota, L., Ngwa, C., Badachhape, A. A., Ghaghada, K. B., Romero, J., Pautler, R. G., Annapragada, A. V A Hyperfluorinated Hydrophilic Molecule for Aqueous (19)F MRI Contrast Media. <i>Contrast Media Mol Imaging</i>. 2018. 2018:1693513 	One or more exclusion criteria
L1	Ghosh, P.,Banerjee, P A Journey towards Salivary Fluoride Level Detection by Suitable Low Cost Chemosensor: From Molecule to Product. <i>Chem Rec.</i> 2019. 19:2119-2129	One or more exclusion criteria
L1	Khare, P A large-scale investigation of the quality of groundwater in six major districts of Central India during the 2010-2011 sampling campaign. <i>Environmental Monitoring and Assessment.</i> 2017. 189 (9) (no pagination):#pages#	One or more exclusion criteria
L1	Chen, L., Wang, W., Su, B., Wen, Y., Li, C., Zhou, Y., Li, M., Shi, X., Du, H., Song, Y., Jiang, L A light-responsive release platform by controlling the wetting behavior of hydrophobic surface. <i>ACS Nano.</i> 2014. 8:744-51	One or more exclusion criteria
L1	Shaw, F. E A message from the editor. <i>Public Health Reports</i> . 2015. 130:295	One or more exclusion criteria
L1	Gill, H. S., Tinianow, J. N., Ogasawara, A., Flores, J. E., Vanderbilt, A. N., Raab, H., Scheer, J. M., Vandlen, R., Williams, S. P., Marik, J A modular platform for the rapid site-specific radiolabeling of proteins with 18F exemplified by quantitative positron emission tomography of human epidermal growth factor receptor 2. <i>J Med Chem.</i> 2009. 52:5816-25	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Girardi, P.,Merler, E A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid. <i>Environmental Research</i> . 2019. Part A. 179 (no pagination):#pages#	One or more exclusion criteria
L1	Qiao, F.,Pan, T.,Clark, J. W., Jr.,Mawlawi, O. R A motion-incorporated reconstruction method for gated PET studies. <i>Phys Med Biol.</i> 2006. 51:3769-83	
L1	Wang, C.,Gao, Y.,Wang, W.,Zhao, L.,Zhang, W.,Han, H.,Shi, Y.,Yu, G.,Sun, D A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China. <i>BMJ Open.</i> 2012. 2:#pages#	One or more exclusion criteria
L1	Maltais, R., Ayan, D., Poirier, D A new aminosteroid (RM-133) as selective anti-cancer agent: Chemical synthesis and biological activities. <i>Drugs of the Future</i> . 2010. A):256	One or more exclusion criteria
L1	Jin, S.,Zhou, L.,Gu, Z.,Tian, G.,Yan, L.,Ren, W.,Yin, W.,Liu, X.,Zhang, X.,Hu, Z.,Zhao, Y A new near infrared photosensitizing nanoplatform containing blue-emitting upconversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. <i>Nanoscale</i> . 2013. 5:11910-8	, One or more exclusion criteria
L1	Inkster, J. A., Colin, D. J., Seimbille, Y A novel 2-cyanobenzothiazole-based (18)F prosthetic group for conjugation to 1,2-aminothiol-bearing targeting vectors. <i>Org. Biomol Chem.</i> 2015. 13:3667-76	One or more exclusion criteria
L1	Meziane, I.,Jerome, D.,Johnny, V.,Danie, S.,Denis, G.,Louisa, B A novel [¹⁸ F]AV-45 (Florbetapir) synthesis for a fully automated development on a tracer lab MX <inf>FDG</inf> apparatus. <i>Journal of</i>	One or more exclusion criteria

Labelled Compounds and Radiopharmaceuticals. 2011. 1):S418

L1 Kumari, U., Behera, S. K., Meikap, B. C.. A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater. Journal of Hazardous Materials. 2019. 365:868-882

One or more exclusion criteria

L1 Tirapelli, C., Panzeri, H., Soares, R. G., Peitl, O., Zanotto, E. One or more exclusion D.. A novel bioactive glass-ceramic for treating dentin hypersensitivity. Braz Oral Res. 2010. 24:381-7

criteria

- L1 Laverman, P., McBride, W. J., Sharkey, R. M., Eek, One or more exclusion A., Joosten, L., Oyen, W. J., Goldenberg, D. M., Boerman, O. criteria C.. A novel facile method of labeling octreotide with (18)Ffluorine. J Nucl Med. 2010. 51:454-61
- L1 He, J., Matsuura, T., Chen, J. P.. A novel Zr-based One or more exclusion nanoparticle-embedded PSF blend hollow fiber membrane criteria for treatment of arsenate contaminated water: Material development, adsorption and filtration studies, and characterization. Journal of Membrane Science, 2014. 452:433-445
- L1 Zheng, F., Zeng, F., Yu, C., Hou, X., Wu, S.. A PEGylated One or more exclusion fluorescent turn-on sensor for detecting fluoride ions in criteria totally aqueous media and its imaging in live cells. Chemistry. 2013. 19:936-42
- L1 Mazur, C. M., Savic, D., Pedoia, V., Venkatachari, A. K., Seo, One or more exclusion Y., Franc, B. L., Majumdar, S.. A PET/MR study of cartilage-criteria bone interactions in osteoarthritis using T<inf>1rho</inf> dispersion. Molecular Imaging and Biology. 2016. 1):S759-

25 March 2023 904 S760

- L1 Kong, X. Y., Hou, L. J., Shao, X. Q., Shuang, S. M., Wang, One or more exclusion Y., Dong, C.. A phenolphthalein-based fluorescent probe for criteria the sequential sensing of Al(3+) and F(-) ions in aqueous medium and live cells. *Spectrochim Acta A Mol Biomol Spectrosc.* 2019. 208:131-139
- L1 Schafer, D.,Zlatopolskiy, B. D.,Ermert, J.,Neumaier, B.. A One or more exclusion practical two-step synthesis of 5-[¹⁸F]fluoro-L- criteria tryptophan (5-[¹⁸F]FTrp) via alcoholenhanced Cu-mediated radiofluorination. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2017. 60 (Supplement 1):S105
- L1 Lie, M., Thorstensen, K.. A precise, sensitive and stable LC- One or more exclusion MSMS method for detection of picomolar levels of serum criteria aldosterone. *Scand J Clin Lab Invest.* 2018, 78:379-385
- L1 Dickson, R. C.. A reader and author respond to "The top One or more exclusion ten unfounded health scares of the year". *MedGenMed* criteria *Medscape General Medicine*. 2008. 10 (4) (no pagination):#pages#
- L1 Cárdenas-Rodríguez, J., Howison, C. M., Matsunaga, T. One or more exclusion O., Pagel, M. D.. A reference agent model for DCE MRI can criteria be used to quantify the relative vascular permeability of two MRI contrast agents. *Magn Reson Imaging*. 2013. 31:900-10
- L1 Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., Abiola, One or more exclusion O., Ali, S., Nasim, W.. A review of global outlook on fluoride criteria contamination in groundwater with prominence on the Pakistan current situation. *Environ Geochem Health*. 2018.

40:1265-1281

L1 Rahman, Z. U.,Khan, B.,Ahmada, I.,Mian, I. A.,Saeed, O A.,Afaq, A.,Khan, A.,Smith, P.,Mianh, A. A.. A review of groundwater fluoride contamination in Pakistan and an assessment of the risk of fluorosis. *Fluoride*. 2018. 51:171-181

One or more exclusion criteria

- L1 Chang, W., Wang, L., Zhang, Y., Wang, M., Wang, Y., Li, P.. A One or more exclusion review of sources, multimedia distribution and health risks criteria of novel fluorinated alternatives. *Ecotoxicology and Environmental Safety.* 2019. 182 (no pagination):#pages#
- L1 Chang, C. W., Chou, T. K., Liu, R. S., Wang, S. J., Lin, W. J., Chen, C. H., Wang, H. E.. A robotic synthesis of [18F]fluoromisonidazole ([18F]FMISO). *Appl Radiat Isot.* 2007. 65:682-6

One or more exclusion criteria

L1 Tago, T.,Toyohara, J.,Fujimaki, R.,Hirano, K.,Iwai, K.,Ishibashi, K.,Tanaka, H.. A simple SPE purification method for ¹⁸F-radiolabeling: Proof-of-concept study in stilbene amyloid-beta ligands with a neopentyl labeling group. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S163-S164

One or more exclusion criteria

- L1 Wright, J. A., Cronin, A., Okotto-Okotto, J., Yang, H., Pedley, One or more exclusion S., Gundry, S. W.. A spatial analysis of pit latrine density criteria and groundwater source contamination. *Environ Monit Assess.* 2013. 185:4261-72
- L1 Zhang, R.,Niu, Y.,Du, H.,Cao, X.,Shi, D.,Hao, Q.,Zhou, Y.. One or more exclusion A stable and sensitive testing system for potential carcinogens based on DNA damage-induced gene

ו בעב	Bibliograpl	hv
Levei	DIDITOGIADI	I Y

Reason for Exclusion

expression in human HepG2 cell. Toxicol In Vitro. 2009. 23:158-65

L1 Szyperska, A., Gutowska, I., Machoy-Mokrzynska, A., Rak, J.,Baranowska-Bosiacka, I.,Machoy, Z., A study of an hypothesis linking aluminum fluoride to alzheimer disease: The affinity of amino acids occurring in Beta-amyloid to [AI(H<inf>2</inf>0)<inf>6</inf>]³⁺. Fluoride. 2017. 50:468-474

One or more exclusion criteria

L1 You, H., Fu, S., Qin, X., Yu, Y., Yang, B., Zhang, G., Sun, X., Feng, Y., Chen, Y., Wu, J.. A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma. Colloids Surf B Biointerfaces. 2016. 140:150-160

One or more exclusion criteria

L1 Boyle, P., Koechlin, A., Autier, P.. A systematic review with meta-analysis of fluoridated mouthwash use for the prevention of dental caries. Oral Diseases. 2014. 20:27-34

One or more exclusion criteria

L1 Hoover, A. J., Lazari, M., Ren, H., Narayanam, M. K., Murphy, One or more exclusion J. M., van Dam, R. M., Hooker, J. M., Ritter, T.. A Transmetalation Reaction Enables the Synthesis of [(18)F]5-Fluorouracil from [(18)F]Fluoride for Human PET Imaging. Organometallics. 2016. 35:1008-1014

criteria

L1 Thompson, S., Onega, M., Ashworth, S., Fleming, I. N., Passchier, J., O'Hagan, D.. A two-step fluorinase enzyme mediated (18)F labelling of an RGD peptide for positron emission tomography. Chem Commun (Camb). 2015. 51:13542-5

One or more exclusion criteria

L1 Buyukkaplan, U. S., Aksoy, A., Komerik, N., Yilmaz, H. One or more exclusion

25 March 2023 907

Level Bibliography

Reason for Exclusion

- H.,Karayilmaz, H.. Absence of significant association criteria between temporomandibular joint (TMJ) disorders and dental fluorosis in Isparta, Turkey. *Fluoride*. 2012. 45:274-280
- L1 Li, Y., Wang, S., Prete, D., Xue, S., Nan, Z., Zang, F., Zhang, One or more exclusion Q.. Accumulation and interaction of fluoride and cadmium criteria in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China. *Sci Total Environ*, 2017, 595:344-351
- L1 Li, Y., Wang, S., Nan, Z., Zang, F., Sun, H., Zhang, Q., Huang, One or more exclusion W., Bao, L.. Accumulation, fractionation and health risk criteria assessment of fluoride and heavy metals in soil-crop systems in northwest China. *Sci Total Environ.* 2019. 663:307-314
- L1 Khan, N. B., Chohan, A. N.. Accuracy of bottled drinking One or more exclusion water label content. *Environmental Monitoring and Assessment.* 2010. 166:169-176
- L1 Goulding, J. M. R., Finch, T. M.. Acrylates tooth and nail: One or more exclusion Coexistent allergic contact dermatitis to acrylates present in criteria desensitizing dental swabs and artificial fingernails. *British Journal of Dermatology*. 2010. 1):87-88
- L1 Panziera, W., Schwertz, C. I., da Silva, F. S., Taunde, P. One or more exclusion A., Pavarini, S. P., Driemeier, D.. Acute sodium fluorosilicate criteria poisoning in cattle. [Portuguese]. *Acta Scientiae*Veterinariae. 2018. 46 (Supplement) (no pagination):#pages#
- L1 Narwaria, Y. S.,Saksena, D. N.. Acute toxicity bioassay and One or more exclusion behavioural responses induced by sodium fluoride in criteria

Level	Bibliog	graphy

Reason for Exclusion

freshwater fish Puntius sophore (Bloch). Fluoride. 2012. 45:7-12

L1 Lisova, K., Wang, J., Rios, A., Van Dam, R. M.. Adaptation and optimization of [¹⁸F] Florbetaben ([¹⁸F]FBB) radiosynthesis to a microdroplet reactor. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S353-S354

One or more exclusion criteria

L1 Buckley, H. L., Molla, N. J., Cherukumilli, K., Boden, K. S., Gadgil, A. J.. Addressing technical barriers for reliable, safe removal of fluoride from drinking water using minimally processed bauxite ores. Dev Eng. 2018. 3:175-187

One or more exclusion criteria

L1 Fromme, H., Wöckner, M., Roscher, E., Völkel, W., ADONA One or more exclusion and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany. Int J Hyg Environ Health, 2017, 220:455-460

criteria

L1 Daifullah, A. A., Yakout, S. M., Elreefy, S. A.. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of Hazardous Materials, 2007, 147:633-43

One or more exclusion criteria

L1 Viberg, H., Lee, I., Eriksson, P.. Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. Toxicology. 2013. 304:185-91

One or more exclusion criteria

L1 Kisely, S., Quek, L. H., Pais, J., Lalloo, R., Johnson, N. W.,Lawrence, D.. Advanced dental disease in people with severe mental illness: systematic review and metaanalysis. Br J Psychiatry. 2011. 199:187-93

One or more exclusion criteria

25 March 2023 909

Level	Bibliography	Reason for Exclusion
L1	Johnson, J. K., Hoffman, C. M., Jr., Smith, D. A., Xia, Z Advanced Filtration Membranes for the Removal of Perfluoroalkyl Species from Water. <i>ACS Omega</i> . 2019. 4:8001-8006	One or more exclusion criteria
L1	He, P.,Haswell, S. J.,Pamme, N.,Archibald, S. J Advances in processes for PET radiotracer synthesis: separation of [18F]fluoride from enriched [18O]water. <i>Appl Radiat Isot</i> . 2014. 91:64-70	One or more exclusion criteria
L1	Levine, R Advancing the scientific basis of oral health education. <i>Community Dent Health</i> . 2015. 32:66-7	One or more exclusion criteria
L1	Babini, M. S.,Bionda, C. L.,Salas, N. E.,Martino, A. L Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles. Environmental Monitoring and Assessment. 2016. 188 (8) (no pagination):#pages#	One or more exclusion criteria
L1	Dahi, E Africa's U-turn in defluoridation policy: From the Nalgonda technique to bone char. <i>Fluoride</i> . 2016. Part 1. 49:401-416	One or more exclusion criteria
L1	Shashi, A.,Kumar, M Age specific fluoride exposure in drinking water - A clinical multiparametric study. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences</i> . 2008. 10:655-660	One or more exclusion criteria
L1	Abtahi, M., Dobaradaran, S., Jorfi, S., Koolivand, A., Mohebbi, M. R., Montazeri, A., Khaloo, S. S., Keshmiri, S., Saeedi, R Age-sex specific and sequela-specific disability-adjusted life years (DALYs) due to dental caries preventable through water fluoridation: An assessment at the national and subnational levels in Iran, 2016. <i>Environ Res.</i> 2018.	criteria

167:372-385

- L1 Abtahi, M., Dobaradaran, S., Jorfi, S., Koolivand, A., Khaloo, One or more exclusion S. S., Spitz, J., Saeedi, H., Golchinpour, N., Saeedi, R.. Age-criteria sex specific disability-adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: A national and subnational study in Iran, 2017. Water Res. 2019. 157:94-105
- L1 Bassin, E. B., Wypij, D., Davis, R. B., Mittleman, M. A.. Age- One or more exclusion specific fluoride exposure in drinking water and criteria osteosarcoma (United States). *Cancer Causes Control.* 2006. 17:421-8
- L1 Arulkumar, M.,Vijayan, R.,Penislusshiyan, One or more exclusion S.,Sathishkumar, P.,Angayarkanni, J.,Palvannan, T.. criteria Alteration of paraoxonase, arylesterase and lactonase activities in people around fluoride endemic area of Tamil Nadu, India. *Clinica Chimica Acta.* 2017. 471:206-215
- L1 Randhawa, S. S., Sharma, S., Ranjan, R.. Alterations in One or more exclusion blood concentrations of macro- and microminerals in water criteria buffaloes living in endemic fluorosis areas of Punjab.

 Fluoride. 2012. 45 (3 PART 1):190-191
- L1 Ma, S. K.,Bae, E. H.,Kim, I. J.,Choi, C.,Lee, J.,Kim, S. W.. One or more exclusion Altered renal expression of aquaporin water channels and criteria sodium transporters in rats with two-kidney, one-clip hypertension. *Kidney Blood Press Res.* 2009. 32:411-20
- L1 Russ, T. C., Killin, L. O. J., Hannah, J., Batty, G. D., Deary, I. One or more exclusion J., Starr, J. M.. Aluminium and fluoride in drinking water in criteria relation to later dementia risk. *British Journal of Psychiatry*. 2020. 216:29-34

Level Bibliography

Reason for Exclusion

- L1 Frisardi, V., Solfrizzi, V., Capurso, C., Kehoe, P. G., Imbimbo, One or more exclusion B. P., Santamato, A., Dellegrazie, F., Seripa, D., Pilotto, criteria A., Capurso, A., Panza, F.. Aluminum in the diet and Alzheimer's disease: from current epidemiology to possible disease-modifying treatment. *J Alzheimers Dis.* 2010. 20:17-30
- L1 Shaw, C. A., Seneff, S., Kette, S. D., Tomljenovic, L., Oller, J. One or more exclusion W., Davidson, R. M.. Aluminum-induced entropy in criteria biological systems: Implications for neurological disease.
 Journal of Toxicology. 2014. 2014 (no pagination):#pages#
- L1 Seo, E. J.,Lee, M. Y.. Amelioration of hydrofluoric acid- One or more exclusion induced DNA damage by phytochemicals. *Toxicology and criteria Environmental Health Sciences*. 2013. 5:201-206
- L1 Kushi, L. H., Byers, T., Doyle, C., Bandera, E. One or more exclusion V., McCullough, M., Gansler, T., Andrews, K. S., Thun, M. criteria J., Ainsworth, B., Ballard-Barbash, R., Bloch, A. F., Chan, J. M., Coates, R. J., Demark-Wahnefried, W., Freudenheim, J., Gann, P., Giovannucci, E., Hartman, T., Kolonel, L., Lichtenstein, A. H., Martinez, M. E., McTiernan, A., Morra, M., Schatzkin, A., Slattery, M., Smith-Warner, S., Wylie-Rosett, J., Zheng, W., Ades, T., Cokkinides, V., Samuels, A., Ringer, D. P., Smith, R. A.. American Cancer Society guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. Ca-A Cancer Journal for Clinicians. 2006. 56:254-281
- L1 Sun, L.,Gao, Y.,Liu, H.,Zhang, W.,Ding, Y.,Li, B.,Li, M.,Sun, One or more exclusion D.. An assessment of the relationship between excess criteria fluoride intake from drinking water and essential

hypertension in adults residing in fluoride endemic areas. *Science of the Total Environment.* 2013. 443:864-869

- L1 Fewtrell, L.,Smith, S.,Kay, D.,Bartram, J.. An attempt to One or more exclusion estimate the global burden of disease due to fluoride in drinking water. *J Water Health.* 2006. 4:533-42
- L1 Jiang, G.,Pichaandi, J.,Johnson, N. J.,Burke, R. D.,van One or more exclusion Veggel, F. C.. An effective polymer cross-linking strategy to criteria obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications. *Langmuir.* 2012. 28:3239-47
- L1 Kao, C. H.,Hsu, W. L.,Kao, P. F.,Lan, W. C.,Xie, H. L.,Lin, One or more exclusion M. C.,Chao, H. Y.. An efficient and aseptic preparation of criteria "sodium fluoride ((18)F) injection" in a GMP compliant facility. *Ann Nucl Med.* 2010. 24:149-55
- L1 Erickson, J. D.. An epidemiologic enterprise: From fluoride One or more exclusion to folate. *Birth Defects Research Part A Clinical and* criteria *Molecular Teratology.* 2012. 94 (5):292
- L1 Zhai, L., Wang, X., Gao, H., Li, L., Lu, X., Li, H., Chen, P.. An One or more exclusion epidemiological investigation of endemic fluorosis in criteria Shandong Province in 2013. [Chinese]. *Chinese Journal of Endemiology.* 2015. 34:508-510
- L1 Harinath, B.. An epidemiological study of dental fluorosis One or more exclusion among higher secondary school children belonging to an endemic rural area in Nalgonda district, Andhra Pradesh.

 Australasian Medical Journal. 2012. 5 (1):42-43
- L1 Nirgude, A. S., Saiprasad, G. S., Naik, P. R., Mohanty, S.. An One or more exclusion epidemiological study on fluorosis in an urban slum area of criteria Nalgonda, Andhra Pradesh, India. *Indian Journal of Public*

Health. 2010. 54:194-6

- L1 Sankannavar, R., Chaudhari, S.. An imperative approach for One or more exclusion fluorosis mitigation: Amending aqueous calcium to criteria suppress hydroxyapatite dissolution in defluoridation.

 Journal of Environmental Management. 2019. 245:230-237
- L1 Olley, R. C., Pilecki, P., Hughes, N., Jeffery, P., Austin, R. One or more exclusion S., Moazzez, R., Bartlett, D.. An in situ study investigating dentine tubule occlusion of dentifrices following acid challenge. *J Dent.* 2012. 40:585-93
- L1 Koletsi-Kounari, H.,Mamai-Homata, E.,Diamanti, I.. An in One or more exclusion vitro study of the effect of aluminum and the combined criteria effect of strontium, aluminum, and fluoride elements on early enamel carious lesions. *Biological Trace Element Research.* 2012. 147:418-427
- Vivar, M.,Pichel, N.,Fuentes, M.,Martínez, F.. An insight One or more exclusion into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict. *Sci Total Environ.* 2016. 550:534-546
- Ye, Y., Wang, W., Huo, L. L., Liu, K. K., Liu, Y., Sun, J., Li, S. One or more exclusion P., Gao, Y. H.. An investigation of the source of fluoride in the endemic fluorosis areas of Pingxiang city, Jiangxi province in 2011. [Chinese]. *Chinese Journal of Endemiology*. 2013. 32:67-70
- L1 Liu, Y.,Guo, R.,Huang, J.,Wang, X.,Yang, F.,Sun, G.. An One or more exclusion survey of endemic fluorosis in Jining City, Shandong criteria

 Province. [Chinese]. *Chinese Journal of Endemiology*.
 2014. 33:174-177

Level	Bibliography	Reason for Exclusion
L1	Honkanen, I.,Hock, L.,Bettendorf, B.,Fiordellisi, W An unlikely source of periostitis. <i>Journal of General Internal Medicine</i> . 2018. 33 (2 Supplement 1):464	One or more exclusion criteria
L1	Susan, J., Sebastian, S An unusual cause of back pain in South India: Case report. <i>Turkish Journal of Gastroenterology</i> . 2019. 30 (Supplement 3):S190-S191	One or more exclusion criteria
L1	Dai, H. X.,Zeng, P.,Wang, K. Y.,Zhang, X. G.,Ma, Z. J.,Zhou, Y. G.,Fan, Z. X.,Guo, S. H Analysis of a survey results of patients with suspected high iodine goiter in Liuji Town Fuping County of Shaanxi Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:408-411	One or more exclusion criteria
L1	Jia, L. H.,Ma, J.,Du, Y. G.,Ma, D. R.,Liang, S. L.,Zhou, C. H Analysis of an investigational result of drinking-water-borne endemic fluorosis in Hebei Province in 2010. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:659-661	One or more exclusion criteria
L1	Jameel, R. A.,Khan, S. S.,Rahim, Z. H. A.,Bakri, M. M.,Siddiqui, S Analysis of dental erosion induced by different beverages and validity of equipment for identifying early dental erosion, in vitro study. <i>Journal of the Pakistan Medical Association</i> . 2016. 66:843-848	One or more exclusion criteria
L1	Gao, R. P.,Xu, Y Analysis of disease surveillance of endemic fluorosis in Yanqing county of Beijing in 2008. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:176-178	One or more exclusion criteria
L1	Liu, X. H., Hu, R. C., Zheng, C. S., Zhou, M. R., Jiang, Z. L., Tian, S. C., Gai, C. C., Zhang, X. K Analysis of endemic fluorosis of Xinbaerhuyouqi in Hulunbeir city of Inner	One or more exclusion criteria

Mongolia in 2000-2009. [Chinese]. *Chinese Journal of Endemiology*. 2011. 30:546-548

- L1 Chen, J., Xiao, B. Z., Yan, W., Zhou, Q. R., Zhang, J., Wang, One or more exclusion Z. H., Zhao, J., Guo, X. L., Luo, X. J.. Analysis of criteria environmental fluoride of the coal-burning endemic fluorosis areas in Chongqing. [Chinese]. *Chinese Journal of Endemiology*. 2009. 28:541-544
- L1 Kataria, H. C.,Bux, S.,Ambhore, S.,Shrivastava, S. One or more exclusion C.,Pathak, G.,Namdeo, M.. Analysis of fluoride criteria concentration in groundwater in and around Bhopal city.

 M.P. India. *Biosciences Biotechnology Research Asia*.

 2008. 5:699-700
- L1 Niu, Z. H.,Zhao, J. L.. Analysis of monitoring data of One or more exclusion drinking-water borne endemic fluorosis in Xinzhou of Criteria Shanxi province in 2010. [Chinese]. *Chinese Journal of Endemiology.* 2012. 31:321-324
- L1 Ge, S. Z. G.. Analysis of monitoring results of drinking-tea One or more exclusion borne endemic fluorosis in Lhasa of Tibet. [Chinese]. criteria

 Chinese Journal of Endemiology. 2012. 31:325-328
- Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Gao, J., Ma, One or more exclusion A. H., Liu, Y., Li, H. X.. Analysis of monitoring results of criteria endemic fluorosis in Shandong province in 2009. [Chinese].

 Chinese Journal of Endemiology. 2011. 30:188-193
- Li, P., Wang, Z., Wu, Z.. Analysis of monitoring results of One or more exclusion fluoride-safe water supply projects in drinking water type of criteria fluorosis and arsenic poisoning areas in Shanxi Province in 2012. [Chinese]. *Chinese Journal of Endemiology.* 2015. 34:116-118

Level	Bibliography	Reason for Exclusion
L1	Mahajan, R. K., Walia, T. P., Lark, B. S., Sumanjit,. Analysis of physical and chemical parameters of bottled drinking water. <i>Int J Environ Health Res.</i> 2006. 16:89-98	One or more exclusion criteria
L1	Chen, P. Z., Yun, Z. J., Li, H. X., Gao, H. X., Wang, Y. T., Gao J., Yin, Y. Y Analysis of surveillance outcome of endemic fluorosis in Shandong province in 2010. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:191-193	criteria
L1	Wei, S. Y.,He, D. L.,Ding, P.,Pu, G. L.,Lu, Q.,Yang, P.,Zhou, M.,Han, W.,Tan, D. F.,Xi, G. X.,Pu, W. Q Analysis of surveillance results of drinking water type of endemic fluorosis in Qinghai province in 2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:542-545	One or more exclusion criteria
L1	Shu, C. L., Wang, C. S., Wang, Y., Xia, Y. T., Chen, S. H Analysis of surveillance results of drinking-water-borne endemic fluorosis in Jiangsu Province in 2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:662-667	One or more exclusion criteria
L1	Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Li, H. X., Liu, Y Analysis of survey results of endemic fluorosis in Shandong province in 2008. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:51-55	One or more exclusion criteria
L1	Zhang, L., Yang, Z. M., Wu, Z. J., Luo, Z. Y., Yan, Q., Zhang, J Analysis of the survey result of the coal-burning endemic fluorosis in Hongya County of Sichuan Province in 2006. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:191-193	
L1	Chen, P. Z., Yun, Z. J., Bian, J. C., Li, H. X., Ma, A. H., Gao, H. X., Wang, Y. T., Zhao, L. J Analysis on surveillance outcome of endemic fluorosis in Shandong Province from	One or more exclusion criteria

- 1992 to 2006. [Chinese]. *Chinese Journal of Endemiology.* 2009. 28:537-540
- L1 Sun, D.,Gao, Y.,Zhao, L.,Wang, C.,Wang, W.,Gao, L.. One or more exclusion Analysis on the monitoring results of drinking water borne criteria endemic fluorosis in China (2009-2011). *Fluoride*. 2012. 45 (3 PART 1):204-205
- L1 Shen, Y. F., Han, H. P., Xiu, C. P., Sun, D. J.. Analysis on the One or more exclusion present running status of water-improving project in Anda criteria city, Heilonjiang province in 2008. [Chinese]. *Chinese Journal of Endemiology*. 2010. 29:319-321
- L1 Zhou, M., Wei, S. Y., Si, W. J., Ding, P., Lu, Q., Ding, S. R., Pu, One or more exclusion G. L., Jiang, H., Shi, W. X.. Analysis on the prevention and criteria treatment of drinking water fluorosis Guide county, in Qinghai province. [Chinese]. *Chinese Journal of Endemiology*. 2010. 29:429-431
- L1 Jumba, I. O., Kisia, S. M., Kock, R.. Animal health problems One or more exclusion attributed to environmental contamination in Lake Nakuru criteria National Park, Kenya: A case study on heavy metal poisoning in the waterbuck Kobus ellipsiprymnus defassa (Ruppel 1835). Archives of Environmental Contamination and Toxicology. 2007. 52:270-281
- L1 Gutierrez, R. M. P.,Hoyo-Vadillo, C.. Anti-inflammatory One or more exclusion Potential of Petiveria alliacea on Activated RAW264.7 criteria

 Murine Macrophages. *Pharmacogn Mag.* 2017. 13:S174-s178
- L1 Shinonaga, Y.,Arita, K.. Antibacterial effect of acrylic dental One or more exclusion devices after surface modification by fluorine and silver criteria dual-ion implantation. *Acta Biomater*. 2012. 8:1388-93

Level	Bibliography	Reason for Exclusion
L1	Vasant, R. A.,Khajuria, M. C.,Narasimhacharya, A. V Antioxidant and ACE enhancing potential of Pankajakasthuri in fluoride toxicity: an in vitro study on mammalian lungs. <i>Toxicology & Industrial Health.</i> 2011. 27:793-801	One or more exclusion criteria
L1	Rocha-Amador, D. O., Calderon, J., Carrizales, L., Costilla-Salazar, R., Perez-Maldonado, I. N Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. <i>Environmental Toxicology & Pharmacology</i> . 2011. 32:399-405	criteria
L1	Wang, J. H., Feng, X. W., Zheng, Z. X., Liu, W., Li, Z. R., Gao, R., Wang, S. Q., Wang, E. L., Kan, Z. Y., Zhao, W. G., Guo, J. Q Application of global positioning systems and geographic information systems in drinking water defluoridation project in Liaoning province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:544-546	
L1	Shan, L. H., Cui, Z. Q., Shen, Q. H., Gao, Q., Qiu, Z. X Application of light-cure resin-modified glass ionomer cement in orthodontic practice. <i>Journal of Clinical Rehabilitative Tissue Engineering Research</i> . 2008. 12:1149-1152	One or more exclusion criteria
L1	Rezaee, R.,Mahvi, A. H.,Maleki, A.,Jafari, A.,Ashrafi, S. D.,Safari, M Application of modified wheat straw for fluoride reduction from aqueous solutions: Isotherms and kinetics. <i>Fluoride</i> . 2012. 45 (3 PART 1):195	One or more exclusion criteria
L1	Shukurov, R.,Balashov, M.,Dadashov, Z.,Valiyev, M.,Mehdi, E.,Novruzov, F Application of production and quality control procedures of 18F-PSMA-1007: Dominant in	One or more exclusion criteria

diagnosis of prostate cancer, through Synthera V2.

European Journal of Nuclear Medicine and Molecular

Imaging. 2019. 46 (1 Supplement 1):S737-S738

- Lazari, M., Sergeev, M., Morgia, F., Van Dam, R.. Application One or more exclusion of titanium dioxide in catalytic radiofluorination in aqueous criteria media. *Molecular Imaging and Biology. Conference*. 2014.

 17:#pages#
- L1 Marghade, D., Malpe, D. B., Subba Rao, N.. Applications of One or more exclusion geochemical and multivariate statistical approaches for the criteria evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. *Environ Geochem Health*. 2019. #volume#:#pages#
- Mor, S., Singh, S., Yadav, P., Rani, V., Rani, P., Sheoran, One or more exclusion M., Singh, G., Ravindra, K.. Appraisal of salinity and fluoride criteria in a semi-arid region of India using statistical and multivariate techniques. *Environ Geochem Health*. 2009.
 31:643-55
- L1 Ericson, B., Caravanos, J., Chatham-Stephens, One or more exclusion K., Landrigan, P., Fuller, R.. Approaches to systematic criteria assessment of environmental exposures posed at hazardous waste sites in the developing world: The Toxic Sites Identification Program. *Environmental Monitoring and Assessment*. 2013. 185:1755-1766
- Anjomshoaa, I.,Briseño-Ruiz, J.,Deeley, K.,Poletta, F. One or more exclusion A.,Mereb, J. C.,Leite, A. L.,Barreta, P. A.,Silva, T. L.,Dizak, criteria P.,Ruff, T.,Patir, A.,Koruyucu, M.,Abbasoğlu, Z.,Casado, P. L.,Brown, A.,Zaky, S. H.,Bayram, M.,Küchler, E. C.,Cooper, M. E.,Liu, K.,Marazita, M. L.,Tanboğa, İ,Granjeiro, J.

- M., Seymen, F., Castilla, E. E., Orioli, I. M., Sfeir, C., Owyang, H., Buzalaf, M. A., Vieira, A. R.. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries. *PLoS One*. 2015. 10:e0143068
- L1 Pandith, M.,Malpe, D. B.,Rao, A. D.,Rao, P. N.. Aquifer One or more exclusion wise seasonal variations and spatial distribution of major criteria ions with focus on fluoride contamination-Pandharkawada block, Yavatmal district, Maharashtra, India. *Environmental Monitoring and Assessment.* 2016. 188:1-20
- L1 Hu, Q.,Strynar, M. J.,DeWitt, J. C.. Are developmentally One or more exclusion exposed C57BL/6 mice insensitive to suppression of TDAR criteria by PFOA?. *Journal of Immunotoxicology*. 2010. 7:344-9
- L1 Peckham, S.,Lowery, D.,Spencer, S.. Are fluoride levels in One or more exclusion drinking water associated with hypothyroidism prevalence criteria in England? A large observational study of GP practice data and fluoride levels in drinking water. *J Epidemiol Community Health*. 2015. 69:619-24
- L1 Newton, J. N., Verne, J., Dancox, M., Young, N.. Are fluoride One or more exclusion levels in drinking water associated with hypothyroidism criteria prevalence in England? Comments on the authors' response to earlier criticism. *J Epidemiol Community Health*. 2017. 71:315-316
- L1 Farooqi, A., Sultana, J., Masood, N.. Arsenic and fluoride co- One or more exclusion contamination in shallow aquifers from agricultural suburbs criteria and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications. *Toxicol Ind Health*. 2017. 33:655-672
- L1 Qurat ul, Ain, Faroogi, A., Sultana, J., Masood, N., Arsenic One or more exclusion

Level	Bibliography	Reason for Exclusion
	and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications. <i>Toxicology & Industrial Health</i> . 2017. 33:655-672	criteria
L1	Estrada-Capetillo, B. L.,Ortiz-Pérez, M. D.,Salgado-Bustamante, M.,Calderón-Aranda, E.,Rodríguez-Pinal, C. J.,Reynaga-Hernández, E.,Corral-Fernández, N. E.,González-Amaro, R.,Portales-Pérez, D. P Arsenic and fluoride co-exposure affects the expression of apoptotic and inflammatory genes and proteins in mononuclear cells from children. <i>Mutat Res Genet Toxicol Environ Mutagen</i> . 2014. 761:27-34	One or more exclusion criteria
L1	Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., Marathe, K. V Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. <i>J Environ Manage</i> . 2015. 162:306-25	One or more exclusion criteria
L1	Wang, S. X., Cheng, X. T., Li, J., Sang, Z. P., Zhang, X. D., Han, L. L., Qiao, X. Y., Wu, Z. M., Wang, Z. H Arsenic and fluoride expose in drinking water: Children's IQ and growth in Shanyin Country, Shanxi Province, China. <i>Environmental Health Perspectives</i> . 2007. 115:643-647	One or more exclusion criteria
L1	Chouhan, S.,Flora, S. J Arsenic and fluoride: two major ground water pollutants. <i>Indian Journal of Experimental Biology.</i> 2010. 48:666-78	One or more exclusion criteria
L1	Peterson, E., Shapiro, H., Li, Y., Minnery, J. G., Copes, R Arsenic from community water fluoridation: quantifying the	One or more exclusion criteria

effect. J Water Health, 2016, 14:236-42

- Villanueva, C. M., Kogevinas, M., Cordier, S., Templeton, M. One or more exclusion R., Vermeulen, R., Nuckols, J. R., Nieuwenhuijsen, M. criteria J., Levallois, P.. Assessing exposure and health consequences of chemicals in drinking water: Current state of knowledge and research needs. *Environmental Health Perspectives*. 2014. 122:213-221
- L1 Augustsson, A.,Berger, T.. Assessing the risk of an excess One or more exclusion fluoride intake among Swedish children in households with criteria private wells Expanding static single-source methods to a probabilistic multi-exposure-pathway approach.

 Environment International. 2014. 68:192-199
- L1 Kalshetty, B. M., Gaonkar, S. M., Gani, R. S., Kalashetti, M. One or more exclusion B.. Assessment and toxicity of fluoride from ground water sources in and around Bagalkot district, Karnataka, India.

 International Research Journal of Pharmacy. 2013. 4:246-249
- L1 Pollo, F. E., Grenat, P. R., Otero, M. A., Salas, N. E., Martino, One or more exclusion A. L.. Assessment in situ of genotoxicity in tadpoles and criteria adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine. *Ecotoxicol Environ Saf.* 2016. 133:466-74
- Valeeva, E. R.,Ismagilova, G. A.,Stepanova, N.
 V.,Serazetdinova, F. I.,Saifullin, R. R.,Iliasova, A. R..
 Assessment of adolescents' exposure to non-carcinogenic risk associated with drinking water. *Journal of Pharmacy Research*. 2017. 11:1209-1213
- L1 Sarinana-Ruiz, Y. A., Vazguez-Arenas, J., Sosa-Rodriguez, One or more exclusion

Level Bibliography

Reason for Exclusion

F. S., Labastida, I., Armienta, M. A., Aragon-Pina,

criteria

A., Escobedo-Bretado, M. A., Gonzalez-Valdez, L. S., Ponce-

Pena, P.,Ramirez-Aldaba, H.,Lara, R. H.. Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico. *Chemosphere*. 2017. 178:391-401

Lagunera, Mexico. Chemosphere. 2017. 178:391-401

- L1 Sariñana-Ruiz, Y. A., Vazquez-Arenas, J., Sosa-Rodríguez, One or more exclusion F. S., Labastida, I., Armienta, M. A., Aragón-Piña, criteria A., Escobedo-Bretado, M. A., González-Valdez, L. S., Ponce-Peña, P., Ramírez-Aldaba, H., Lara, R. H.. Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca
- L1 Arshad, N.,Imran, S.. Assessment of arsenic, fluoride, One or more exclusion bacteria, and other contaminants in drinking water sources criteria for rural communities of Kasur and other districts in Punjab, Pakistan. *Environ Sci Pollut Res Int.* 2017. 24:2449-2463
- L1 Wang, T. J.,An, J.,Chen, X. H.,Deng, Q. D.,Yang, L.. One or more exclusion Assessment of Cuscuta chinensis seeds' effect on criteria melanogenesis: comparison of water and ethanol fractions in vitro and in vivo. *J Ethnopharmacol.* 2014. 154:240-8
- Malinowska, E.,Inkielewicz, I.,Czarnowski, W.,Szefer, P.. One or more exclusion
 Assessment of fluoride concentration and daily intake by human from tea and herbal infusions. *Food Chem Toxicol*.
 2008. 46:1055-61
- L1 Bhat, N., Jain, S., Asawa, K., Tak, M., Shinde, K., Singh, One or more exclusion A., Gandhi, N., Gupta, V. V.. Assessment of Fluoride criteria

 Concentration of Soil and Vegetables in Vicinity of Zinc

Smelter, Debari, Udaipur, Rajasthan. *J Clin Diagn Res.* 2015. 9:Zc63-6

- Vincent, J.,Balakumar, P.. Assessment of fluoride One or more exclusion concentrations of groundwater in Tiruchendur, Thoothukudi criteria district, Tamilnadu by spadns method. *International Journal of ChemTech Research*. 2014. 6:4807-4809
- Dutta, J.. Assessment of fluoride, arsenic and other heavy One or more exclusion metals in the ground water of tea gardens belt of Sonitpur criteria district, Assam, India. *International Journal of ChemTech Research*. 2016. 9:71-79
- L1 de Souza, C. F., Lima, J. F., Jr., Adriano, M. S., de Carvalho, One or more exclusion F. G., Forte, F. D., de Farias Oliveira, R., Silva, A. criteria
 P., Sampaio, F. C.. Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil.
 Environmental Monitoring & Assessment. 2013. 185:4735-43
- L1 Cooray, T.,Wei, Y.,Zhong, H.,Zheng, L.,Weragoda, S. One or more exclusion K.,Weerasooriya, A. R.. Assessment of Groundwater criteria Quality in CKDu Affected Areas of Sri Lanka: Implications for Drinking Water Treatment. *Int J Environ Res Public Health*. 2019. 16:#pages#
- L1 Ranjan, S., Yasmin, S.. Assessment of groundwater quality One or more exclusion in Gaya region with respect to fluoride. *Journal of Ecophysiology and Occupational Health.* 2012. 12:21-25
- L1 Tunakova, J., Galimova, A., Fajzullin, R., Valiev, V.. One or more exclusion Assessment of health risks of the child population in the criteria consumption of drinking water, taking into account secondary pollution on the example of Kazan. *Research*

Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. 7:1114-1117

L1 Meng, F., Zhao, R., Liu, P., Liu, L., Liu, S.. Assessment of iodine status in children, adults, pregnant women and lactating women in iodine-replete areas of china. PLoS ONE. 2013. 8 (11) (no pagination):#pages#

One or more exclusion criteria

- L1 Francisca, F. M., Carro Perez, M. E., Assessment of natural One or more exclusion arsenic in groundwater in Cordoba Province, Argentina. criteria Environ Geochem Health, 2009, 31:673-82
- L1 Corcia, P., Vercouillie, J., Tauber, C., Praline, J., Nicolas, One or more exclusion G., Venel, Y., Beaulieu, J. L., Aesch, C., Roussel, C., Kassiou, criteria M., Guilloteau, D., Ribeiro, M., Assessment of neuroinflammation in als with 18F-DPA-714 PET. Amyotrophic Lateral Sclerosis. 2012. 1):54-55
- L1 Kundu, M. C., Mandal, B.. Assessment of potential hazards One or more exclusion of fluoride contamination in drinking groundwater of an criteria intensively cultivated district in West Bengal, India. Environmental Monitoring and Assessment. 2009. 152:97-103
- L1 Bhattacharya, P., Samal, A. C., Banerjee, S., Pyne, One or more exclusion J., Santra, S. C.. Assessment of potential health risk of criteria fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India. Environ Sci Pollut Res Int. 2017. 24:20300-20314

One or more exclusion

L1 Li, Z., Yang, K., Xie, C., Yang, Q., Lei, X., Wang, H.. Assessment of potential health risk of major contaminants criteria of groundwater in a densely populated agricultural area.

25 March 2023 926 Environ Geochem Health. 2019. #volume#:#pages#

- L1 Rawlani, S.,Rawlani, S., Rawlani, S.. Assessment of One or more exclusion Skeletal and Non-skeletal Fluorosis in Endemic Fluoridated criteria Areas of Vidharbha Region, India: A Survey. *Indian Journal of Community Medicine*. 2010. 35:298-301
- L1 Meena, C., Dwivedi, S., Rathore, S., Gonmei, Z., Toteja, G. One or more exclusion S., Bala, K., Mohanty, S. S.. Assessment of skeletal fluorosis criteria among children in two blocks of rural area, Jaipur District, Rajasthan, India. Asian Journal of Pharmaceutical and Clinical Research. 2017. 10:322-325
- Ye, Q.,Zhou, X.. Assessment of Soil Fluorine Pollution in One or more exclusion Jinhua Fluorite Ore Areas. [Chinese]. *Huan jing ke xue*= criteria *Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.].* 2015. 36:2648-2654
- L1 Radić, S.,Gregorović, G.,Stipaničev, D.,Cvjetko, P.,Srut, One or more exclusion M.,Vujčić, V.,Oreščanin, V.,Vinko Klobučar, G. I.. criteria Assessment of surface water in the vicinity of fertilizer factory using fish and plants. *Ecotoxicol Environ Saf.* 2013. 96:32-40
- West, N. X., Seong, J., Hellin, N., Macdonald, E. L., Jones, S. One or more exclusion
 B., Creeth, J. E.. Assessment of tubule occlusion properties criteria
 of an experimental stannous fluoride toothpaste: A
 randomised clinical in situ study. J Dent. 2018. 76:125-131
- Viswanathan, G.,Gopalakrishnan, S.,Siva Ilango, S.. One or more exclusion Assessment of water contribution on total fluoride intake of criteria various age groups of people in fluoride endemic and non-endemic areas of Dindigul District, Tamil Nadu, South

Level	Bibliography	Reason for Exclusion
	India. Water Research. 2010. 44:6186-6200	
L1	Gehani, C. P., Pollick, H., Stevenson, R. A Association between Maternal Fluoride Exposure and Child IQ [8]. JAMA Pediatrics. 2020. 174:215-216	One or more exclusion criteria
L1	Green, R., Lanphear, B., Hornung, R., Flora, D., Martinez-Mier, E. A., Neufeld, R., Ayotte, P., Muckle, G., Till, C Association between Maternal Fluoride Exposure during Pregnancy and IQ Scores in Offspring in Canada. <i>JAMA Pediatrics</i> . 2019. 173:940-948	One or more exclusion criteria
L1	Yang, D.,Liu, Y.,Chu, Y.,Yang, Q.,Jiang, W.,Chen, F.,Li, D.,Qin, M.,Sun, D.,Yang, Y.,Gao, Y Association between vitamin D receptor gene Fokl polymorphism and skeletal fluorosis of the brick-tea type fluorosis: a cross sectional, case control study. <i>BMJ Open.</i> 2016. 6:e011980	One or more exclusion criteria
L1	Patel, P. P., Patel, P. A., Zulf, M. M., Yagnik, B., Kajale, N., Mandlik, R., Khadilkar, V., Chiplonkar, S. A., Phanse, S., Patwardhan, V., Joshi, P., Patel, A., Khadilkar, A. V Association of dental and skeletal fluorosis with calcium intake and serum vitamin D concentration in adolescents from a region endemic for fluorosis. <i>Indian Journal of Endocrinology and Metabolism.</i> 2017. 21:190-195	One or more exclusion criteria
L1	Choi, A. L., Zhang, Y., Sun, G., Bellinger, D. C., Wang, K., Yang, X. J., Li, J. S., Zheng, Q., Fu, Y., Grandjean, P Association of lifetime exposure to fluoride and cognitive functions in Chinese children: a pilot study. <i>Neurotoxicol Teratol.</i> 2015. 47:96-101	One or more exclusion criteria
L1	Asawa, K., Singh, A., Bhat, N., Tak, M., Shinde, K., Jain, S Association of Temporomandibular Joint Signs &	One or more exclusion criteria

Symptoms with Dental Fluorosis & Skeletal Manifestations in Endemic Fluoride Areas of Dungarpur District, Rajasthan, India. *Journal of Clinical and Diagnostic Research JCDR*. 2015. 9:ZC18-21

- L1 Chafe, R., Aslanov, R., Sarkar, A., Gregory, P., Comeau, One or more exclusion A., Newhook, L. A.. Association of type 1 diabetes and criteria concentrations of drinking water components in Newfoundland and Labrador, Canada. *BMJ Open Diabetes Research and Care.* 2018. 6 (1) (no pagination):#pages#
- L1 Riddell, J. K.,Malin, A. J.,Flora, D.,McCague, H.,Till, C.. One or more exclusion Association of water fluoride and urinary fluoride criteria concentrations with attention deficit hyperactivity disorder in Canadian youth. *Environ Int.* 2019. 133:105190
- L1 Furukawa, S., Hagiwara, Y., Taguchi, C., Turumoto, One or more exclusion A., Kobayashi, S.. Associations between oral health behavior and anxiety about water fluoridation and motivation to establish water fluoridation in Japanese residents. *Journal of Oral Science*. 2011. 53:313-9
- Oweis, R.,Levy, S.,Warren, J.,Gilmore, J. E.,Burns, One or more exclusion T.,Saha, P.,Janz, K.,Torner, J.,Letuchy, E.,Broffitt, B.. Associations of fluoride intake with adolescents' pQCT-derived bone outcome measures at age 17. *Journal of Bone and Mineral Research. Conference.* 2015.

 30:#pages#
- L1 Levy, S. M., Eichenberger-Gilmore, J., Warren, J. J., Letuchy, One or more exclusion E., Broffitt, B., Marshall, T. A., Burns, T., Willing, M., Janz, criteria K., Torner, J. C.. Associations of fluoride intake with children's bone measures at age 11. *Community Dent Oral*

Level	Bibliography	Reason for Exclusion
	Epidemiol. 2009. 37:416-26	
L1	Spittle, B Authority and reasoning in science. <i>Fluoride</i> . 2014. 47:94-97	One or more exclusion criteria
L1	Teotia, S. P. S., Teotia, M Authors's response. <i>Indian Journal of Medical Research.</i> 2008. 128:674-676	One or more exclusion criteria
L1	Hader, S Automated GMP compatible synthesis of 3-[18F] Fluoro-5-[(pyridine-2-yl)ethynyl]benzonitrile ([18F] FPEB). European Journal of Nuclear Medicine and Molecular Imaging. 2015. 1):S478-S479	One or more exclusion criteria
L1	Anzellotti, A.,Bailey, J.,Ferguson, D.,McFarland, A.,Bochev P.,Andreev, G.,Awasthi, V.,Brown-Proctor, C Automated production and quality testing of [¹⁸ F]labeled radiotracers using the BG75 system. <i>Journal of Radioanalytical and Nuclear Chemistry.</i> 2015. 305:387-401	criteria
L1	Mossine, A., Tanzey, S., Brooks, A., Henderson, B., Skaddan, M., Sanford, M., Scott, P Automated production of high specific activity [¹⁸ F]6F-I-DOPA using a TRACERLab FXFN synthesis module. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2019. 62 (Supplement 1):S225-S226	, One or more exclusion criteria
L1	Zhang, Y.,Zhang, L.,Wu, Z.,Yang, J.,Ploessl, K.,Zha, Z.,Fei L.,Zhu, H.,Zhu, L.,Yang, Z.,Kung, H Automated radiosynthesis of (2S,4R)-4- [¹⁸ F]fluoroglutamine for clinical application. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S322-S323	, One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Collier, T. L., Yokell, D. L., Livni, E., Rice, P. A., Celen, S., Serdons, K., Neelamegam, R., Bormans, G., Harris, D., Walji, A., Hostetler, E. D., Bennacef, I., Vasdev, N Automated radiosynthesis of [¹⁸ F]MK-6240 and validation for human use. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2017. 60 (Supplement 1):S612	One or more exclusion criteria
L1	Shih, I. H., Duan, X. D., Kong, F. L., Williams, M. D., Yang, K., Zhang, Y. H., Yang, D. J Automated synthesis of 18F-fluoropropoxytryptophan for amino acid transporter system imaging. <i>Biomed Res Int.</i> 2014. 2014:492545	One or more exclusion criteria
L1	Noh, M. F. B. M., Laurens, E., Jeow, S. Y., Vedarethinam, R., Wee, X. J., Fatholmoein, F. Z. B., Pek, G., Ping, H. T. S., Green, D., Chiam, V. K., Boodeea, K., Doshi, P. R., Kulasi, A., Hui, E. T. J., Weekes, A., Robins, E Automated synthesis of [¹⁸ F]NAV4694 using GE TracerLab FX-N Pro in compliance with PIC/S GMP. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S333-S334	One or more exclusion criteria
L1	Bowden, G.,Franke, A.,Pichler, B.,Maurer, A Automated synthesis of [¹⁸ F]O ⁶ -[(4-[¹⁸ F]fluoro)benzyl]guanine ([¹⁸ F]pFBG) via [¹⁸ F]-fluorobenzyl alcohol ([¹⁸ F]4FBnOH) from an optimized copper mediated radiofluorination (CMRF) of 4-tributyltin-benzyl alcohol. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2019. 62 (Supplement 1):S329-S331	One or more exclusion criteria

Level Bibliography

Reason for Exclusion

- L1 Mitra, A.,Rajesh, C.,Lad, S.,Upadhye, T.,Banerjee, One or more exclusion S.,Rajan, R.. Automated synthesis of pharmaceutical grade criteria [¹⁸F]FLT using 5'-O-(Benzoyl)-2,3'-anhydrothymidine Precursor. *Journal of Labelled*
 - Compounds and Radiopharmaceuticals. 2017. 60
 - (Supplement 1):S616
- L1 Liu, Z.,Goodwin, M.,Ellwood, R. P.,Pretty, I. A.,McGrady, One or more exclusion M.. Automatic detection and classification of dental criteria fluorosis in vivo using white light and fluorescence imaging.

 J Dent. 2018. 74 Suppl 1:S34-s41
- L1 Bohmer, V. I., Van Der Born, D., Szymanski, W., Klopstra, One or more exclusion M., Visser, T. J., Feringa, B. L., Elsinga, P. H.. Automation of criteria Click Chemistry for the synthesis of ¹⁸F-labelled PSMA-tracers using the FlowSafe. *EJNMMI Radiopharmacy and Chemistry. Conference: 19th European Symposium on Radiopharmacy and Radiopharmaceuticals, ESRR'18. Netherlands..* 2018. 3:#pages#
- L1 Souza, M. S., Diniz, L. F., Vogt, L., Carvalho, P. S., D'Vries, One or more exclusion R. F., Ellena, J.. Avoiding irreversible 5-fluorocytosine criteria hydration: Via supramolecular synthesis of pharmaceutical cocrystals. *New Journal of Chemistry.* 2018. 42:14994-15005
- L1 Manthra Prathoshni, S. M., Vishnu Priya, V., Sohara One or more exclusion Parveen, N.. Awareness of dental fluorosis among children criteria
 A survey. Journal of Pharmaceutical Sciences and Research. 2017. 9:459-461
- L1 Bansal, R., Tiwari, S. C.. Back pain in chronic renal failure. One or more exclusion

Level	Bibliography	Reason for Exclusion
	Nephrol Dial Transplant. 2006. 21:2331-2	criteria
L1	Grandtnerova, B.,Beratsova, Z.,Ova, M. E.,Erven, J.,Markech, M.,Stefanikova, A Balneotherapy and chronic urinary tract infections, a benefit or a danger?. <i>Nephrology Dialysis Transplantation</i> . 2014. 3):iii393	One or more exclusion criteria
L1	Sahin-Onat, S., Tasoglu, O., Ozisler, Z., Demircioglu Guneri, F., Ozgirgin, N Balneotherapy in the treatment of knee osteoarthritis: A controlled study. <i>Archives of Rheumatology</i> . 2015. 30:292-297	One or more exclusion criteria
L1	MacGregor, R Battle renewed over value of fluoridation. Cmaj. 2011. 183:1173	One or more exclusion criteria
L1	Sonne, C.,Lam, S. S.,Kim, K. H.,Rinklebe, J.,Ok, Y. S Be cautious applying carbon-fluorine bonds in drug delivery. <i>Chemosphere.</i> 2020. 248 (no pagination):#pages#	One or more exclusion criteria
L1	Szoke, D., Valente, C., Panteghini, M Better blood collection tubes for plasma glucose: Ready for prime time?. <i>Clinical Chemistry and Laboratory Medicine</i> . 2014. 52:e87-e89	One or more exclusion criteria
L1	Gilbert, F. J Beyond FDG: Getting new PET tracers into practice. <i>Journal of Medical Imaging and Radiation</i> Oncology. 2016. 60 (Supplement 1):33	One or more exclusion criteria
L1	Brooks, A., Burris, S., Scott, P Binding of [¹⁸ F]N-Methyl lansoprazole to tau aggregates in post-mortem brain sections from alzheimer's disease and progressive supranuclear palsy patients. <i>Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2017.	I

58:#pages#

- L1 Kazi, T. G.,Brahman, K. D.,Baig, J. A.,Afridi, H. I.. One or more exclusion Bioaccumulation of arsenic and fluoride in vegetables from criteria growing media: health risk assessment among different age groups. *Environ Geochem Health*. 2019. 41:1223-1234
- L1 Neale, P. A., Antony, A., Bartkow, M. E., Farré, M. J., Heitz, One or more exclusion A., Kristiana, I., Tang, J. Y., Escher, B. I.. Bioanalytical criteria assessment of the formation of disinfection byproducts in a drinking water treatment plant. *Environ Sci Technol.* 2012. 46:10317-25
- L1 Athapattu, B. C. L., Thalgaspitiya, Twlr, Yasaratne, U. L. One or more exclusion S., Vithanage, M.. Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka. *Environ*Geochem Health. 2017. 39:1397-1407
- L1 Jaganmohan, P.,Narayana Rao, S. V. L.,Sambasiva Rao, One or more exclusion K. R. S.. Biochemical and haematological investigations on criteria fluorosis threaten patients at Nellore district, Andhra Pradesh, India. *World Journal of Medical Sciences*. 2010. 5:54-58
- Wagner, O., Thiele, J., Weinhart, M., Mazutis, L., Weitz, D. One or more exclusion A., Huck, W. T., Haag, R.. Biocompatible fluorinated criteria polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. *Lab Chip.* 2016. 16:65-9
- L1 Cao, T., Yang, Y., Sun, Y., Wu, Y., Gao, Y., Feng, W., Li, F.. One or more exclusion Biodistribution of sub-10 nm PEG-modified criteria radioactive/upconversion nanoparticles. *Biomaterials*. 2013.

Level	Bibliography	Reason for Exclusion
	34:7127-34	
L1	Palliyal, S. A Biological markers serum and urinary fluoride levels among fertilizer and wood industry workers in Mangalore city, India. <i>Annals of Oncology.</i> 2015. 9):ix14	One or more exclusion criteria
L1	Idowu, O. S., Duckworth, R. M., Valentine, R. A., Zohoori, F. V Biomarkers for the Assessment of Fluoride Exposure in Children. <i>Caries Res.</i> 2020. #volume#:1-10	
L1	Rango, T., Vengosh, A., Jeuland, M., Whitford, G. M., Tekle-Haimanot, R Biomarkers of chronic fluoride exposure in groundwater in a highly exposed population. <i>Sci Total Environ</i> . 2017. 596-597:1-11	One or more exclusion criteria
L1	Zhang, X.,Li, Y.,Sun, X.,Kishen, A.,Deng, X.,Yang, X.,Wang, H.,Cong, C.,Wang, Y.,Wu, M Biomimetic remineralization of demineralized enamel with nanocomplexes of phosphorylated chitosan and amorphous calcium phosphate. <i>J Mater Sci Mater Med.</i> 2014. 25:2619-28	One or more exclusion criteria
L1	Zillohu, A. U., Abdelaziz, R., Homaeigohar, S., Krasnov, I., Müller, M., Strunskus, T., Elbahri, M Biomimetic transferable surface for a real time control over wettability and photoerasable writing with water drop lens. <i>Sci Rep.</i> 2014. 4:7407	One or more exclusion criteria
L1	Aylward, L. L., Hays, S. M., Vezina, A., Deveau, M., St-Amand, A., Nong, A Biomonitoring Equivalents for interpretation of urinary fluoride. <i>Regul Toxicol Pharmacol</i> . 2015. 72:158-67	One or more exclusion criteria
L1	Chen, Y.,Shen, C.,Rashid, S.,Li, S.,Ali, B. A.,Liu, J Biopolymer-induced morphology control of brushite for	One or more exclusion

Level	Bibliography	Reason for Exclusion
	enhanced defluorination of drinking water. <i>J Colloid Interface Sci.</i> 2017. 491:207-215	criteria
L1	Lindner, J. M., Vogeser, M., Grimm, S. H Biphenyl based stationary phases for improved selectivity in complex steroid assays. <i>Journal of Pharmaceutical & Biomedical Analysis</i> . 2017. 142:66-73	One or more exclusion criteria
L1	Waugh, D. T., Godfrey, M., Limeback, H., Potter, W Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand. <i>J Environ</i> <i>Public Health</i> . 2017. 2017:5120504	
L1	Spencer, K. F., Limeback, H Blood is thicker than water: Flaws in a National Toxicology Program study. <i>Medical Hypotheses</i> . 2018. 121:160-163	One or more exclusion criteria
L1	Mechlenburg, I.,Hermansen, F.,Thillemann, T.,Soballe, K Blood perfusion and bone formation before and after minimally invasive periacetabular osteotomy analysed by Positron Emission Tomography combined with Computed Tomography. <i>International Orthopaedics</i> . 2013. 37:789-94	One or more exclusion criteria
L1	Alkurdi, S. S. A., Al-Juboori, R. A., Bundschuh, J., Hamawand, I Bone char as a green sorbent for removing health threatening fluoride from drinking water. <i>Environment International</i> . 2019. 127:704-719	One or more exclusion criteria
L1	Godebo, T. R., Jeuland, M., Tekle-Haimanot, R., Shankar, A., Alemayehu, B., Assefa, G., Whitford, G., Wolfe, A Bone quality in fluoride-exposed populations: A novel application of the ultrasonic method. <i>Bone Reports</i> . 2020. 12 (no pagination):#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Topuz, O.,Akkaya, N.,Ardic, F.,Sarsan, A.,Cubukcu, D.,Gokgoz, A Bone resorption marker and ultrasound measurements in adults residing in an endemic fluorosis area of Turkey. <i>Fluoride</i> . 2006. 39:138-144	One or more exclusion criteria
L1	Yildiz, M., Suslu, H., Cerci, S., Ozbek, M., Cerci, C Bone scintigraphy findings in endemic skeletal fluorosis. [Turkish]. Sendrom. 2007. 19:83-85	One or more exclusion criteria
L1	Choubisa, S. L Bovine calves as ideal bio-indicators for fluoridated drinking water and endemic osteo-dental fluorosis. <i>Environmental Monitoring & Assessment</i> . 2014. 186:4493-8	One or more exclusion criteria
L1	Singh, S. T., Dua, K., Gupta, D. K., Randhawa, S. S., Bansal, B. K Bovine fluorosis and its effects on essential minerals, haemogram and biochemical status in the fluoride endemic South-West Punjab of India. <i>Indian Journal of Animal Sciences</i> . 2017. 87:718-722	criteria
L1	Wei, S.,Lu, Q.,Yang, P.,Chen, P.,Li, S.,La, C.,Jiang, H.,He, D.,Wu, H.,Ma, T Brick-tea type fluorosis in monks in Qinghai Province. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2014. 33:327-330	One or more exclusion criteria
L1	Wang, H., Teng, G. X Brief instruction of the prevention of endemic fluorosis. [Chinese]. <i>Chinese Journal of Clinical Rehabilitation</i> . 2006. 10:222-225	One or more exclusion criteria
L1	Chen, W. C., Ju, C. P., Wang, J. C., Hung, C. C., Chern Lin, J. H Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites. Dent Mater. 2008. 24:1616-22	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	. CADTH Rapid Response Reports. Community Water Fluoridation Exposure: A Review of Neurological and Cognitive Effects. 2019. #volume#:#pages#	One or more exclusion criteria
L1	Hopper, K., Morales, P., Garcia, A., Wagner, J Camptomelia in a rhesus macaque (Macaca mulatta). <i>J Am Assoc Lab Anim Sci.</i> 2010. 49:863-7	One or more exclusion criteria
L1	Suresh, A., Khairkar, P., Srujana,. Can high levels of fluoride in body tissues of adolescents impair clinical, psychological, neurocognitive and developmental domains? A qualitative, analytical study from highly fluoride endemic district from south India. <i>Indian Journal of Psychiatry.</i> 2020. 62 (7 Supplement 1):S61	criteria
L1	Frederic, D., Stephane, L. H., Marie-Anne, P., Wadad, S., Samuel, B., Nicolas, T., Heric, V., Michael, K Carbon-11-labelling of a novel, trishomocubane-derived, high affinity and selectivity DAT ligand. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2011. 1):S276	
L1	Almerich-Silla, J. M., Montiel-Company, J. M., Ruiz-Miravet, A Caries and dental fluorosis in a western Saharan population of refugee children. <i>Eur J Oral Sci.</i> 2008. 116:512-7	One or more exclusion criteria
L1	Jarjoura, K., Gagnon, G., Nieberg, L Caries risk after interproximal enamel reduction. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> . 2006. 130:26-30	One or more exclusion criteria
L1	Sami, E., Vichayanrat, T., Satitvipawee, P Caries with Dental Fluorosis and Oral Health Behaviour Among 12- Year School Children in Moderate-Fluoride Drinking Water	One or more exclusion criteria

Community in Quetta, Pakistan. *J Coll Physicians Surg Pak.* 2016. 26:744-7

- L1 Eyer, F., Zilker, T.. Caustic injuries of the eye, skin and the One or more exclusion gastrointestinal tract. [German]. *Therapeutische Umschau.* criteria 2009. 66:379-386
- Olde Heuvel, J.,De Wit-Van Der Veen, L.,Stokkel, M. P. One or more exclusion M.,Van Der Poel, H. G.,Tuch, D. S.,Grootendorst, M. criteria
 R.,Vyas, K. N.,Slump, C. H.. Cerenkov luminescence imaging for intraoperative specimen analysis: A pre-clinical evaluation. *European Urology, Supplements.* 2019. 18
 (1):e668-e669
- L1 Chen, S.,Li, B.,Lin, S.,Huang, Y.,Zhao, X.,Zhang, M.,Xia, One or more exclusion Y.,Fang, X.,Wang, J.,Hwang, S. A.,Yu, S.. Change of urinary fluoride and bone metabolism indicators in the endemic fluorosis areas of southern China after supplying low fluoride public water. *BMC Public Health*. 2013. 13:156
- L1 Gupta, S. K.,Gupta, R. C.,Gupta, K.,Trivedi, H. P.. Changes One or more exclusion in serum seromucoid following compensatory criteria hyperparathyroidism: A sequel to chronic fluoride ingestion.

 Indian Journal of Clinical Biochemistry. 2008. 23:176-180
- L1 Bennett, H. B., Shantz, A., Shin, G., Sampson, M. One or more exclusion L., Meschke, J. S.. Characterisation of the water quality criteria from open and rope-pump shallow wells in rural Cambodia.

 Water Science & Technology. 2010. 61:473-9
- L1 Zhu, C.,Zhao, L. Y.,Yuan, H.,Yang, H. Y.,Li, A.,Wang, One or more exclusion P.,Yang, S.. Characteristics and comparative study of a criteria new drinking-water defluoridation adsorbent Bio-F.

 [Chinese]. Huanjing Kexue/Environmental Science. 2009.

30:1036-1043

- Zhang, W.,Bian, J.,Yun, Z.,Cheng, P.,Sun, G.,Gao, H.,Gao, One or more exclusion
 J.. Characteristics of spatial distribution of water fluoride in criteria
 Heze City, Shandong Province based on inverse distance
 weighted. [Chinese]. Chinese Journal of Endemiology.
 2014. 33:178-181
- L1 Nan, L.. Characterization and optimization of the one or more exclusion radiochemical synthesis of [¹⁸F]AMD3465: A criteria potential PET imaging agent for Chemokine Receptor CXCR4. Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2018. 59:#pages#
- L1 Gislason, S. R., Hassenkam, T., Nedel, S., Bovet, One or more exclusion N., Eiriksdottir, E. S., Alfredsson, H. A., Hem, C. P., Balogh, criteria
 Z. I., Dideriksen, K., Oskarsson, N., Sigfusson, B., Larsen, G., Stipp, S. L. S.. Characterization of Eyjafjallajokull volcanic ash particles and a protocol for rapid risk assessment. *Proceedings of the National Academy of Sciences of the United States of America*. 2011. 108:7307-7312
- L1 Joseph, R., Shelma, R., Rajeev, A., Muraleedharan, C. V.. One or more exclusion Characterization of surface modified polyester fabric. criteria

 Journal of Materials Science: Materials in Medicine. 2009.
 20:S153-S159
- Odiyo, J. O.,Makungo, R.. Chemical and Microbial Quality One or more exclusion of Groundwater in Siloam Village, Implications to Human criteria

 Health and Sources of Contamination. *Int J Environ Res Public Health.* 2018. 15:#pages#

Level	Bibliography	Reason for Exclusion
L1	Dahlin, J., Engfeldt, M., Svedman, C., Mowitz, M., Zimerson, E., Isaksson, M., Hindsen, M., Bruze, M Chemical burns caused by trifluoroacetic acid. <i>Contact Dermatitis</i> . 2012. 2):15	One or more exclusion criteria
L1	Hsu, Y. M., Wu, C. Y., Lundgren, D. A., Nall, J. W., Birky, B. K Chemical characteristics of aerosol mists in phosphate fertilizer manufacturing facilities. <i>J Occup Environ Hyg.</i> 2007. 4:17-25	One or more exclusion criteria
L1	Ameer, N., Mustafa, G., Khan, I., Zahid, M., Yasinzai, M., Shahab, S., Asghar, N., Ullah, I., Ahmad, A., Munir, I., Khan, H., Badshah, S., Shahid, I., Ahmad, M. N., Zia, A., Ahmad, S Chemical sensors: Promising tools for the online monitoring of fluorides. <i>Fluoride</i> . 2018. 51:252-266	One or more exclusion criteria
L1	Marshall, T. A., Curtis, A. M., Cavanaugh, J. E., Warren, J. J., Levy, S. M Child and Adolescent Sugar-Sweetened Beverage Intakes Are Longitudinally Associated with Higher Body Mass Index z Scores in a Birth Cohort Followed 17 Years. <i>J Acad Nutr Diet.</i> 2019. 119:425-434	One or more exclusion criteria
L1	Vilasrao, G. S., Kamble, K. M., Sabat, R. N Child fluorosis in Chhattisgarh, India: a community-based survey. <i>Indian Pediatr.</i> 2014. 51:903-5	One or more exclusion criteria
L1	Takizawa, S., Takeda, T., Wongrueng, A., Wattanachira, S Child-education program for the reduction of health risks due to fluoride in water sources in the Chiang Mai Basin, Thailand. <i>Water Sci Technol.</i> 2010. 61:2391-7	One or more exclusion criteria
L1	Ba, Y., Wang, G., Yu, B., Yang, Y. J., Ren, L. J., Yin, G. J., Cheng, X. M., Cui, L. X., Zhang, Y. W Children's dental fluorosis and estrogen receptor alpha gene Xba I	One or more exclusion criteria

polymorphism. [Chinese]. *Chinese Journal of Endemiology*. 2010. 29:278-281

- L1 Cherry, D. C., Huggins, B., Gilmore, K.. Children's Health in One or more exclusion the Rural Environment. *Pediatric Clinics of North America.* criteria 2007. 54:121-133
- L1 Kanagaraj, G., Elango, L.. Chromium and fluoride One or more exclusion contamination in groundwater around leather tanning criteria industries in southern India: Implications from stable isotopic ratio

 DELTA⁵³Cr/DELTA⁵²Cr,
 geochemical and geostatistical modelling. *Chemosphere*.
 2019. 220:943-953
- L1 Buscariolo, I. A.,Penha, S. S.,Rocha, R. G.. Chronic One or more exclusion fluorine intoxication. Prevalence of dental fluorosis in schoolchildren. [Portuguese]. *Revista de Ciencias*Farmaceuticas Basica e Aplicada. 2006. 27:83-87
- L1 Kurdi, M. S.. Chronic fluorosis: The disease and its One or more exclusion anaesthetic implications. *Indian Journal of Anaesthesia*. criteria 2016. 60:157-162
- L1 Jayasinghe, S.,Zhu, Y. G.. Chronic kidney disease of One or more exclusion unknown etiology (CKDu): Using a system dynamics model criteria to conceptualize the multiple environmental causative pathways of the epidemic. Science of the Total Environment. 2020. 705 (no pagination):#pages#
- L1 Dharma-Wardana, M. W. C.. Chronic kidney disease of One or more exclusion unknown etiology and the effect of multiple-ion interactions. criteria *Environ Geochem Health.* 2018. 40:705-719

Level	Bibliography	Reason for Exclusion
L1	Chandrajith, R.,Nanayakkara, S.,Itai, K.,Aturaliya, T. N.,Dissanayake, C. B.,Abeysekera, T.,Harada, K.,Watanabe, T.,Koizumi, A Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: geographic distribution and environmental implications. <i>Environ Geochem Health</i> . 2011. 33:267-78	One or more exclusion criteria
L1	Bandara, J. M., Senevirathna, D. M., Dasanayake, D. M., Herath, V., Bandara, J. M., Abeysekara, T., Rajapaksha, K. H Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). <i>Environ Geochem Health.</i> 2008. 30:465-78	One or more exclusion criteria
L1	Carstairs, C Cities without cavities: democracy, risk, and public health. <i>J Can Stud.</i> 2010. 44:146-70	One or more exclusion criteria
L1	Ipci, S. D., Cakar, G., Kuru, B., Yilmaz, S Clinical evaluation of lasers and sodium fluoride gel in the treatment of dentine hypersensitivity. <i>Photomed Laser Surg.</i> 2009. 27:85-91	
L1	Lee, S. H. O.,Lee, N. Y.,Lee, I. N. H Clinical evaluation of the efficacy of fluoride adhesive tape (F-PVA) in reducing dentin hypersensitivity. <i>American Journal of Dentistry</i> . 2013. 26:143-148	One or more exclusion criteria
L1	Lee, S. H.,Lee, N. Y.,Lee, I. H Clinical evaluation of the efficacy of fluoride adhesive tape (F-PVA) in reducing dentin hypersensitivity. <i>Am J Dent.</i> 2013. 26:143-8	One or more exclusion criteria
L1	Dixit, M.,Saxena, P.,Verma, S.,Kumari, S.,Kheruka, S.,Verma, R. S.,Gambhir, S Clinical grade automated synthesis of fluorodeoxyglucose [¹⁸ F] FDG at newly established cyclotron facility at SGPGIMS, Lucknow.	

Indian Journal of Nuclear Medicine. 2015. 30 (5 Supplement 1):S63-S64

- L1 Bouyeure-Petit, A. C., Chastan, M., Edet-Sanson, A., Becker, One or more exclusion S., Thureau, S., Houivet, E., Vera, P., Hapdey, S.. Clinical criteria respiratory motion correction software (reconstruct, register and averaged-RRA), for (18)F-FDG-PET-CT: phantom validation, practical implications and patient evaluation. *Br J Radiol.* 2017. 90:20160549
- L1 Rasool, A.,Xiao, T.,Baig, Z. T.,Masood, S.,Mostofa, K. One or more exclusion M.,Iqbal, M.. Co-occurrence of arsenic and fluoride in the criteria groundwater of Punjab, Pakistan: source discrimination and health risk assessment. *Environ Sci Pollut Res Int.* 2015. 22:19729-46
- L1 Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., Vengosh, One or more exclusion A.. Co-occurrence of geogenic and anthropogenic criteria contaminants in groundwater from Rajasthan, India. *Sci Total Environ.* 2019. 688:1216-1227
- L1 Alarcón-Herrera, M. T.,Martin-Alarcon, D. A.,Gutiérrez, One or more exclusion M.,Reynoso-Cuevas, L.,Martín-Domínguez, A.,Olmos-criteria Márquez, M. A.,Bundschuh, J.. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. *Sci Total Environ.* 2020. 698:134168
- L1 Navi, M., Skelly, C., Taulis, M., Nasiri, S.. Coal seam gas One or more exclusion water: Potential hazards and exposure pathways in criteria

 Queensland. International Journal of Environmental Health

 Research. 2015. 25:162-183
- L1 Chen, J., Liu, G., Kang, Y., Wu, B., Sun, R., Zhou, C., Wu, D.. One or more exclusion

Coal utilization in China: environmental impacts and human criteria health. *Environ Geochem Health*. 2014. 36:735-53

- L1 Li, M.,Gao, Y.,Cui, J.,Li, Y.,Li, B.,Liu, Y.,Sun, J.,Liu, X.,Liu, One or more exclusion H.,Zhao, L.,Sun, D.. Cognitive Impairment and Risk Factors criteria in Elderly People Living in Fluorosis Areas in China. *Biol Trace Elem Res.* 2016. 172:53-60
- L1 Tang, L., Wang, L. J., Zhang, Y. L., Bai, S. B., Zhong, J. One or more exclusion J., Zhang, Y. X., Liu, K. T.. COLIXA3 gene expression of peripheral blood lymphocyte in patients with endemic fluorosis. [Chinese]. *Chinese Journal of Endemiology*. 2012. 31:144-146
- L1 Escobar-García, D.,Mejía-Saavedra, J.,Jarquín-Yáñez, One or more exclusion L.,Molina-Frechero, N.,Pozos-Guillén, A.. Collagenase 1A2 criteria (COL1A2) gene A/C polymorphism in relation to severity of dental fluorosis. *Community Dent Oral Epidemiol.* 2016. 44:162-8
- L1 Ghosh, P.,Roy, B. G.,Jana, S.,Mukhopadhyay, S. One or more exclusion K.,Banerjee, P.. Colorimetric and fluorimetric response of Schiff base molecules towards fluoride anion, solution test kit fabrication, logical interpretations and DFT-D3 study.

 Physical Chemistry Chemical Physics. 2015. 17:20288-95
- L1 Rango, T., Colombani, N., Mastrocicco, M., Bianchini, One or more exclusion G., Beccaluva, L.. Column elution experiments on volcanic criteria ash: Geochemical implications for the main Ethiopian rift waters. *Water, Air, and Soil Pollution.* 2010. 208:221-233
- L1 Mittal, M., Chatterjee, S., Flora, S. J. S.. Combination One or more exclusion therapy with vitamin C and DMSA for arsenic-fluoride cocriteria exposure in rats. *Metallomics : Integrated Biometal*

Level	Bibliography	Reason for Exclusion
	Science. 2018. 10:1291-1306	
L1	Moolenburgh, H Comment on editorial report: Medline again rejects Fluoride. <i>Fluoride</i> . 2010. 43:81-84	One or more exclusion criteria
L1	Sun, D Commentary. <i>Journal of Neurosciences in Rural Practice</i> . 2012. 3:149-150	One or more exclusion criteria
L1	Grimes, D. R Commentary on "Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water". <i>J Epidemiol Community Health.</i> 2015. 69:616	One or more exclusion criteria
L1	Montgomery, J Commentary on "Public health, private right and the common law". <i>Public Health.</i> 2006. 120:50-51	One or more exclusion criteria
L1	Paul, C. J., Jeuland, M. A., Godebo, T. R., Weinthal, E Communities coping with risks: Household water choice and environmental health in the Ethiopian Rift Valley. Environmental Science and Policy. 2018. 86:85-94	One or more exclusion criteria
L1	Young, N.,Newton, J.,Morris, J.,Morris, J.,Langford, J.,Iloya, J.,Edwards, D.,Makhani, S.,Verne, J Community water fluoridation and health outcomes in England: a cross-sectional study. <i>Community Dent Oral Epidemiol.</i> 2015. 43:550-9	One or more exclusion criteria
L1	Till, C.,Green, R.,Grundy, J. G.,Hornung, R.,Neufeld, R.,Martinez-Mier, E. A.,Ayotte, P.,Muckle, G.,Lanphear, B Community water fluoridation and urinary fluoride concentrations in a national sample of pregnant women in Canada. <i>Environmental Health Perspectives</i> . 2018. 126 (10) (no pagination):#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Mertz, A., Allukian, M Community water fluoridation on the Internet and social media. <i>J Mass Dent Soc.</i> 2014. 63:32-6	
L1	Fluegge, K Community water fluoridation predicts increase in age-adjusted incidence and prevalence of diabetes in 22 states from 2005 and 2010. <i>J Water Health</i> . 2016. 14:864-877	One or more exclusion criteria
L1	Whyman, R. A., Mahoney, E. K., Børsting, T Community water fluoridation: attitudes and opinions from the New Zealand Oral Health Survey. <i>Aust N Z J Public Health</i> . 2016. 40:186-92	One or more exclusion criteria
L1	Wang, L. F., Chen, Q., Long, X. P., Wu, X. B., Sun, L Comparative analysis of groundwater fluorine levels and other characteristics in two areas of Laizhou Bay and its explanation on fluorine enrichment. <i>Water Science and Technology: Water Supply.</i> 2015. 15:384-394	One or more exclusion criteria
L1	Aparna, S., Setty, S., Thakur, S Comparative efficacy of two treatment modalities for dentinal hypersensitivity: a clinical trial. <i>Indian J Dent Res.</i> 2010. 21:544-8	One or more exclusion criteria
L1	Ramesh, M., Malathi, N., Ramesh, K., Aruna, R., Kuruvilla, S Comparative evaluation of dental and skeletal fluorosis in an endemic fluorosed district, Salem, Tamil Nadu. <i>Journal of Pharmacy and Bioallied Sciences</i> . 2017. 9:S88-S91	One or more exclusion criteria
L1	Rikame, V.,Doshi, Y.,Horowitz, R. A.,Kevadia-Shah, V.,Shah, M Comparative Evaluation of Fluoridated Mouthwash and Sodium Bicarbonate in Management of Dentin Hypersensitivity: An In Vitro SEM Study. <i>Compend Contin Educ Dent.</i> 2018. 39:e5-e8	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chahal, A.,Bala, M.,Dahiya, R. S.,Ghalaut, V. S Comparative evaluation of serum fluoride levels in patients with and without chronic abdominal pain. <i>Clinica Chimica Acta</i> . 2014. 429:140-142	One or more exclusion criteria
L1	Kumar, N.,Gauba, K.,Goyal, A.,Kapur, A Comparative evaluation of three different recording criteria of dental fluorosis in a known endemic fluoride area of Haryana. Indian Journal of Medical Research. 2018. 147:567-572	One or more exclusion criteria
L1	Pandit, N.,Gupta, R.,Bansal, A Comparative evaluation of two commercially available desensitizing agents for the treatment of dentinal hypersensitivity. <i>Indian J Dent Res.</i> 2012. 23:778-83	One or more exclusion criteria
L1	Sheng, N.,Zhou, X.,Zheng, F.,Pan, Y.,Guo, X.,Guo, Y.,Sun, Y.,Dai, J Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice. <i>Arch Toxicol.</i> 2017. 91:2909-2919	
L1	Yu, X.,Liang, B.,Jin, X.,Fu, B.,Hannig, M Comparative in vivo study on the desensitizing efficacy of dentin desensitizers and one-bottle self-etching adhesives. <i>Oper Dent.</i> 2010. 35:279-86	One or more exclusion criteria
L1	Lu, J., Xu, Q., Chen, H., Li, J., Chen, K Comparative proteomics analysis of midgut samples from Takifugu rubripes exposed to excessive fluoride: initial molecular response to fluorosis. <i>Toxicology Mechanisms & Methods</i> . 2011. 21:444-52	One or more exclusion criteria
L1	Chhabra, S., Siddique, N., Randhawa, S. N. S Comparative	One or more exclusion

studies on plasma mineral status of cattle in fluoride toxic criteria

brackish water zone of Punjab, India. *Asian Pacific Journal* of *Tropical Disease*. 2012. 2:S257-S259

- L1 Qian, W. W.,Lin, J. H.,Hu, Y.. Comparative study on effect One or more exclusion of different remineralization agents on eroded primary teeth criteria enamel. [Chinese]. *Journal of Shanghai Jiaotong University* (Medical Science). 2014. 34:1126-1131
- L1 Choi, Y. E.,Seo, D. Y.,Lee, J. E.,Ha, Y.,Park, A. H.,Jeong, One or more exclusion J. W.,Kwon, O. W.,Kim, Y. J.. Comparative toxicity of criteria Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanesulfonamide (PFOSA) in fish hepatoma cell line, PLHC-1. *Toxicology and Environmental Health Sciences*. 2018. 10 (4):S58
- L1 Solis-Angeles, S., Cardenas Gonzalez, M., Jimenez- One or more exclusion Cordova, M. I., Villarreal-Vega, E., Aguilar-Madrid, criteria G., Gonzalez-Horta, M. C., Del Razo, L. M., Barbier, O.. Comparative urinary miRNAs expression and cystatin C level in adults chronically exposed to fluoride through drinking water. *Toxicology Letters*. 2016. 259 (Supplement 1):S115
- Datturi, S., Steenbergen, F. V., Beusekom, M. V., Kebede, One or more exclusion
 S.. Comparing defluoridation and safe sourcing for fluorosis criteria
 mitigation in the ethiopian central rift valley. *Fluoride*. 2015.
 48:293-314
- L1 Nicole, W.. Comparing fluoride exposures in pregnant One or more exclusion canadian women: Fluoridated versus nonfluoridated criteria drinking water. *Environmental Health Perspectives*. 2019. 127 (7) (no pagination):#pages#
- L1 Bozorgi, M., Ghasempour, M., Ahmadi, G., Khafri, S.. One or more exclusion

l evel	Bibliog	ranhv
	DIDIIO	JIAPIIY

Reason for Exclusion

criteria

Comparison between the effects of green and black tea, and fluoride on microhardness and prevention of demineralization of deciduous teeth enamel. *Journal of Babol University of Medical Sciences*. 2018. 20:14-19

- L1 Gao, J., Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Li, H. One or more exclusion X., Gao, H. X., Ma, A. H.. Comparison of body fluorine levels criteria in Liangshan and Boxing counties of Shandong province from 2007 to 2009. [Chinese]. *Chinese Journal of Endemiology.* 2012. 31:199-201
- L1 Pradeep, A. R., Agarwal, E., Naik, S. B., Bajaj, P., Kalra, N... One or more exclusion Comparison of efficacy of three commercially available criteria dentifrices [corrected] on dentinal hypersensitivity: a randomized clinical trial. *Aust Dent J.* 2012. 57:429-34
- L1 Pradeep, A. R., Agarwal, E., Naik, S. B., Bajaj, P., Kalra, N.. One or more exclusion Comparison of efficacy of three commercially available criteria dentrifices on dentinal hypersensitivity: A randomized clinical trial. *Australian Dental Journal*. 2012. 57:429-434
- L1 Kakei, M., Sakae, T., Mishima, H., Yoshikawa, M.. One or more exclusion Comparison of harmfulness between fluoride and cadmium criteria ions on the crystal nucleation process. *Bone.* 2009.

 2):S414
- L1 Hirzy, J. W., Carton, R. J., Bonanni, C. D., Montanero, C. One or more exclusion M., Nagle, M. F.. Comparison of hydrofluorosilicic acid and pharmaceutical sodium fluoride as fluoridating agents-A cost-benefit analysis. *Environmental Science and Policy*. 2013. 29:81-86
- Yu, Q.,Liu, H.,Liu, Z.,Peng, Y.,Cheng, X.,Ma, K.,Ji, Y.. One or more exclusion Comparison of nanofluoridated hydroxyapatite of varying criteria

fluoride content for dentin tubule occlusion. Am J Del

Level Ribliography

fluoride content for dentin tubule occlusion. *Am J Dent.* 2017. 30:109-115

L1 Usuda, K.,Kono, R.,Ueno, T.,Ito, Y.,Dote, T.,Yokoyama, H.,Kono, K.,Tamaki, J.. Comparison of the Biological Impacts of the Fluoride Compounds by Graphical Risk Visualization Map Technique. *Biol Trace Elem Res.* 2015. 167:84-90

One or more exclusion criteria

Reason for Exclusion

L1 Sun, X. G., Huang, G., Liu, J. J., Wan, L. R.. Comparison of the effect of positive and negative oral contrast agents on (18)F-FDG PET/CT scan. *Hell J Nucl Med.* 2009. 12:115-8

One or more exclusion criteria

L1 Rice, J. R., Boyd, W. A., Chandra, D., Smith, M. V., Besten, P. K. D., Freedman, J. H.. Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans. *Environmental Toxicology and Chemistry*. 2014. 33:82-88

One or more exclusion criteria

L1 Shorter, J. P.,Massawe, J.,Parry, N.,Walker, R. W..

Comparison of two village primary schools in northern

Tanzania affected by fluorosis. *International Health*. 2010.

2:269-74

One or more exclusion criteria

L1 Wu, K.,Zhang, N.,Liu, T.,Ma, C.,Jin, P.,Zhang, F.,Zhang, Or J.,Wang, X.. Competitive adsorption behaviors of arsenite cri and fluoride onto manganese-aluminum binary adsorbents.
Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. 529:185-194

One or more exclusion criteria

Murtaza, B., Natasha, Amjad, M., Shahid, M., Imran,
 M., Shah, N. S., Abbas, G., Naeem, M. A., Amjad, M..
 Compositional and health risk assessment of drinking water
 from health facilities of District Vehari, Pakistan. *Environ*

One or more exclusion

criteria

Geochem Health. 2019. #volume#:#pages#

L1 Fantong, W. Y., Jokam Nenkam, T. L. L., Nbendah, P., Kimbi, S. B., Fru, E. C., Kamtchueng, B. T., Takoundjou, A. F., Tejiobou, A. R., Ngueutchoua, G., Kringel, R... Compositions and mobility of major, deltaD, delta¹⁸0, trace, and REEs patterns in water sources at Benue River Basin-Cameroon: implications for recharge mechanisms, geo-environmental controls, and public health. Environmental geochemistry and health... 2020. 28:#pages#

One or more exclusion criteria

L1 Zong, Y., Shea, C., Maffucci, K., Ojima, I., Computational Design and Synthesis of Novel Fluoro-Analogs of Combretastatins A-4 and A-1. J Fluor Chem. 2017. 203:193-199

One or more exclusion criteria

L1 Pollick, H. F.. Concerns about water fluoridation, IQ, and osteosarcoma lack credible evidence. Int J Occup Environ criteria Health. 2006. 12:91-94

One or more exclusion

L1 Bachanek, T., Hendzel, B., Wolańska, E., Samborski, D., Jarosz, Z., Pitura, K. M., Dzida, K., Podymniak, M., Tymczyna-Borowicz, B., Niewczas, A., Shybinskyy, V., Zimenkovsky, A.. Condition of mineralized tooth tissue in a population of 15-year-old adolescents living in a region of Ukraine with slightly exceeded fluorine concentration in the water. Ann Agric Environ Med. 2019. 26:623-629

One or more exclusion criteria

L1 Coplan, M. J., Patch, S. C., Masters, R. D., Bachman, M. S.. One or more exclusion Confirmation of and explanations for elevated blood lead and other disorders in children exposed to water disinfection and fluoridation chemicals. NeuroToxicology.

criteria

25 March 2023 952 2007. 28:1032-1042

- Wang, M., Svatunek, D., Rohlfing, K., Liu, Y., Wang, H., Giglio, One or more exclusion B., Yuan, H., Wu, Z., Li, Z., Fox, J.. Conformationally Strained criteria trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation. *Theranostics*.
 2016. 6:887-95
- L1 Sankararamakrishnan, N.,Sharma, A. K.,Iyengar, L.. One or more exclusion Contamination of nitrate and fluoride in ground water along criteria the Ganges Alluvial Plain of Kanpur district, Uttar Pradesh, India. *Environmental Monitoring and Assessment*. 2008. 146:375-382
- L1 Peters, M.,Guo, Q.,Strauss, H.,Wei, R.,Li, S.,Yue, F.. One or more exclusion Contamination patterns in river water from rural Beijing: A criteria hydrochemical and multiple stable isotope study. *Science of the Total Environment*. 2019. 654:226-236
- Weegman, B. P., Einstein, S. A., Steyn, L. V., Suszynski, T. One or more exclusion M., Firpo, M. T., Graham, M. L., Janacek, J., Eberly, L. criteria
 E., Garwood, M., Papas, K. K.. Continuous oxygen delivery improves oxygenation of tissue-engineered islet grafts in vivo as measured with fluorine-19 magnetic resonance spectroscopy. *Xenotransplantation*. 2015. 1):S128-S129
- L1 Kaseva, M. E.. Contribution of trona (magadi) into

 excessive fluorosis-a case study in Maji ya Chai ward,
 northern Tanzania. Science of the Total Environment.

 2006. 366:92-100
- Yun, Z.,Yin, Y.,Gao, J.,Wen, Y.,Bian, J.,Chen, P.,Wang, Y.. One or more exclusion Control status quo of drinking-water-borne endemic criteria fluorosis in the disease affected areas in Shandong

ו בעב	Bibliograpl	hv
Levei	DIDITOGIADI	I V

Reason for Exclusion

Province in 2012: An analysis of survey results. [Chinese]. *Chinese Journal of Endemiology.* 2014. 33:155-159

- L1 Fookes, F. A., Mengatto, L. N., Rigalli, A., Luna, J. A.. One or more exclusion Controlled fluoride release for osteoporosis treatment using criteria orally administered chitosan hydrogels. *Journal of Drug Delivery Science and Technology*. 2019. 51:268-275
- L1 Hirakawa, K., Suzuki, A., Ouyang, D., Okazaki, S., Ibuki, Or Y., Nakazaki, J., Segawa, H.. Controlled Photodynamic crit Action of Axial Fluorinated DiethoxyP(V)tetrakis(p-methoxyphenyl)porphyrin through Self-Aggregation. *Chem Res Toxicol.* 2019. 32:1638-1645

One or more exclusion criteria

L1 Adimalla, N.. Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA). *Environ Geochem Health*. 2019. #volume#:#pages#

One or more exclusion criteria

L1 Enriquez, J. S., Yu, M., Bouley, B. S., Xie, D., Que, E. L..

Copper(ii) complexes for cysteine detection using (19)F

magnetic resonance. *Dalton Trans.* 2018. 47:15024-15030

One or more exclusion criteria

L1 Wu, Y.,Yang, D.,Kang, X.,Ma, P.,Huang, S.,Zhang, Y.,Li, C.,Lin, J.. Core-shell structured luminescent and mesoporous beta-NaYF4:Ce3+/Tb3+@mSiO2-PEG nanospheres for anti-cancer drug delivery. *Dalton Transactions*, 2013, 42:9852-61

One or more exclusion criteria

Jeong, J. H., Cho, I. H., Chun, K. A., Kong, E. J., Kwon, S.
 D., Kim, J. H.. Correlation Between Apparent Diffusion
 Coefficients and Standardized Uptake Values in Hybrid
 (18)F-FDG PET/MR: Preliminary Results in Rectal Cancer.

One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Nucl Med Mol Imaging. 2016. 50:150-6	
L1	Kheradpisheh, Z.,Mahvi, A. H.,Mirzaei, M.,Mokhtari, M.,Azizi, R.,Fallahzadeh, H.,Ehrampoush, M. H Correlation between drinking water fluoride and TSH hormone by ANNs and ANFIS. <i>Journal of Environmental Health Science & Engineering.</i> 2018. 16:11-18	One or more exclusion criteria
L1	Faraji, H.,Mohammadi, A. A.,Akbari-Adergani, B.,Vakili Saatloo, N.,Lashkarboloki, G.,Mahvi, A. H Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran. <i>Iranian Journal of Public Health.</i> 2014. 43:1664-8	
L1	Wu, J.,Li, D.,Yang, D.,Qin, M.,Li, B.,Liu, X.,Li, M.,Li, Y.,Zhang, W.,Gao, Y Correlation between urinary fluoride level and i ntaking of fluoride per day in Tibetan and Kazakh population in brick-tea-borne fluorosis areas. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:549-552	One or more exclusion criteria
L1	Ahmed, I.,Rafique, T.,Hasan, S. K.,Khan, N.,Khan, M. H.,Usmani, T. H Correlation of fluoride in drinking water with urine, blood plasma, and serum fluoride levels of people consuming high and low fluoride drinking water in Pakistan. <i>Fluoride</i> . 2012. 45:384-388	One or more exclusion criteria
L1	Mariño, R., Fajardo, J., Morgan, M Cost-effectiveness models for dental caries prevention programmes among Chilean schoolchildren. <i>Community Dent Health</i> . 2012. 29:302-8	One or more exclusion criteria
L1	Chansaenpak, K., Kamkaew, A., Weeranantanapan, O., Suttisintong, K., Tumcharern, G Coumarin Probe for	One or more exclusion criteria

Selective Detection of Fluoride Ions in Aqueous Solution and Its Bioimaging in Live Cells. *Sensors (Basel)*. 2018. 18:#pages#

- L1 Garner, L. E., Steirer, K. X., Young, J. L., Anderson, N. One or more exclusion C., Miller, E. M., Tinkham, J. S., Deutsch, T. G., Sellinger, criteria A., Turner, J. A., Neale, N. R.. Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. *ChemSusChem.* 2017. 10:767-773
- L1 Cai, H.,Zhu, X.,Peng, C.,Xu, W.,Li, D.,Wang, Y.,Fang, S.,Li, One or more exclusion Y.,Hu, S.,Wan, X.. Critical factors determining fluoride criteria concentration in tea leaves produced from Anhui province,

 China. *Ecotoxicol Environ Saf.* 2016. 131:14-21
- L1 Shinoda, T.,Ogawa, H.,Cornelius, F.,Toyoshima, C.. One or more exclusion Crystal structure of the sodium-potassium pump at 2.4 A criteria resolution. *Nature*, 2009, 459:446-50
- L1 Tiwari, H.,Rao, M. V.. Curcumin supplementation protects One or more exclusion from genotoxic effects of arsenic and fluoride. *Food Chem* criteria *Toxicol.* 2010, 48:1234-8
- L1 Shick, E.. Current fluoride recommendations for the pediatric patient. *U.S.* 2007. Pharmacist. 32:52-56 criteria
- L1 Mejare, I.. Current Guidance for Fluoride Intake: Is It One or more exclusion Appropriate?. *Advances in Dental Research*. 2018. 29:167- criteria 176
- L1 Machoy-Mokrzynska, A.,Machoy, Z.. Current trends in One or more exclusion fluorine research. [Polish]. *Annales Academiae Medicae* criteria *Stetinensis.* 2006. 52 Suppl 1:73-77

Level	Bibliography	Reason for Exclusion
L1	Patil, M. M., Lakhkar, B. B., Patil, S. S Curse of Fluorosis. <i>Indian Journal of Pediatrics</i> . 2018. 85:375-383	One or more exclusion criteria
L1	Wodtke, R.,Ruiz-Gómez, G.,Kuchar, M.,Pisabarro, M. T.,Novotná, P.,Urbanová, M.,Steinbach, J.,Pietzsch, J.,Löser, R Cyclopeptides containing the DEKS motif as conformationally restricted collagen telopeptide analogues: synthesis and conformational analysis. <i>Org Biomol Chem.</i> 2015. 13:1878-96	One or more exclusion criteria
L1	Pawar, A. C., Naik, S. J. K., Kumari, S. A Cytogenetic analysis of human lymphocytes of fluorosis-affected men from the endemic fluorosis region in Nalgonda district of Andhra Pradesh, India. <i>Fluoride</i> . 2014. 47:78-84	One or more exclusion criteria
L1	Palmieri, M. J., Andrade-Vieira, L. F., Campos, J. M. S., dos Santos Gedraite, L., Davide, L. C Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays. Ecotoxicology and Environmental Safety. 2016. 133:442-447	
L1	Alimohammadi, M., Nabizadeh, R., Yaghmaeian, K., Mahvi, A. H., Foroohar, P., Hemmati, S., Heidarinejad, Z Data on assessing fluoride risk in bottled waters in Iran. <i>Data Brief.</i> 2018. 20:825-830	One or more exclusion criteria
L1	Ghaderpoori, M., Najafpoor, A. A., Ghaderpoury, A., Shams, M Data on fluoride concentration and health risk assessment of drinking water in Khorasan Razavi province, Iran. <i>Data Brief.</i> 2018. 18:1596-1601	criteria
L1	Dehghani, M. H., Haghighat, G. A., Yousefi, M Data on fluoride concentration in drinking water resources in Iran: A	One or more exclusion criteria

case study of Fars province; Larestan region. *Data in Brief.* 2018. 19:842-846

- Narsimha, A., Sudarshan, V.. Data on fluoride concentration One or more exclusion levels in semi-arid region of Medak, Telangana, South criteria
 India. Data in Brief. 2018. 16:717-723
- L1 Kaur, L.,Rishi, M. S.. Data on fluoride contamination in One or more exclusion potable water in alluvial plains of district Panipat, Haryana, criteria India. *Data in Brief.* 2018. 20:1844-1849
- L1 Azhdarpoor, A.,Radfard, M.,Rahmatinia, M.,Hashemi, One or more exclusion H.,Hashemzadeh, B.,Nabavi, S.,Akbari, H.,Akbari, criteria H.,Adibzadeh, A.. Data on health risk assessment of fluoride in drinking water in the Khash city of Sistan and Baluchistan province, Iran. *Data Brief.* 2018. 21:1508-1513
- L1 Radfard, M.,Rahmatinia, M.,Akbari, H.,Hashemzadeh, One or more exclusion B.,Akbari, H.,Adibzadeh, A.. Data on health risk criteria assessment of fluoride in water distribution network of Iranshahr, Iran. *Data Brief.* 2018. 20:1446-1452
- L1 Ahmadi, S.,Rahdar, S.,Igwegbe, C. A.,Rahdar, A.,Shafighi, One or more exclusion N.,Sadeghfar, F.. Data on the removal of fluoride from criteria aqueous solutions using synthesized P/gamma-Fe₂O₃ nanoparticles: A novel adsorbent. *MethodsX*. 2019. 6:98-106
- Loganathan, P., Vigneswaran, S., Kandasamy, J., Naidu, R... One or more exclusion Defluoridation of drinking water using adsorption criteria processes. *J Hazard Mater.* 2013. 248-249:1-19
- L1 Rao, T. K., Kasiviswanath, I. V., Murthy, Y. L. N.. One or more exclusion Defluoridation of water by nanotechnology. *Water Science* criteria

Level	Bibliography	Reason for Exclusion
	and Technology: Water Supply. 2009. 9:485-492	
L1	Atia, D., Hoggui, A Defluoridation of water by precipitation. <i>Journal of Chemical and Pharmaceutical Research.</i> 2012. 4:5180-5184	One or more exclusion criteria
L1	Sharma, S., Upadhyay, D., Singh, B., Shrivastava, D., Kulshreshtha, N. M Defluoridation of water using autochthonous bacterial isolates. <i>Environmental Monitoring & Assessment</i> . 2019. 191:781	One or more exclusion criteria
L1	Slack-Smith, L.,Colvin, L.,Leonard, H.,Kilpatrick, N.,Read, A.,Messer, L. B Dental admissions in children under two yearsa total-population investigation. <i>Child Care Health Dev.</i> 2013. 39:253-9	One or more exclusion criteria
L1	Aung, Y. M., Tin Tin, S., Jelleyman, T., Ameratunga, S Dental caries and previous hospitalisations among preschool children: Findings from a population-based study in New Zealand. <i>New Zealand Medical Journal</i> . 2019. 132:44-53	One or more exclusion criteria
L1	Sagheri, D.,McLoughlin, J.,Nunn, J. H Dental caries experience and barriers to care in young children with disabilities in Ireland. <i>Quintessence Int.</i> 2013. 44:159-69	One or more exclusion criteria
L1	Skinner, J., Johnson, G., Phelan, C., Blinkhorn, A Dental caries in 14- and 15-year-olds in New South Wales, Australia. <i>BMC Public Health</i> . 2013. 13:1060	One or more exclusion criteria
L1	Matloob, M. H Dental caries in Iraqi 12-year-olds and background fluoride exposure. <i>Community Dent Health</i> . 2015. 32:163-9	One or more exclusion criteria

. Dental caries in rural Alaska Native children--Alaska,

L1

One or more exclusion

Level	Bibliography	Reason for Exclusion
	2008. MMWR Morb Mortal Wkly Rep. 2011. 60:1275-8	criteria
L1	Rugg-Gunn, A Dental caries: strategies to control this preventable disease. <i>Acta Med Acad.</i> 2013. 42:117-30	One or more exclusion criteria
L1	Nayak, B.,Roy, M. M.,Chakraborti, D Dental fluorosis. Clinical Toxicology: The Official Journal of the American Academy of Clinical Toxicology & European Association of Poisons Centres & Clinical Toxicologists. 2009. 47:355	One or more exclusion criteria
L1	Tiwari, P.,Kaur, S.,Sodhi, A Dental fluorosis and its association with the use of fluoridated toothpaste among middle school students of Delhi. <i>Indian J Med Sci.</i> 2010. 64:1-6	One or more exclusion criteria
L1	Susheela, A. K Dental fluorosis and its extended effects. Indian Journal of Pediatrics. 2013. 80:715-717	One or more exclusion criteria
L1	Moimaz, S. A., Saliba, O., Marques, L. B., Garbin, C. A., Saliba, N. A Dental fluorosis and its influence on children's life. <i>Braz Oral Res.</i> 2015. 29:#pages#	One or more exclusion criteria
L1	Ilankizhai, R. J Dental fluorosis and its management - A review. <i>Research Journal of Pharmacy and Technology</i> . 2016. 9:967-971	One or more exclusion criteria
L1	Menya, D., Maina, S. K., Kibosia, C., Kigen, N., Oduor, M., Some, F., Chumba, D., Ayuo, P., Middleton, D. R. S., Osano, O., Abedi-Ardekani, B., Schüz, J., McCormack, V. A Dental fluorosis and oral health in the African Esophageal Cancer Corridor: Findings from the Kenya ESCCAPE case-control study and a pan-African perspective. <i>Int J Cancer.</i> 2019. 145:99-109	One or more exclusion criteria
L1	Pontigo-Loyola, A. P., Islas-Márquez, A., Loyola-Rodríguez,	One or more exclusion

Level Bibliography

Reason for Exclusion

- J. P., Maupome, G., Marquez-Corona, M. L., Medina-Solis, criteria C. E.. Dental fluorosis in 12- and 15-year-olds at high altitudes in above-optimal fluoridated communities in Mexico. *J Public Health Dent.* 2008, 68:163-6
- L1 da Cunha, L. F.,Tomita, N. E.. Dental fluorosis in Brazil: a One or more exclusion systematic review from 1993 to 2004. *Cad Saude Publica.* criteria 2006. 22:1809-16
- L1 Khandare, A. L., Gourineni, S. R., Validandi, V.. Dental One or more exclusion fluorosis, nutritional status, kidney damage, and thyroid criteria function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India. *Environmental Monitoring and Assessment.* 2017. 189 (11) (no pagination):#pages#
- Montanha-Andrade, K., Maia, W., Pimentel, A. C. P., Arsati, One or more exclusion Ybol, Santos, J. N. D., Cury, P. R.. Dental health status and criteria its indicators in adult Brazilian Indians without exposition to drinking water fluoridation: a cross-sectional study.

 Environmental Science & Pollution Research. 2019.
 26:34440-34447
- L1 Mashoto, K. O., Astrom, A. N., David, J., Masalu, J. R.. One or more exclusion Dental pain, oral impacts and perceived need for dental treatment in Tanzanian school students: A cross-sectional study. *Health and Quality of Life Outcomes*. 2009. 7 (no pagination):#pages#
- L1 Sharma, M.,Singh, A.,Minocha, R. C.,Chhabra, V.,Agarwal, One or more exclusion V.,Chugh, T.. Dental survey of children in Jaipur, criteria Rajasthan, India. *Indian Journal of Public Health Research*

and Development. 2013. 4:262-268

- L1 Arnold, W. H.,Gröger, Ch,Bizhang, M.,Naumova, E. A.. One or more exclusion Dentin abrasivity of various desensitizing toothpastes. criteria

 Head Face Med. 2016. 12:16
- L1 Zhang, Y.,Sun, G.,Zheng, Q.. Dentin hypersensitivity in an One or more exclusion endemic fluorosis rural area of China. *Fluoride*. 2012. 45 (3 criteria PART 1):215-216
- L1 Ozen, T.,Orhan, K.,Avsever, H.,Tunca, Y. M.,Ulker, A. One or more exclusion E.,Akyol, M.. Dentin hypersensitivity: a randomized clinical criteria comparison of three different agents in a short-term treatment period. *Oper Dent.* 2009. 34:392-8
- L1 Komabayashi, T.,Imai, Y.,Ahn, C.,Chow, L. C.,Takagi, S.. One or more exclusion Dentin permeability reduction by a sequential application of criteria calcium and fluoride-phosphate solutions. *J Dent.* 2010. 38:736-41
- L1 Madhavan, S., Nayak, M., Shenoy, A., Shetty, R., Prasad, K.. One or more exclusion Dentinal hypersensitivity: A comparative clinical evaluation criteria of CPP-ACP F, sodium fluoride, propolis, and placebo. *J Conserv Dent.* 2012. 15:315-8
- L1 Rogo, E., Hodges, K., Herzog, A.. Dentinal sensitivity: a One or more exclusion natural mineral dietary supplement study. *Int J Dent Hyg.* criteria 2006. 4:122-8
- Malandrino, P., Scollo, C., Marturano, I., Russo, M., Tavarelli, One or more exclusion M., Attard, M., Richiusa, P., Violi, M. A., Dardanoni, criteria
 G., Vigneri, R., Pellegriti, G.. Descriptive epidemiology of human thyroid cancer: Experience from a regional registry and the "volcanic factor". Frontiers in Endocrinology. 2013.

Level	Bibliography	Reason for Exclusion
	4 (JUN) (no pagination):#pages#	
L1	Balan Pillai, A., Varghese, B., Madhusoodanan, K. N	One or more exclusion
	Design and development of novel sensors for the	criteria
	determination of fluoride in water. <i>Environmental Science</i>	
	and Technology. 2012. 46:404-409	
L1	Pillai, A. B., Varghese, B., Madhusoodanan, K. N Design	One or more exclusion
	and development of novel sensors for the determination of	criteria
	fluoride in water. Environ Sci Technol. 2012. 46:404-9	

L1 Silvers, W.,Cai, H.,Ramezani, S.,Oz, O.,Sun, X.. Design One or more exclusion and synthesis of a radiotracer for noninvasive imaging of Criteria Stearoyl-CoA Desaturase-1. *Journal of Nuclear Medicine.*Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2015. 56:#pages#

- Yin, W., Tian, G., Ren, W., Yan, L., Jin, S., Gu, Z., Zhou, L., Li, One or more exclusion J., Zhao, Y.. Design of multifunctional alkali ion doped CaF2 criteria upconversion nanoparticles for simultaneous bioimaging and therapy. *Dalton Trans.* 2014. 43:3861-70
- Mishra, R., Siddiqui, A. A., Husain, A., Rashid, M., Bhardwaj, One or more exclusion
 S.. Design, synthesis and anticonvulsant activity of 1, 3, 5 criteria
 triazin-2-imine/one/thione incorporated pyridazines.
 Movement Disorders. 2016. 31 (Supplement 1):S96-S97
- L1 Dziedzic, P., Cisneros, J. A., Robertson, M. J., Hare, A. One or more exclusion A., Danford, N. E., Baxter, R. H., Jorgensen, W. L.. Design, criteria synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor. *J Am Chem Soc.* 2015. 137:2996-3003
- L1 Higashiyama, A.,Komori, T.,Juri, H.,Inada, Y.,Azuma, One or more exclusion H.,Narumi, Y.. Detectability of residual invasive bladder

Level	Bibliography	Reason for Exclusion
	cancer in delayed (18)F-FDG PET imaging with oral hydration using 500 mL of water and voiding-refilling. <i>Ann Nucl Med.</i> 2018. 32:561-567	criteria
L1	Pawlowska-Goral, K.,Pilawa, B Detection of free radicals formed by in vitro metabolism of fluoride using EPR spectroscopy. <i>Toxicology in Vitro</i> . 2011. 25:1269-1273	One or more exclusion criteria
L1	Udhayakumari, D Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015-2019. Spectrochimica Acta. Part A, Molecular & Biomolecular Spectroscopy. 2020. 228:117817	
L1	Jan, M. L., Ni, Y. C., Chuang, K. S., Liang, H. C., Fu, Y. K Detection-ability evaluation of the PEImager for positron emission mammography applications. <i>Phys Med.</i> 2006. 21 Suppl 1:109-13	One or more exclusion criteria
L1	Huber, A. C., Bhend, S., Mosler, H. J Determinants of exclusive consumption of fluoride-free water: A cross-sectional household study in rural Ethiopia. <i>Journal of Public Health (Germany)</i> . 2012. 20:269-278	One or more exclusion criteria
L1	Gričar, M., Andrenšek, S Determination of azide impurity in sartans using reversed-phase HPLC with UV detection. <i>J Pharm Biomed Anal.</i> 2016. 125:27-32	One or more exclusion criteria
L1	Paz, S., Jaudenes, J. R., Gutierrez, A. J., Rubio, C., Hardisson, A., Revert, C Determination of Fluoride in Organic and Non-organic Wines. <i>Biological Trace Element Research</i> . 2017. 178:153-159	One or more exclusion criteria
L1	Ocak, E.,Kose, S Determination of fluoride in water, milk, and dairy products. <i>Fluoride</i> . 2018. 51:182-192	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Huber, A. C., Mosler, H. J Determining behavioral factors for interventions to increase safe water consumption: a cross-sectional field study in rural Ethiopia. <i>Int J Environ Health Res.</i> 2013. 23:96-107	One or more exclusion criteria
L1	Huber, A. C., Mosler, H. J Determining the differential preferences of users of two fluoride-free water options in rural Ethiopia. <i>Journal of Public Health (Germany)</i> . 2013. 21:183-192	One or more exclusion criteria
L1	Viswanathan, G., Jaswanth, A., Gopalakrishnan, S., Siva ilango, S., Aditya, G Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India. <i>Science of the Total Environment</i> . 2009. 407:5298-5307	One or more exclusion criteria
L1	Kaur, L.,Rishi, M. S.,Siddiqui, A. U Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. <i>Environ Pollut.</i> 2019. 259:113711	
L1	Morris, O., Gregory, J., Blykers, A., Allsop, D., Taylor, M., Allan, S., McMahon, A., Boutin, H., Prenant, C Development & application of an [18F] anti-amyloid peptide radiotracer. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> . 2015. 1):S144	One or more exclusion criteria
L1	Mamat, C., Neuber, C., Mosch, B., Pietzsch, J., Steinbach, J Development and fluorine-18-radiolabeling of benzodioxolylpyrimidine EphB4 receptor inhibitors. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2011. 1):S178	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Palmieri, L., Glassner, M., Hoogenboom, R., Staelens, S., Wyffels, L Development and in vivo evaluation of ¹⁸ F-labeled PEtOx-RGD for PET imaging of alphavbeta3 integrins. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2017. 60 (Supplement 1):S511	One or more exclusion criteria
L1	Lu, C. C., Lin, H. H., Chuang, K. S., Dong, S. L., Wu, J., Ni, Y. C., Jan, M. L Development and validation of a fast voxel-based dose evaluation system in nuclear medicine. Radiation Physics and Chemistry. 2014. 104:355-359	One or more exclusion criteria
L1	Bongarzone, S.,Basagni, F.,Sementa, T.,Singh, N.,Gakpetor, C.,Faugeras, V.,Bordoloi, J.,Gee, A. D Development of (18)F FAMTO: A novel fuorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> . 2018. 45 (Supplement 1):S191-S192	One or more exclusion criteria
L1	Kramer, C. S., Kanagasundaram, T., Kopka, K Development of a bimodal (PET/NIR) tumor tracer for non-invasive staging and fluorescence guided surgery of prostate cancer. <i>European Journal of Nuclear Medicine</i> and Molecular Imaging. 2019. 46 (1 Supplement 1):S753	One or more exclusion criteria
L1	Kosterev, V. V., Kramer-Ageev, E. A., Mazokhin, V. N., van Rhoon, G. C., Crezee, J Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. <i>Int J Hyperthermia</i> . 2015. 31:443-52	One or more exclusion criteria
L1	Ditmyer, M. M., Mobley, C., Draper, Q., Demopoulos, C., Smith, E. S Development of a theoretical screening tool	One or more exclusion

to assess caries risk in Nevada youth. *J Public Health Dent.* 2008. 68:201-8

- L1 Mori, T.,Kiyono, Y.,Dence, C. S.,Welch, M. J.,Fujibayashi, One or more exclusion Y.,Okazawa, H.. Development of automatic synthesis of criteria 16beta-[¹⁸F]fluoro-5alpha-dihydrotestosterone using a plastic cassette-type FDG synthesizer. European Journal of Nuclear Medicine and Molecular Imaging. 2011. 2):S233
- Lawrence, H. R.,Martin, M. P.,Luo, Y.,Pireddu, R.,Yang, One or more exclusion H.,Gevariya, H.,Ozcan, S.,Zhu, J. Y.,Kendig, R.,Rodriguez, criteria M.,Elias, R.,Cheng, J. Q.,Sebti, S. M.,Schonbrunn, E.,Lawrence, N. J.. Development of o-chlorophenyl substituted pyrimidines as exceptionally potent aurora kinase inhibitors. *J Med Chem.* 2012. 55:7392-7416
- L1 Entract, G. M.,Bryden, F.,Domarkas, J.,Savoie, H.,Allott, One or more exclusion L.,Archibald, S. J.,Cawthorne, C.,Boyle, R. W.. criteria Development of PDT/PET Theranostics: Synthesis and Biological Evaluation of an (18)F-Radiolabeled Water-Soluble Porphyrin. *Mol Pharm.* 2015. 12:4414-23
- L1 Ramesh, G.,Nagarajappa, R.,Raghunath, V.,Manohar, R.. One or more exclusion Developmental defects of enamel in children of Davangere criteria District and their relationship to fluoride levels in drinking water. *Asia Pac J Public Health*. 2011. 23:341-8
- Chi, D. L.,Rossitch, K. C.,Beeles, E. M.. Developmental One or more exclusion delays and dental caries in low-income preschoolers in the criteria USA: a pilot cross-sectional study and preliminary explanatory model. *BMC Oral Health.* 2013. 13:53
- L1 Grandjean, P.. Developmental fluoride neurotoxicity: an One or more exclusion

Level	Bibliography	Reason for Exclusion
	updated review. Environ Health. 2019. 18:110	criteria
L1	Mondal, N. K Diagnosis of fluorosis and recovery through easy to practise interventions. <i>Fluoride</i> . 2018. 51:230-242	One or more exclusion criteria
L1	Huang, C. Q., Chen, Z., Tang, R. Q., Liu, B. H Diagnosis on endemic skeletal fluorosis: Clinical vs. X-rays examination. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2009. 28:194-196	
L1	Frood, R.,Baren, J.,McDermott, G.,Bottomley, D.,Patel, C.,Scarsbrook, A Diagnostic performance of a streamlined (18)F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria. <i>Clin Radiol.</i> 2018. 73:632-639	One or more exclusion I criteria
L1	Kebede, A.,Retta, N.,Abuye, C.,Whiting, S. J.,Kassaw, M.,Zeru, T.,Tessema, M.,Kjellevold, M Dietary Fluoride Intake and Associated Skeletal and Dental Fluorosis in School Age Children in Rural Ethiopian Rift Valley. <i>Int J Environ Res Public Health.</i> 2016. 13:#pages#	One or more exclusion criteria
L1	Opydo-Szymaczek, J.,Opydo, J Dietary fluoride intake from infant and toddler formulas in Poland. <i>Food and Chemical Toxicology.</i> 2011. 49:1759-1763	One or more exclusion criteria
L1	Wu, J.,Li, D.,Yang, D.,Qin, M.,Li, B.,Liu, X.,Li, M.,Li, Y.,Zhang, W.,Gao, Y Differences of urinary fluoride and pH level between Tibetan and Kazakh in drinking-brick-teaborne fluorosis areas. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2015. 34:81-83	One or more exclusion criteria
L1	Ge, Q. D.,Xie, C.,Zhang, H.,Tan, Y.,Wan, C. W.,Wang, W. J.,Jin, T. X Differential Expression of miRNAs in the Hippocampi of Offspring Rats Exposed to Fluorine	One or more exclusion criteria

Level	Bibliog	graphy

Reason for Exclusion

Combined with Aluminum during the Embryonic Stage and into Adulthood. Biological Trace Element Research. 2019. 189:463-477

L1 Wong, H. M., McGrath, C., King, N. M., Diffuse opacities in 12-year-old Hong Kong children--four cross-sectional surveys. Community Dent Oral Epidemiol. 2014. 42:61-9

One or more exclusion criteria

L1 Miao, Z., Shen, B., Qin, L., Neumann, K., Di Magno, S., Chin, F. T.. Direct high yield no-carrier added radiosynthesis of [F-18]catecholamines. Journal of Cerebral Blood Flow and Metabolism. 2012. 1):S191

One or more exclusion criteria

L1 likura, H., Aoki, T., Hyoudoh, I., Furuichi, N., Watanabe, F., Ozawa, S., Sakaidani, M., Matsushita, M., Shimma, N., Harada, N., Tomii, Y., Aoki, Y., Takanashi, K., Discovery of a novel specific MEK and Raf inhibitor, CH5126766 (RO5126766), hit to lead study of a unique scaffold for kinase inhibitor to a clinical compound. *Cancer Research*. Conference: 102nd Annual Meeting of the American Association for Cancer Research, AACR. 2011.

One or more exclusion criteria

L1 Saul, A. W.. Dispensing with fluoride. *Fluoride*. 2011. 44:188-190

71:#pages#

One or more exclusion criteria

L1 Aghapour, S., Bina, B., Tarrahi, M. J., Amiri, F., Ebrahimi, A.. One or more exclusion Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. Environ Monit Assess. 2018. 190:137

criteria

L1 Shin, W., Oh, J., Choung, S., Cho, B. W., Lee, K. S., Yun, U., Woo, N. C., Kim, H. K.. Distribution and potential health risk of groundwater uranium in Korea. Chemosphere. 2016.

One or more exclusion criteria

25 March 2023 969 163:108-115

- Yu, Y. Q., Cui, S. F., Fan, R. J., Fu, Y. Z., Liao, Y. L., Yang, J. One or more exclusion Y.. Distribution and superposed health risk assessment of criteria fluorine co-effect in phosphorous chemical industrial and agricultural sources. *Environ Pollut.* 2020. 262:114249
- L1 Yousefi, M., Ghalehaskar, S., Asghari, F. B., Ghaderpoury, A., Dehghani, M. H., Ghaderpoori, M., Mohammadi, A. A.. Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran. *Regul Toxicol Pharmacol.* 2019. 107:104408

One or more exclusion criteria

L1 Ravindra, K.,Garg, V. K.. Distribution of fluoride in groundwater and its suitability assessment for drinking purpose. *Int J Environ Health Res.* 2006. 16:163-6

One or more exclusion criteria

L1 Wang, M.,Li, X.,He, W. Y.,Li, J. X.,Zhu, Y. Y.,Liao, Y. L.,Yang, J. Y.,Yang, X. E.. Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China. *Environ Pollut.* 2019. 249:423-433

One or more exclusion criteria

- L1 Dong, H.,Lu, G.,Yan, Z.,Liu, J.,Yang, H.,Zhang, P.,Jiang, One or more exclusion R.,Bao, X.,Nkoom, M.. Distribution, sources and human risk criteria of perfluoroalkyl acids (PFAAs) in a receiving riverine environment of the Nanjing urban area, East China. *Journal of Hazardous Materials*. 2020. 381 (no pagination):#pages#
- L1 Debia, K., Janda, K., Siwiec, E., Wolska, J., Baranowska-Bosiacka, I., Jakubczyk, K., Chlubek, D., Gutowska, I.. Do brewing temperature and the morphological part of the ground elder plant have an influence on the fluoride content

One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	of ground elder infusions?. Fluoride. 2018. 51:153-163	
L1	Werner, M., Wiegand, J., Kupferschlager, J., Lois, C., Bezrukov, I., Pfannenberg, C., Schwenzer, N., Beyer, T., Schmidt, H Do dental implants affect PET/CT and PET/MR image quality equally?. <i>NuklearMedizin</i> . 2012. 51 (2):A49-A50	One or more exclusion criteria
L1	Sacco, D. E., Cleveland, R. O., Kracht, J. M., Dretler, S. P Do lithotriptors maintain their effectiveness over time?. <i>Journal of Urology.</i> 2009. 1):582	One or more exclusion criteria
L1	Clincha, C Does dental fluoride use have clinically significant effects on oral bacteria?. <i>Fluoride</i> . 2010. 43:205-214	One or more exclusion criteria
L1	Varol, E., Varol, S Does fluoride toxicity cause hypertension in patients with endemic fluorosis?. <i>Biological Trace Element Research</i> . 2012. 150:1-2	One or more exclusion criteria
L1	Torres, L., August, A Does perfluorooctane sulfonic acid (PFOS) affect the mouse immune system?. <i>FASEB Journal. Conference: Experimental Biology.</i> 2018. 32:#pages#	One or more exclusion criteria
L1	Sonego, I. L., Huber, A. C., Mosler, H. J Does the implementation of hardware need software? A longitudinal study on fluoride-removal filter use in Ethiopia. <i>Environ Sci Technol.</i> 2013. 47:12661-8	One or more exclusion criteria
L1	Mohapatra, S.,Das, R. K Dopamine integrated B, N, S doped CQD nanoprobe for rapid and selective detection of fluoride ion. <i>Anal Chim Acta</i> . 2019. 1058:146-154	One or more exclusion criteria
L1	Cui, Y.,Zhang, B.,Ma, J.,Wang, Y.,Zhao, L.,Hou, C.,Yu,	One or more exclusion

Level	Bibliog	graphy

Reason for Exclusion

criteria

J., Zhao, Y., Zhang, Z., Nie, J., Gao, T., Zhou, G., Liu, H.. Dopamine receptor D2 gene polymorphism, urine fluoride, and intelligence impairment of children in China: A school-based cross-sectional study. *Ecotoxicology and Environmental Safety*. 2018. 165:270-277

- L1 Bhardwaj, M.,Shashi, A.. Dose effect relationship between One or more exclusion high fluoride intake and biomarkers of lipid metabolism in criteria endemic fluorosis. *Biomedicine and Preventive Nutrition*.

 2013. 3:121-127
- L1 Khandare, A. L., Validandi, V., Gourineni, S. R., Gopalan, One or more exclusion V., Nagalla, B.. Dose-dependent effect of fluoride on clinical criteria and subclinical indices of fluorosis in school going children and its mitigation by supply of safe drinking water for 5 years: an Indian study. *Environmental Monitoring and Assessment.* 2018. 190 (3) (no pagination):#pages#
- L1 Chandrajith, R., Dissanayake, C. B., Ariyarathna, T., Herath, One or more exclusion H. M., Padmasiri, J. P.. Dose-dependent Na and Ca in criteria fluoride-rich drinking water--another major cause of chronic renal failure in tropical arid regions. *Sci Total Environ*.

 2011. 409:671-5
- L1 Xiong, X.,Liu, J.,He, W.,Xia, T.,He, P.,Chen, X.,Yang, One or more exclusion K.,Wang, A.. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. *Environmental Research*. 2007. 103:112-116
- L1 Xiang, Q. Y.,Zhou, M. H.,Wu, M.,Tao, R.,Chen, L. One or more exclusion S.,Zhang, M. F.,Liang, Y. X.. Dose-respones relationship criteria between daily total fluoride intake and prevalence of

ו בעב	Bibliograpl	hv
Level	DIDITOGIADI	I V

Reason for Exclusion

osteofluorosis. [Chinese]. Chinese Journal of Endemiology.
2008. 27:196-200

L1 Xiang, Q.. Dose-response relationships between drinking water fluoride, bone mineral density, and serum osteocalcin. Fluoride. 2012. 45 (3 PART 1):210-211

One or more exclusion criteria

L1 Rah, J. E., Oh, D. H., Shin, D., Kim, D. H., Ji, Y. H., Kim, J. W., Park, S. Y.. Dosimetric evaluation of a glass dosimeter for proton beam measurements. Appl Radiat Isot. 2012. 70:1616-23

One or more exclusion criteria

L1 Sweileh, W. M., Zyoud, S. H., Al-Jabi, S. W., Sawalha, A. F., Shraim, N. Y.. Drinking and recreational water-related diseases: a bibliometric analysis (1980-2015). Ann Occup Environ Med. 2016. 28:40

One or more exclusion criteria

L1 Mastrantonio, M., Bai, E., Uccelli, R., Cordiano, V., Screpanti, One or more exclusion A., Crosignani, P.. Drinking water contamination from perfluoroalkyl substances (PFAS): an ecological mortality study in the Veneto Region, Italy. Eur J Public Health. 2018. 28:180-185

criteria

L1 Comber, H., Deady, S., Montgomery, E., Gavin, A., Drinking water fluoridation and osteosarcoma incidence on the island of Ireland. Cancer Causes Control. 2011. 22:919-24

One or more exclusion criteria

L1 Nazemi, S., Dehghani, M.. Drinking water fluoride and child One or more exclusion dental caries in Khartooran, Iran. Fluoride. 2014. 47:85-91 criteria

L1 Vitoria Minana, I.. Drinking water in infants. Is there any ideal composition?. [Spanish]. Acta Pediatrica Espanola. 2009. 67:255-266

One or more exclusion criteria

L1 Narsimha, A., Sudarshan, V.. Drinking water pollution with

One or more exclusion

25 March 2023 973

Level	Bibliography	Reason for Exclusion
	respective of fluoride in the semi-arid region of Basara, Nirmal district, Telangana State, India. <i>Data Brief.</i> 2018. 16:752-757	criteria
L1	Wasana, H. M., Aluthpatabendi, D., Kularatne, W. M., Wijekoon, P., Weerasooriya, R., Bandara, J Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water. <i>Environ Geochem Health</i> . 2016. 38:157-68	One or more exclusion criteria
L1	Frazao, P., Peres, M. A., Cury, J. A Drinking water quality and fluoride concentration. [Portuguese]. <i>Revista de Saude Publica</i> . 2011. 45:964-973	
L1	Beaudeau, P.,Schwartz, J.,Levin, R Drinking water quality and hospital admissions of elderly people for gastrointestinal illness in Eastern Massachusetts, 1998-2008. <i>Water Research.</i> 2014. 52:188-198	One or more exclusion criteria
L1	Levallois, P.,Villanueva, C. M Drinking water quality and human health: An editorial. <i>International Journal of Environmental Research and Public Health.</i> 2019. 16 (4) (no pagination):#pages#	One or more exclusion criteria
L1	Xia, Y. T., Wang, Y., Wang, P. H., Wang, C. S., Shu, C. L., Wu, J Drinking-water type endemic fluorosis in Northern Jiangsu Province in 2008: An analysis of survey results. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:434-436	One or more exclusion criteria
L1	Fan, Z. X.,Li, Y.,Li, X. Q.,Bai, G. L.,Liu, X. L.,Bai, A. M.,Li, P. A.,Yang, X. D Drinking-water type of fluorosis in Shaanxi province in 2009: An analysis of surveillance	One or more exclusion criteria

results. [Chinese]. *Chinese Journal of Endemiology.* 2011. 30:294-297

- L1 Liu, Z.,Radtke, M. A.,Wong, M. Q.,Lin, K. S.,Yapp, D. One or more exclusion T.,Perrin, D. M.. Dual mode fluorescent (18)F-PET tracers: criteria efficient modular synthesis of rhodamine-[cRGD]2-[(18)F]-organotrifluoroborate, rapid, and high yielding one-step (18)F-labeling at high specific activity, and correlated in vivo PET imaging and ex vivo fluorescence. *Bioconjug Chem.* 2014. 25:1951-62
- L1 Saffioti, N. A.,de Sautu, M.,Ferreira-Gomes, M. S.,Rossi, R. One or more exclusion C.,Berlin, J.,Rossi, Jpfc,Mangialavori, I. C.. E2P-like states criteria of plasma membrane Ca(2+)-ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. *Biochim Biophys Acta Biomembr.* 2019. 1861:366-379
- Kirch, R. D., Meyer, P. T., Geisler, S., Braun, F., Gehrig, One or more exclusion S., Langen, K. J., von Hörsten, S., Nikkhah, G., Cassel, J. criteria
 C., Döbrössy, M. D.. Early deficits in declarative and procedural memory dependent behavioral function in a transgenic rat model of Huntington's disease. *Behav Brain Res.* 2013. 239:15-26
- L1 Susheela, A. K., Mondal, N. K., Tripathi, N., Gupta, R.. Early One or more exclusion diagnosis and complete recovery from fluorosis through criteria practice of interventions. *J Assoc Physicians India*. 2014. 62:572-9
- L1 Saleem, A., Price, P. M.. Early tumor drug pharmacokinetics One or more exclusion is influenced by tumor perfusion but not plasma drug criteria exposure. *Clin Cancer Res.* 2008. 14:8184-90

Level	Bibliography	Reason for Exclusion
L1	Volenzo, T. E., Odiyo, J Ecological public health and participatory planning and assessment dilemmas: The case of water resources management. <i>International Journal of Environmental Research and Public Health.</i> 2018. 15 (8) (no pagination):#pages#	One or more exclusion criteria
L1	Zurita, J. L., Jos, A., Cameán, A. M., Salguero, M., López-Artíguez, M., Repetto, G Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines. Chemosphere. 2007. 67:1-12	One or more exclusion criteria
L1	Bobak, M., Dunn, J. R Editorial note: Peckham versus Newton. <i>J Epidemiol Community Health</i> . 2017. 71:317	One or more exclusion criteria
L1	Zeng, W.,Chen, Y. L Editorial: advances in therapeutic glycopeptides. <i>Protein Pept Lett.</i> 2014. 21:975	One or more exclusion criteria
L1	Yoshitomi, B.,Nagano, I Effect of dietary fluoride derived from Antarctic krill (Euphausia superba) meal on growth of yellowtail (Seriola quinqueradiata). <i>Chemosphere</i> . 2012. 86:891-7	One or more exclusion criteria
L1	Saxena, S.,Sahay, A.,Goel, P Effect of fluoride exposure on the intelligence of school children in Madhya Pradesh, India. <i>Journal of Neurosciences in Rural Practice</i> . 2012. 3:144-149	One or more exclusion criteria
L1	Aghaei, M., Derakhshani, R., Raoof, M., Dehghani, M., Mahvi, A. H Effect of fluoride in drinking water on birth height and weight: An ecological study in Kerman Province, Zarand county, Iran. <i>Fluoride</i> . 2015. 48:160-168	
L1	Goudu, A. S., Naidu, M. D Effect of fluoride on oxidative stress and biochemical markers of bone turnover in	One or more exclusion

Level	Bibliography	Reason for Exclusion
	postmenopausal women. Fluoride. 2013. 46:208-211	criteria
L1	Ravula, S., Harinarayan, C. V., Prasad, U. V., Ramalakshmi, T., Rupungudi, A., Madrol, V Effect of fluoride on reactive oxygen species and bone metabolism in postmenopausal women. <i>Fluoride</i> . 2012. 45:108-115	One or more exclusion criteria
L1	Singh, M., Sharma, O. P., Jain, H. K Effect of fluoride on the fingerlings of Indian major carp, Labeo Rohita (Hamilton). <i>Fluoride</i> . 2012. 45:368-370	One or more exclusion criteria
L1	Zhang, N. H.,An, D.,He, P.,Li, D. S.,Liang, Y.,Jin, Z. J Effect of food drying methods on fluoride content in maize and pepper in coal-burning type of fluorosis regions. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2010. 29:536-539	One or more exclusion criteria
L1	Shashi, A., Kumar, M Effect of high fluoride ingestion on serum biochemical indices in patients of skeletal fluorosis. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 2008. 10:569-576	One or more exclusion criteria
L1	Wang, F.,Hou, T. Z.,Li, J. J.,Li, Z. Z.,Tang, C. F Effect of magnesium and selenium on the expression of matrix metalloproteinases-20 and kallikrein 4 in fluorosis mice. [Chinese]. Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology. 2016. 51:546-551	One or more exclusion criteria
L1	Wiegand, A., Gutsche, M., Attin, T Effect of olive oil and an olive-oil-containing fluoridated mouthrinse on enamel and dentin erosion in vitro. <i>Acta Odontologica Scandinavica</i> . 2007. 65:357-361	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Xu, Z.,Wang, Q.,Liu, T.,Guo, L.,Jing, F.,Liu, H Effect of overdose fluoride on expression of bone sialoprotein in developing dental tissues of rats. [Chinese]. <i>Shanghai kou qiang yi xue</i> = <i>Shanghai journal of stomatology.</i> 2006. 15:194-197	One or more exclusion criteria
L1	Zandim, D. L., Tschoppe, P., Sampaio, J. E., Kielbassa, A. M Effect of saliva substitutes in combination with fluorides on remineralization of subsurface dentin lesions. <i>Support Care Cancer</i> . 2011. 19:1143-9	One or more exclusion criteria
L1	Chien, C. H., Sakagami, H., Kouhara, M., Sasaki, A., Matsumoto, K., Kanegae, H Effect of simulated orthodontic forces on flouride-induced cytotoxicity in MC3T3-E1 osteoblast-like cells. <i>In Vivo.</i> 2009. 23:259-266	One or more exclusion criteria
L1	Freitas, A. S.,Fontes Cunha, I. M.,Andrade-Vieira, L. F.,Techio, V. H Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L. <i>Ecotoxicology & Environmental Safety.</i> 2016. 124:426-434	One or more exclusion criteria
L1	Dowling, D. P., Miller, I. S., Ardhaoui, M., Gallagher, W. M Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. <i>J Biomater Appl.</i> 2011. 26:327-47	One or more exclusion criteria
L1	Salvio, L. A., DoCarmo, V. C. F. T., Andrade, T. P. S., Baroudi, K Effect of the combined use of adhesive systems and oxalate-based and fluoride-based dentin desensitizers on bond strength. <i>Journal of Clinical and Diagnostic Research.</i> 2019. 13:ZC17-ZC21	One or more exclusion criteria

L1

Murata, S., Izumi, T., Ito, H.. Effect of the moisture content in One or more exclusion

Level	Bibliography	Reason for Exclusion
	aerosol on the spray performance of Stmerin ® D hydrofluoroalkane preparations (2). <i>Chem Pharm Bull (Tokyo)</i> . 2012. 60:593-7	criteria
L1	Chou, W. L., Yang, K. C Effect of various chelating agents on supercritical carbon dioxide extraction of indium(III) ions from acidic aqueous solution. <i>J Hazard Mater.</i> 2008. 154:498-505	
L1	Breazeal, M. V., Novak, J. T., Vikesland, P. J., Pruden, A Effect of wastewater colloids on membrane removal of antibiotic resistance genes. <i>Water Res.</i> 2013. 47:130-40	One or more exclusion criteria
L1	Hammouda, I. M.,Al-Wakeel, E. E Effect of water storage on fluoride release and mechanical properties of a polyacid-modified composite resin (compomer). <i>Journal of Biomedical Research.</i> 2011. 25:254-258	One or more exclusion criteria
L1	Antoniazzi, R. P., Machado, M. E., Grellmann, A. P., Santos, R. C., Zanatta, F. B Effectiveness of a desensitizing agent for topical and home use for dentin hypersensitivity: a randomized clinical trial. <i>Am J Dent.</i> 2014. 27:251-7	
L1	Anthoney, D., Zahid, S., Khalid, H., Khurshid, Z., Shah, A. T., Chaudhry, A. A., Khan, A. S Effectiveness of Thymoquinone and Fluoridated Bioactive Glass/Nano-Oxide Contained Dentifrices on Abrasion and Dentine Tubules Occlusion: An Ex Vivo Study. <i>Eur J Dent.</i> 2020. 14:45-54	One or more exclusion criteria
L1	Nardi, G. M., Sabatini, S., Lauritano, D., Silvestre,	One or more exclusion

F.,Petruzzi, M.. Effectiveness of two different desensitizing criteria varnishes in reducing tooth sensitivity: a randomized double-blind clinical trial. *Oral Implantol (Rome)*. 2016.

9:185-189

- Olgar, S., Kuybulu, A. E., Karademir, S., Sipahi, T., Oguz, D. One or more exclusion A., Ormeci, A. R.. Effects of chronic fluorosis on criteria cardiovascular system in children. *Cardiology in the Young.* 2010. 1):222
- Wierichs, R. J., Rupp, K., Meyer-Lueckel, H., Apel,
 C., Esteves-Oliveira, M.. Effects of Dentifrices Differing in
 Fluoride Content on Remineralization Characteristics of
 Dentin in vitro. Caries research. 2020, 54:75-86
- L1 Olley, R. C., Moazzez, R., Bartlett, D.. Effects of dentifrices One or more exclusion on subsurface dentin tubule occlusion: an in situ study. *Int* criteria *J Prosthodont.* 2015. 28:181-7
- Yang, M.,Lin, H.,Jiang, R.,Zheng, G.. Effects of One or more exclusion desensitizing toothpastes on the permeability of dentin after criteria different brushing times: An in vitro study. *Am J Dent.* 2016. 29:345-351
- L1 Sushma Susik, M. S.,Ajay Prakash, P.,Madhusudhan Rao, One or more exclusion T.. Effects of different concentrations of fluoride in oral criteria mucosal cells in albino rats. *J Clin Diagn Res.* 2015. 9:ZF01-ZF04
- L1 Wang, J. Y., Li, B. L., Zhao, X. H., Huang, Y. X., Chen, J. One or more exclusion K., Chen, S. H., Ou, H. H., Chen, S. X.. Effects of drinking criteria water defluoride in endemic fluorosis areas in Shantou city of Guangdong province. [Chinese]. Chinese Journal of Endemiology. 2013. 32:71-73
- L1 Shaffer, J. R., Carlson, J. C., Stanley, B. O. C., Feingold, One or more exclusion E., Cooper, M., Vanyukov, M. M., Maher, B. S., Slayton, R. criteria L., Willing, M. C., Reis, S. E., McNeil, D. W., Crout, R.

- J., Weyant, R. J., Levy, S. M., Vieira, A. R., Marazita, M. L.. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures. *Human Genetics*. 2015. 134:159-167
- L1 Maas, R. P.,Patch, S. C.,Christian, A. M.,Coplan, M. J.. One or more exclusion Effects of fluoridation and disinfection agent combinations criteria on lead leaching from leaded-brass parts. *Neurotoxicology*. 2007. 28:1023-31
- Ludlow, M., Luxton, G., Mathew, T.. Effects of fluoridation of One or more exclusion community water supplies for people with chronic kidney criteria disease. *Nephrol Dial Transplant*. 2007. 22:2763-7
- L1 Shahab, S.,Mustafa, G.,Khan, I.,Zahid, M.,Yasinzai, One or more exclusion M.,Ameer, N.,Asghar, N.,Ullah, I.,Nadhman, A.,Ahmed, criteria A.,Munir, I.,Mujahid, A.,Hussain, T.,Ahmad, M. N.,Ahmad, S. S.. Effects of fluoride ion toxicity on animals, plants, and soil health: A review. *Fluoride*. 2017. 50:393-408
- L1 Goyal, N., Dulawat, M. S., Dulawat, S. S.. Effects of fluoride One or more exclusion on human health in Rajasthan. *Advanced Science*, criteria

 Engineering and Medicine. 2019. 11:21-23
- L1 Zhang, Y.,Xie, L.,Li, X.,Chai, L.,Chen, M.,Kong, X.,Wang, One or more exclusion Q.,Liu, J.,Zhi, L.,Yang, C.,Wang, H.. Effects of fluoride on criteria morphology, growth, development, and thyroid hormone of Chinese toad (Bufo gargarizans) embryos. *Environ Mol Mutagen*. 2018. 59:123-133
- L1 Levy, S. M., Warren, J. J., Phipps, K., Letuchy, E., Broffitt, One or more exclusion B., Eichenberger-Gilmore, J., Burns, T. L., Kavand, G., Janz, criteria K. F., Torner, J. C., Pauley, C. A.. Effects of life-long fluoride intake on bone measures of adolescents: a prospective

Le	vel	Bib	lioa	rar	hv
	V CI	שוט	IIOg	ICL	, i i y

Reason for Exclusion

cohort study. J Dent Res. 2014. 93:353-9

L1 Park, E. Y., Hwang, S. S., Kim, J. Y., Cho, S. H.. Effects of long-term fluoride in drinking water on risks of hip fracture of the elderly: an ecologic study based on database of hospitalization episodes. [Korean]. *Journal of preventive medicine and public health* = Yebang Uihakhoe chi. 2008. 41:147-152

One or more exclusion criteria

L1 Cai, J.,Burrow, M. F.,Manton, D. J.,Tsuda, Y.,Sobh, E. G.,Palamara, J. E. A.. Effects of silver diamine fluoride/potassium iodide on artificial root caries lesions with adjunctive application of proanthocyanidin. *Acta Biomaterialia*. 2019. 88:491-502

One or more exclusion criteria

- L1 Khandare, A.,Rasaputra, K.,Meshram, I.,Rao, S.. Effects of One or more exclusion smoking, use of aluminium utensils, and tamarind criteria consumption on fluorosis in a fluorotic village of Andhra Pradesh. India. *Fluoride*, 2010, 43:128-133
- L1 Andrade-Vieira, L. F.,de Campos, J. M. S.,Davide, L. C..

 Effects of Spent Pot Liner on mitotic activity and nuclear

 DNA content in meristematic cells of Allium cepa. *Journal*of Environmental Management. 2012. 107:140-146

One or more exclusion criteria

L1 Zhang, X. J.,Sun, T. C.,Liu, Z. W.,Wang, F. J.,Wang, Y. D.,Liu, J.. Effects of Tianmagouteng particles on brain cognitive function in spontaneously hypertensive rats with hyperactivity of liver-yang: A [F-18] FDG micro-PET imaging study. *Biomed Pharmacother*. 2017. 95:1838-1843

One or more exclusion criteria

L1 Ju, X.,Brennan, D.,Parker, E.,Mills, H.,Kapellas, K.,Jamieson, L.. Efficacy of an oral health literacy intervention among Indigenous Australian adults.

One or more exclusion criteria

Community dentistry and oral epidemiology. 2017. 45:413-426

- L1 Idon, P. I., Esan, T. A., Bamise, C. T.. Efficacy of Three In- One or more exclusion Office Dentin Hypersensitivity Treatments. *Oral Health Prev* criteria *Dent.* 2017. 15:207-214
- L1 Daumar, P., Wanger-Baumann, C. A., Pillarsetty, One or more exclusion N., Fabrizio, L., Carlin, S. D., Andreev, O. A., Reshetnyak, Y. criteria K., Lewis, J. S.. Efficient (18)F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation. *Bioconjug Chem.* 2012. 23:1557-66
- L1 Otabashi, M., Vergote, T., Desfours, C.. Efficient commercial One or more exclusion scale 18F-FES production on AllinOne (Trasis). *Journal of criteria Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.* 2017.
 58:#pages#
- L1 Deraedt, Q.,Masset, J.,Otabashi, M.,Philippart, G.. Efficient One or more exclusion commercial scale [¹⁸F]FES production on criteria
 AllinOne (Trasis). *Journal of Labelled Compounds and Radiopharmaceuticals*. 2017. 60 (Supplement 1):S195
- L1 Chen, R.,Yu, H.,Jia, Z. Y.,Yao, Q. L.,Teng, G. J.. Efficient One or more exclusion nano iron particle-labeling and noninvasive MR imaging of criteria mouse bone marrow-derived endothelial progenitor cells.

 Int J Nanomedicine. 2011. 6:511-9
- L1 Zhang, S.,He, Y.,Wang, X.,Li, G.,Ding, R.,Xu, J.,Feng, One or more exclusion M.,Liu, H.,Qi, C.,Peng, C.. Efficient radiosynthesis and evaluation of fluorine-18 labeled benzimidazol derivatives for peripheral tumor imaging. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2009. 1):S153

Level	Bibliography	Reason for Exclusion
L1	Morales-Roman, R., Tamano-Machiavello, M., Roig-Perez, L., Costa, C., Lanceros-Mendez, S., Gomez-Ribelles, J., Gallego-Ferrer, G Electroactive poly(vinylidene fluoride) membranes with hydrophilic domains for osteogenic differentiation. <i>Artificial Organs.</i> 2017. 41 (9):A62	One or more exclusion criteria
L1	Wang, Z.,Guo, X.,Bai, G.,Lei, Y.,Wang, Y.,Fan, Z.,Zhang, Q.,Ding, Y Elevated levels of arsenic and fluoride, but not selenium, associated with endemic disease in the Chinese village of Dazhuyuan, Shaanxi Province. <i>Fluoride</i> . 2009. 42:34-38	
L1	Nelson, J. D., Spencer, S. M., Blake, C. E., Moore, J. B., Martin, A. B Elevating Oral Health Interprofessional Practice Among Pediatricians Through a Statewide Quality Improvement Learning Collaborative. <i>J Public Health Manag Pract.</i> 2018. 24:e19-e24	One or more exclusion criteria
L1	Patel, R. K., Kumar, S., Chawla, A. K., Mondal, P., Neelam, Teychene, B., Pandey, J. K Elimination of fluoride, arsenic, and nitrate from water through adsorption onto nano-adsorbent: A review. <i>Current Nanoscience</i> . 2019. 15:557-575	One or more exclusion criteria
L1	Pandey, P.,Khan, F.,Mishra, R.,Singh, S. K Elucidation of the potential of Moringa oleifera leaves extract as a novel alternate to the chemical coagulant in water treatment process. <i>Water Environ Res.</i> 2020. #volume#:#pages#	One or more exclusion criteria
L1	Opydo-Szymaczek, J.,Gerreth, K.,Borysewicz-Lewicka, M.,Pawlaczyk-Kamienska, T.,Torlinska-Walkowiak, N.,Sniatala, R Enamel defects and dental caries among children attending primary schools in Poznan, Poland.	One or more exclusion criteria

Advances in Clinical and Experimental Medicine. 2018. 27:#pages#

- L1 Bagh, B.. Endemic fluoride pollution in drinking water and One or more exclusion its impact on human health and management by bio-criteria remediation. *Fluoride*. 2012. 45 (3 PART 1):152-153
- L1 Brandt Jr, E. N.. Endemic fluorosis and its relation to dental One or more exclusion caries (1938): Commentary. *Public Health Reports*. 2006. criteria 121:212-219
- L1 Srikanth, R., Chandra, T. R., Kumar, B. R.. Endemic One or more exclusion fluorosis in five villages of the Palamau District, Jharkhand, criteria India. *Fluoride*, 2008, 41:206-211
- L1 Ding, S. R., Lu, Q., Ding, P., Si, W. J., Pu, G. L., Yang, P.. One or more exclusion Endemic fluorosis in guide county of Qinghai province in criteria 2008: An analysis of surveillance results. [Chinese].

 Chinese Journal of Endemiology. 2011. 30:306-308
- Chen, P., Wei, S. Y., Ding, P., Lu, Q., He, D. L., Wu, H. K., Pu, One or more exclusion G. L., Tan, D. F., Zheng, J. Z.. Endemic fluorosis in criteria Huangyuan county Qinghai province in 2009: An analysis of surveillance results. [Chinese]. *Chinese Journal of Endemiology*. 2011. 30:303-305
- L1 Zhang, H. T.,Lu, Z. M.,Tang, H. Y.,Zhang, X. L.,Fang, L. Y.. One or more exclusion Endemic fluorosis in Jilin province: Analysis of surveillance criteria data for 2006-2010. [Chinese]. *Chinese Journal of Endemiology.* 2011. 30:298-302
- L1 Ma, J.,Lu, S. M.,Zhang, H. P.,Du, Y. G.,Yao, G. J.,Zhang, One or more exclusion K. J.,Li, Y.,Zhao, G. J.. Endemic fluorosis in Sanhe City of criteria Hebei Province in 2004 and 2005: An analysis of the outcome. [Chinese]. *Chinese Journal of Endemiology.*

Level	Bibliography	Reason for Exclusion
	2007. 26:168-169	
L1	Sharmila, C., Subramanian, S. P Endemic fluorosis in vellore district, tamil nadu - a bio-geochemical approach. <i>International Journal of Pharmaceutical Sciences Review and Research.</i> 2019. 54:58-66	One or more exclusion criteria
L1	Li, J., Wang, Z. H., Cheng, X. T., Jia, Q. Z., Sang, Z. P., Zhang, J., Han, L. L., Duan, H. S., Liang, B. F., Wang, S. X Endemic fluorosis prevalence in the counties of severe disease areas of Shanxi Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:541-543	One or more exclusion criteria
L1	Yu, S. Q., Wang, W. L., Jia, J. X., Chen, X. Y., Shao, J. Y., Bai, S. Y., Wang, W. H Endemic fluorosis surveillance in Qinan County of Gansu Province from 2004 to 2007: An outcome analysis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:545-547	One or more exclusion criteria
L1	Wang, J. H., Zheng, Z. X., Liu, W., Liu, Y., Gao, R., Li, Z. R., Zhao, W. G., Wang, S. Q., Liu, W. Y Endemic fluorosis: Prevalence and prevention in Liaoning Province. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2008. 27:663-667	
L1	Zheng, Z. X.,Liu, W.,Zhao, W. G.,Lin, S. G.,Wang, H Endemic flurosis: Current status of prevention and control in Liaoning. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2006. 25:328-329	One or more exclusion criteria

Petrone, P., Giordano, M., Giustino, S., Guarino, F. M..

Enduring fluoride health hazard for the Vesuvius area

population: the case of AD 79 Herculaneum. PLoS One.

L1

2011. 6:e21085

One or more exclusion

criteria

Level Bibliography

Reason for Exclusion

- Chen, Y., Ginga, N. J., LePage, W. S., Kazyak, E., Gayle, A. One or more exclusion J., Wang, J., Rodriguez, R. E., Thouless, M. D., Dasgupta, N. criteria
 P.. Enhanced Interfacial Toughness of Thermoplastic-Epoxy Interfaces Using ALD Surface Treatments. ACS applied materials & interfaces. 2019. 11:43573-43580
- Viswanathan, N.,Meenakshi, S.. Enriched fluoride sorption One or more exclusion using alumina/chitosan composite. *Journal of Hazardous* criteria *Materials.* 2010. 178:226-232
- L1 Lash, L. H.. Environmental and Genetic Factors Influencing One or more exclusion Kidney Toxicity. *Semin Nephrol.* 2019. 39:132-140 criteria
- L1 Tsai, W. T.. Environmental and health risk analysis of One or more exclusion nitrogen trifluoride (NF(3)), a toxic and potent greenhouse criteria gas. *J Hazard Mater.* 2008. 159:257-63
- L1 Sengupta, P.. Environmental and occupational exposure of One or more exclusion metals and their role in male reproductive functions. *Drug* criteria and Chemical Toxicology. 2013. 36:353-368
- L1 Mondal, P., Chattopadhyay, A.. Environmental exposure of One or more exclusion arsenic and fluoride and their combined toxicity: A recent criteria update. *Journal of Applied Toxicology..* 2019.

 #volume#:#pages#
- L1 Molina-Frechero, N., Nevarez-Rascón, M., Tremillo-Maldonado, O., Vergara-Onofre, M., Gutiérrez-Tolentino, R., Gaona, E., Castañeda, E., Jarquin-Yañez, L., Bologna-Molina, R.. Environmental Exposure of Arsenic in Groundwater Associated to Carcinogenic Risk in Underweight Children Exposed to Fluorides. *Int J Environ Res Public Health*. 2020. 17:#pages#

One or more exclusion criteria

Level Bibliography

Reason for Exclusion

- Cardenas-Gonzalez, M.,Osorio-Yanez, C.,Gaspar-Ramirez, One or more exclusion O.,Pavkovic, M.,Ochoa, Martinez,Lopez-Ventura, criteria D.,Medeiros, M.,Barbier, O.,Perez-Maldonado, I.
 N.,Sabbisetti, V. S.,Bonventre, J. V.,Vaidya, V. S..
 Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.
 Toxicology Letters. 2016. 259 (Supplement 1):S158
- Cardenas-Gonzalez, M.,Osorio-Yanez, C.,Gaspar-Ramirez, One or more exclusion O.,Pavkovic, M.,Ochoa-Martinez, A.,Lopez-Ventura, criteria D.,Medeiros, M.,Barbier, O. C.,Perez-Maldonado, I. N.,Sabbisetti, V. S.,Bonventre, J. V.,Vaidya, V. S.. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. *Environmental Research.* 2016. 150:653-662
- L1 Tsai, W. T.. Environmental hazards and health risk of common liquid perfluoro-n-alkanes, potent greenhouse gases. *Environ Int.* 2009. 35:418-24

One or more exclusion criteria

L1 Etzel, R. A.. Environmental hazards that matter for One or children's health. *Hong Kong Journal of Paediatrics*. 2015. criteria 20:86-94

One or more exclusion .. .

L1 Patil, R. R.. Environmental health impact assessment of national aluminum company, Orissa. *Indian Journal of Occupational and Environmental Medicine*. 2011. 15:73-75

One or more exclusion criteria

L1 Buchhamer, E. E.,Blanes, P. S.,Osicka, R. M.,Giménez, M. One or more exclusion C.. Environmental risk assessment of arsenic and fluoride criteria in the Chaco Province, Argentina: research advances. *J Toxicol Environ Health A.* 2012. 75:1437-50

L1 Malone Rubright, S. L., Pearce, L. L., Peterson, J..

One or more exclusion

- Environmental toxicology of hydrogen sulfide. *Nitric Oxide -* criteria *Biology and Chemistry.* 2017. 71:1-13
- L1 Lowe, P. T., Dall'Angelo, S., Fleming, I. N., Piras, M., Zanda, One or more exclusion M., O'Hagan, D.. Enzymatic radiosynthesis of a (18)F-Glu-criteria Ureido-Lys ligand for the prostate-specific membrane antigen (PSMA). *Org Biomol Chem.* 2019. 17:1480-1486
- L1 Thompson, S.,Fleming, I. N.,O'Hagan, D.. Enzymatic One or more exclusion transhalogenation of dendritic RGD peptide constructs with criteria the fluorinase. *Org Biomol Chem.* 2016. 14:3120-9
- Wei, S., Lu, Q., Yang, P., Li, S., Jiang, H., Chen, P., La, C., He, One or more exclusion D., Wu, H.. Epidemic status of drinking-tea-borne fluorosis criteria in different occupational groups in Qinghai Province.
 [Chinese]. Chinese Journal of Endemiology. 2014. 33:164-166
- Chen, P. Z., Yun, Z. J., Gao, H. X., Ma, A. H., Wang, Y. T., Li, One or more exclusion H. X., Zhao, L. J.. Epidemiologic studies of endemic criteria fluorosis in Jiaxiang. A county in Shandong province.
 [Chinese]. Chinese Journal of Endemiology. 2006. 25:537-540
- L1 Chen, P. Z., Yun, Z. J., Gao, H. X., Li, H. X., Wang, Y. T., Gao, One or more exclusion J., Yin, Y. Y.. Epidemiological investigation and analysis of criteria water-related endemic fluorosis in the south area of Shandong province in 2009. [Chinese]. *Chinese Journal of Endemiology*. 2012. 31:566-570
- L1 Yun, Z. J.,Bian, J. C.,Chen, P. Z.,Pang, X. G.,Qin, Q. One or more exclusion L.,Zhao, L. J.,Wang, Y. T.. Epidemiological investigation of criteria endemic fluorosis along the Yellow River basin of Shandong Province. [Chinese]. Chinese Journal of

Endemiology. 2008. 27:174-176

- Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Gao, J., Yin, One or more exclusion Y. Y., Li, H. X., Liu, Y.. Epidemiological investigation of endemic fluorosis of Shandong province in 2010.
 [Chinese]. Chinese Journal of Endemiology. 2012. 31:571-575
- Yun, Z. J.,Bian, J. C.,Chen, P. Z.,Pang, X. G.,Wang, Y. One or more exclusion T.,Li, H. X.,Zhao, L. J.,Gao, Y. M.,Zhang, S. X.,Zhou, C. K.. criteria Epidemiological investigation on endemic fluorosis in Boxing County of Shandong Province in 2007. [Chinese].
 Chinese Journal of Endemiology. 2009. 28:75-77
- L1 Yousefi, M., Mohammadi, A. A., Yaseri, M., Mahvi, A. H.. One or more exclusion Epidemiology of drinking water fluoride and its contribution criteria to fertility, infertility, and abortion: An ecological study in west Azerbaijan province, poldasht county, Iran. *Fluoride*. 2017, 50:343-353
- L1 McLaku, Z., Assefa, G., Enqusilassie, F., Bjorvatn, K., Tekle- One or more exclusion Haimanot, R.. Epidemiology of skeletal fluorosis in wonji criteria shoa sugar estate, wonji, ethiopia: A community based survey. *Ethiopian Medical Journal*. 2012. 50:307-313
- L1 Melaku, Z., Assefa, G., Enqusilassie, F., Bjorvatn, K., Tekle- One or more exclusion Haimanot, R.. Epidemiology of skeletal fluorosis in Wonji criteria Shoa Sugar Estate, Wonji, Ethiopia: a community based survey. *Ethiop Med J.* 2012. 50:307-13
- L1 Kulkarni, P.,Anand, A.,Bansal, A.,Jain, A.,Tiwari, One or more exclusion U.,Agrawal, S.. Erosive effects of pediatric liquid medicinal criteria syrups on primary enamel: An in vitro comparative study.

 Indian J Dent. 2016. 7:131-133

Level	Bibliography	Reason for Exclusion
L1	Vieira, A. M., Neto, F., Carvalho, P., Manso, A. C Erosive potential of medication on human enamel and posterior remineralization capacity. <i>Annals of Medicine</i> . 2019. 51 (Supplement 1):S107-S109	One or more exclusion criteria
L1	Wimalawansa, S. J Escalating chronic kidney diseases of multi-factorial origin (CKD-mfo) in Sri Lanka: causes, solutions, and recommendations-update and responses. <i>Environmental Health and Preventive Medicine</i> . 2015. 20:152-157	One or more exclusion criteria
L1	Misra, S. K Essentials of specifications for activated alumina in defluoridation technology. <i>J Environ Sci Eng.</i> 2006. 48:231-40	One or more exclusion criteria
L1	Näsman, P.,Ekstrand, J.,Granath, F.,Ekbom, A.,Fored, C. M Estimated drinking water fluoride exposure and risk of hip fracture: a cohort study. <i>J Dent Res.</i> 2013. 92:1029-34	One or more exclusion criteria
L1	Awofeso, N Ethics of artificial water fluoridation in Australia. <i>Public Health Ethics</i> . 2012. 5:161-172	One or more exclusion criteria
L1	Joshua, A. D., Nethaji Mariappan, V. E., Anne, B. M., Vadivel, N Evaluating fluoride contamination in ground water of Dharmapuri district in Tamilnadu. <i>Journal of Chemical and Pharmaceutical Sciences</i> . 2015. 8:18-24	One or more exclusion criteria
L1	Loccisano, A. E., Campbell, J. L., Jr., Andersen, M. E., Clewell, H. J., 3rd. Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. <i>Regul Toxicol Pharmacol</i> . 2011. 59:157-75	One or more exclusion criteria
L1	Pollo, F. E., Grenat, P. R., Salinas, Z. A., Otero, M. A., Salas,	One or more exclusion

N. E., Martino, A. L.. Evaluation in situ of genotoxicity and

stress in South American common toad Rhinella arenarum criteria in environments related to fluorite mine. *Environ Sci Pollut Res Int.* 2017. 24:18179-18187

- L1 Fekrazad, R., Ebrahimpour, L.. Evaluation of acquired acid One or more exclusion resistance of enamel surrounding orthodontic brackets criteria irradiated by laser and fluoride application. *Lasers in Medical Science*. 2014. 29:1793-1798
- L1 Bhardwaj, M., Aggarwal, S.. Evaluation of biochemical One or more exclusion interaction and correlation between high fluoride ingestion criteria and protein metabolism. *Biomedicine and Preventive Nutrition*. 2013. 3:129-137
- L1 Tomlinson, R., Shoghi, K., Silva, M.. Evaluation of blood flow One or more exclusion and skeletal kinetics during loading induced osteogenesis criteria using pet imaging. *Journal of Bone and Mineral Research*. 2010. 1):S70-S71
- L1 Moazeni, M., Atefi, M., Ebrahimi, A., Razmjoo, P., Vahid One or more exclusion Dastjerdi, M.. Evaluation of chemical and microbiological criteria quality in 21 brands of iranian bottled drinking waters in 2012: A comparison study on label and real contents.

 Journal of Environmental and Public Health. 2013. 2013 (no pagination):#pages#
- L1 Tran, M. T.,Shah, S. R.,Kim, K.,Trinidad, P.,Pandey, One or more exclusion S.,Karmur, A.,Patel, R.,Kant, R.,Mukherjee, J.. Evaluation criteria of dopamine receptor agonists, 18F-5-OH-FPPAT, 18F-5-OH-FHXPAT and 18F-7-OH-FHXPAT. *Journal of Labelled Compounds and Radiopharmaceuticals.* 2009. 1):S345
- L1 Sarmah, S. P., Chutia, J.. Evaluation of drinking water One or more exclusion quality in Bihpuria area of Lakhimpur District, Assam, India. criteria

Level	Bihi	$i \sim \alpha i$	ran	hv
TC A CI	וטום	IUU.	ıap	117

Reason for Exclusion

Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2012. 3:1030-1036

L1 Ramesh, M. V., Naveenkumar, P. G., Prashant, G. M., Sakeenabi, B., Allamaprabhu, Vijetha, K., Evaluation of criteria effect of brushite-calcite and two indigenous herbs in removal of fluoride from water. Journal of Clinical and Diagnostic Research. 2016. 10:ZC83-ZC85

One or more exclusion

criteria

L1 Rocha, R. A., Calatayud, M., Devesa, V., Velez, D.. Evaluation of exposure to fluoride in child population of North Argentina. Environmental Science & Pollution Research, 2017, 24:22040-22047

One or more exclusion

L1 Stramare, R., Raffeiner, B., Ciprian, L., Scagliori, E., Coran, A., Perissinotto, E., Fiocco, U., Beltrame, V., Rubaltelli, L.. Evaluation of finger joint synovial vascularity in patients with rheumatoid arthritis using contrast-enhanced ultrasound with water immersion and a stabilized probe. J Clin Ultrasound. 2012. 40:147-54

One or more exclusion criteria

- L1 Bengharez, Z., Farch, S., Bendahmane, M., Merine, One or more exclusion H., Benyahia, M.. Evaluation of fluoride bottled water and its criteria incidence in fluoride endemic and non endemic areas. e-SPEN Journal, 2012, 7:e41-e45
- L1 Abouleish, M. Y.. Evaluation of fluoride levels in bottled One or more exclusion water and their contribution to health and teeth problems in criteria the United Arab Emirates. Saudi Dent J. 2016, 28:194-202
- L1 Singh, G., Rishi, M. S., Herojeet, R., Kaur, L., Sharma, K... Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environmental Geochemistry & Health. 2019. 05:05

One or more exclusion criteria

25 March 2023 993

Level	Bibliography	Reason for Exclusion
L1	Elumalai, V.,Nwabisa, D. P.,Rajmohan, N Evaluation of high fluoride contaminated fractured rock aquifer in South Africa - Geochemical and chemometric approaches. Chemosphere. 2019. 235:1-11	One or more exclusion criteria
L1	Pant, H. H.,Rao, M. V Evaluation of in vitro anti-genotoxic potential of melatonin against arsenic and fluoride in human blood cultures. <i>Ecotoxicol Environ Saf.</i> 2010. 73:1333-7	One or more exclusion criteria
L1	Samuel, S. R.,Khatri, S. G.,Acharya, S.,Patil, S. T Evaluation of instant desensitization after a single topical application over 30 days: a randomized trial. <i>Aust Dent J.</i> 2015. 60:336-42	One or more exclusion criteria
L1	Jiménez-Córdova, M. I.,Cárdenas-González, M.,Aguilar-Madrid, G.,Sanchez-Peña, L. C.,Barrera-Hernández, Á,Domínguez-Guerrero, I. A.,González-Horta, C.,Barbier, O. C.,Del Razo, L. M Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels. <i>Toxicol Appl Pharmacol.</i> 2018. 352:97-106	One or more exclusion criteria
L1	Jimenez-Cordova, M. I.,Gonzalez-Horta, M. C.,Aguilar-Madrid, G.,Barrera-Hernandez, A.,Sanchez-Pena, L. C.,Barbier, O. C.,Del Razo, L. M Evaluation of KIM-1, Cystatin-C and glomerular filtration rate in schoolchildren exposed to inorganic fluoride. <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S131	One or more exclusion criteria
L1	Brooks, A., Jackson, I., Scott, P Evaluation of metal-protein aggregate radioligand [¹⁸ F]FL2-b by small animal PET imaging and autoradiography in alzheimer's	One or more exclusion criteria

disease, amyotrophic lateral sclerosis, and lewy body dementia. Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2017. 58:#pages#

L1 J, M., Sinha, S., Ghosh, M., Mukherjee, A., Evaluation of multi-endpoint assay to detect genotoxicity and oxidative stress in mice exposed to sodium fluoride. Mutat Res. 2013. 751:59-65

One or more exclusion criteria

L1 Adekiitan, M. E., Imana, G. E., Adedeji, O. O., Evaluation of One or more exclusion new glucometers (Easy Touch GC) for bedside use. Clinical Chemistry. 2014. 1):S214

criteria

L1 Karunanidhi, D., Aravinthasamy, P., Roy, P. D., Praveenkumar, R. M., Prasanth, K., Selvapraveen, S., Thowbeekrahman, A., Subramani, T., Srinivasamoorthy, K.. Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of south India. Environ Monit Assess. 2020. 192:102

One or more exclusion criteria

L1 Wang, Y., Yu, R., Zhu, G.. Evaluation of Physicochemical Characteristics in Drinking Water Sources Emphasized on criteria Fluoride: A Case Study of Yancheng, China. *Int J Environ* Res Public Health. 2019. 16:#pages#

One or more exclusion

L1 Maga, K., Lamba, M.. Evaluation of respiratory gating of roi One or more exclusion definition on the accuracy of suv in f18-FDG pet imaging. criteria International Journal of Radiation Oncology Biology Physics. 2010. 1):S814

L1 Ortega-Romero, M. S., Hernandez Sanchez, A. M., Medeiros-Domingo, M., Barbier, O.. Evaluation of risk One or more exclusion

criteria

25 March 2023 995 factors for renal disease in a pediatric Mexican meztizo population from Apizaco in Tlaxcala Mexico. *Toxicology Letters.* 2016. 259 (Supplement 1):S242

L1 Yur, F.,Mert, N.,Dede, S.,Deger, Y.,Ertekin, A.,Mert, H.,Yasar, S.,Dogan, I.,Isik, A.. Evaluation of serum lipoprotein and tissue antioxidant levels in sheep with fluorosis. *Fluoride*. 2013. 46:90-96 One or more exclusion criteria

- L1 Magnusson, R.,Rittfeldt, L.,. Evaluation of sorbent materials One or more exclusion for the sampling and analysis of phosphine, sulfuryl fluoride criteria and methyl bromide in air. *J Chromatogr A.* 2015. 1375:17-26
- Whittaker, P., Clarke, J. J., San, R. H., Begley, T. H., Dunkel, One or more exclusion V. C.. Evaluation of the butter flavoring chemical diacetyl criteria and a fluorochemical paper additive for mutagenicity and toxicity using the mammalian cell gene mutation assay in L5178Y mouse lymphoma cells. Food Chem Toxicol. 2008. 46:2928-33
- L1 Iskandarova, S.,Khasanova, M.,Fayzieva, M.,Sattarova, Z.,Mirdadaeva, D.. Evaluation of the content of microelements in the soil under the conditions of Uzbekistan. *International Journal of Pharmaceutical Research*. 2020. 12:787-791

One or more exclusion criteria

- L1 Sarkar, M.,Manna, S.,Pramanick, P. P.. Evaluation of the One or more exclusion efficiency of fly ash from thermal power plant in controlling criteria aquatic pollution. *Journal of the Indian Chemical Society.* 2008. 85:1130-1133
- L1 Mori, M. M., Airaksinen, A. J., Hirvonen, J. T., Santos, H. One or more exclusion A., Caramella, C. M.. Evaluation of the physicochemical and criteria

ו בעב	Bibliograpl	hv
Level	DIDITOGIADI	I V

Reason for Exclusion

biopharmaceutical properties of fluoro-indomethacin. *Curr Drug Metab.* 2013. 14:80-9

L1 Willekens, I.,Buls, N.,Lahoutte, T.,Baeyens, L.,Vanhove, C.,Caveliers, V.,Deklerck, R.,Bossuyt, A.,de Mey, J.. Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. *Contrast Media Mol Imaging.* 2010. 5:201-7

One or more exclusion criteria

- Jimenez-Cordova, M. I., Gonzalez-Horta, C., Ayllon-Vergara, One or more exclusion
 J. C., Arreola-Mendoza, L., Aguilar-Madrid, G., Villarealvega, E. E., Barrera-Hernandez, A., Barbier, O. C., Del
 Razo, L. M.. Evaluation of vascular and kidney injury
 biomarkers in Mexican children exposed to inorganic
 fluoride. Environmental Research. 2019. 169:220-228
- L1 Nelson, E. A., Halling, C. L.. Evidence for skeletal fluorosis One or more exclusion in Illinois: A pathological analysis of individuals from the ray criteria site and discussion of environmental factors affecting community health. *American Journal of Physical Anthropology.* 2014. 58):193
- L1 Nelson, E. A., Halling, C. L., Buikstra, J. E.. Evidence of Skeletal Fluorosis at the Ray Site, Illinois, USA: a pathological assessment and discussion of environmental factors. *Int J Paleopathol.* 2019. 26:48-60

One or more exclusion criteria

L1 Huber, A. C., Tobias, R., Mosler, H. J.. Evidence-based tailoring of behavior-change campaigns: increasing fluoride-free water consumption in rural Ethiopia with persuasion. *Applied Psychology. Health and Well-being.* 2014. 6:96-118

One or more exclusion criteria

L1 Chakraborti, D., Das, B., Murrill, M. T.. Examining India's

One or more exclusion

- groundwater quality management. Environmental Science criteria and Technology. 2011. 45:27-33
- L1 Tomar, A., Singh, V. P., Chauhan, D. S., Mishra, S., Joshi, D. One or more exclusion K., Kumar, S., Tripathi, S., Tomar, S.. Excessive fluoride criteria exposure delineating changes in different vitamin levels and oxidative burden in school children in the eastern region of Rajasthan, India. Fluoride. 2012. 45 (3 PART 1):206-207
- L1 Al-Raddadi, R. M., Bahijri, S. M., Al-Khateeb, T., Excessive One or more exclusion fluoride intake is associated with hyperparathyroidism and hypothyroidism in children and adolescent, Jeddah-Saudi Arabia. Archives of Disease in Childhood. 2012. 2):A294

criteria

L1 Liu, L. Z., Wang, L. H., Xu, C. B., Yu, G. Q., Fu, S. B., Liu, Y. Q.,Shi, Y. X.,Song, L.,Wu, Y.,Yu, J.,Gao, Y. H.,Wan, G. M., Sun, D. J.. Experimental study on the 24-hour metabolism of brick-tea fluoride in rats at the altitude of 3 290 meters above sea level. [Chinese]. Chinese Journal of Endemiology. 2006. 25:135-138

One or more exclusion criteria

L1 Zhou, D., Chu, W., Katzenellenbogen, J., Exploration of alcohol-enhanced Cu-mediated radiofluorination towards criteria practical labeling. Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2018. 59:#pages#

One or more exclusion

Mukherjee, I., Singh, U. K., Patra, P. K.. Exploring a multi-L1 exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semiarid region of east India. Chemosphere. 2019. 233:164-173

One or more exclusion criteria

L1 Zhou, D., Kim, S. H., Carroll, V., Dence, C. S., Mach, R. One or more exclusion

25 March 2023 998

Level	Bibliography	Reason for Exclusion
	H.,Katzenellenbogen, J. A Exploring F-18 labeling of diaryiodonium salts: From model reactions to F-18 radiosynthesis of a peroxisome proliferator-activated receptor-gamma (PPAR- gamma) ligand. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2013. 1):S164	criteria
L1	Malin, A. J., Till, C Exposure to fluoridated water and attention deficit hyperactivity disorder prevalence among children and adolescents in the United States: an ecological association. <i>Environ Health</i> . 2015. 14:17	One or more exclusion criteria
L1	Susheela, A. K., Mondal, N. K., Singh, A Exposure to fluoride in smelter workers in a primary aluminum industry in India. <i>Int J Occup Environ Med.</i> 2013. 4:61-72	One or more exclusion criteria
L1	Zhang, Y. L., Zhao, Y., Tang, L., Wu, Q. Q., Bai, S. B., Zhong, J. J Expression of minichromosome maintenance 3 from the peripheral blood of fluorosis patients and the liver and renal function. [Chinese]. <i>Chinese Journal of Tissue Engineering Research.</i> 2013. 17:6682-6688	One or more exclusion criteria
L1	Claassen, H., Cellarius, C., Scholz-Ahrens, K. E., Schrezenmeir, J., Gluer, C. C., Schunke, M., Kurz, B Extracellular matrix changes in knee joint cartilage following bone-active drug treatment. <i>Cell and Tissue Research</i> . 2006. 324:279-289	One or more exclusion criteria
L1	Schwartz, G. G Eye cancer incidence in U.S. states and access to fluoridated water. <i>Cancer Epidemiol Biomarkers Prev.</i> 2014. 23:1707-11	One or more exclusion criteria
L1	Jing, C.,Cui, J.,Huang, Y.,Li, A Fabrication, characterization, and application of a composite adsorbent	One or more exclusion criteria

ו בעב	Bibliograpl	hv
Level	DIDITOGIADI	I V

Reason for Exclusion

for simultaneous removal of arsenic and fluoride. *Acs Applied Materials & Interfaces*. 2012. 4:714-20

- L1 Li, Z.,Guo, H.,Qian, H.,Hu, Y.. Facile microemulsion route One or more exclusion to coat carbonized glucose on upconversion nanocrystals criteria as high luminescence and biocompatible cell-imaging probes. *Nanotechnology*. 2010. 21:315105
- Hu, Y.,Wu, B.,Jin, Q.,Wang, X.,Li, Y.,Sun, Y.,Huo, J.,Zhao, One or more exclusion X.. Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for criteria targeted upconversion imaging of cancer cells. *Talanta*.
 2016. 152:504-12
- L1 Rocha, R. A.,de la Fuente, B.,Clemente, M. J.,Ruiz, One or more exclusion A.,Vélez, D.,Devesa, V.. Factors affecting the criteria bioaccessibility of fluoride from seafood products. *Food Chem Toxicol.* 2013. 59:104-10
- L1 Slack-Smith, L.,Colvin, L.,Leonard, H.,Kilpatrick, N.,Bower, One or more exclusion C.,Brearley Messer, L.. Factors associated with dental criteria admissions for children aged under 5 years in Western Australia. *Arch Dis Child.* 2009. 94:517-23
- L1 Burgstahler, A. W.. Failure to diagnose fluoride poisoning in One or more exclusion horses caused by water fluoridation. *Fluoride*. 2006. 39:1-2 criteria
- L1 Lech, T.. Fatal cases of acute suicidal sodium and One or more exclusion accidental zinc fluorosilicate poisoning. Review of acute criteria intoxications due to fluoride compounds. *Forensic Science International*. 2011. 206:e20-e24
- L1 Ozsoy, G., Kendirli, T., Ates, U., Perk, O., Azapagasi, One or more exclusion E., Ozcan, S., Baran, C., Goktug, A., Dindar, H.. Fatal criteria Refractory Ventricular Fibrillation Due to Ingestion of Hydrofluoric Acid. *Pediatric Emergency Care.* 2019.

35:E201-E202

- Chakraborti, D.,Rahman, M. M.,Chatterjee, A.,Das, D.,Das, One or more exclusion B.,Nayak, B.,Pal, A.,Chowdhury, U. K.,Ahmed, S.,Biswas, criteria B. K.,Sengupta, M. K.,Lodh, D.,Samanta, G.,Chakraborty, S.,Roy, M. M.,Dutta, R. N.,Saha, K. C.,Mukherjee, S. C.,Pati, S.,Kar, P. B.. Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts:
 Magnitude, health, socio-economic effects and mitigation approaches. J Trace Elem Med Biol. 2016. 38:33-45
- Kwee, S. A., Franke, A. A., Custer, L. J., Li, X., Wong, L. L.. One or more exclusion Fatty acid and phospholipid profiling of liver tumor tissue: criteria Correlation with in vivo molecular PET imaging of phosphocholine synthesis. Cancer Research. Conference: 106th Annual Meeting of the American Association for Cancer Research, AACR. 2015. 75:#pages#
- L1 Kuo, P. H., Carlson, K. R., Christensen, I., Girardi, M., Heald, One or more exclusion P. W.. FDG-PET/CT for the evaluation of response to criteria therapy of cutaneous T-cell lymphoma to vorinostat (suberoylanilide hydroxamic acid, SAHA) in a phase II trial.

 Mol Imaging Biol. 2008. 10:306-14
- L1 Riondato, M.,Pastorino, S.,Giovacchini, G.,Duce, One or more exclusion V.,Ferrando, O.,Cazzola, E.,Gorgoni, G.,Ciarmiello, A.. criteria Feasibility study for the [¹⁸F]FET manufacturing with a gallium-68 automated synthesizer in a radiopharmacy without cyclotron facility. *Clinical and Translational Imaging.* 2019. 7 (Supplement 1):S128
- L1 Scopelliti, F.,Di Raimondo, P.,Petralia, G.,Benfatto, One or more exclusion G.,Pometti, M. A.,Ingargiola, P. D.,Cosentino, S.,Baldari, criteria

Level	Rihl	ioai	ranhv
		IVYI	apily

25:27808-27818

Reason for Exclusion

S.,Mure, G.,Ippolito, M First synthesis of FLT at
Cannizzaro Hospital of Catania. Clinical and Translational
Imaging. 2015. 1):S126

L1 Ammanath, G., Yeasmin, S., Srinivasulu, Y., Vats, M., Cheema, J. A., Nabilah, F., Srivastava, R., Yildiz, U. H., Alagappan, P., Liedberg, B., Flow-through colorimetric assay for detection of nucleic acids in plasma. Anal Chim Acta, 2019, 1066:102-111

One or more exclusion criteria

L1 Dias, I. N., Bassin, J. P., Dezotti, M., Vilar, V. J. P.. Fluorene One or more exclusion oxidation by solar-driven photo-Fenton process: toward mild pH conditions. Environ Sci Pollut Res Int. 2018.

criteria

L1 Kim, S. Y., Park, J., Koh, M., Park, S. B., Hong, J. I.. Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells. Chem Commun (Camb). 2009. #volume#:4735-7

One or more exclusion criteria

L1 Jiao, Y., Zhu, B., Chen, J., Duan, X.. Fluorescent sensing of One or more exclusion fluoride in cellular system. Theranostics. 2015. 5:173-87

criteria

L1 Burgstahler, A. W.. Fluoridated bottled water. Fluoride. 2006. 39:252-254

One or more exclusion

criteria

L1 Hui, J., Zhang, X., Zhang, Z., Wang, S., Tao, L., Wei, Y., Wang, X.. Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale. 2012. 4:6967-70

One or more exclusion criteria

L1 Perrott, K. W.. Fluoridation and attention deficit One or more exclusion hyperactivity disorder - a critique of Malin and Till (2015). Brcriteria Dent J. 2018. 223:819-822

L1 Crnosija, N., Choi, M., Meliker, J. R.. Fluoridation and One or more exclusion

25 March 2023 1002

l evel	Bibliography	
	Dibliography	

Reason for Exclusion

county-level secondary bone cancer among cancer patients 18 years or older in New York State. *Environ Geochem Health*. 2019. 41:761-768

criteria

- L1 Foley, M.. Fluoridation and hypothyroidism--a commentary One or more exclusion on Peckham et al. *Br Dent J.* 2015. 219:429-31 criteria
- L1 Schiffl, H.. Fluoridation of drinking water and chronic kidney One or more exclusion disease: absence of evidence is not evidence of absence. criteria

 Nephrol Dial Transplant. 2008. 23:411
- L1 Spittle, B.. Fluoridation promotion by scientists in 2006: An One or more exclusion example of "tardive photopsia". *Fluoride*. 2006. 39:157-162 criteria
- L1 Berger, T.,Mathurin, F. A.,Drake, H.,Astrom, M. E.. Fluoride One or more exclusion abundance and controls in fresh groundwater in criteria Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks. *Science of the Total Environment*. 2016. 569-570:948-960
- L1 Gupta, S.,Banerjee, S.. Fluoride accumulation in crops and One or more exclusion vegetables and dietary intake in a fluoride-endemic area of criteria west bengal. *Fluoride*. 2011. 44:153-157
- Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Ma, A. H.. One or more exclusion Fluoride analysis of drinking water in endemic fluorosis criteria areas in Shandong province from 2005 to 2007. [Chinese]. Chinese Journal of Endemiology. 2010. 29:540-543
- L1 Brahman, K. D.,Kazi, T. G.,Baig, J. A.,Afridi, H. I.,Khan, One or more exclusion A.,Arain, S. S.,Arain, M. B.. Fluoride and arsenic exposure criteria through water and grain crops in nagarparkar, pakistan.

 Chemosphere. 2014. 100:182-189
- L1 Borman, B., Fyfe, C.. Fluoride and children's IQ. NZ Med J. One or more exclusion

Level	Bibliography	Reason for Exclusion
	2013. 126:111-2	criteria
L1	Lewis, C. W Fluoride and dental caries prevention in children. <i>Pediatrics in Review.</i> 2014. 35:3-15	One or more exclusion criteria
L1	Kotoky, P.,Barooah, P. K.,Baruah, M. K.,Goswami, A.,Borah, G. C.,Gogoi, H. M.,Ahmed, F.,Gogoi, A.,Paul, A. B Fluoride and endemic fluorosis in the Karbianglong district, Assam, India. <i>Fluoride</i> . 2008. 41:72-75	One or more exclusion criteria
L1	Sharma, S.,Ramani, J.,Bhalodia, J.,Thakkar, K Fluoride and fluorosis in context to Gujarat state of India: A review. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2012. 3:85-94	One or more exclusion criteria
L1	Hussain, J., Hussain, I., Sharma, K. C Fluoride and health hazards: community perception in a fluorotic area of central Rajasthan (India): an arid environment. <i>Environ Monit Assess</i> . 2010. 162:1-14	
L1	Chachra, D., Vieira, A. P., Grynpas, M. D Fluoride and mineralized tissues. <i>Crit Rev Biomed Eng.</i> 2008. 36:183-223	One or more exclusion criteria
L1	Vitoria Minana, I Fluoride and prevention of dental caries in childhood. Update (II). [Spanish]. <i>Acta Pediatrica Espanola</i> . 2010. 68:185-194	One or more exclusion criteria
L1	Vitoria Minana, I Fluoride and the prevention of dental caries in childhood. Update (I). [Spanish]. <i>Acta Pediatrica Espanola</i> . 2010. 68:129-134	One or more exclusion criteria
L1	Shaik, N., Shanbhog, R., Nandlal, B., Tippeswamy, H. M Fluoride and Thyroid Function in Children Resident of Naturally Fluoridated Areas Consuming Different Levels of	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Fluoride in Drinking Water: An Observational Study. Contemporary Clinical Dentistry. 2019. 10:24-30	
L1	Kundu, M. C., Mandal, B Fluoride concentration in groundwater in the north 24-paraganas district of West Bengal, India. <i>Fluoride</i> . 2010. 43:160-164	One or more exclusion criteria
L1	Smyk, M.,Opejda, A.,Fedyna, A.,Rybicka, M.,Chlubek, D Fluoride concentration in infants' and children's drinks in Poland. <i>Fluoride</i> . 2012. 45 (3 PART 1):199-200	One or more exclusion criteria
L1	Amouei, A. I., Mahvi, A. H., Mohammadi, A. A., Asgharnia, H. A., Fallah, S. H., Khafajeh, A. A Fluoride concentration in potable groundwater in rural areas of Khaf city, Razavi Khorasan Province, northeastern Iran. <i>International Journal of Occupational & Environmental Medicine</i> . 2012. 3:201-3	criteria
L1	Mohammadi, A. A., Yousefi, M., Mahvi, A. H Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature. <i>Data in Brief.</i> 2017. 13:312-315	One or more exclusion criteria
L1	Das, S.,de Oliveira, L. M.,da Silva, E.,Liu, Y.,Ma, L. Q Fluoride concentrations in traditional and herbal teas: Health risk assessment. <i>Environ Pollut</i> . 2017. 231:779-784	One or more exclusion criteria
L1	Burgstahler, A. W., Spittle, B Fluoride Conferences in Toronto: XVIIITH Conference of the ISFR. <i>Fluoride</i> . 2008. 41:173-175	One or more exclusion criteria

L1 Shanthakumari, D., Srinivasalu, S., Subramanian, S.. One or more exclusion Fluoride contaminated water and its implications on human criteria health in Vellore District, Tamil Nadu, India. *Research Journal of Environmental Toxicology.* 2010. 4:92-102

Level	Bibliography	Reason for Exclusion
L1	Khandare, H. W Fluoride contaminated water and its implications on human health-a review. <i>International Journal of ChemTech Research</i> . 2013. 5:502-511	One or more exclusion criteria
L1	Pandey, J., Pandey, U Fluoride contamination and fluorosis in rural community in the vicinity of a phosphate fertilizer factory in India. <i>Bulletin of Environmental Contamination and Toxicology</i> . 2011. 87:245-249	One or more exclusion criteria
L1	Hussain, I., Arif, M., Hussain, J Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India. <i>Environmental Monitoring & Assessment.</i> 2012. 184:5151-8	One or more exclusion criteria
L1	Suthar, S.,Garg, V. K.,Jangir, S.,Kaur, S.,Goswami, N.,Singh, S Fluoride contamination in drinking water in rural habitations of northern Rajasthan, India. Environmental Monitoring & Assessment. 2008. 145:1-6	One or more exclusion criteria
L1	Hanse, A., Chabukdhara, M., Gohain Baruah, S., Boruah, H., Gupta, S. K Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India. <i>Environ Monit Assess.</i> 2019. 191:782	One or more exclusion criteria
L1	Brindha, K.,Rajesh, R.,Murugan, R.,Elango, L Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. <i>Environmental Monitoring</i> & <i>Assessment.</i> 2011. 172:481-92	One or more exclusion criteria
L1	Emenike, C. P.,Tenebe, I. T.,Jarvis, P Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk. <i>Ecotoxicol Environ Saf.</i> 2018. 156:391-402	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Datta, A. S., Chakrabortty, A., De Dalal, S. S., Lahiri, S. C Fluoride contamination of underground water in West Bengal, India. <i>Fluoride</i> . 2014. 47:241-248	One or more exclusion criteria
L1	Sabal, D.,Khan, T. I Fluoride contamination status of groundwater in Phulera tehsil of Jaipur district, Rajasthan. Journal of Environmental Biology. 2008. 29:871-6	One or more exclusion criteria
L1	Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., Yadav, S., Vymazal, J., Kumar, V., Tri, D. Q., Talaiekhozani, A., Prasad, S., Reece, L. M., Singh, N., Maurya, P. K., Cho, J Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. <i>Ecotoxicol Environ Saf.</i> 2019. 182:109362	One or more exclusion criteria
L1	Telesinski, A.,nioszek, M. A.,Grzeszczuk, M.,Jadczak, D Fluoride content and antioxidant activity of infusions of selected herbs from the lamiaceae family. <i>Fluoride</i> . 2012. 45 (3 PART 1):205-206	One or more exclusion criteria
L1	Somasundaram, S.,Ravi, K.,Rajapandian, K.,Gurunathan, D Fluoride Content of Bottled Drinking Water in Chennai, Tamilnadu. <i>Journal of Clinical and Diagnostic Research JCDR</i> . 2015. 9:ZC32-4	One or more exclusion criteria
L1	Ruxton, C. H. S.,Bond, T. J Fluoride content of UK retail tea: Comparisons between tea bags and infusions. Proceedings of the Nutrition Society. Conference: Summer Meeting Carbohydrates in Health: Friends or Foes. 2014. 74:#pages#	One or more exclusion criteria
L1	Steinmetz, J. E. A., Martinez-Mier, E. A., Jones, J. E., Sanders, B. J., Weddell, J. A., Soto-Rojas, A. E., Tomlin,	One or more exclusion criteria

- A. M., Eckert, G. J.. Fluoride content of water used to reconstitute infant formula. *Clinical Pediatrics*. 2011. 50:100-105
- L1 Zhang, X.,Gao, X.,Li, C.,Luo, X.,Wang, Y.. Fluoride One or more exclusion contributes to the shaping of microbial community in high criteria fluoride groundwater in Qiji County, Yuncheng City, China.

 Scientific reports. 2019. 9:14488
- L1 Singh, G., Kumari, B., Sinam, G., Kriti, Kumar, N., Mallick, S.. One or more exclusion Fluoride distribution and contamination in the water, soil criteria and plants continuum and its remedial technologies, an Indian perspective- a review. *Environ Pollut.* 2018. 239:95-108
- L1 Mondal, D., Gupta, S., Reddy, D. V., Dutta, G.. Fluoride One or more exclusion enrichment in an alluvial aquifer with its subsequent effect criteria on human health in Birbhum district, West Bengal, India.

 Chemosphere. 2017. 168:817-824
- Chandio, T. A.,Khan, M. N.,Sarwar, A.. Fluoride estimation One or more exclusion and its correlation with other physicochemical parameters criteria in drinking water of some areas of Balochistan, Pakistan.

 Environmental Monitoring & Assessment. 2015. 187:531
- L1 Barberio, A. M., Hosein, F. S., Quiñonez, C., McLaren, L.. One or more exclusion Fluoride exposure and indicators of thyroid functioning in criteria the Canadian population: implications for community water fluoridation. *J Epidemiol Community Health*. 2017. 71:1019-1025
- L1 Keshavarz, S., Ebrahimi, A., Nikaeen, M.. Fluoride exposure One or more exclusion and its health risk assessment in drinking water and staple criteria food in the population of Dayyer, Iran, in 2013. *J Educ*

Level	Bibliog	graphy

Reason for Exclusion

Health Promot. 2015. 4:72

L1 Malin, A. J., Lesseur, C., Busgang, S. A., Curtin, P., Wright, R. O., Sanders, A. P.. Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013-2016. *Environment International.* 2019. 132 (no pagination):#pages#

One or more exclusion criteria

L1 Wondimkun, S. A., Berglund, M., Mekonnen, Y., Petros, B.. Fluoride exposure and risk of skeletal fluorosis among an adult population living in an endemic fluoride area of Ethiopia. *Fluoride*. 2012. 45 (3 PART 1):209-210

One or more exclusion criteria

L1 Malin, A. J.,Riddell, J.,McCague, H.,Till, C.. Fluoride exposure and thyroid function among adults living in Canada: Effect modification by iodine status. *Environ Int.* 2018. 121:667-674

One or more exclusion criteria

- L1 Archer, N.,Villanacci, J.,Napier, T.. Fluoride exposure in One or more exclusion drinking water and childhood and adolescent osteosarcoma criteria in texas. *American Journal of Epidemiology.* 2013. 11):S43
- L1 Archer, N. P., Napier, T. S., Villanacci, J. F.. Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas. *Cancer Causes Control.* 2016. 27:863-8

One or more exclusion criteria

- Waugh, D. T.. Fluoride Exposure Induces Inhibition of One or more exclusion Sodium/Iodide Symporter (NIS) Contributing to Impaired criteria
 Iodine Absorption and Iodine Deficiency: Molecular
 Mechanisms of Inhibition and Implications for Public Health.
 Int J Environ Res Public Health. 2019. 16:#pages#
- L1 Dharmaratne, R. W.. Fluoride in drinking water and diet: the One or more exclusion causative factor of chronic kidney diseases in the North

Level	Bibliography	Reason for Exclusion
	Central Province of Sri Lanka. <i>Environ Health Prev Med.</i> 2015. 20:237-42	criteria
L1	Meenakshi,,Maheshwari, R. C Fluoride in drinking water and its removal. <i>Journal of Hazardous Materials</i> . 2006. 137:456-463	One or more exclusion criteria
L1	Levy, M.,Leclerc, B. S Fluoride in drinking water and osteosarcoma incidence rates in the continental United States among children and adolescents. <i>Cancer Epidemiol.</i> 2012. 36:e83-8	One or more exclusion criteria
L1	Ayoob, S.,Gupta, A. K Fluoride in drinking water: A review on the status and stress effects. <i>Critical Reviews in Environmental Science and Technology.</i> 2006. 36:433-487	One or more exclusion criteria
L1	Satpathy, K. K.,Padhi, R. K.,Sowmya, M.,Samantara, M. K. Fluoride in ground water: A comment on "fluorine contamination in ground water: A major challenge" published in Environmental Monitoring and Assessment, (2011) 173, 955-968. <i>Environmental Monitoring and Assessment</i> . 2014. 186:2159-2163	One or more exclusion criteria
L1	Jha, S. K.,Singh, R. K.,Damodaran, T.,Mishra, V. K.,Sharma, D. K.,Rai, D Fluoride in groundwater: Toxicological exposure and remedies. <i>Journal of Toxicology and Environmental Health - Part B: Critical Reviews.</i> 2013. 16:52-66	One or more exclusion criteria
L1	Keramati, H.,Miri, A.,Baghaei, M.,Rahimizadeh, A.,Ghorbani, R.,Fakhri, Y.,Bay, A.,Moradi, M.,Bahmani, Z.,Ghaderpoori, M.,Mousavi Khaneghah, A Fluoride in Iranian Drinking Water Resources: a Systematic Review, Meta-analysis and Non-carcinogenic Risk Assessment. <i>Bio</i>	One or more exclusion criteria

	Bibliography
Levei	DIDITIOUTABLE

Reason for Exclusion

Trace Elem Res. 2019. 188:261-273

Palczewska-Komsa, M., Kalisinska, E., Kosik-Bogacka,
 D., Lanocha-Arendarczyk, N., Budis, H., Sokolowski,
 S., Baranowska-Bosiacka, I., Gutowska, I., Chlubek, D..
 Fluoride in the compact bone after femoral head
 arthroplasty in patients from North-Western Poland.
 Fluoride. 2015. 48:93-104

One or more exclusion criteria

- L1 Jha, S. K., Mishra, V. K., Sharma, D. K., Damodaran, T.. One or more exclusion Fluoride in the environment and its metabolism in humans. criteria Reviews of Environmental Contamination & Toxicology. 2011. 211:121-42
- L1 Arveti, N.,Sarma, M. R.,Aitkenhead-Peterson, J. A.,Sunil, One or more exclusion K.. Fluoride incidence in groundwater: a case study from criteria Talupula, Andhra Pradesh, India. *Environmental Monitoring*& Assessment, 2011, 172:427-43
- L1 Chauhan, D. S.,Mishra, S.,Tripathi, S.. Fluoride induced One or more exclusion alteration in hypothalamic testicular axis hormones and deterioration in antioxidants status in fluorotic patients.

 Indian Journal of Clinical Biochemistry. 2017. 32 (1 Supplement 1):S236
- L1 Shaik, N.,Shanbhog, R.,Nandlal, B.,Tippeswamy, H. M.. One or more exclusion Fluoride ingestion and thyroid function in children resident criteria of naturally fluoridated areas An observational study.

 Journal of Clinical & Experimental Dentistry. 2019.

 11:e883-e889
- Oweis, R. R., Levy, S. M., Eichenberger-Gilmore, J. One or more exclusion
 M., Warren, J. J., Burns, T. L., Janz, K. F., Torner, J. C., Saha, criteria
 P. K., Letuchy, E.. Fluoride intake and cortical and

trabecular bone characteristics in adolescents at age 17: A prospective cohort study. Community Dent Oral Epidemiol. 2018. 46:527-534

L1 Kharb, S., Sandhu, R., Kundu, Z. S.. Fluoride levels and osteosarcoma. South Asian J Cancer. 2012. 1:76-7

One or more exclusion criteria

L1 Whyte, M. P., Fluoride levels in bottled teas [15]. American One or more exclusion Journal of Medicine. 2006. 119:189-190

criteria

L1 Peckham, S., Lowery, D., Spencer, S., Fluoride levels in drinking water and hypothyroidism: Response to Grimes and Newton et al. J Epidemiol Community Health. 2017. 71:313-314

One or more exclusion criteria

L1 Ravichandran, B., Bhattacharya, S. K., Mukherjee, A. K., Gangopadhyay, P. K., Roychowdhury, A., Saiyed, H. N., criteria Fluoride levels in drinking water and other surface water of an industrial area belt of Orissa State in India. International Journal of Environment and Pollution, 2012, 49:55-61

One or more exclusion

L1 Rubio, C., Rodriguez, I., Jaudenes, J. R., Gutierrez, A. J., Paz, S., Burgos, A., Hardisson, A., Revert, C., Fluoride levels in supply water from a volcanic area in the Macaronesia region. Environmental Science & Pollution Research, 2020, 22:22

One or more exclusion criteria

- L1 Cao, J., Zhao, Y., Li, Y., Deng, H. J., Yi, J., Liu, J. W.. Fluoride One or more exclusion levels in various black tea commodities: Measurement and criteria safety evaluation. Food and Chemical Toxicology. 2006. 44:1131-1137
- L1 Lacson, C. F. Z., Lu, M. C., Huang, Y. H.. Fluoride network One or more exclusion and circular economy as potential model for sustainable development-A review. Chemosphere. 2020. 239 (no

criteria

25 March 2023 1012 pagination):#pages#

- L1 Jha, S. K., Nayak, A. K., Sharma, Y. K.. Fluoride occurrence One or more exclusion and assessment of exposure dose of fluoride in shallow criteria aquifers of Makur, Unnao district Uttar Pradesh, India.

 Environmental Monitoring and Assessment. 2009. 156:561-566
- L1 Jia, H.,Qian, H.,Qu, W.,Zheng, L.,Feng, W.,Ren, W.. One or more exclusion Fluoride Occurrence and Human Health Risk in Drinking criteria Water Wells from Southern Edge of Chinese Loess Plateau. *Int J Environ Res Public Health.* 2019. 16:#pages#
- L1 Rashid, A.,Guan, D. X.,Farooqi, A.,Khan, S.,Zahir, One or more exclusion S.,Jehan, S.,Khattak, S. A.,Khan, M. S.,Khan, R.. Fluoride criteria prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. *Sci Total Environ.* 2018. 635:203-215
- L1 De Oliveira, F. A., Pereira, A. A., Da Silva Ventura, One or more exclusion T., Buzalaf, M., De Oliveira, R. C., Peres-Buzalaf, C.. criteria Fluoride regulates osteoclastogenesis in a strain-specific manner. *Journal of Bone and Mineral Research.*Conference. 2016. 31:#pages#
- L1 Seraoui, H.. Fluoride remedy or poison?. *Fundamental and* One or more exclusion *Clinical Pharmacology.* 2014. 1):112 criteria
- L1 Bazrafshan, E.,Mahvi, A. H.. Fluoride removal by an One or more exclusion electro-coagulation using iron and aluminum electrodes. criteria

 Fluoride. 2012. 45 (3 PART 1):154-155
- L1 Choong, C. E., Wong, K. T., Jang, S. B., Nah, I. W., Choi, One or more exclusion J., Ibrahim, S., Yoon, Y., Jang, M.. Fluoride removal by palm criteria shell waste based powdered activated carbon vs.

functionalized carbon with magnesium silicate: Implications for their application in water treatment. *Chemosphere*. 2020. 239 (no pagination):#pages#

L1 Mena, V. F.,Betancor-Abreu, A.,Gonzalez, S.,Delgado, S.,Souto, R. M.,Santana, J. J.. Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations. *Journal of Environmental Management*. 2019. 246:472-483

One or more exclusion criteria

L1 Ashrafi, S. D., Mahvi, A. H., Farrokhi, M., Asgari, G., Jafari, A., Rezaee, R., Hoseini, M. H.. Fluoride removal using agricultural waste rice husk as a low-cost adsorbent. *Fluoride*. 2012. 45 (3 PART 1):151-152

One or more exclusion criteria

L1 Ni, J.,Zhong, Z.,Zhang, W.,Liu, B.,Shu, R.,Li, Y.. Fluoride resistance in fibroblasts is conferred via reduced susceptibility to oxidative stress and apoptosis. *FEBS Open Bio.*. 2020. #volume#:#pages#

One or more exclusion criteria

L1 Garg, V. K., Singh, B.. Fluoride signatures in groundwater and dental fluorosis in permanent teeth of school children in rural areas of Haryana state, india. *International Journal of Occupational and Environmental Medicine*. 2013. 4:107-108

One or more exclusion criteria

L1 Abell, S.. Fluoride supplementation. *Clinical Pediatrics*. 2008. 47:91-92

One or more exclusion

criteria

L1 Takahashi, R.,Ota, E.,Hoshi, K.,Naito, T.,Toyoshima, One or Y.,Yuasa, H.,Mori, R.,Nango, E.. Fluoride supplementation criteria (with tablets, drops, lozenges or chewing gum) in pregnant women for preventing dental caries in the primary teeth of

One or more exclusion

their children. *Cochrane Database of Systematic Reviews*. 2017. 2017 (10) (no pagination):#pages#

- E.. Fluoride Supplementation Adherence and Barriers in a criteria
 Community Without Water Fluoridation. *Academic* Pediatrics. 2017. 17:316-322
- L1 Choubisa, S. L.. Fluoride toxicosis in immature herbivorous One or more exclusion domestic animals living in low fluoride water endemic areas criteria of Rajasthan, India: An observational survey. *Fluoride*. 2013. 46:19-24
- L1 Clark, M. B., Slayton, R. L.. Fluoride use in caries One or more exclusion prevention in the primary care setting. *Pediatrics*. 2014. criteria 134:626-633
- L1 Dutta, J.. Fluoride, arsenic and other heavy metals One or more exclusion contamination of drinking water in the tea garden belt of sonitpur district, Assam, India. *International Journal of ChemTech Research.* 2013. 5:2614-2622
- L1 Spittle, B.. Fluoride, IQ, emotion, and children's school One or more exclusion performance. *Fluoride*. 2018. 51:98-101 criteria
- L1 Quadri, J. A., Sarwar, S., Sinha, A., Kalaivani, M., Dinda, A. One or more exclusion K., Bagga, A., Roy, T. S., Das, T. K., Shariff, A.. Fluoride-criteria associated ultrastructural changes and apoptosis in human renal tubule: a pilot study. *Hum Exp Toxicol.* 2018.

 37:1199-1206
- L1 Iafisco, M.,Degli Esposti, L.,Ramirez-Rodriguez, G. One or more exclusion B.,Carella, F.,Gomez-Morales, J.,Ionescu, A. C.,Brambilla, criteria E.,Tampieri, A.,Delgado-Lopez, J. M.. Fluoride-doped amorphous calcium phosphate nanoparticles as a

Level	Bibliography	,
	Dibliography	4

Reason for Exclusion

promising biomimetic material for dental remineralization. *Scientific Reports.* 2018. 8:17016

L1 Spittle, B.. Fluoride-induced developmental disorders and iodine deficiency disorders as examples developmental disorders due to disturbed thyroid hormone metabolism.

Fluoride, 2018, 51:307-318

One or more exclusion criteria

L1 Ramirez, D. I., Vargas-Sierra, O., Flores-Mendez, M.
A., Hernandez-Kelly, L. C., Del Razo, L. M., Ortega, A..
Fluoride-triggered protein synthesis decrease in cerebellar Bergmann glia cells. *Journal of Neurochemistry*. 2013.
1):117

One or more exclusion criteria

L1 Chuah, C. J., Lye, H. R., Ziegler, A. D., Wood, S. H., Kongpun, C., Rajchagool, S.. Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand. *Sci Total Environ.* 2016. 545-546:266-79

One or more exclusion criteria

- L1 Horst, J. A., Tanzer, J. M., Milgrom, P. M.. Fluorides and One or more exclusion Other Preventive Strategies for Tooth Decay. *Dental Clinics* criteria of North America. 2018. 62:207-234
- L1 Shailaja, K., Johnson, M. E. C.. Fluorides in groundwater One or more exclusion and its impact on health. *Journal of Environmental Biology.* criteria 2007. 28:331-332
- L1 Molchanov, A.,Gust, R.. Fluorinated [1,2- One or more exclusion diarylethylenediamine]platinum(II) complexes: differences criteria between in vivo and in vitro cytotoxicity. *Journal of Cancer Research and Clinical Oncology.* 2012. 1):105-106
- L1 Hequet, E., Henoumont, C., Muller, R. N., Laurent, S.. One or more exclusion Fluorinated MRI contrast agents and their versatile

Level	Bibliography	Reason for Exclusion
	applications in the biomedical field. <i>Future Med Chem.</i> 2019. 11:1157-1175	criteria
L1	Pan, M.,Rosenfeld, L.,Kim, M.,Xu, M.,Lin, E.,Derda, R.,Tang, S. K Fluorinated pickering emulsions impede interfacial transport and form rigid interface for the growth of anchorage-dependent cells. <i>ACS Appl Mater Interfaces</i> . 2014. 6:21446-53	One or more exclusion criteria
L1	Fedorova, O.,Orlovskaya, V.,Stepanova, M.,Krasikova, R Fluorination efficiency and enantiomeric purity in the synthesis of O-(2-[¹⁸ F]fluoroethyl)-L-tyrosine: the role of the solvent and PTC catalyst. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2011. 1):S498	One or more exclusion criteria
L1	Whittier, K.,Martin, M.,O'Dorisio, M. S.,Tewson, T Fluorination of GDC-0449 as a PET tracer in medulloblastoma. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S149	One or more exclusion criteria
L1	Pucelik, B., Gürol, I., Ahsen, V., Dumoulin, F., D. Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. <i>Eur J Med Chem.</i> 2016. 124:284-298	One or more exclusion criteria
L1	Hong, M.,Zhang, B.,Zhang, X. I.,Zhao, Y. S Fluorine distribution in aquatic environment and its health effect in the Western Region of the Songnen Plain, Northeast China. <i>Environmental Monitoring and Assessment</i> . 2007. 133:379-386	One or more exclusion criteria
L1	Zhang, B., Hong, M., Zhang, B., Zhang, X. L., Zhao, Y. S Fluorine distribution in aquatic environment and its health	One or more exclusion criteria

effect in the Western Region of the Songnen Plain, Northeast China. *Environmental Monitoring & Assessment*. 2007. 133:379-86

- L1 Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. One or more exclusion Y., Kwon, J. S., Kim, K., Koh, Y. K.. Fluorine geochemistry in criteria bedrock groundwater of South Korea. *Science of the Total Environment*. 2007. 385:272-283
- L1 De Rita, D., Cremisini, C., Cinnirella, A., Spaziani, F.. One or more exclusion Fluorine in the rocks and sediments of volcanic areas in central Italy: Total content, enrichment and leaching processes and a hypothesis on the vulnerability of the related aquifers. *Environmental Monitoring and Assessment.* 2012. 184:5781-5796
- L1 Schieferstein, H.,Muller, C.,Ross, T. L.. Fluorine-18 click- One or more exclusion labeling and evaluation of a folic acid derivative with criteria enhanced polarity. *NuklearMedizin*. 2012. 51 (2):A29
- Kuhnast, B., Boisgard, R., Hinnen, F., Hecht, M., Dinklerborg, One or more exclusion L., Friebe, M., Tavitian, B., Dolle, F.. Fluorine-18 labeling and criteria evaluation in rats and tumor-bearing mice of the Tenascin-C-binding aptamer TTA-01 using [18f]FPyME. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2009.
 1):S41
- L1 Kuhnast, B., Maisonial, A., Hinnen, F., Boisgard, R., Chezal, One or more exclusion J., Moins, N., Madelmont, J., Tavitian, B., Dolle, F., Fluorine-criteria 18 labeling of a new melanin-targeting tracer for melanoma imaging with PET. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2009. 1):S131
- L1 Bertrand, K., Francoise, H., Raphael, B., Peter, N., Bertrand, One or more exclusion

Level Bibliography

Reason for Exclusion

- T.,Frederic, D.. Fluorine-18 labeling of a novel series of criteria chimeric, mdm2 oncogene-targeting, peptide-pna oligomers using [¹⁸F]FPyME. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2011. 1):S6
- L1 Dolle, F., Hinnen, F., Charton, Y., Kuhnast, B., Saba, W., Schollhorn-Peyronneau, M., Valette, H., Goldstein, S., Deverre, J., Lestage, P., Bottlaender, M.. Fluorine-18 labeling of S43473 for imaging nicotinic acetylcholine receptors with PET. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2009. 1):S362

One or more exclusion criteria

L1 Surdock, C. P.,Potter, P. M.,Danks, M. K.,Snyder, S. E.. Fluorine-18 labeling of substituted benzils for imaging carboxylesterase. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2009. 1):S170

One or more exclusion criteria

- L1 Li, Z., Wang, D., Xu, M., Wang, J., Hu, X., Anwar, S., Tedesco, One or more exclusion A. C., Morais, P. C., Bi, H.. Fluorine-containing graphene criteria quantum dots with a high singlet oxygen generation applied for photodynamic therapy. *J Mater Chem B.* 2020.

 #volume#:#pages#
- L1 Liu, G.,Li, X.,Xiong, S.,Li, L.,Chu, P. K.,Yeung, K. W. One or more exclusion K.,Wu, S.,Xu, Z.. Fluorine-containing pH-responsive criteria core/shell microgel particles: preparation, characterization, and their applications in controlled drug release. *Colloid and Polymer Science*. 2011. #volume#:1-9
- L1 Paiuk, O. L., Mitina, N. Y., Myagkota, O. S., Volianiuk, K. One or more exclusion A., Musat, N., Stryganyuk, G. Z., Reshetnyak, O. V., Kinash, criteria N. I., Hevus, O. I., Shermolovich, Y. G., Zaichenko, A. S.. Fluorine-containing polyamphiphiles constructed from

synthetic and biopolymer blocks. *Biopolymers and Cell*. 2018. 34:207-217

L1 Boxi, S. S., Paria, S.. Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles. *Dalton Trans.* 2016. 45:811-9

One or more exclusion criteria

L1 Mandracchia, D., Piccionello, A. P., Pitarresi, G., Pace, A., Buscemi, S., Giammona, G.. Fluoropolymer based on a polyaspartamide containing 1,2,4-oxadiazole units: A potential artificial oxygen (O<inf>2</inf>) carrier.

Macromolecular Bioscience. 2007. 7:836-845

One or more exclusion criteria

L1 Saeed, M., Malik, R. N., Kamal, A.. Fluorosis and cognitive development among children (6-14 years of age) in the endemic areas of the world: a review and critical analysis. *Environ Sci Pollut Res Int.* 2020. 27:2566-2579

One or more exclusion criteria

L1 Molina-Frechero, N.,Pierdant-Rodriguez, A. I.,Oropeza-Oropeza, A.,Bologna-Molina, R.. Fluorosis and dental caries: An assessment of risk factors in Mexican children. *Revista de Investigacion Clinica*. 2012. 64:67-73 One or more exclusion criteria

- Shaw, S. D., Bishop, P. J., Harvey, C., Berger, L., Skerratt, L. One or more exclusion F., Callon, K., Watson, M., Potter, J., Jakob-Hoff, R., Goold, criteria M., Kunzmann, N., West, P., Speare, R.. Fluorosis as a probable factor in metabolic bone disease in captive New Zealand native frogs (Leiopelma species). *J Zoo Wildl Med*. 2012. 43:549-65
- L1 Wermers, R. A., Cooper, K., Whitford, G. M., Razonable, R. One or more exclusion R., Deziel, P. J., Moyer, T.. Fluorosis associated with chronic criteria voriconazole therapy. *Journal of Bone and Mineral Research*. 2010. 1):S504

	Diblio mando.	December Fredrick
Level	Bibliography	Reason for Exclusion
L1	Spittle, B Fluorosis in frogs: A red flag from New Zealand. <i>Fluoride</i> . 2012. 45:231-233	One or more exclusion criteria
L1	Choubisa, S. L., Choubisa, L., Sompura, K., Choubisa, D Fluorosis in subjects belonging to different ethnic groups of Rajasthan, India. <i>Journal of Communicable Diseases</i> . 2007. 39:171-7	One or more exclusion criteria
L1	Kurtdede, E.,Pekcan, M.,Karagul, H., Fluorosis problem in Turkey and biochemical interaction of fluorine. [Turkish]. <i>Ataturk Universitesi Veteriner Bilimleri Dergisi</i> . 2017. 12:320-326	One or more exclusion criteria
L1	Kosjek, T.,Perko, S.,Žigon, D.,Heath, E Fluorouracil in the environment: analysis, occurrence, degradation and transformation. <i>J Chromatogr A.</i> 2013. 1290:62-72	One or more exclusion criteria
L1	Misawa, M., Watanabe, A., Fujita, A., Sakai, H., Kamei, J., Chiba, Y Focused Conference Group: P09 - Nflammation and immunopharmacology: New tools for old diseases aqueous cigarette tar extract causes marked bronchial smooth muscle hyperresponsiveness in rats. Basic and Clinical Pharmacology and Toxicology. 2010. 1):460	One or more exclusion criteria
L1	Choubisa, S. L., Mishra, G. V., Sheikh, Z., Bhardwaj, B., Mali, P., Jaroli, V. J Food, fluoride, and fluorosis in domestic ruminants in the dungarpur district of Rajasthan, India. <i>Fluoride</i> . 2011. 44:70-76	One or more exclusion criteria
L1	Shan, Z., Tan, Y., Qin, L., Li, G., Pan, X., Wang, Z., Yu, X., Wang, Q., Wu, C Formulation and evaluation of novel reverse microemulsions containing salmon calcitonin in hydrofluoroalkane propellants. <i>Int J Pharm.</i> 2014. 466:390-	One or more exclusion criteria

Level	Bibliography
LC A CI	Dibliography

Reason for Exclusion

9

- L1 Soh, J., Chueng, A., Adio, A., Cooper, A. J., Birch, B. One or more exclusion R., Lwaleed, B. A.. Fourier transform infrared spectroscopy criteria imaging of live epithelial cancer cells under non-aqueous media. *J Clin Pathol.* 2013. 66:312-8
- L1 Kurtdede, E.,Pekcan, M.,Karagul, H.. Free radicals, reactive oxygen species and relationship with oxidative stress. [Turkish]. *Ataturk Universitesi Veteriner Bilimleri Dergisi.* 2018. 13:373-379

One or more exclusion criteria

L1 Yang, Y.,Zhao, Q.,Liu, Y.,Liu, X.,Chu, Y.,Yan, H.,Fan, Y.,Huo, S.,Wang, L.,Lou, Q.,Guo, N.,Sun, D.,Gao, Y.. FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China. *Arch Toxicol.* 2018. 92:2217-2225

One or more exclusion criteria

L1 Otabashi, M., Vergote, T., Desfours, C.. Fully automated 18F-FAZA production on AllInOne (Trasis) at commercial scale. Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2017. 58:#pages#

One or more exclusion

criteria

- Vergote, T.,Otabashi, M.,Vriamont, C.,Desfours, C.,Morelle, One or more exclusion J.,Philippart, G.. Fully automated 18F-FAZA production on criteria
 AllInOne (Trasis) at commercial scale. European Journal of Nuclear Medicine and Molecular Imaging. 2017. 44 (2
 Supplement 1):S518-S519
- L1 Devalankar, D.,McConathy, J.. Fully automated radiosyntheses of the ¹⁸F-labeled amino acids MeFAMP and AFETP for oncologic imaging. *Journal of Nuclear Medicine*. *Conference*. 2019. 60:#pages#

One or more exclusion

criteria

Level	Bibliography	Reason for Exclusion
L1	Toyohara, J.,Furumoto, S.,Tago, T Fully automated radiosynthesis of [¹⁸ F]THK-5351 for clinical use. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2017. 60 (Supplement 1):S447	One or more exclusion criteria
L1	Nandy, S. K.,Rajan, R. M Fully automated radiosynthesis of [F-18]fluoroestradiol by alkali hydrolysis and simplified column purification. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2009. 1):S303	One or more exclusion criteria
L1	Nandy, S., Chakarborthy, A., Pawar, Y., Ghosh, S., Chaudhary, P. R., Rajan, M. G. R Fully automated radiosynthesis of novel [18F] fluoroethylated Plumbagin derivative and its feasibility study as tumour imaging agent. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S396	One or more exclusion criteria
L1	Cleij, M.,Fortt, R.,Gee, A Fully automated synthesis of 3- [¹⁸ F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([¹⁸ F]FPEB). <i>Journal of Labelled Compounds</i> and Radiopharmaceuticals. 2013. 1):S450	One or more exclusion criteria
L1	Giancarlo, P.,Giovanni, N.,Sabrina, P.,Piero, S. A Fully automated synthesis of ¹⁸ F-fluorocholine derivatives using a Dose-On-Demand microfluidic approach. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S542	One or more exclusion criteria
L1	Go, M. L.,Leow, J. L.,Gorla, S. K.,Schuller, A. P.,Wang, M.,Casey, P. J Functionalized 3-aminomethylindoles as potent inhibitors of isoprenylcysteine carboxy methyltransferase. <i>Drugs of the Future</i> . 2010. A):227-228	One or more exclusion criteria
L1	Spittle, B Further MEDLINE rejection of Fluoride. Fluoride.	One or more exclusion

Level	Bibliography	Reason for Exclusion
	2014. 47:2-8	criteria
L1	Szabo, Z.,Xia, J.,Mathews, W. B.,Brown, P. R Future direction of renal positron emission tomography. <i>Semin Nucl Med.</i> 2006. 36:36-50	One or more exclusion criteria
L1	Ma, Q., Huang, H., Sun, L., Zhou, T., Zhu, J., Cheng, X., Duan, L., Li, Z., Cui, L., Ba, Y Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERA gene polymorphisms?. Chemosphere. 2017. 188:525-531	
L1	Tripathi, N.,Bajpai, S.,Tripathia, M Genotoxic alterations induced by fluoride in Asian catfish, Clarias batrachus (Linn.). <i>Fluoride</i> . 2009. 42:292-296	One or more exclusion criteria
L1	Vaquez-Alvarado, P.,Prieto-Garcia, F.,Gordillo-Martinez, A.,Coronel-Olivarez, C.,Ortiz-Espisnosa, R. M.,Hernandez-Ceruelos, A Genotoxic damage in oral epithelial cells induced by fluoride in drinking-water on students of tula Mexico. <i>Environmental and Molecular Mutagenesis</i> . 2010. 51 (7):727	One or more exclusion criteria
L1	Martignon, S.,Opazo-Gutierrez, M. O.,Velasquez-Riano, M.,Orjuela-Osorio, I. R.,Avila, V.,Martinez-Mier, E. A.,Gonzalez-Carrera, M. C.,Ruiz-Carrizosa, J. A.,Silva-Hermida, B. C Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia). <i>Environmental Monitoring and Assessment.</i> 2017. 189 (6) (no pagination):#pages#	One or more exclusion criteria
L1	Rashid, A., Farooqi, A., Gao, X., Zahir, S., Noor, S., Khattak,	One or more exclusion

- J. A.. Geochemical modeling, source apportionment, health criteria risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. *Chemosphere*. 2020. 243:125409
- L1 Dehbandi, R.,Moore, F.,Keshavarzi, B.. Geochemical One or more exclusion sources, hydrogeochemical behavior, and health risk criteria assessment of fluoride in an endemic fluorosis area, central Iran. *Chemosphere*. 2018. 193:763-776
- L1 Kämppi, A., Tanner, T., Päkkilä, J., Patinen, P., Järvelin, M. One or more exclusion R., Tjäderhane, L., Anttonen, V.. Geographical distribution of criteria dental caries prevalence and associated factors in young adults in Finland. *Caries Res.* 2013. 47:346-54
- L1 Subhadharsini, S.,Pradeep, S.. Glass ionomer dental One or more exclusion cement a review. *Research Journal of Pharmacy and Technology*. 2016. 9:1513-1515
- L1 Mumtaz, N.,Pandey, G.,Labhasetwar, P. K.. Global fluoride One or more exclusion occurrence, available technologies for fluoride removal, and criteria electrolytic defluoridation: A review. *Critical Reviews in Environmental Science and Technology.* 2015. 45:2357-2389
- L1 Guidotti, T. L., Gitterman, B. A.. Global Pediatric One or more exclusion Environmental Health. *Pediatric Clinics of North America*. criteria 2007. 54:335-350
- L1 Lyke, K.. Global water fluoridation: what is holding us

 One or more exclusion
 back?. *Altern Ther Health Med.* 2016. 22:6-7

 criteria
- L1 Wright, J. V.. Global water fluoridation: what is holding us One or more exclusion back?. *Altern Ther Health Med.* 2016. 22:6 criteria

Level	Bibliography	Reason for Exclusion
L1	Anonymous,. Global water fluoridation: what is holding us back? Reply. <i>Alternative Therapies in Health & Medicine</i> . 2016. 22:7	One or more exclusion criteria
L1	. Global water fluoridation: what is holding us back? Reply. Altern Ther Health Med. 2016. 22:7	One or more exclusion criteria
L1	Dinneen, J.,Fitzgibbon, M.,O'Gorman, P Glucose determination at point of care using blood gas analyser-a worthy substitute for laboratory analysis in the oral glucose tolerance test. <i>Clinical Chemistry and Laboratory Medicine</i> . 2018. 56 (2):eA83	One or more exclusion criteria
L1	Liu, R.,Fu, Z.,Zhao, M.,Gao, X.,Li, H.,Mi, Q.,Liu, P.,Yang, J.,Yao, Z.,Gao, Q GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates. <i>Oncotarget</i> . 2017. 8:39476-39496	One or more exclusion criteria
L1	Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., Owusu-Ansah, E. D. G. J., Tettey, S., Diabene, P. Y., Asimah, S Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. <i>Chemosphere</i> . 2019. 233:862-872	
L1	Ranasinghe, N.,Kruger, E.,Chandrajith, R.,Tennant, M Groundwater fluoride in Sri Lanka: opportunities to mitigate the risk at maximum contaminant level. <i>Ceylon Med J.</i> 2018. 63:174-179	One or more exclusion criteria
L1	Sunitha, V.,Reddy, B. M.,Khan, J. A.,Reddy, M. R Groundwater Geochemistry in the Southeastern Part of Anantapur District, Andhra Pradesh, with Special Reference to Fluoride Distribution and Its Impact on Health. <i>Journal of Environmental Science & Engineering</i> . 2014.	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	56:153-60	
L1	Suneetha, M., Syama Sundar, B., Ravindhranath, K Groundwater pollution and adverse effects on health by fluoride ions. <i>Journal of Chemical and Pharmaceutical</i> <i>Research.</i> 2015. 7:292-305	One or more exclusion criteria
L1	Hua, B., Yang, J., Deng, B Groundwater quality. Water Environment Research. 2010. 82:1854-1874	One or more exclusion criteria
L1	Stephenson, J., Sabic, H., Huber, R., Renshaw, P Halides in drinking water are inversely correlated with suicide rates. <i>Biological Psychiatry</i> . 2017. 81 (10 Supplement 1):S332	One or more exclusion criteria
L1	Jablonski, R Hands-on solutions for long-term care nurses providing oral healthcare. <i>Annals of Long-Term Care</i> . 2014. 22:20-22	
L1	Karak, P Health effects of ground water fluoride contamination in Bankura district of West Bengal, India. <i>International Journal of Pharma and Bio Sciences</i> . 2017. 8:B195-B203	One or more exclusion criteria
L1	Nayak, B.,Roy, M. M.,Das, B.,Pal, A.,Sengupta, M. K.,Prasad De, S.,Chakraborti, D Health effects of groundwater fluoride contamination. <i>Clinical Toxicology</i> . 2009. 47:292-295	One or more exclusion criteria
L1	Meghe, A. D., Quazi, Z Health effects of high fluoride in groundwater in parts of two districts in Central India. <i>Fluoride</i> . 2012. 45 (3 PART 1):188-189	One or more exclusion criteria
L1	Majumdar, K. K Health impact of supplying safe drinking water containing fluoride below permissible level on flourosis patients in a fluoride-endemic rural area of West	One or more exclusion criteria

Reason for Exclusion

Bengal. Indian Journal of Public Health. 2011. 55:303-8

L1 Majumdar, K. K., Sundarraj, S. N.. Health impact of supplying safe drinking water on patients having various clinical manifestations of fluorosis in an endemic village of west bengal. Journal of Family Medicine & Primary Care. 2013. 2:74-8

One or more exclusion criteria

L1 Riley, M., Locke, A. B., Skye, E. P.. Health maintenance in school-aged children: Part I. History, physical examination, criteria screening, and immunizations. American Family Physician. 2011. 83:683-688

One or more exclusion

L1 Riley, M., Morrison, L., McEvoy, A., Health Maintenance in School-Aged Children: Part I. History, Physical Examination, Screening, and Immunizations. *American* family physician. 2019. 100:213-218

One or more exclusion criteria

L1 Riley, M., Locke, A. B., Skye, E. P.. Health maintenance in school-aged children: Part II. Counseling recommendations. Am Fam Physician. 2011. 83:689-94

One or more exclusion criteria

L1 Fu, G., Zeng, Q., Zhao, L., Zhang, Y., Feng, B., Wang, R., Zhang, L., Wang, Y., Hou, C.. Health Risk Assessment of criteria Drinking Water Quality in Tianjin Based on GIS. [Chinese]. Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]. 2015. 36:4553-4560

One or more exclusion

L1 Gao, H. J., Jin, Y. Q., Wei, J. L.. Health risk assessment of fluoride in drinking water from Anhui Province in China. Environ Monit Assess, 2013, 185:3687-95

One or more exclusion criteria

L1 Bai, X., Song, K., Liu, J., Mohamed, A. K., Mou, C., Liu, D.. One or more exclusion Health risk assessment of groundwater contaminated by oil

25 March 2023 1028

Level	Bibliography	Reason for Exclusion
	pollutants based on numerical modeling. <i>International Journal of Environmental Research and Public Health.</i> 2019. 16 (18) (no pagination):#pages#	criteria
L1	Yousefi, M., Ghoochani, M., Hossein Mahvi, A Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. <i>Ecotoxicol Environ Saf.</i> 2018. 148:426-430	One or more exclusion criteria
L1	Yuan, L.,Fei, W.,Jia, F.,Jun-Ping, L.,Qi, L.,Fang-Ru, N.,Xu-Dong, L.,Shu-Lian, X Health risk in children to fluoride exposure in a typical endemic fluorosis area on Loess Plateau, north China, in the last decade. <i>Chemosphere</i> . 2020. 243:125451	One or more exclusion criteria
L1	Napier, G. L., Kodner, C. M Health Risks and Benefits of Bottled Water. <i>Primary Care - Clinics in Office Practice</i> . 2008. 35:789-802	One or more exclusion criteria
L1	Arya, S., Subramani, T., Vennila, G., Karunanidhi, D Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India. <i>Environmental Geochemistry & Health.</i> 2019. 18:18	One or more exclusion criteria
L1	Arya, S., Subramani, T., Vennila, G., Karunanidhi, D., Bennett, H. B., Shantz, A., Shin, G., Sampson, M. L., Meschke, J. S Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India. Characterisation of the water quality from open and rope-	One or more exclusion criteria

pump shallow wells in rural Cambodia. *Environ Geochem Health*. 2019. 61:473-9

- L1 Tornqvist, R.,Jarsjo, J.,Karimov, B.. Health risks from large- One or more exclusion scale water pollution: Trends in Central Asia. *Environment* criteria *International*. 2011. 37:435-442
- L1 Asare, M. L., Cobbina, S. J., Akpabey, F. J., Duwiejuah, A. One or more exclusion B., Abuntori, Z. N.. Heavy metal concentration in water, criteria sediment and fish species in the bontanga reservoir, Ghana. *Toxicology and Environmental Health Sciences*. 2018. 10:49-58
- L1 Li, X.,Brejnrod, A. D.,Ernst, M.,Rykaer, M.,Herschend, One or more exclusion J.,Olsen, N. M. C.,Dorrestein, P. C.,Rensing, C.,Sorensen, criteria S. J.. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. *Environment International*. 2019, 126:454-467
- L1 Tanaka, K., Kitamura, N., Chujo, Y.. Heavy metal-free 19F One or more exclusion NMR probes for quantitative measurements of glutathione criteria reductase activity using silica nanoparticles as a signal quencher. *Bioorg Med Chem.* 2012. 20:96-100
- L1 Tang, J.,Xiao, T.,Wang, S.,Lei, J.,Zhang, M.,Gong, Y.,Li, One or more exclusion H.,Ning, Z.,He, L.. High cadmium concentrations in areas criteria with endemic fluorosis: a serious hidden toxin?.

 Chemosphere. 2009. 76:300-5
- L1 Moghaddam, V. K., Yousefi, M., Khosravi, A., Yaseri, One or more exclusion M., Mahvi, A. H., Hadei, M., Mohammadi, A. A., Robati, criteria Z., Mokammel, A.. High Concentration of Fluoride Can Be Increased Risk of Abortion. *Biological Trace Element Research.* 2018. 185:262-265

Level	Bibliography	Reason for Exclusion
L1	Wong, C. Y. O., Schneider, P., Balon, H. R., Huang, W. S., Chang, S. T., Chang, C. Y., Cheng, C. Y., Fink-Bennett, D High incidence of initial loss of consciousness with abnormal F-18 FDG and O-15 water brain PET in patients with chronic closed head injury. <i>Journal of Medical Sciences</i> . 2008. 28:71-75	One or more exclusion criteria
L1	Greenwood, H High throughput PET/CT imaging using a multiple mouse imaging system. <i>Molecular Imaging and Biology</i> . 2017. 19 (1 Supplement 1):S540	One or more exclusion criteria
L1	Subba Rao, N High-fluoride groundwater. <i>Environmental Monitoring and Assessment.</i> 2011. 176:637-645	One or more exclusion criteria
L1	Burnazi, E., Carlin, S., Lyashchenko, S., Staton, K., Brown, A., Hicks, S., Veach, D., Lewis, J. S High-yield manual synthesis of 16beta-[¹⁸ F]-fluoro-5alpha-dihydrotestosterone ([¹⁸ F]FDHT) using reverse-phase HPLC purification. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2017. 60 (Supplement 1):S427-S428	One or more exclusion criteria
L1	Lar, U. A., Tejan, A. B Highlights of some environmental problems of geomedical significance in Nigeria. <i>Environ Geochem Health.</i> 2008. 30:383-9	One or more exclusion criteria
L1	Lakshman, M. K., Keeler, J. C., Ngassa, F. N., Hilmer, J. H., Pradhan, P., Zajc, B., Thomasson, K. A Highly diastereoselective synthesis of nucleoside adducts from the carcinogenic benzo[a] pyrene diol epoxide and a computational analysis. <i>J Am Chem Soc.</i> 2007. 129:68-76	One or more exclusion criteria
L1	Moon, B. S., Park, J. H., Lee, H. J., Kil, H. S., Chi, D. Y., Lee, B. C., Kim, Y. K., Kim, S. E Highly efficient production of	One or more exclusion criteria

[¹⁸F]fallypride with low concentration of base.

Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2010. 51:#pages#

- L1 Celeste, R. K., Nadanovsky, P.. How much of the income One or more exclusion inequality effect can be explained by public policy? criteria

 Evidence from oral health in Brazil. *Health Policy*. 2010.

 97:250-258
- Van Den Berg, S. A. A., De Groot, M. J. M., Salden, L. P. One or more exclusion W., Draad, P. J. G. J., Dijkstra, I. M., Lunshof, S., Van Thiel, criteria
 S. W., Boonen, K. J. M., Thelen, M. H. M.. How to perform pregnancy diabetes screening correctly. Nederlands
 Tijdschrift voor Klinische Chemie en
 Laboratoriumgeneeskunde. 2016. 41:198-199
- Herndon, J. M.. Human and Environmental Dangers Posed One or more exclusion by Ongoing Global Tropospheric Aerosolized Particulates criteria for Weather Modification. *Frontiers in Public Health*. 2016.
 4:139
- L1 Simate, G. S., Iyuke, S. E., Ndlovu, S., Heydenrych, One or more exclusion M., Walubita, L. F.. Human health effects of residual carbon criteria nanotubes and traditional water treatment chemicals in drinking water. *Environment International*. 2012. 39:38-49
- L1 Samuel, O. A., PraiseGod, E. C., Theophilus, T. I., Omolola, One or more exclusion K. C.. Human health risk assessment data of trace criteria elements concentration in tap water-Abeokuta South,

 Nigeria. *Data Brief.* 2018. 18:1416-1426
- L1 Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, One or more exclusion J., Harry, J., Kacew, S., Lindsay, J., Mahfouz, A. M., Rondeau, criteria

- V.. Human health risk assessment for aluminium. aluminium oxide, and aluminium hydroxide. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2007, 10:1-269
- L1 Zhang, Y., Ma, R., Li, Z.. Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China). Environ Monit Assess. 2014. 186:4669-84

One or more exclusion criteria

L1 Yadav, K. K., Kumar, V., Gupta, N., Kumar, S., Rezania, S., Singh, N.. Human health risk assessment: Study of a population exposed to fluoride through groundwater of Agra city, India. Regul Toxicol Pharmacol. 2019. 106:68-80

One or more exclusion

criteria

L1 Ram, P., Human skeletal fluorosis in India. Fluoride. 2012. One or more exclusion 45 (3 PART 1):189-190

criteria

L1 Roy Chowdhury, A., Mondal, A., Roy, B. G., K., J. C. B., Mukhopadhyay, S., Banerjee, P.. Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F(-): experimental and DFT studies. Photochem Photobiol Sci. 2017, 16:1654-1663

One or more exclusion criteria

L1 Hermenegildo, B., Ribeiro, C., Pérez-Álvarez, L., Vilas, J. L., Learmonth, D. A., Sousa, R. A., Martins, P., Lanceros-Méndez, S.. Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids Surf B Biointerfaces, 2019, 181:1041-1047

One or more exclusion criteria

L1 Hossain, M., Patra, P. K.. Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. Environ Pollut. 2020. 258:113646

One or more exclusion

criteria

25 March 2023 1033

Level	Bibliography	Reason for Exclusion
L1	Zhang, X.,Miao, J.,Hu, B. X.,Liu, H.,Zhang, H.,Ma, Z Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China). <i>Environmental Science & Pollution Research.</i> 2017. 24:21073-21090	One or more exclusion criteria
L1	Aullon Alcaine, A., Schulz, C., Bundschuh, J., Jacks, G., Thunvik, R., Gustafsson, J. P., Morth, C. M., Sracek, O., Ahmad, A., Bhattacharya, P Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic cocontaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. <i>Science of the Total Environment.</i> 2020. 715 (no pagination):#pages#	One or more exclusion criteria
L1	Dey, R. K., Swain, S. K., Mishra, S., Sharma, P., Patnaik, T., Singh, V. K., Dehury, B. N., Jha, U., Patel, R. K Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. <i>Environmental Monitoring and Assessment.</i> 2012. 184:3279-3291	One or more exclusion criteria
L1	Mitchell, S. M., Ullman, J. L., Teel, A. L., Watts, R. J Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin. Chemosphere. 2015. 134:504-11	One or more exclusion criteria
L1	Lepoittevin, B., Elzein, T., Dragoe, D., Bejjani, A., Lemee, F., Levillain, J., Bazin, P., Roger, P., Dez, I Hydrophobization of chitosan films by surface grafting with fluorinated polymer brushes. <i>Carbohydrate polymers</i> . 2019. 205:437-446	One or more exclusion criteria
L1	Tredwin, C. J., Young, A. M., Abou Neel, E. A., Georgiou,	One or more exclusion

- G.,Knowles, J. C.. Hydroxyapatite, fluor-hydroxyapatite and criteria fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation. *J Mater Sci Mater Med.* 2014. 25:47-53
- L1 Ramamoorthy, N.,Pillai, M. R. A.,Jin, J. H.,Haji-Saeid, S. One or more exclusion M.. IAEA activities in support of production and utilization of criteria radioisotope labelled compounds. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2007. 50:312-317
- L1 Iarc Working Group on the Evaluation of Carcinogenic Risk One or more exclusion to Humans. IARC Monographs on the Evaluation of criteria Carcinogenic Risks to Humans. Some Chemicals Used as Solvents and in Polymer Manufacture. 2017.

 #volume#:#pages#
- L1 Tang, Y. S. C., Davis, R. A., Ganguly, T., Sutcliffe, J. L.. One or more exclusion Identification, Characterization, and Optimization of Integrin criteria $\alpha(v)\beta_6$ -Targeting Peptides from a One-Bead One-Compound (OBOC) Library: Towards the Development of Positron Emission Tomography (PET) Imaging Agents. *Molecules.* 2019. 24:#pages#
- L1 Xu, Y., Wang, S., Jiang, L., Wang, H., Yang, Y., Li, M., Wang, One or more exclusion X., Zhao, X., Xie, K.. Identify melatonin as a novel criteria therapeutic reagent in the treatment of 1-bromopropane(1-BP) intoxication. *Medicine (United States)*. 2016. 95 (3) (no pagination):#pages#
- L1 Alaiwa, M. A., Hilkin, B., Akurathi, V., Watkins, G., Stoltz, One or more exclusion D., Sunderland, J., Welsh, M., Dick, D.. Imaging mucociliary criteria clearance using F-18 alumina PET: A proof in concept study. *Journal of Nuclear Medicine*. *Conference*. 2019.

Level	Bibliography	Reason for Exclusion
	60:#pages#	
L1	Gai, Y., Yuan, L., Li, H., Zeng, D., Lan, X Imaging of melanoma Using Al ¹⁸ F labeled peptidomemitic ligand LLP2A. <i>Journal of Nuclear Medicine</i> . <i>Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria
L1	Frawley, R. P., Smith, M., Cesta, M. F., Hayes-Bouknight, S., Blystone, C., Kissling, G. E., Harris, S., Germolec, D Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague-Dawley rats and B ₆ C ₃ F ₁ /N mice when administered by oral gavage for 28 days. <i>Journal of Immunotoxicology.</i> 2018. 15:41-52	One or more exclusion criteria
L1	Varol, E.,Akcay, S.,Ersoy, I. H.,Koroglu, B. K.,Varol, S Impact of chronic fluorosis on left ventricular diastolic and global functions. <i>Science of the Total Environment</i> . 2010. 408:2295-2298	One or more exclusion criteria
L1	Kheradpisheh, Z.,Mirzaei, M.,Mahvi, A. H.,Mokhtari, M.,Azizi, R.,Fallahzadeh, H.,Ehrampoush, M. H Impact of Drinking Water Fluoride on Human Thyroid Hormones: A Case- Control Study. <i>Sci Rep.</i> 2018. 8:2674	One or more exclusion criteria
L1	Shankar, B. S., Balasubramanya, N., Maruthesha Reddy, M. T Impact of industrialization on groundwater qualitya case study of Peenya industrial area, Bangalore, India.	One or more exclusion criteria

on dental fluorosis in the North Indian population: An criteria observational study. *Biomedicine (India)*. 2018. 38:190-194

Grover, P. K., Kaur, K., Gautam, C. S.. Impact of milk intake One or more exclusion

Environ Monit Assess. 2008. 142:263-8

L1

Level	Bibliography	Reason for Exclusion
L1	Bhagat, S. K., Tiyasha,. Impact of millions of tones of effluent of textile industries: Analysis of textile industries effluents in Bhilwara and an approach with bioremediation. International Journal of ChemTech Research. 2013. 5:1289-1298	One or more exclusion criteria
L1	Ahmad, F Impact of urbanization on groundwater quality of Bhagalpur city: Deterioration of water quality and its sustainable management. <i>Journal of Chemical and Pharmaceutical Research.</i> 2015. 7:1303-1307	One or more exclusion criteria
L1	Ahoyo, T. A., Fatombi, K. J., Boco, M., Aminou, T., Bramane, K. L Impact of water quality and environmental sanitation on the health of schoolchildren in a suburban area of Benin: Findings in the Savalou-Bante and Dassa-Glazoue sanitary districts. [French]. <i>Medecine Tropicale</i> . 2011. 71:281-285	
L1	Mula, A., Skrobanska, A., Nowis, D Impairment of glucose uptake in cancer cells by statins. <i>European Journal of Medical Research</i> . 2011. 1):40-41	One or more exclusion criteria
L1	Berroteran-Infante, N.,Hacker, M.,Mitterhauser, M.,Wadsak, W Improved automated radiosynthesis of [¹⁸ F]FEPPA. <i>EJNMMI Radiopharmacy and Chemistry. Conference: 18th European Symposium on Radiopharmacy and Radiopharmaceuticals. Austria</i> 2016. 1:#pages#	One or more exclusion criteria
L1	Vavere, A. L., Hu, B., Neumann, K. D., DiMagno, S. G., Snyder, S. E Improved synthesis and purification of meta-[¹⁸ F]fluorobenzylguanidine (mFBG) for clinical use. <i>Journal of Labelled Compounds and</i>	One or more exclusion criteria

Radiopharmaceuticals. 2015. 1):S216

- L1 Qu, W.,Kelly, J.,Amor-Coarasa, A.,Waterhouse, N.,Dooley, One or more exclusion M.,Babich, J.. Improved two-step click synthesis of criteria [¹⁸F]RPS-040: A prostate specific membrane antigen (PSMA)-targeted tracer for Imaging prostate cancer (PCa) using positron emission tomography (PET). Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2018. 59:#pages#
- L1 Fitz, N. F.,Castranio, E. L.,Carter, A. Y.,Kodali, R.,Lefterov, One or more exclusion I.,Koldamova, R.. Improvement of memory deficits and criteria amyloid-β clearance in aged APP23 mice treated with a combination of anti-amyloid-β antibody and LXR agonist. *J Alzheimers Dis.* 2014. 41:535-49
- L1 Hariri, M.,Mirvaghefi, A.,Farahmand, H.,Taghavi, One or more exclusion L.,Shahabinia, A. R.. In situ assessment of Karaj River criteria genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario).

 Environ Toxicol Pharmacol. 2018. 58:59-69
- L1 Seong, J.,Macdonald, E.,Newcombe, R. G.,Davies, One or more exclusion M.,Jones, S. B.,Johnson, S.,West, N. X.. In situ randomised criteria trial to investigate the occluding properties of two desensitising toothpastes on dentine after subsequent acid challenge. *Clin Oral Investig.* 2013. 17:195-203
- Valdez Jimenez, L., Lopez Guzman, O. D., Cervantes
 Flores, M., Costilla-Salazar, R., Calderon Hernandez,
 J., Alcaraz Contreras, Y., Rocha-Amador, D. O.. In utero
 exposure to fluoride and cognitive development delay in

infants. Neurotoxicology. 2017. 59:65-70

Valdez-Jimenez, L., Lopez-Guzman, O. D., Cervantes-Flores, M., Costilla-Salazar, R., Calderon-Hernandez, J., Alcaraz-Contreras, Y., Rocha-Amador, D. O.. In utero exposure to fluoride through drinking water and cognitive development delay in children. *Toxicology Letters*. 2016. 259 (Supplement 1):S206

One or more exclusion criteria

- L1 Lütje, S.,Franssen, G. M.,Herrmann, K.,Boerman, O. One or more exclusion C.,Rijpkema, M.,Gotthardt, M.,Heskamp, S.. In Vitro and In criteria Vivo Characterization of an (18)F-AIF-Labeled PSMA Ligand for Imaging of PSMA-Expressing Xenografts. *J Nucl Med.* 2019. 60:1017-1022
- L1 Bhakta, S., Gillingham, K. H., Mirsaneh, M., Miller, C. One or more exclusion A., Reaney, I. M., Brook, I. M., van Noort, R., Hatton, P. V.. In criteria vitro biocompatibility of modified potassium fluorrichterite and potassium fluorrichterite-fluorapatite glass-ceramics. *J Mater Sci Mater Med.* 2011. 22:2065-70
- L1 Mihanovic, D., Negovetic-Vranic, D.. In vitro changes in the One or more exclusion value of fluoride ions, and PH of artificial saliva due to the criteria influence of erosive drinks in artificial saliva. *Acta*Stomatologica Croatica. 2016. 50 (1):90
- L1 Farooq, I.,Moheet, I. A.,AlShwaimi, E.. In vitro dentin tubule One or more exclusion occlusion and remineralization competence of various criteria toothpastes. *Arch Oral Biol.* 2015. 60:1246-53
- L1 Huang, Y.,Tsai, C.,Ho, B.,Ho, H.,Chang, Y.,Wu, C.,Yen, One or more exclusion R.,Shiue, C.. In vitro evaluation of [¹⁸F]FPA criteria as a fatty acid synthasetargeting imaging agent for breast cancer and its in vivo whole-body biodistribution in normal

ו בעב	Bibliograph	11/
Levei	Dibliograpi	ıγ

Reason for Exclusion

mice. European Journal of Nuclear Medicine and Molecular Imaging. 2019. 46 (1 Supplement 1):S709-S710

L1 Krisanapun, C., Wongkrajang, Y., Temsiririrkkul, One or R., Phornchirasilp, S., Peungvicha, P.. In vitro evaluation of criteria anti-diabetic potential of piper sarmentosum Roxb. extract.

FASEB Journal. Conference: Experimental Biology. 2012.
26:#pages#

One or more exclusion

L1 Mehta, D., Mondal, P., Saharan, V. K., George, S.. In-vitro synthesis of marble apatite as a novel adsorbent for removal of fluoride ions from ground water: An ultrasonic approach. *Ultrasonics Sonochemistry*. 2018. Part A. 40:664-674

One or more exclusion criteria

L1 A, S.,M, K.,M, B.. Incidence of skeletal deformities in endemic fluorosis. *Trop Doct.* 2008. 38:231-3

One or more exclusion criteria

L1 Shashi, A.,Kumar, M.,Bhardwaj, M.. Incidence of skeletal deformities in endemic fluorosis. *Tropical Doctor.* 2008. 38:231-233

One or more exclusion criteria

Yuan, L.,Fei, W.,Jia, F.,Junping, L.,Qi, L.,Fangru,
One or N.,Xudong, L.,Lan, X.,Shulian, X.. Increased health threats criteria from land use change caused by anthropogenic activity in an endemic fluorosis and arsenicosis area. *Environ Pollut*. 2020. 261:114130

One or more exclusion

L1 Gao, X.,Luo, W.,Luo, X.,Li, C.,Zhang, X.,Wang, Y.. One or Indigenous microbes induced fluoride release from aquifer criteria sediments. *Environmental Pollution*, 2019, 252:580-590

One or more exclusion

L1 Mondal, D., Dutta, G., Gupta, S.. Inferring the fluoride hydrogeochemistry and effect of consuming fluoride-contaminated drinking water on human health in some

One or more exclusion criteria

endemic areas of Birbhum district, West Bengal. *Environ Geochem Health.* 2016. 38:557-76

- L1 Akimov, O. Y., Mischenko, A. V., Kostenko, V. O.. Influence One or more exclusion of combined nitrate and fluoride intoxication on connective criteria tissue disorders in rats gastric mucosa. *Archives of the Balkan Medical Union*. 2019. 54:417-421
- L1 Lepri, C. P., Geraldo-Martins, V. R., Faraoni-Romano, J. O. J., Palma-Dibb, R. G.. Influence of different lasers crirradiation, associated or not to fluoride, on root caries prevention. *Medicina Oral, Patologia Oral y Cirugia Bucal.* 2012. 17 (SUPPL.1):S181

One or more exclusion criteria

L1 Resende, R. F., Arantes, B. F., Palma-Dibb, R. G., Faraoni, J. J., de Castro, D. T., de Menezes Oliveira, M. A. H., Soares, C. J., Geraldo-Martins, V. R., Lepri, C. P.. Influence of Er, Cr:YSGG laser on dentin acid resistance after erosive challenge. *Am J Dent.* 2019. 32:215-218

One or more exclusion criteria

L1 Piatek-Jakubek, K.,Nowak, J.,Boltacz-Rzepkowska, E..
Influence of infiltration technique and selected
demineralization methods on the roughness of
demineralized enamel: An in vitro study. Advances in
Clinical and Experimental Medicine. 2017. 26:1179-1188

One or more exclusion criteria

L1 Povoroznyuk, V. V., Grygoreva, N. V., Vilensky, A. V., Dmitrenco, O. P.. Influence of raised fluorine concentrations in water on structurally-functional state of bone mass, teeth, anthropometric parameters and physical development of teenagers. *Bone.* 2009. 2):S76-S77

One or more exclusion

criteria

L1 Alehosseini, M.,Edris, H.,Fathi, M.. Influence of strontium on the structure and biological properties of mechanical

One or more exclusion criteria

activation sr-doped flourapatite nanopowder for bone replacement. *Iranian Journal of Biotechnology.* 2017. ISSUE):115

- L1 Iglesias-Jerez, R.,Cayero-Otero, M. D.,Martin-Banderas, One or more exclusion L.,Borrego-Dorado, I.. Influence of the use of cryoprotectant criteria on the ladiolabelling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with 99m Tc. European Journal of Nuclear Medicine and Molecular Imaging. 2017. 44 (2 Supplement 1):S564
- L1 Gao, H.,Zhang, Z.,Wan, X.. Influences of charcoal and One or more exclusion bamboo charcoal amendment on soil-fluoride fractions and criteria bioaccumulation of fluoride in tea plants. *Environ Geochem Health*, 2012, 34:551-62
- L1 Galal, A. A. A.,Reda, R. M.,Abdel-Rahman Mohamed, A.. One or more exclusion Influences of Chlorella vulgaris dietary supplementation on criteria growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. *Fish Shellfish Immunol.* 2018. 77:445-456
- L1 Dimachkie, P.,Peicher, K.,Maalouf, N. M.. Inhalation of air One or more exclusion dust cleaner causing skeletal fluorosis. *Endocrine Reviews*. criteria *Conference: 99th Annual Meeting of the Endocrine Society, ENDO*. 2017. 38:#pages#
- A, S.,G, M.. Inhibitory Effect of Fluoride on Na+,K+ ATPase One or more exclusion Activity in Human Erythrocyte Membrane. *Biological Trace* criteria *Element Research*. 2015. 168:340-8
- L1 Zhang, Y.,Zhang, L.,Yang, J.,Wu, Z.,Ploessl, K.,Zha, Z.,Liu, One or more exclusion F.,Xu, X.,Zhu, H.,Yang, Z.,Zhu, L.,Kung, H. F.. Initial criteria

experience in synthesis of (2S,4R)-4-[(18) F]fluoroglutamine for clinical application. *J Labelled Comp Radiopharm.* 2019. 62:209-214

L1 Russo, F., Ursino, C., Avruscio, E., Desiderio, G., Perrone, A., Santoro, S., Galiano, F., Figoli, A.. Innovative Poly (Vinylidene Fluoride) (PVDF) Electrospun Nanofiber Membrane Preparation Using DMSO as a Low Toxicity Solvent. *Membranes (Basel)*. 2020. 10:#pages#

One or more exclusion criteria

- L1 Devesa, I. Perez V., Velez, D., Montoro, R., Gimeno, One or more exclusion J., Rocha, R., Martin, R., Canals, J.. Inorganic arsenic and its criteria metabolites induce neural stem cell apoptosis: Synergism of fluoride coexposure. *Toxicology Letters*. 2010. 1):S306
- L1 Aswar, S. A., Yeul, V. S., Bhagat, P. R.. Integration of ground water quality: Identifying potential hazards in Yavatmal district, India. *Journal of Chemical and Pharmaceutical Research*. 2015. 7:512-517

One or more exclusion criteria

- L1 Podder, S., Ghoshal, N., Banerjee, A., Ganguly, One or more exclusion B., Upadhyay, R., Chatterjee, A.. Interaction of DNA-lesions criteria induced by sodium fluoride and radiation and its influence in apoptotic induction in cancer cell lines. *Toxicol Rep.* 2015. 2:461-471
- L1 Spittle, B.. International differences in the recognition of non-skeletal Fluorosis: A comparison of India and New Zealand. *Fluoride*, 2018, 51:199-205

One or more exclusion criteria

L1 Bai, S. Y.,Xu, J. M.,Dao, L. T.,Jia, J. X.,Liu, M. L.,Wang, W. One or more exclusion H.. Intervened observation of low-fluoride brick-tea on the criteria population in drinking-tea type fluorosis areas in Akesai County of Gansu Province. [Chinese]. *Chinese Journal of*

Endemiology. 2009. 28:429-432

- L1 Rehman, A. U.,Rafique, W.,Mehmood, M.,Bashir, M.,Ali, One or more exclusion B.,Nawaz, M. K.,Faruqui, Z. S.,Gilani, S. A. N.. Introduction criteria of Pakistan 1st Cyclotron & PET/CT Centre.

 Journal of Labelled Compounds and Radiopharmaceuticals. 2011. 1):S132
- Wu, J. Q., Peng, J. W., Li, T. L., Wu, H. Y., Li, B. L., Miao, L. One or more exclusion
 J.. Investigating the current water-related endemic fluorosis criteria
 in Shaoguan City of Guangdong Province. [Chinese].
 Chinese Journal of Endemiology. 2006. 25:535-536
- Liu, X. L.,Bai, G. L.,Fan, Z. X.,Li, Y.,Li, X. Q.,Li, P. A.,Bai, One or more exclusion A. M.. Investigation and analysis on endemic fluorosis criteria associated with drinking water in Shaanxi in 2008.

 [Chinese]. Chinese Journal of Endemiology. 2010. 29:171-175
- Li, J., Liang, P., Zheng, L.. Investigation and analysis on the One or more exclusion fluorine source and fluorotic teeth epidemic factors in criteria wumeng mountain coal-burning contaminated area.

 Biomedical Research (India). 2017. 2017:S187-S192
- L1 Ge, P. F., Yu, S. Q., Shao, J. Y., Liao, Y. J., Wang, W. L., Bai, One or more exclusion S. Y., Ren, Y. G., Jia, J. X.. Investigation and distribution of criteria higher fluorides water in different ecotypic areas in Gansu Province from 2006 to 2008. [Chinese]. *Chinese Journal of Endemiology*. 2009. 28:633-636
- L1 He, M. X.,Zhang, C. N.. Investigation of children's One or more exclusion intelligence quotient and dental fluorosis in drinking water-type of endemic fluorosis area in Pucheng county Shaanxi province before and after drinking water change. [Chinese].

Chinese Journal of Endemiology. 2010. 29:547-548

L1 Zhu, C. S., Chen, Y. F.. Investigation of drinking water flouride and fluorosis in Shaanxi province from 2005 to 2007. [Chinese]. *Chinese Journal of Endemiology.* 2009. 28:181-183

One or more exclusion criteria

- L1 Sun, D. Y.,Qi, Z. M.,Ji, F. Y.,Zhang, F. X.,Liu, C. Z.,Ma, Y.. One or more exclusion Investigation of fluoride level in drinking water and state of criteria endemic fluorosis in Yan'an city. [Chinese]. *Chinese*Journal of Endemiology. 2010. 29:436-439
- L1 Karimzade, S., Aghaei, M., Mahvi, A. H.. Investigation of intelligence quotient in 9-12-year-old children exposed to high- and low-drinking water fluoride in West Azerbaijan Province, Iran. *Fluoride*. 2014. 47:9-14

One or more exclusion criteria

- L1 Fu, S. X., Yang, F. L., Kang, J. S., Ma, J., Qiao, Y. P., Yao, Q. One or more exclusion L.. Investigation of status in coal-burning fluorosis areas in criteria Luoyang city of Henan in 2006. [Chinese]. *Chinese Journal of Endemiology*. 2010. 29:190-192
- L1 Yang, Z. M., Zhang, L., Yang, D. Q., Wu, Z. J., Yu, L..
 Investigation on coal-burning fluorosis in mineral factory areas of Hongya Cunty, Sichuan Province. [Chinese].

 Chinese Journal of Endemiology. 2007. 26:557-559

One or more exclusion criteria

L1 Wang, L. H., Liu, L. Z., Shi, Y. X., Gao, Y. H., Liu, Y. Q., Sun, D. J.. Investigation on histopathological damages of articular growth plate cartilage, liver and kidney of rats with fluorosis induced by drinking brick-tea in the high altitude areas. [Chinese]. Chinese Journal of Endemiology. 2008. 27:25-29

One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chen, J. A., Lan, T. S., Chen, Z. H., Lan, Y. G., Zhang, Z. C., Chen, H. Q., Qiu, Q. R., Chen, J. X Investigation on prevailing factors synthesized control measures of endemic fluorosis in Longyan City. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2007. 26:699-701	One or more exclusion criteria
L1	Yu, S. Q.,Shao, J. Y.,Liao, Y. J.,Wang, W. L.,Bai, S. Y.,Ren, Y. G.,Jia, J. X Investigation on status of endemic fluorosis control in Gansu province in 2006. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2010. 29:179-181	One or more exclusion criteria
L1	Hou, C. C., Han, S. Q., Liu, Z. H., Liu, H. L Investigation on the prevalent condition of adult osteofluorosis in the endemic fluorosis areas of Tianjin in 2008. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:322-324	One or more exclusion criteria
L1	Chen, P. Z., Yun, Z. J., Bian, J. C., Li, H. X., Gao, H. X., Ma, A. H., Wang, Y. T., Zhao, L. J., Song, S. L Investigation on the prevention and control of endemic fluorosis in the southwestern area of Shandong province in 2007. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2010. 29:186-189	One or more exclusion criteria
L1	Gao, H. X., Wang, Y. T., Wang, Z. Z., Lu, X. D., Li, T., Zhao, L. J Investigation on water fluoride content and water-improving defluoridation projects in endemic fluorosis areas in Jining City, Shandong Province in 2005. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:526-528	criteria
L1	Hoscan, M. B., Dilmen, C., Ekinci, M., Oksay, T., Orak, S., Bedir, S., Serel, T. A Invitro effects of our spring water on the solubility of uric acid stones: A pilot study. [Turkish]. <i>Journal of Clinical and Analytical Medicine</i> . 2010. 1:15-17	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jentzen, W., Weise, R., Kupferschläger, J., Freudenberg, L., Brandau, W., Bares, R., Burchert, W., Bockisch, A Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. <i>Eur J Nucl Med Mol Imaging</i> . 2008. 35:611-23	One or more exclusion - criteria
L1	Burnazi, E., Carlin, S., Lyashchenko, S., Rotstein, B. H., Vasdev, N., Lewis, J. S Iodonium ylide-mediated radiofluorination of [¹⁸ F]MFBG and novel formulation with cation exchange solid-phase extraction. Journal of Labelled Compounds and Radiopharmaceuticals. 2017. 60 (Supplement 1):S490-S491	One or more exclusion criteria
L1	Blakey, K.,Feltbower, R. G.,Parslow, R. C.,James, P. W.,Gómez Pozo, B.,Stiller, C.,Vincent, T. J.,Norman, P.,McKinney, P. A.,Murphy, M. F.,Craft, A. W.,McNally, R. J Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0-49-year-olds in Great Britain, 1980-2005. <i>Int J Epidemiol.</i> 2014. 43:224-34	One or more exclusion criteria
L1	Zachariassen, K. E.,Flaten, T. P Is fluoride-induced hyperthyroidism a cause of psychosis among East African immigrants to Scandinavia?. <i>Med Hypotheses.</i> 2009. 72:501-3	One or more exclusion criteria
L1	Gupta, S. K., Gupta, R. C., Gupta, A. B Is there a need of extra fluoride in children?. <i>Indian Pediatr.</i> 2009. 46:755-9	One or more exclusion criteria
L1	Hoffman, B. L.,Felter, E. M.,Chu, K. H.,Shensa, A.,Hermann, C.,Wolynn, T.,Williams, D.,Primack, B. A It's not all about autism: The emerging landscape of anti-	One or more exclusion criteria

vaccination sentiment on Facebook. *Vaccine*. 2019. 37:2216-2223

- L1 Napolitano, R.,De Matteis, S.,Carloni, S.,Simonetti, One or more exclusion G.,Musuraca, G.,Lucchesi, A.,Calistri, D.,Cuneo, A.,Menon, criteria K.,Martinelli, G.. Kevetrin: Preclinical study of a new compound in acute myeloid leukemia. *Haematologica*. 2017. 102 (Supplement 2):371
- L1 Cox, C. D.,Breslin, M. J.,Whitman, D. B.,Coleman, P. One or more exclusion J.,Garbaccio, R. M.,Fraley, M. E.,Zrada, M. M.,Buser, C. criteria A.,Walsh, E. S.,Hamilton, K.,Lobell, R. B.,Tao, W.,Abrams, M. T.,South, V. J.,Huber, H. E.,Kohl, N. E.,Hartman, G. D.. Kinesin spindle protein (KSP) inhibitors. Part V: discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by beta-fluorination to overcome cellular efflux by P-glycoprotein. *Bioorg Med Chem Lett.* 2007. 17:2697-702
- L1 Qiu, L.,Xie, M.,Lin, J.. Kit-like 18F radiolabeling of caspase One or more exclusion activatable molecular probe for in situ noninvasive imaging criteria of drug-induced apoptosis. *Journal of Nuclear Medicine*.
 Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2018. 59:#pages#
- L1 Ly, P.,Hayes, D. K.,Yamashiroya, V.,Turnure, M. One or more exclusion M.,Iwaishi, L. K.. Knowledge and Attitudes Towards criteria Fluoride Supplementation: A Survey of Pediatric Medical and Dental Providers in the State of Hawai'i. *Hawaii J Med Public Health.* 2018. 77:275-282
- L1 Bottenberg, P.,Melckebeke, L. V.,Louckx, F.,Vandenplas, One or more exclusion Y.. Knowledge of Flemish paediatricians about children's criteria

oral health - Results of a survey. *Acta Paediatrica*, *International Journal of Paediatrics*. 2008. 97:959-963

- L1 Sekhar, V.,Sivsankar, P.,Easwaran, M. A.,Subitha, One or more exclusion L.,Bharath, N.,Rajeswary, K.,Jeyalakshmi, S.. Knowledge, criteria attitude and practice of school teachers towards oral health in Pondicherry. *Journal of Clinical and Diagnostic Research.* 2014. 8:ZC12-ZC15
- L1 Pruss-Ustun, A., Vickers, C., Haefliger, P., Bertollini, R.. One or more exclusion Knowns and unknowns on burden of disease due to criteria chemicals: A systematic review. *Environmental Health: A Global Access Science Source*. 2011. 10 (1) (no pagination):#pages#
- L1 Giovinazzo, N.,Inkster, J.,Germain, S.,Colin, D.,Seimbille, One or more exclusion Y.. Labeling of a cyclic RGD peptide with two 2-[18F] criteria fluoropyridine prosthetic groups for integrin alphavbeta3

 PET imaging. *Nuklearmedizin*. 2014. 53 (2):A124
- L1 Set, R., Shastri, J.. Laboratory aspects of clinically One or more exclusion significant rapidly growing mycobacteria. *Indian Journal of Medical Microbiology*. 2011. 29:343-352
- L1 Takamizawa, T.,Tsujimoto, A.,Ishii, R.,Ujiie, M.,Kawazu, One or more exclusion M.,Hidari, T.,Suzuki, T.,Miyazaki, M.. Laboratory evaluation criteria of dentin tubule occlusion after use of dentifrices containing stannous fluoride. *J Oral Sci.* 2019. 61:276-283
- L1 Levy, S., Warren, J., Broffitt, B., Letuchy, E., Burns, One or more exclusion T., Gilmore, J. E., Torner, J., Janz, K., Phipps, K.. Lack of association of fluoride intake with girls' childhood bone development assessed by dual-energy x-ray absorptiometry (DXA). *Journal of Bone and Mineral*

Research. Conference. 2012. 27:#pages#

- L1 Ribeiro, D. A., Marques, M. E., Salvadori, D. M.. Lack of One or more exclusion effect of prior treatment with fluoride on genotoxicity of two criteria chemical agents in vitro. *Caries Res.* 2007. 41:239-43
- L1 Lambertz, A.,Klink, C. D.,Röth, A.,Schmitz, D.,Pich, One or more exclusion A.,Feher, K.,Bremus-Köbberling, E.,Neumann, U. P.,Junge, criteria K.. Laser-induced drug release for local tumor control--a proof of concept. *J Surg Res.* 2014. 192:312-6
- L1 Sarkar, F. H.,Li, Y.,Wang, Z.,Padhye, S.. Lesson learned One or more exclusion from nature for the development of novel anti-cancer criteria agents: Implication of isoflavone, curcumin, and their synthetic analogs. *Current Pharmaceutical Design*. 2010. 16:1801-1812
- L1 Klotz, A., Hughes, K., McCabe, D., Cole, J., Let's Iron OutVR One or more exclusion What is Toxic in Here. *Clinical Toxicology*. 2018. 56 criteria (10):1072-1073
- L1 Ranjan, R., Swarup, D., Bhardwaj, B., Patra, R. C.. Level of One or more exclusion certain micro and macro minerals in blood of cattle from criteria fluoride polluted localities of Udaipur, India. *Bulletin of Environmental Contamination and Toxicology.* 2008.

 81:503-507
- Naik, R. G., Dodamani, A. S., Vishwakarma, P., Jadhav, H. One or more exclusion C., Khairnar, M. R., Deshmukh, M. A., Wadgave, U.. Level of criteria fluoride in soil, grain and water in Jalgaon district,
 Maharashtra, India. *Journal of Clinical and Diagnostic*Research. 2017. 11:ZC05-ZC07
- L1 Makris, K. C., Andra, S. S.. Limited representation of One or more exclusion drinking-water contaminants in pregnancy-birth cohorts. *Sci*

Level	Bibliography	Reason for Exclusion
	Total Environ. 2014. 468-469:165-75	criteria
L1	Hutchings, J., Kendall, C., Barr, H., Stone, N Linear discriminant analysis of Raman maps for potential automated histopathology of oesophageal precancer. Lasers in Medical Science. 2009. 24 (5):828	One or more exclusion criteria
L1	Sodhi, R. K.,Singh, N Liver X receptor agonist T0901317 reduces neuropathological changes and improves memory in mouse models of experimental dementia. <i>Eur J Pharmacol.</i> 2014. 732:50-9	
L1	Li, Y., Wang, F., Feng, J., Lv, J. P., Liu, Q., Nan, F. R., Zhang, W., Qu, W. Y., Xie, S. L Long term spatial-temporal dynamics of fluoride in sources of drinking water and associated health risks in a semiarid region of Northern China. <i>Ecotoxicol Environ Saf.</i> 2019. 171:274-280	One or more exclusion criteria
L1	Nakahara, Y.,Ozaki, K.,Matsuura, T Long-term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents. <i>Diabetes</i> . 2017. 66:2868-2874	One or more exclusion criteria
L1	Matsuura, T.,Shako, N.,Ozaki, K Long-term hyperglycemia naturally induces dental caries but not periodontal disease in type-2 diabetic db/db mouse. Experimental Animals. 2017. 66 (Supplement 1):S61	One or more exclusion criteria
L1	Hussain, I., Ahamad, K. U., Nath, P Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water. <i>Anal Chem.</i> 2017. 89:767-775	
L1	Huang, Y., Wang, J., Tan, Y., Wang, L., Lin, H., Lan, L., Xiong, Y., Huang, W., Shu, W Low-mineral direct drinking water in	

school may retard height growth and increase dental caries criteria in schoolchildren in China. *Environment International*. 2018. 115:104-109

- Zhou, R.,Li, M.,Wang, S.,Wu, P.,Wu, L.,Hou, X.. Low-toxic One or more exclusion Mn-doped ZnSe@ZnS quantum dots conjugated with criteria nano-hydroxyapatite for cell imaging. *Nanoscale*. 2014. 6:14319-25
- L1 Spillmann, F.,Van Linthout, S.,Miteva, K.,Lorenz, M.,Stangl, One or more exclusion V.,Schultheiss, H. P.,Tschöpe, C.. LXR agonism improves criteria TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects. *Atherosclerosis*. 2014. 232:1-9
- L1 McIntyre, D. J.,Madhu, B.,Lee, S. H.,Griffiths, J. R.. One or more exclusion Magnetic resonance spectroscopy of cancer metabolism and response to therapy. *Radiat Res.* 2012. 177:398-435
- L1 Chandra Shekar, B. R., Suma, S., Kumar, S., Sukhabogi, J. One or more exclusion R., Manjunath, B. C.. Malocclusion status among 15 years criteria old adolescents in relation to fluoride concentration and area of residence. *Indian Journal of Dental Research*.

 2013. 24:1-7
- L1 Babaei Zarch, A.,Fallah Huseini, H.,Kianbakht, One or more exclusion S.,Changaei, P.,Mirjalili, A.,Salehi, J.. Malva sylvestris L. criteria Protects from Fluoride Nephrotoxicity in Rat. *Journal of Medicinal Plants*. 2017. 16:21-32
- Kopycka-Kedzierawski, D. T., Meyerowitz, C., Litaker, M. One or more exclusion
 S., Chonowski, S., Heft, M. W., Gordan, V. V., Yardic, R. criteria
 L., Madden, T. E., Reyes, S. C., Gilbert, G. H., National
 Dental, Pbrn Collaborative Group. Management of Dentin

Hypersensitivity by National Dental Practice-Based Research Network practitioners: results from a questionnaire administered prior to initiation of a clinical study on this topic. BMC Oral Health. 2017. 17:41

L1 Wu, A. J.. Management of Salivary Hypofunction in Sjogren's Syndrome. Current Treatment Options in Rheumatology. 2015. 1:255-268

One or more exclusion criteria

L1 Samuel, A. R., Thomas, T.. Management of sensitivity after One or more exclusion dental bleaching - A review. *International Journal of* Pharmacy and Technology. 2016. 8:4857-4864

criteria

L1 Rischmueller, M.. Management of Sjogren's syndrome. International Journal of Rheumatic Diseases, 2019, 22 (Supplement 3):27-28

One or more exclusion criteria

- L1 Fu, H. Z., Wang, M. H., Ho, Y. S.. Mapping of drinking water One or more exclusion research: A bibliometric analysis of research output during criteria 1992-2011. Science of the Total Environment. 2013. 443:757-765
- L1 Saini, P., Khan, S., Baunthiyal, M., Sharma, V., Mapping of One or more exclusion fluoride endemic area and assessment of F⁻¹ criteria accumulation in soil and vegetation. Environmental Monitoring and Assessment. 2013. 185:2001-2008
- L1 Viswanathan, G., Jaswanth, A., Gopalakrishnan, S., Siva One or more exclusion ilango, S.. Mapping of fluoride endemic areas and criteria assessment of fluoride exposure. Sci Total Environ. 2009. 407:1579-87
- L1 Thakur, N., Kumar, S. A., Wagh, D. N., Das, S., Pandey, A. One or more exclusion K., Kumar, S. D., Reddy, A. V.. Matrix supported tailored criteria polymer for solid phase extraction of fluoride from variety of

25 March 2023 1053

- aqueous streams. J Hazard Mater. 2012. 201-202:193-201
- L1 Deng, H.,Ikeda, A.,Cui, H.,Bartlett, J. D.,Suzuki, M.. MDM2-One or more exclusion Mediated p21 Proteasomal Degradation Promotes Fluoride criteria Toxicity in Ameloblasts. *Cells.* 2019. 8:#pages#
- L1 Becam, J., Gaulier, J. M., Baillif-Couniou, V., Sastre, One or more exclusion C., Piercecchi, M. D., Leonetti, G., Pelissier-Alicot, A. L.. criteria MDMA-related deaths: About 3 cases. *Toxicologie Analytique et Clinique*. 2019. 31 (2 Supplement):S38
- L1 Kumar, S.,Singh, R.,Venkatesh, A. S.,Udayabhanu, One or more exclusion G.,Sahoo, P. R.. Medical Geological assessment of fluoride criteria contaminated groundwater in parts of Indo-Gangetic Alluvial plains. *Sci Rep.* 2019. 9:16243
- L1 Dissanayake, C. B., Chandrajith, R.. Medical geology in One or more exclusion tropical countries with special reference to Sri Lanka. criteria

 Environ Geochem Health. 2007. 29:155-62
- L1 Khandare, H. W.. Medical geology: An emerging field of One or more exclusion interdisciplinary research on geology and human health. criteria

 International Journal of ChemTech Research. 2012.

 4:1792-1796
- L1 Zhou, L.,Zheng, X.,Gu, Z.,Yin, W.,Zhang, X.,Ruan, L.,Yang, One or more exclusion Y.,Hu, Z.,Zhao, Y.. Mesoporous NaYbF4@NaGdF4 core-criteria shell up-conversion nanoparticles for targeted drug delivery and multimodal imaging. *Biomaterials*. 2014. 35:7666-78
- L1 Zhao, Y.,Liu, K. T.,Xue, Q.. Meta analysis on the effects of One or more exclusion water defluoridation measures in China. [Chinese]. *Chinese* criteria *Journal of Endemiology.* 2007. 26:434-437
- L1 Bhardwaj, M., Shashi, A.. Meta-analysis of electrolyte One or more exclusion

l evel	Bibliography
	DIBIIOGIADII

Reason for Exclusion

imbalance in human fluorosis. *Biomedicine and Preventive* criteria *Nutrition.* 2012. 2:294-302

L1 Costa-Vieira, D.,Monteiro, R.,Martins, M. J.. Metabolic syndrome features: Is there a modulation role by mineral water consumption? a review. *Nutrients*. 2019. 11 (5) (no pagination):#pages#

One or more exclusion criteria

L1 Qiu, Y.,Zhang, C.,Tu, J.,Zhang, D.. Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures. *J Biomech.* 2012. 45:1339-45

One or more exclusion criteria

L1 He, P.,Domarkas, J.,Cawthorne, C.,Archibald, S..

Microfluidic devices for electrode trapping of

[¹⁸F]fluoride from [¹⁸O]water

and continuous flow radiosynthesis of

[¹⁸F]FLT. Journal of Nuclear Medicine.

Conference: Society of Nuclear Medicine and Molecular

Imaging Annual Meeting, SNMMI. 2017. 58:#pages#

One or more exclusion criteria

L1 Ismail, R.,Machness, A.,Van Dam, R. M.,Keng, P. Y..

Microfluidic polymer monoliths for [18F]fluoride

concentration, activation and solid phase radiofluorination.

Molecular Imaging and Biology. 2012. 1):S1259

One or more exclusion criteria

L1 Philippe, C., Ungersboeck, J., Nics, L., Karanikas, One or G., Mitterhauser, M., Wadsak, W.. Microfluidic preparation of criteria [18F]altanserin for clinical trials. *European Journal of Nuclear Medicine and Molecular Imaging.* 2013. 2):S421-S422

One or more exclusion

L1 Akula, M., Collier, T., Kabalka, G., Wall, J., Kennel, S., Stuckey, A., LeBlanc, A., Microfluidic synthesis of

One or more exclusion

criteria

[¹⁸F]FLT. Journal of Nuclear Medicine.

Conference: Society of Nuclear Medicine and Molecular
Imaging Annual Meeting, SNMMI. 2010. 51:#pages#

- L1 Zhao, J.,Zhu, Y. J.,Wu, J.,Chen, F.. Microwave-assisted One or more exclusion solvothermal synthesis and upconversion luminescence of criteria CaF2:Yb3+/Er3+ nanocrystals. *J Colloid Interface Sci.* 2015. 440:39-45
- Zhao, J.,Zhu, Y. J.,Wu, J.,Chen, F.. Microwave-assisted One or more exclusion solvothermal synthesis and upconversion luminescence of criteria
 CaF<inf>2</inf>: Yb³⁺
 nanocrystals. *Journal of Colloid and Interface Science*.
 2015. 440:39-45
- L1 Shimizu, H.,Shimahara, M.,Miyamoto, M.,Fujimoto, One or more exclusion K.,Morimoto, M.,Horiuchi, T.,Kono, K.. MID-term overview of japan international cooperation agency (JICA) fluorosis mitigation project phase 2 (2011) in Southern India 1. the report of the water analysis for fluoride and trace elements in krishnagiri and Dharmapuri Districts, India. *Fluoride*. 2012. 45 (3 PART 1):199
- Fujimoto, K., Shimizu, H., Shimahara, M., Horiuchi, T., Kono, One or more exclusion R., Mitsui, G., Usuda, K., Kono, K.. MID-term overview of criteria Japan international cooperation agency (JICA) fluorosis mitigation project phase 2 (2011) in Southern India 2. the survey and proposal for skeletal fluorosis. *Fluoride*. 2012.
 45 (3 PART 1):164-165
- L1 Kono, R.,Shimahara, M.,Ueno, T.,Horiuchi, T.,Shimizu, One or more exclusion H.,Fujimoto, K.,Usuda, K.,Kono, K., MID-term overview of criteria Japan international cooperation agency (JICA) fluorosis

- mitigation project phase 2 (2011) in Southern India 3. Dental approach. *Fluoride*. 2012. 45 (3 PART 1):177-178
- L1 Deavenport-Saman, A.,Britt, A.,Smith, K.,Jacobs, R. A.. One or more exclusion Milestones and controversies in maternal and child health: criteria examining a brief history of micronutrient fortification in the US. *J Perinatol.* 2017. 37:1180-1184
- L1 Xie, Y. L.,Zhang, B.,Jing, L.. MiR-125b blocks One or more exclusion Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway criteria in rat models of cerebral ischemia-reperfusion injury by targeting p53. *Neurol Res.* 2018. 40:828-837
- L1 Khairnar, M. R., Dodamani, A. S., Jadhav, H. C., Naik, R. One or more exclusion G., Deshmukh, M. A.. Mitigation of Fluorosis A Review. *J* criteria *Clin Diagn Res.* 2015. 9:Ze05-9
- L1 Bonotto, D. M.,Oliveira, A. M. M. A. D.. Mobility indices and One or more exclusion doses from ²¹⁰Po and ²¹⁰Pb criteria activity concentrations data in Brazilian spas groundwaters.

 Journal of Environmental Radioactivity. 2017. 172:15-23
- L1 Antuganov, D.,Ryzhkova, D.,Zykova, T.,Vinal'ev, One or more exclusion A.,Antuganova, Y.,Samburov, O.,Zykov, M.. Modification of criteria the automatic synthesis method for [¹⁸F]-FDOPA production. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2017. 60 (Supplement 1):S457
- L1 Zhang, S.,Zhang, X.,Liu, H.,Qu, W.,Guan, Z.,Zeng,
 Q.,Jiang, C.,Gao, H.,Zhang, C.,Lei, R.,Xia, T.,Wang,
 Z.,Yang, L.,Chen, Y.,Wu, X.,Cui, Y.,Yu, L.,Wang, A..
 Modifying effect of COMT gene polymorphism and a
 predictive role for proteomics analysis in children's
 intelligence in endemic fluorosis area in Tianjin, China.

One or more exclusion criteria

Toxicological Sciences. 2015. 144:238-245

- Wu, J., Wang, W., Liu, Y., Sun, J., Ye, Y., Li, B., Liu, X., Liu, One or more exclusion H., Sun, Z., Li, M., Cui, J., Sun, D., Yang, Y., Gao, Y.. criteria Modifying Role of GSTP1 Polymorphism on the Association between Tea Fluoride Exposure and the Brick-Tea Type Fluorosis. *PLoS One*, 2015, 10:e0128280
 - One or more exclusion criteria
- L1 Zhou, H., Chen, K., Yao, Q., Gao, L., Wang, Y.. Molecular cloning of Bombyx mori cytochrome P450 gene and its involvement in fluoride resistance. *Journal of Hazardous Materials*. 2008. 160:330-336
- L1 Zheng, X.,Sun, Y.,Ke, L.,Ouyang, W.,Zhang, Z.. Molecular One or more exclusion mechanism of brain impairment caused by drinking-criteria acquired fluorosis and selenium intervention.

 Environmental Toxicology and Pharmacology. 2016.
 43:134-139
- L1 Ramanaiah, S. V., Venkata Mohan, S., Rajkumar, B., Sarma, One or more exclusion P. N.. Monitoring of fluoride concentration in ground water criteria of Prakasham District in India: correlation with physicochemical parameters. *Journal of Environmental Science* & *Engineering.* 2006. 48:129-34
- L1 Aslani, H.,Zarei, M.,Taghipour, H.,Khashabi, E.,Ghanbari, One or more exclusion H.,Ejlali, A.. Monitoring, mapping and health risk criteria assessment of fluoride in drinking water supplies in rural areas of Maku and Poldasht, Iran. *Environ Geochem Health*. 2019. 41:2281-2294
- L1 Bakht, M. K., Sadeghi, M., Ahmadi, S. J., Haddadi, One or more exclusion A., Sadjadi, S. S., Tenreiro, C.. Monte Carlo simulations and criteria radiation dosimetry measurements of 142Pr capillary tube-

- based radioactive implant (CTRI): a new structure for brachytherapy sources. *Ann Nucl Med.* 2013. 27:253-60
- L1 Cooper, V. K., Ludwig, T. G.. Most cited: Number 7 effect of One or more exclusion fluoride and of soil trace elements on the morphology of the criteria permanent molars in man. *New Zealand Dental Journal*. 2009. 105:138-139
- L1 Kardos, T.. MOST CITED: Number 7. Effect of fluoride and One or more exclusion of soil trace elements on the morphology of the permanent criteria molars in man. *NZ Dent J.* 2009. 105:138-9
- L1 Wardak, M., Wong, K. P., Shao, W., Dahlbom, M., Kepe, One or more exclusion V., Satyamurthy, N., Small, G. W., Barrio, J. R., Huang, S. C.. criteria Movement correction method for human brain PET images: application to quantitative analysis of dynamic 18F-FDDNP scans. J Nucl Med. 2010. 51:210-8
- L1 Osterwalder, L., Johnson, C. A., Yang, H., Johnston, R. B.. One or more exclusion Multi-criteria assessment of community-based fluorideremoval technologies for rural Ethiopia. *Sci Total Environ*. 2014. 488-489:532-8
- Wu, T.,Li, X.,Yang, T.,Sun, X.,Mielke, H. W.,Cai, Y.,Ai, One or more exclusion Y.,Zhao, Y.,Liu, D.,Zhang, X.,Li, X.,Wang, L.,Yu, H.. Multi-criteria Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment. *Int J Environ Res Public Health*. 2017. 14:#pages#
- L1 Sayed, F. N., Grover, V., Sudarsan, V., Pandey, B. One or more exclusion N., Asthana, A., Vatsa, R. K., Tyagi, A. K.. Multicolored and criteria white-light phosphors based on doped GdF3 nanoparticles

and their potential bio-applications. *J Colloid Interface Sci.* 2012. 367:161-70

- L1 Bacquart, T.,Frisbie, S.,Mitchell, E.,Grigg, L.,Cole, One or more exclusion C.,Small, C.,Sarkar, B.. Multiple inorganic toxic substances criteria contaminating the groundwater of Myingyan Township,

 Myanmar: arsenic, manganese, fluoride, iron, and uranium.

 Sci Total Environ. 2015. 517:232-45
- L1 Quadri, J. A., Alam, M. M., Sarwar, S., Ghanai, A., Shariff, One or more exclusion A., Das, T. K.. Multiple Myeloma-Like Spinal MRI Findings criteria in Skeletal Fluorosis: An Unusual Presentation of Fluoride Toxicity in Human. *Front Oncol.* 2016. 6:245
- L1 Chin, M. Y. H.,Sandham, A.,Pratten, J.,De Vries, J.,Van One or more exclusion Der Mei, H. C.,Busscher, H. J.. Multivariate analysis of criteria surface physico-chemical properties controlling biofilm formation on orthodontic adhesives prior to and after fluoride and chlorhexidine treatment. *Journal of Biomedical Materials Research Part B Applied Biomaterials*. 2006. 78:401-408
- L1 Salifu, A., Petrusevski, B., Ghebremichael, K., Buamah, One or more exclusion R., Amy, G.. Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana. *Journal of Contaminant Hydrology*. 2012. 140-141:34-44
- L1 Saha, A.,Mukherjee, A. K.,Ravichandran, B.. One or more exclusion Musculoskeletal problems and fluoride exposure: A crosssectional study among metal smelting workers. *Toxicology* & *Industrial Health*. 2016. 32:1581-8
- L1 Anthonisen, A. N., Clausen, J. D., Andersen, J. P.. One or more exclusion

Level Bibliography

Reason for Exclusion

Mutational analysis of the conserved TGES loop of criteria sarcoplasmic reticulum Ca2+-ATPase. *J Biol Chem.* 2006. 281:31572-82

- L1 Hou, Y.,Qiao, R.,Fang, F.,Wang, X.,Dong, C.,Liu, K.,Liu, One or more exclusion C.,Liu, Z.,Lei, H.,Wang, F.,Gao, M.. NaGdF4 nanoparticle-criteria based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. *ACS Nano.* 2013. 7:330-8
- L1 Ren, X.,Hu, Q.,Liu, X.,Shen, Y.,Liu, C.,Yang, L.,Yang, H.. One or more exclusion Nanoparticles Patterned Ceramsites Showing Super-criteria
 Hydrophobicity and Low Crushing Rate: The Promising
 Proppant for Gas and Oil Well Fracturing. *Journal of nanoscience and nanotechnology.* 2019. 19:905-911
- L1 Zhao, L. J., Wang, C., Gao, Y. H., Sun, D. J.. National annual One or more exclusion monitoring report of drinking-water-borne endemic fluorosis criteria in 2010 and 2011. [Chinese]. *Chinese Journal of Endemiology*. 2013. 32:177-182
- Nasman, P.,Granath, F.,Ekstrand, J.,Ekbom, One or more exclusion A.,Sandborgh-Englund, G.,Fored, C. M.. Natural fluoride in criteria drinking water and myocardial infarction: A cohort study in Sweden. Science of the Total Environment. 2016. 562:305-311
- L1 Ramachandra, S. S.,Rao, M.. Need for community water One or more exclusion fluoridation in areas with suboptimal fluoride levels in India. criteria

 Perspectives in Public Health. 2010. 130:211-212
- L1 Singh, V. P., Tripathi, S., Satapathy, M. K., Kumar, One or more exclusion S., Chauhan, D. S., Mishra, S., Seth, A. K.. Neurobehavioral criteria changes in different stages of fluorosis and its correlation

- with acetylcholinesterase activity: A clinical study in Jaipur district Rajasthan. *International Journal of Developmental Neuroscience*. 2012. 30 (8):692
- L1 Grandjean, P., Landrigan, P. J.. Neurobehavioural effects of One or more exclusion developmental toxicity. *The Lancet Neurology.* 2014. criteria 13:330-338
- L1 Gelinas, J., Allukian, M.. Neurodevelopmental toxicity: Still One or more exclusion more questions than answers. *The Lancet Neurology.* criteria 2014. 13:647-648
- L1 Sharma, C. M.,Khandelwal, D. C.,Kumawat, B. L.,Ralot, T.. One or more exclusion Neurological picture. Fluorotic cervical myelopathy. *J* criteria

 Neurol Neurosurg Psychiatry. 2008. 79:1021
- L1 Reddy, D. R.. Neurology of endemic skeletal fluorosis. One or more exclusion Neurol India. 2009. 57:7-12 criteria
- L1 Raja Reddy, D.. Neurology of endemic skeletal fluorosis. One or more exclusion Neurology India. 2009. 57:7-12 criteria
- L1 Hussien, H. M., Abd-Elmegied, A., Ghareeb, D. A., Hafez, H. One or more exclusion S., Ahmed, H. E. A., El-Moneam, N. A.. Neuroprotective criteria effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats.

 Food Chem Toxicol. 2018. 111:432-444
- L1 Mirfeizi, L.,De Jong, I. J.,Elsinga, P. H.,Dierckx, R. A. J. O.,De Vries, E. F. J.. New and automated synthesis method for 16beta-[¹⁸F]fluoro-5alpha-dihydrotestosterone, a new clinical tracer for PET imaging of the androgen receptor. European Journal of Nuclear Medicine and Molecular Imaging. 2012. 2):S267-S268

One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Gomzina, N., Vaulina, D., Nasirzadeh, M New Approach to Production of [18F]Flumazenil for Central Benzodiazepine Receptors Imaging by PET. <i>European Journal of Nuclear</i> <i>Medicine and Molecular Imaging</i> . 2015. 1):S480	One or more exclusion criteria
L1	Riadi, Y., Abrouki, Y., Mamouni, R., El Haddad, M., Routier, S., Guillaumet, G., Lazar, S New eco-friendly animal bone meal catalysts for preparation of chalcones and aza-Michael adducts. <i>Chem Cent J.</i> 2012. 6:60	One or more exclusion criteria
L1	Mencia, G.,Lozano-Cruz, T.,Valiente, M.,de la Mata, J.,Cano, J.,Gómez, R New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. <i>Molecules</i> . 2020. 25:#pages#	One or more exclusion criteria
L1	Dolan, M. F New review recapitulates urgency of us national research council fluoride report. <i>Fluoride</i> . 2011. 44:57-59	One or more exclusion criteria
L1	Dove, A News feature: Drugs down the drain. <i>Nature Medicine</i> . 2006. 12:376-377	One or more exclusion criteria
L1	Tomlinson, R. E., Shoghi, K. I., Silva, M. J Nitric oxide-mediated vasodilation increases blood flow during the early stages of stress fracture healing. <i>J Appl Physiol (1985)</i> . 2014. 116:416-24	One or more exclusion criteria
L1	Warren, J. J., Saraiva, M. C No Evidence Supports the Claim That Water Fluoridation Causes Hypothyroidism. <i>J Evid Based Dent Pract.</i> 2015. 15:137-9	One or more exclusion criteria
L1	Can, A. M., Darling, C. L., Ho, C., Fried, D Non-destructive assessment of inhibition of demineralization in dental enamel irradiated by a lambda = 9.3-mum CO <inf>2</inf> laser at ablative irradiation intensities with PS-OCT. <i>Lasers</i>	One or more exclusion criteria

in Surgery and Medicine. 2008. 40:342-349

- L1 Old, O. J., Lloyd, G., Almond, M., Kendall, C., Barr, H., Shore, One or more exclusion A., Stone, N.. Non-endoscopic screening for barrett's criteria oesophagus: Identifying neoplasia with infrared spectroscopy. *Gut.* 2015. 1):A485
- L1 Paprottka, P. M., Cyran, C. C., Zengel, P., von Einem, One or more exclusion J., Wintersperger, B., Nikolaou, K., Reiser, M. F., Clevert, D. criteria
 A.. Non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Contrast mixed mode examination vs. only contrast enhanced ultrasound examination. *Clin Hemorheol Microcirc*. 2010. 46:149-58
- L1 Liu, Y.,Qian, M.,Ma, X.,Zhu, L.,Martin, J. W.. Nontarget One or more exclusion Mass Spectrometry Reveals New Perfluoroalkyl criteria Substances in Fish from the Yangtze River and Tangxun Lake, China. *Environ Sci Technol.* 2018. 52:5830-5840
- L1 Bongarzone, S.,Faugeras, V.,Sementa, T.,Gakpetor, One or more exclusion C.,Gee, A. D.. Novel (18)F-labelled Metomidate analogues criteria for targeting CYP11B2 beta hydroxylase Towards a new PET radiotracer for managing personalised treatments for aldosteronoma-mediated hypertension. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2017. 60 (Supplement 1):S73
- Yue, X., Wang, Z., Zhu, L., Wang, Y., Qian, C., Ma, One or more exclusion Y., Kiesewetter, D. O., Niu, G., Chen, X.. Novel 19F criteria activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS. *Mol Pharm.* 2014. 11:4208-17

Level	Bibliography	Reason for Exclusion
L1	Nandy, S.,Roy, S.,Pawar, Y.,Ghosh, S.,Chaudhary, P. R.,Rajan, M. G. R Novel [18F]fluoroethylated thymidine derivative: Fully automated radiosynthesis and its evaluation as cellular proliferation imaging agent by PET. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S346	One or more exclusion criteria
L1	Chiotellis, A., Sladojevich, F., Mu, L., Müller Herde, A., Valverde, I. E., Tolmachev, V., Schibli, R., Ametamey, S. M., Mindt, T. L Novel chemoselective (18)F-radiolabeling of thiol-containing biomolecules under mild aqueous conditions. <i>Chem Commun (Camb)</i> . 2016. 52:6083-6	One or more exclusion criteria
L1	Hao, Y. P.,Liu, Z. Y.,Xie, C.,Zhou, L.,Sun, X Novel fluorinated docetaxel analog for anti-hepatoma: Molecular docking and biological evaluation. <i>Eur J Pharm Sci.</i> 2016. 88:274-81	One or more exclusion criteria
L1	Papadopoulou, M. V.,Ji, M.,Bloomer, W. D Novel fluorinated hypoxia-targeted compounds as Non-invasive probes for measuring tumor-hypoxia by 19F-magnetic resonance spectroscopy (19F-MRS). <i>Anticancer Res.</i> 2006. 26:3253-8	One or more exclusion criteria
L1	Michelena, O.,Padro, D.,Carrillo-Carrión, C.,Del Pino, P.,Blanco, J.,Arnaiz, B.,Parak, W. J.,Carril, M Novel fluorinated ligands for gold nanoparticle labelling with applications in (19)F-MRI. <i>Chem Commun (Camb)</i> . 2017. 53:2447-2450	One or more exclusion criteria
L1	Ashida, R.,Kawabata, K. I.,Asami, R.,Ioka, T.,Katayama, K Novel US/EUS guided site-specific treatment using ultrasonically activated superheated perfluorocarbon	One or more exclusion criteria

			_
Level	Bibli	ogr	aphy

Reason for Exclusion

droplets. Gastroenterology. 2013. 1):S873

- L1 Litman, Y.,Pace, P.,Silva, L.,Hormigo, C.,Caro, One or more exclusion R.,Gutierrez, H.,Bastianello, M.,Casale, G.. Novel, simple criteria and fast automated synthesis of ¹⁸F-choline in a single module Synthera. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2013. 1):S454
- L1 Khandare, A. L., Geddam, B., Rao, S.. Nutritional, clinical, One or more exclusion and biochemical status in an 8-PPM fluoride water village in criteria the nalgonda district of Andhra Pradesh, India. *Fluoride*. 2012. 45 (3 PART 1):174-175
- Nigam, S., Domarkas, J., Bernard, J., Clemente, G., Burke, One or more exclusion B., Juge, S., Malacea-Kabbara, R., Benoit, D., Cawthorn, C.. criteria O-BF<inf>3</inf>-Phosphonium pincer moieties in the design of delocalized lipophilic cation based tracers for PET imaging of mitochondrial function. *Journal of Nuclear Medicine*. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2017.
 58:#pages#
- L1 Hu, C. H.,Xie, X. L.. Occlusion of dentinal tubules by One or more exclusion (NH<inf>4</inf>)<inf>2</inf>6</inf> solution. criteria [Chinese]. Journal of Clinical Rehabilitative Tissue Engineering Research. 2010. 14:4641-4644
- Yang, Q. L., Chen, S. J., Wan, Y., Geng, C., Rong, G. Y.. One or more exclusion
 Occlusion of dentinal tubules using tricalcium silicate.
 [Chinese]. Chinese Journal of Tissue Engineering
 Research. 2013. 17:6740-6746
- L1 Skaugset, N. P., Ellingsen, D. G., Dahl, K., Martinsen, One or more exclusion I., Jordbekken, L., Drablos, P. A., Thomassen, Y.. criteria

Level	Bibliog	graphy

Reason for Exclusion

Occupational exposure to beryllium in primary aluminium production. Journal of Environmental Monitoring. 2012. 14:353-359

L1 Vikas, C.. Occurence and distribution of fluoride in groundwaters of central Rajasthan, India. Journal of Environmental Science & Engineering, 2009, 51:169-74 One or more exclusion criteria

L1 Kurwadkar, S., Occurrence and distribution of organic and One or more exclusion inorganic pollutants in groundwater. Water Environment Research, 2019, 91:1001-1008

criteria

L1 Oruc, N.. Occurrence and problems of high fluoride waters One or more exclusion in Turkey: an overview. Environ Geochem Health. 2008. 30:315-23

criteria

L1 Crone, B. C., Speth, T. F., Wahman, D. G., Smith, S. J., Abulikemu, G., Kleiner, E. J., Pressman, J. G.. Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water. Critical Reviews in Environmental Science and Technology. 2019. 49:2359-2396

One or more exclusion criteria

L1 Li, P., Oyang, X., Zhao, Y., Tu, T., Tian, X., Li, L., Zhao, Y., Li, J., Xiao, Z.. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. Chemosphere. 2019. 225:659-667

One or more exclusion criteria

L1 Elfikrie, N., Ho, Y. B., Zaidon, S. Z., Juahir, H., Tan, E. S. S. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Science of the Total Environment. 2020. 712 (no

One or more exclusion criteria

25 March 2023 1067 pagination):#pages#

- L1 Lennona, M. A.. One in a million: The first community trial One or more exclusion of water fluoridation. *Bulletin of the World Health* criteria

 Organization. 2006. 84:759-760
- L1 Mueller, D., Klette, I., Kalb, F., Baum, R.. One pot synthesis One or more exclusion of [18F]-Fluoroethylcholine. Journal of Nuclear Medicine. criteria Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2010. 51:#pages#
- Liu, G., Chen, Y., Jia, M., Sun, Z., Ding, B., Shao, S., Jiang, One or more exclusion F., Fu, Z., Ma, P., Lin, J.. One-pot synthesis of SiO(2)-coated criteria Gd(2)(WO(4))(3):Yb(3+)/Ho(3+) nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition. *Dalton Trans.* 2019. 48:10537-10546
- L1 He, X.,Hai, L.,Su, J.,Wang, K.,Wu, X.. One-pot synthesis of One or more exclusion sustained-released doxorubicin silica nanoparticles for criteria aptamer targeted delivery to tumor cells. *Nanoscale*. 2011. 3:2936-42
- Under the Lorentz L
- L1 Song, G. X.,Han, S. Q.,Liu, M. S.,Yuan, A. M.,Dou, G. One or more exclusion Q.,Kan, W. F.. Operational state of drinking water criteria defluorination project and situation of fluorosis in children aged 8 to 12 in Dagang district of Tianjin in 2009.

 [Chinese]. *Chinese Journal of Endemiology*. 2011. 30:68-71
- L1 Katsifis, A.,Le, V.,Stark, D.,Hossain, M.,Le, T.,Lam, One or more exclusion P.,Eberl, S.,Fulham, M.. Optimisation and automation of

[18F]PSMA-1007 production, a next generation PET ligand criteria for prostate carcinoma, using a GE FASTlab 2. *Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.* 2018. 59:#pages#

- Yao, X.,Zha, Z.,Zhao, R.,Choi, S. R.,Ploessl, K.,Liu, F.,Zhu, One or more exclusion L.,Kung, H. F.. Optimization of solid-phase extraction (SPE) criteria in the preparation of [18F]D3FSP: A new PET imaging agent for mapping Abeta plaques. *Nuclear medicine and* biology. 2019. 71:54-64
- Wyffels, L., Waldron, A. M., Verhaeghe, J., Vanderghinste, One or more exclusion D., Langlois, X., Schmidt, M., Stroobants, S., Staelens, S.. criteria
 Optimization of the automated synthesis of [¹⁸F]-AV45 on a Veenstra FluorSynthon I module for muPET imaging in a transgenic mouse model of Alzheimer's disease. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2013. 1):S481
- L1 He, F.,Li, C.,Zhang, X.,Chen, Y.,Deng, X.,Liu, B.,Hou, One or more exclusion Z.,Huang, S.,Jin, D.,Lin, J.. Optimization of upconversion criteria luminescence of Nd(3+)-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery. *Dalton Trans.* 2016. 45:1708-16
- L1 Merugu, R., Garimella, S. S., Kudle, K. R., Ramesh, One or more exclusion D., Pratap Rudra, M. P.. Optimization studies for defluoridation of water using Aspergillus niger fungal biosorbent. *International Journal of ChemTech Research*. 2012. 4:1089-1093
- L1 Arora, G., Shukla, J., Gupta, P., Bandopadhyaya, G.. One or more exclusion

Level	Bibliography	Reason for Exclusion
	Optimizing electrophilic 6-[18F]fluoro-L-DOPA synthesis utilizing low precursor concentration. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2010. 2):S493	criteria
L1	Hassan, H., Abu Bakar, S., Che, A. Halim K., Idris, J., Nordin, A Optimizing the azeotropic drying of 18F-way to improve 18F-Fluorocholine radiochemical yields!. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> . 2015. 1):S824-S825	criteria
L1	Haysom, L.,Indig, D.,Byun, R.,Moore, E.,van den Dolder, P Oral health and risk factors for dental disease of Australian young people in custody. <i>Journal of Paediatrics</i> & <i>Child Health</i> . 2015. 51:545-551	One or more exclusion criteria
L1	Ramos-Gomez, F. J., Folayan, M. O Oral health considerations in HIV-infected children. <i>Curr HIV/AIDS Rep.</i> 2013. 10:283-93	One or more exclusion criteria
L1	Lalloo, R., Kisely, S., Amarasinghe, H., Perera, R., Johnson, N Oral health of patients on psychotropic medications: a study of outpatients in Queensland. <i>Australas Psychiatry</i> . 2013. 21:338-42	One or more exclusion criteria
L1	Donaldson, M.,Goodchild, J. H Oral health of the methamphetamine abuser. <i>Am J Health Syst Pharm.</i> 2006. 63:2078-82	One or more exclusion criteria
L1	Shashi, A., Sharma, S., Bhardwaj, M Oral health status in students exposed to flouride in drinking water. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences</i> . 2008. 10:323-328	One or more exclusion criteria
L1	Bomfim, R. A., Herrera, D. R., De-Carli, A. D Oral health-related quality of life and risk factors associated with	One or more exclusion

Level	Bibliography	Reason for Exclusion
	traumatic dental injuries in Brazilian children: A multilevel approach. <i>Dent Traumatol.</i> 2017. 33:358-368	criteria
L1	Gonzalez, S.,Sung, H.,Sepulveda, D.,Gonzalez, M. J.,Molina, C Oral manifestations and their treatment in Sjogren's syndrome. <i>Oral Diseases</i> . 2014. 20:153-161	One or more exclusion criteria
L1	Aguilar-Díaz, F. C.,Irigoyen-Camacho, M. E.,Borges-Yáñez, S. A Oral-health-related quality of life in schoolchildren in an endemic fluorosis area of Mexico. <i>Quallife Res.</i> 2011. 20:1699-706	One or more exclusion criteria
L1	Zorc, B., Pavic, K Organofluorine drugs. [Croatian]. Farmaceutski Glasnik. 2018. 74:351-360	One or more exclusion criteria
L1	Li, P.,Wu, J.,Qian, H.,Lyu, X.,Liu, H Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. <i>Environ Geochem Health.</i> 2014. 36:693-712	One or more exclusion criteria
L1	MacDonald-Jankowski, D. S.,Li, T. K Ossifying fibroma in a Hong Kong community: the clinical and radiological features and outcomes of treatment. <i>Dentomaxillofac</i> <i>Radiol.</i> 2009. 38:514-23	One or more exclusion criteria
L1	Choubisa, S. L Osteo-dental fluorosis in domestic animals living in areas with high fluoride in drinking water of Rajasthan, India. <i>Fluoride</i> . 2012. 45 (3 PART 1):158	One or more exclusion criteria
L1	Choubisa, S. L., Choubisa, L., Choubisa, D Osteo-dental fluorosis in relation to age and sex in tribal districts of Rajasthan, India. <i>J Environ Sci Eng.</i> 2010. 52:199-204	One or more exclusion criteria
L1	Choubisa, S. L Osteo-dental fluorosis in relation to chemical constituents of drinking waters. <i>J Environ Sci Eng.</i>	One or more exclusion criteria

2012. 54:153-8

- Choubisa, S. L., Choubisa, L., Choubisac, D.. Osteo-dental One or more exclusion fluorosis in relation to nutritional status, living habits, and criteria occupation in rural tribal areas of Rajasthan, India.

 Fluoride. 2009. 42:210-215
- L1 Tamer, M. N., Kale Köroğlu, B., Arslan, C., Akdoğan, One or more exclusion M., Köroğlu, M., Cam, H., Yildiz, M.. Osteosclerosis due to endemic fluorosis. *Sci Total Environ*. 2007. 373:43-8
- L1 Uppal, S.,Bajaj, Y.,Coatesworth, A. P.. Otosclerosis 2: The One or more exclusion medical management of otosclerosis. *International Journal* criteria of Clinical Practice. 2010. 64:256-265
- L1 Babcock, T. A.,Liu, X. Z.. Otosclerosis: From Genetics to One or more exclusion Molecular Biology. *Otolaryngologic Clinics of North* criteria

 **America. 2018. 51:305-318
- L1 Liao, M., Liu, J., Tang, Z. Z., Huang, L. R., Ning, R. J., Zeng, One or more exclusion X. P.. Outcome analysis of endemic fluorosis control in criteria Guangxi in 2006. [Chinese]. *Chinese Journal of Endemiology.* 2008. 27:300-302
- L1 Huang, C. Q., Wang, C. H., Zhang, X. D., Xu, H. W., Tang, H. One or more exclusion Y., Lu, Z. M., Zhang, A. J., Zhang, Y. L.. Outcome analysis of criteria surveillance on endemic fluorosis during thr period of 1991 to 2006 in Jilin Province. [Chinese]. Chinese Journal of Endemiology. 2009. 28:424-428
- Yu, S. Q., Liao, Y. J., Sha, J. Y.. Outcome analysis on one or more exclusion endemic flourosis control in Gansu province in 2006.
 [Chinese]. Chinese Journal of Endemiology. 2009. 28:187-190

Level	Bibliography	Reason for Exclusion
L1	Li, J., Wang, S. X., Wang, Z. H., Jia, Q. Z., Zhang, X. D., Cheng, X. T., Wen, X. P., Wu, Z. M., Han, L. L., Qiao, X. Y., Jing, Y. L., Wu, M., Zhang, F. F Outcome analysis on screening of drinking water source with high flouride in Shanxi province. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2009. 28:184-186	One or more exclusion criteria
L1	Wu, Z. M.,Li, J.,Wang, Z. H.,Zhang, X. D.,Han, L. L.,Qiao, X. Y.,Li, P. F.,Jing, Y. L Outcome analysis on screening of drinking water source with high fluoride and the condition of the water-improving projects in Shanxi province in 2007. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:316-318	criteria
L1	Liu, Y.,Li, X. F.,Yue, Y. T.,Zheng, H. M.,Yu, B.,Yu, H. Y.,Hao, Z. Y Outcome assessment of health education on endemic diseases in Henan province in 2010. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:104-108	One or more exclusion criteria
L1	Niu, Q Overview of the Relationship Between Aluminum Exposure and Health of Human Being. <i>Adv Exp Med Biol.</i> 2018. 1091:1-31	One or more exclusion criteria
L1	Khan, H., Verma, Y., Rana, S. V. S Oxidative stress induced by co-exposure to arsenic and fluoride in Wistar rat. <i>Cancer Medicine</i> . 2018. 7 (Supplement 1):33	One or more exclusion criteria
L1	Jeppesen, T. E., Kristensen, L. K., Nielsen, C. H., Petersen, L. C., Kristensen, J. B., Behrens, C., Madsen, J., Kjaer, A Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde. <i>Bioconjug Chem.</i> 2019. 30:775-784	One or more exclusion criteria

L1

Foulkes, R. G.. Paradigms and public health policy versus One or more exclusion

Level	Bibliography	Reason for Exclusion
	evidence. Fluoride. 2007. 40:229-237	criteria
L1	Rho, J., Stares, E., Adams, S. R., Lister, D., Leach, B., Ahrens, E. T Paramagnetic Fluorinated Nanoemulsions for in vivo F-19 MRI. <i>Molecular Imaging and Biology</i> 2019. #volume#:#pages#	
L1	Shashi, A., Singla, S Parathyroid function in osteofluorosis. <i>World Journal of Medical Sciences</i> . 2013. 8:67-73	One or more exclusion criteria
L1	Staberg, M.,Norén, J. G.,Johnson, M.,Kopp, S.,Robertson, A Parental attitudes and experiences of dental care in children and adolescents with ADHDa questionnaire study. <i>Swed Dent J.</i> 2014. 38:93-100	One or more exclusion criteria
L1	Loganathan, P.,Hedley, M. J.,Grace, N. D Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects. <i>Rev Environ Contam Toxicol.</i> 2008. 192:29-66	One or more exclusion criteria
L1	Khan, M. S.,Naz, F.,Javid, R.,Mosby, T. T.,Assaf, N Pattern of nutritional deficiencies in childhood cancer patients-experience from a large cancer hospital in Pakistan. <i>Pediatric Blood and Cancer.</i> 2016. 63 (Supplement 3):S282	One or more exclusion criteria
L1	Stepanova, N. V., Valeeva, E. R., Ziyatdinova, A. I., Fomina, S. F Peculiarities of chidren's risk assessment on ingestion of chemicals with drinking water. <i>Research Journal of Pharmaceutical, Biological and Chemical Sciences</i> . 2016. 7:1677-1681	One or more exclusion criteria
L1	Zhu, Z.,Wang, T.,Meng, J.,Wang, P.,Li, Q.,Lu, Y Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: seasonal	One or more exclusion criteria

Level	Rihl	lioai	ranhv
			IGPIIY

Reason for Exclusion

variation, mass flow, and risk assessment. Environ Sci Pollut Res Int. 2015. 22:10009-18

L1 Badi, M. Y., Azari, A., Esrafili, A., Ahmadi, E., Gholami, M.. Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution. [Persian]. Journal of Mazandaran University of Medical Sciences. 2015. 25:128-142

One or more exclusion criteria

L1 Vandana, K. L., George, P., Cobb, C. M.. Periodontal changes in fluorosed and nonfluorosed teeth by scanning electron microscopy. Fluoride. 2007. 40:128-133

One or more exclusion criteria

L1 Pan, D., Yan, Y., Yang, R., Xu, Y. P., Chen, F., Wang, L., Luo, One or more exclusion S., Yang, M.. PET imaging of prostate tumors with 18F-Alcriteria NOTA-MATBBN. Contrast Media Mol Imaging. 2014. 9:342-8

L1 Morana, G., Piccardo, A., Luisa Garre, M., Rossi, A.. PET/MR of paediatric brain tumours. Cancer Imaging. Conference: 16th Annual Teaching Course of the International Cancer Imaging Society, ICIS. 2016. 16:#pages#

One or more exclusion criteria

- L1 Wallat, J. D., Harrison, J. K., Pokorski, J. K., pH Responsive One or more exclusion Doxorubicin Delivery by Fluorous Polymers for Cancer criteria Treatment. Mol Pharm. 2018. 15:2954-2962
- L1 Chander, V., Sharma, B., Negi, V., Aswal, R. S., Singh, P., Singh, R., Dobhal, R., Pharmaceutical compounds in drinking water. Journal of Xenobiotics. 2016. 6 (1) (no pagination):#pages#

One or more exclusion

criteria

L1 Lin, H. H., Lin, A. Y.. Photocatalytic oxidation of 5fluorouracil and cyclophosphamide via UV/TiO2 in an One or more exclusion

25 March 2023 1075

Level	Bibliography	Reason for Exclusion
	aqueous environment. Water Res. 2014. 48:559-68	criteria
L1	Wang, H. X.,Zhu, L. N.,Guo, F. Q Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO(2) nanotube arrays. <i>Environ Sci Pollut Res Int.</i> 2019. 26:33847-33855	One or more exclusion criteria
L1	Macpherson, L. M. D., Conway, D. I., Gilmour, W. H., Petersson, L. G., Stephen, K. W Photographic assessment of fluorosis in children from naturally fluoridated Kungsbacka and non-fluoridated Halmstad, Sweden. <i>Acta Odontologica Scandinavica</i> . 2007. 65:149-155	One or more exclusion criteria
L1	Sirtori, C., Zapata, A., Gernjak, W., Malato, S., Aguera, A Photolysis of flumequine: Identification of the major phototransformation products and toxicity measures. Chemosphere. 2012. 88:627-634	One or more exclusion criteria
L1	Nirmala, B.,Suchetan, P. A.,Darshan, D.,Sudha, A. G.,Lohith, T. N.,Suresh, E.,Mamtha,. Physico-chemical analysis of selected groundwater samples of Tumkur district, Karnataka. <i>International Journal of ChemTech Research</i> . 2013. 5:288-292	One or more exclusion criteria
L1	Farronato, M., Cossellu, G., Farronato, G., Inchingolo, F., Blasi, S., Angiero, F Physico-chemical characterization of a smart thermo-responsive fluoride-releasing poloxamer-based gel. <i>Journal of Biological Regulators and Homeostatic Agents</i> . 2019. 33:1309-1314	
L1	Foka, F. E. T., Yah, C. S., Bissong, M. E. A Physico- chemical properties and microbiological quality of borehole water in four crowded areas of benin city, nigeria, during	One or more exclusion criteria

rainfalls. Shiraz E Medical Journal. 2018. 19 (11) (no pagination):#pages#

- L1 Palmeira, Aroa,da Silva, Vath,Dias Junior, F. L.,Stancari, R. One or more exclusion C. A.,Nascentes, G. A. N.,Anversa, L.. Physicochemical criteria and microbiological quality of the public water supply in 38 cities from the midwest region of the State of Sao Paulo, Brazil. *Water Environment Research*. 2019. 91:805-812
- L1 Lakshmanakuma, V., Thanigavelan, V., Victor

 Rajamanickam, G., Kaliyamurthi, V.. Physicochemical characterization of a Siddha formulation Vediuppu

 Chendhuram. *Pharmacologyonline*. 2011. 2:604-618

One or more exclusion criteria

L1 Singh, A. K., Das, S., Singh, S., Pradhan, N., Gajamer, V. One or R., Kumar, S., Lepcha, Y. D., Tiwari, H. K.. Physicochemical criteria parameters and alarming coliform count of the potable water of Eastern Himalayan state Sikkim: An indication of severe fecal contamination and immediate health risk.

Frontiers in Cell and Developmental Biology. 2019. 7

(AUG) (no pagination):#pages#

One or more exclusion

L1 lagaru, A., Young, P., Mittra, E., Dick, D. W., Herfkens, R., Gambhir, S. S.. Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. *Clin Nucl Med.* 2013. 38:e290-6

One or more exclusion

criteria

L1 Zhong, B., Wang, L., Liang, T., Xing, B.. Pollution level and One or more exclusion inhalation exposure of ambient aerosol fluoride as affected criteria by polymetallic rare earth mining and smelting in Baotou, north China. *Atmospheric Environment.* 2017. 167:40-48

L1 He, X., Li, P., Wu, J., Wei, M., Ren, X., Wang, D.. Poor One or more exclusion

		5 (5) :
Level	Bibliography	Reason for Exclusion
	groundwater quality and high potential health risks in the Datong Basin, northern China: research from published data. <i>Environ Geochem Health.</i> 2020. #volume#:#pages#	criteria
L1	Palmer, C. A., Gilbert, J. A Position of the Academy of Nutrition and Dietetics: the impact of fluoride on health. <i>J Acad Nutr Diet.</i> 2012. 112:1443-1453	One or more exclusion criteria
L1	Lahna, D., Woltjer, R., Grinstead, J., Boespflug, E. L., Schwartz, D., Kaye, J. A., Rooney, W. D., Silbert, L. C Postmortem 7t Mri for Guided Histology and Tissue Segmentation. <i>Alzheimer's and Dementia</i> . 2018. 14 (7 Supplement):P53	One or more exclusion criteria
L1	Burnett, G. R., Gallob, J. T., Milleman, K. R., Mason, S., Patil, A., Budhawant, C., Milleman, J. L Potassium oxalate oral rinses for long-term relief from dentinal hypersensitivity: Three randomised controlled studies. <i>J Dent.</i> 2018. 70:23-30	One or more exclusion criteria
L1	Limon-Pacheco, J. H., Jimenez-Cordova, M. I., Cardenas-Gonzalez, M., Sanchez Retana, I. M., Gonsebatt, M. E., Del Razo, L. M Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. <i>Annals of Global Health.</i> 2018. 84:257-273	One or more exclusion criteria
L1	Lung, S. C., Cheng, H. W., Fu, C. B Potential exposure and risk of fluoride intakes from tea drinks produced in Taiwan. <i>Journal of Exposure Science & Environmental Epidemiology.</i> 2008. 18:158-66	
L1	Ding, L., Yang, Q., Yang, Y., Ma, H., Martin, J. D Potential risk assessment of groundwater to address the agricultural and domestic challenges in Ordos Basin. <i>Environmental</i>	One or more exclusion criteria

Geochemistry & Health. 2020. 03:03

- L1 Gai, Y.,Altine, B.,Han, N.,Lan, X.. Preclinical evaluation of a One or more exclusion ¹⁸F-labeled phosphatidylinositol 3-kinase criteria inhibitor for breast cancer imaging. *Journal of Nuclear Medicine. Conference.* 2019. 60:#pages#
- L1 Altine, B.,Gai, Y.,Han, N.,Jiang, Y.,Ji, H.,Fang, One or more exclusion H.,Niyonkuru, A.,Bakari, K. H.,Rajab Arnous, M. M.,Liu, criteria Q.,Zhang, Y.,Lan, X.. Preclinical Evaluation of a Fluorine-18 ((18)F)-Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging. *Mol Pharm.* 2019. 16:4563-4571
- L1 Podgorski, J. E.,Labhasetwar, P.,Saha, D.,Berg, M.. One or more exclusion Prediction Modeling and Mapping of Groundwater Fluoride criteria Contamination throughout India. *Environmental Science* & *Technology.* 2018. 52:9889-9898
- L1 Han, I. H.. Pregnancy and spinal problems. *Current Opinion* One or more exclusion *in Obstetrics and Gynecology.* 2010. 22:477-481 criteria
- L1 Datta, A. S.,Singh, R.,Basu, D.,Lahiri, S. C.. Preliminary One or more exclusion clinical investigation on fluoride contamination in Nalhati subdivision (West Bengal);possible structural changes of water due to fluoride ion and related clinical aspects.

 Journal of the Indian Chemical Society. 2016. 93:1383-1388
- L1 Martínez-Acuña, M. I.,Mercado-Reyes, M.,Alegría-Torres, One or more exclusion J. A.,Mejía-Saavedra, J. J.. Preliminary human health risk criteria assessment of arsenic and fluoride in tap water from Zacatecas, México. *Environ Monit Assess.* 2016. 188:476

Level Bibliography

Reason for Exclusion

- L1 Dam, J., Langkjaer, N., Baun, C., Olsen, B.. Preparation and One or more exclusion evaluation of (18)F AIF-NOTA-NOC for PET imaging of criteria neuroendocrine tumors. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S416-S417
- Kong, Y.,Zhou, X.,Cao, G.,Xu, X.,Zou, M.,Qin, X.,Zhang, One or more exclusion
 R.. Preparation of (99m)Tc-PQQ and preliminary biological criteria
 evaluation for the NMDA receptor. *J Radioanal Nucl Chem.* 2011, 287:93-101
- L1 Lakshminarayanan, N.,Arjun, G.,Rajan, M. G. R.. One or more exclusion Preparation of 18F-Fluoroethyltyrosine: Preliminary studies. criteria *Indian Journal of Nuclear Medicine*. 2011. 1):S43
- Li, M. H., Chu, H. H., Chang, H. C., Feng, C. F.. Preparing of One or more exclusion [¹⁸F]INER-1577 as histone deacetylase criteria (HDAC2) imaging agent for AD. *Molecular Imaging and Biology*. 2016. 18 (2 Supplement):S592-S593
- L1 Jarvis, H. G., Heslop, P., Kisima, J., Gray, W. K., Ndossi, One or more exclusion G., Maguire, A., Walker, R. W.. Prevalence and aetiology of criteria juvenile skeletal fluorosis in the south-west of the Hai district, Tanzania--a community-based prevalence and case-control study. *Trop Med Int Health.* 2013. 18:222-9
- L1 Isaac, A., Silvia, W. D. C. R., Somanna, S. N., Mysorekar, One or more exclusion V., Narayana, K., Srikantaiah, P.. Prevalence and manifestations of water-born fluorosis among schoolchildren in Kaiwara village of India: A preliminary study. *Asian Biomedicine*. 2009. 3:563-566
- L1 Carvalho, T. S.,Kehrle, H. M.,Sampaio, F. C.. Prevalence One or more exclusion and severity of dental fluorosis among students from João criteria

Pessoa, PB, Brazil. Braz Oral Res. 2007. 21:198-203

- L1 Pretty, I. A.,Boothman, N.,Morris, J.,MacKay, L.,Liu, One or more exclusion Z.,McGrady, M.,Goodwin, M.. Prevalence and severity of dental fluorosis in four English cities. *Community Dent Health*. 2016. 33:292-296
- L1 Beltrán-Aguilar, E. D.,Barker, L.,Dye, B. A.. Prevalence and One or more exclusion severity of dental fluorosis in the United States, 1999-2004. criteria NCHS Data Brief. 2010. #volume#:1-8
- L1 Fan, Z.,Gao, Y.,Wang, W.,Gong, H.,Guo, M.,Zhao, S.,Liu, One or more exclusion X.,Yu, B.,Sun, D.. Prevalence of Brick Tea-Type Fluorosis criteria in the Tibet Autonomous Region. *J Epidemiol.* 2016. 26:57-63
- L1 Karthikeyan, K.,Nanthakumar, K.,Velmurugan, One or more exclusion P.,Tamilarasi, S.,Lakshmanaperumalsamy, P.. Prevalence criteria of certain inorganic constituents in groundwater samples of Erode district, Tamilnadu, India, with special emphasis on fluoride, fluorosis and its remedial measures.

 Environmental Monitoring and Assessment. 2010. 160:141-155
- L1 Shekar, C., Cheluvaiah, M. B., Namile, D.. Prevalence of One or more exclusion dental caries and dental fluorosis among 12 and 15 years old school children in relation to fluoride concentration in drinking water in an endemic fluoride belt of Andhra Pradesh. *Indian J Public Health.* 2012. 56:122-8
- Veiga, N., Amaral, O., Pereira, C., Ribeiro, C., Arrimar, One or more exclusion A., Coelho, I.. Prevalence of dental caries and fluorosis criteria among a sample of adolescents living in a fluoridated and a non-fluoridated water region. *European Journal of*

Epidemiology. 2013. 1):S226

- L1 Xia, Y.,Li, B. L.,Zhao, X. H.,Huang, Y. X.,Chen, J. K.,Chen, One or more exclusion S. H.,Ou, H. Z.,Chen, S. X.. Prevalence of dental caries in criteria Shantou City Guangdong Province fluorosis areas after water improvement. [Chinese]. *Chinese Journal of Endemiology.* 2013. 32:309-311
- L1 Kotecha, P. V.,Patel, S. V.,Bhalani, K. D.,Shah, D.,Shah, V. One or more exclusion S.,Mehta, K. G.. Prevalence of dental fluorosis & dental criteria caries in association with high levels of drinking water fluoride content in a district of Gujarat, India. *Indian Journal of Medical Research.* 2012. 135:873-877
- L1 Sebastian, S. T.,Soman, R. R.,Sunitha, S.. Prevalence of One or more exclusion dental fluorosis among primary school children in criteria association with different water fluoride levels in Mysore district, Karnataka. *Indian Journal of Dental Research*.

 2016. 27:151-4
- L1 Khatib, N.,Meghe, A. D.. Prevalence of dental fluorosis One or more exclusion among primary school children in rural areas of INDIA. criteria

 Fluoride. 2012. 45 (3 PART 1):185
- L1 Punitha, V. C., Sivaprakasam, P., Elango, One or more exclusion R., Balasubramanian, R., Midhun Kumar, G. H., Sudhir Ben criteria Nelson, B. T.. Prevalence of dental fluorosis in a non-endemic district of Tamil Nadu, India. *Biosciences Biotechnology Research Asia*. 2014. 11:159-163
- L1 Casanova-Rosado, A. J.,Medina-Sols, C. E.,Casanova- One or more exclusion Rosado, J. F.,Vallejos-Sanchez, A. A.,de la Rosa- criteria Santillana, R.,Mendoza-Rodriguez, M.,Villalobos-Rodelo, J. J.,Maupome, G., Prevalence of dental fluorosis in eight

- cohorts of Mexicans born in the establishment of the national domestic salt fluoridation. *Gaceta Medica de Mexico*. 2013. 149:27-35
- L1 Zhang, Y., Cheng, R., Cheng, G., Zhang, X.. Prevalence of One or more exclusion dentine hypersensitivity in Chinese rural adults with dental criteria fluorosis. *J Oral Rehabil.* 2014, 41:289-95
- L1 Pandey, A.. Prevalence of fluorosis in an endemic village in One or more exclusion central India. *Trop Doct.* 2010. 40:217-9 criteria
- L1 Jaganmohan, P.,Narayana Rao, S. V. L.,Sambasiva Rao, One or more exclusion K. R. S.. Prevalence of high fluoride concentration in criteria drinking water in Nellore District, A.p., India: A biochemical study to develop the relation to renal failures. *World Journal of Medical Sciences*, 2010, 5:45-48
- L1 Sharma, J. D., Sohu, D., Jain, P.. Prevalence of neurological One or more exclusion manifestations in a human population exposed to fluoride in criteria drinking water. *Fluoride*. 2009. 42:127-132
- L1 John, J., Hariharan, M., Remy, V., Haleem, S., Thajuraj, P. One or more exclusion K., Deepak, B., Rajeev, K. G., Devang Divakar, D.. criteria

 Prevalence of skeletal fluorosis in fisherman from Kutch coast, Gujarat, India. *Rocz Panstw Zakl Hig.* 2015. 66:379-82
- L1 Syme, S. L.. Preventing disease and promoting health: The One or more exclusion need for some new thinking. *Sozial- und Praventivmedizin.* criteria 2006. 51:247-248
- L1 Susheela, A. K.,Toteja, G. S.. Prevention & control of One or more exclusion fluorosis & linked disorders: Developments in the 21st Century Reaching out to patients in the community & hospital settings for recovery. *Indian Journal*

of Medical Research, 2018, 148:539-547

L1 Wang, H. J., Cui, J. L., Shan, J. L., Prevention and control for endemic fluorosis in Pingdu County; current status analysis. [Chinese]. Chinese Journal of Endemiology. 2007. 26:170-172

One or more exclusion criteria

L1 Mei, M. L., Ito, L., Chu, C. H., Lo, E. C. M., Zhang, C. F.. Prevention of dentine caries using silver diamine fluoride application followed by Er:YAG laser irradiation: an in vitro study. Lasers in Medical Science. 2014. 29:1785-1791

One or more exclusion criteria

L1 Korner, P., Wiedemeier, D. B., Attin, T., Wegehaupt, F. J.. Prevention of Enamel Softening by Rinsing with a Calcium criteria Solution before Dental Erosion. Caries research. 2020.

One or more exclusion

#volume#:1-7

L1 Zhang, L., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., Zhang, One or more exclusion Z., Zou, Y... Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas. Environmental Pollution, 2017. 222:118-125

criteria

L1 Zhang, L. E., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., Zhang, Z., Zou, Y... Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas. Environ Pollut. 2017. 222:118-125

One or more exclusion

criteria

L1 Soderquist, C. Z., McNamara, B. K., Fisher, D. R.. One or more exclusion Production of high-purity radium-223 from legacy actinium-criteria beryllium neutron sources. Curr Radiopharm. 2012. 5:244-52

25 March 2023 1084

Level	Bibliography	Reason for Exclusion
L1	Connett, P Professionals mobilize to end water fluoridation worldwide. <i>Fluoride</i> . 2007. 40:155-158	One or more exclusion criteria
L1	Li, B. Y., Yang, Y. M., Liu, Y., Sun, J., Ye, Y., Liu, X. N., Liu, H. X., Sun, Z. Q., Li, M., Cui, J., Sun, D. J., Gao, Y. H Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis. <i>PLoS One</i> . 2017. 12:e0171011	
L1	Holmquist, H.,Schellenberger, S.,van der Veen, I.,Peters, G. M.,Leonards, P. E. G.,Cousins, I. T Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. <i>Environment International</i> . 2016. 91:251-264	One or more exclusion criteria
L1	Awad, A., Cipriani, A Prophylactic mood stabilization: What is the evidence for lithium exposure in drinking water?. Bipolar Disorders. 2017. 19:601-602	One or more exclusion criteria
L1	Bruton, T. A.,Blum, A Proposal for coordinated health research in PFAS-contaminated communities in the United States. <i>Environmental Health: A Global Access Science Source</i> . 2017. 16 (1) (no pagination):#pages#	One or more exclusion criteria
L1	Wilhelm-Buchstab, T.,Thelen, C.,Leitzen, C.,Schmeel, L. C.,Mudder, T.,Oberste-Beulmann, S.,Schuller, H.,Rohner, F.,Garbe, S.,Schoroth, F.,Simon, B.,Schild, H. H Protective effect on tissue using dental waterjet and dexpanthenol rinsing solution during radiotherapy in head and neck tumor patients. <i>Strahlentherapie und Onkologie</i> . 2016. 192 (1 Supplement 1):66	One or more exclusion criteria
L1	Rameshrad, M.,Razavi, B. M.,Hosseinzadeh, H Protective effects of green tea and its main constituents against	One or more exclusion criteria

natural and chemical toxins: A comprehensive review. *Food* and Chemical Toxicology. 2017. 100:115-137

- L1 Zhang, W.,Gao, Y. H.,Lin, L.,Sun, D. J.. Protective role of Or tea polyphenols in oxidative stress damage of the rat articular cartilage tissue caused by brick-tea fluorosis.
 [Chinese]. Chinese Journal of Endemiology. 2009. 28:381-385
 - One or more exclusion criteria
- L1 Das, N.,Das, A.,Sarma, K. P.,Kumar, M.. Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. *Chemosphere*. 2018. 194:755-772

One or more exclusion criteria

L1 Qu, W.,Zheng, W.,Spencer, P.,Zheng, J.,Yang, L.,Han, F.,Yan, L.,Ma, W.,Zhou, Y.,Zheng, Y.,Wang, Y.. Public health concerns arising from interventions designed to circumvent polluted surface drinking water in Shenqiu County, Henan, China. *The Lancet.* 2017. 390 (SPEC.ISS 1):87

One or more exclusion criteria

- L1 Berry, C.. Public health impact of food: Quantity, quality, One or more exclusion supplements and appetites. *Toxicology Letters*. 2013. 1):S2 criteria
- Schwenzer, N. F., Schraml, C., Muller, M., Brendle, One or more exclusion C., Sauter, A., Spengler, W., Pfannenberg, A. C., Claussen, criteria
 C. D., Schmidt, H.. Pulmonary lesion assessment:
 Comparison of whole-body hybrid MR/PET and PET/CT imaging Pilot study. *Radiology*. 2012. 264:551-558
- L1 Deepa, P.,Arun, R. N.. Quality assessment of drinking One or more exclusion water in different localities of Manjeri. *International Journal* criteria of Pharmaceutical Sciences Review and Research. 2013.

20:60-62

- L1 de Carvalho, A. M., Duarte, M. C., Ponezi, A. N.. Quality One or more exclusion assessment of sulfurous thermal waters in the city of Pocos criteria de caldas, Minas gerais, Brazil. *Environmental Monitoring* & *Assessment.* 2015. 187:563
- L1 Thitame, S. N., Somasundaram, K. V.. Quality of drinking One or more exclusion water and associated health risks in rural Ahmednagar, criteria

 Maharashtra, India. *Journal of Chemical and Pharmaceutical Research.* 2015. 7:660-663
- L1 Hayat, E.,Baba, A.. Quality of groundwater resources in One or more exclusion Afghanistan. *Environmental Monitoring and Assessment.* criteria 2017. 189 (7) (no pagination):#pages#
- L1 Tomlinson, R. E., Silva, M. J., Shoghi, K. I.. Quantification of One or more exclusion skeletal blood flow and fluoride metabolism in rats using criteria PET in a pre-clinical stress fracture model. *Mol Imaging Biol.* 2012. 14:348-54
- L1 Tomlinson, R.,Silva, M. J.,Shoghi, K. I.. Quantification of One or more exclusion skeletal blood flow and fluoride metabolism in rodents.

 Molecular Imaging and Biology. 2010. 2):S1412
- L1 Klomp, D.,van Laarhoven, H.,Scheenen, T.,Kamm, One or more exclusion Y.,Heerschap, A.. Quantitative 19F MR spectroscopy at 3 T criteria to detect heterogeneous capecitabine metabolism in human liver. *NMR in Biomedicine*. 2007. 20:485-92
- L1 Fernández Mdel, M.,Wille, S. M.,Kummer, N.,Di Fazio, One or more exclusion V.,Ruyssinckx, E.,Samyn, N.. Quantitative analysis of 26 criteria opioids, cocaine, and their metabolites in human blood by ultra performance liquid chromatography-tandem mass

spectrometry. Ther Drug Monit. 2013. 35:510-21

L1 Jiang, F., Lei, P., Chen, Y., Zuu, X., Lao, P., Pan, X.. One or more exclusion Quantitative computed tomography measurement skeletal criteria fluorosis rabbits bone density and the correlation with bone injury. [Chinese]. Chinese Journal of Endemiology. 2017. 36:414-417

L1 Maggitti, A. L., Blum, L., McMullin, M., Quantitative testing for polychlorinated biphenyls (PCBs) in human serum utilizing gas chromatography tandem mass spectrometry (GC-MS/MS). Clinical Chemistry. 2016. 62 (10 Supplement 1):S112

One or more exclusion criteria

L1 Levine, K. E., Redmon, J. H., Elledge, M. F., Wanigasuriya, K. P., Smith, K., Munoz, B., Waduge, V. A., Periris-John, R. J., Sathiakumar, N., Harrington, J. M., Womack, D.

One or more exclusion criteria

- S., Wickremasinghe, R.. Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples. *Environ Monit Assess.* 2016. 188:548
- L1 Taddei, C., Pike, V.. Radiofluorination of a COX-1 specific ligand based on two nucleophilic addition strategies. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S115-S116

One or more exclusion criteria

L1 Lee, S. H., Park, J. K., Lee, S. Y., Lee, J., Ido, T., Radiolabeling of SUV size liposome with hexadecyl-4-[¹⁸F]fluorobenzoate ([¹⁸F] HFB)

One or more exclusion criteria

25 March 2023 1088 for tumor imaging. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S373-S374

- L1 Helin, S., Kirjavainen, A., Arponen, E., Forsback, One or more exclusion S., Marjamaki, P., Haaparanta-Solin, M., Bender, D., Peters, criteria D., Solin, O.. Radiolabelling of the norepinephrine transporter ligand [^{11C}]NS8880 and its evaluation in the rat. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2013. 1):S103
- Ozerskaya, A., Belugin, K., Tokarev, N., Chanchikova, One or more exclusion N., Larkina, M., Podrezova, E., Yusubov, M., Belousov, M.. criteria
 Radiopharmaceutical production technology at the Nuclear Medicine Centre Federal Siberian Research Clinical
 Centre, Russia. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S577
- L1 Olberg, D., Arukwe, J., Solbakken, M., Cuthbertson, A., Qu, One or more exclusion H., Kristian, A., Hjelstuen, O.. Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with a novel [18F] fluorinated N-methylaminooxy containing prosthetic group. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2009. 1):S32
- L1 Graf, K.,Hellman, M.,Kavathas, S.,Dewey, S.,Schiffer, One or more exclusion W.,Subramaniam, G.,Chaly, T.. Radiosynthesis and in vivo criteria evaluation of [¹⁸F]C8-ceramide analogues as potential tumor imaging agents. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2011. 1):S202
- L1 Yamamoto, F., Yamahara, R., Makino, A., Kurihara, One or more exclusion K., Tsukada, H., Hara, E., Hara, I., Kizaka-Kondoh, criteria

- S.,Ohkubo, Y.,Ozeki, E.,Kimura, S.. Radiosynthesis and initial evaluation of (18)F labeled nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. *Nucl Med Biol.* 2013. 40:387-94
- L1 Honda, N., Yoshimoto, M., Mizukawa, Y., Osaki, K., Kanai, One or more exclusion Y., Kurihara, H., Tateishi, H., Takahashi, K.. Radiosynthesis criteria of 2-[¹⁸F]fluoro-4-borono-phenylaranine ([¹⁸F]FBPA) using copper mediated oxidative aromatic nucleophilic [¹⁸F]fluorination.

 Journal of Labelled Compounds and Radiopharmaceuticals. 2017. 60 (Supplement 1):S512
- L1 Brooks, A. F.,Rodnick, M. E.,Fawaz, M. V.,Desmond, T. One or more exclusion J.,Scott, P. J. H.. Radiosynthesis of [¹⁸F]gem- criteria difluoroalkenes and [¹⁸F]CF3 Groups- Preparation of [¹⁸F]lansoprazole and related analogs for PET imaging of tau neurofibrillary tangles.

 Journal of Labelled Compounds and Radiopharmaceuticals. 2013. 1):S29
- L1 Malik, N.,Zlatopolskiy, B.,Voelter, W.,Solbach, C.,Machulla, One or more exclusion H. J.,Reske, S. N.. Radiosynthesis of a new PSMA criteria targeting ligand ([¹⁸F]FPy-DUPA-Pep).

 NuklearMedizin. 2011. 50 (2):A117-A118
- Park, J. Y., Son, J., Yun, M., Chun, J. H.. Radiosynthesis of One or more exclusion mGlu5 PET tracer [¹⁸F]PSS232 with protic criteria solvent additives. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2017. 60 (Supplement 1):S289
- L1 Turkman, N.,Gelovani, J. G.,Alauddin, M.. Radiosynthesis One or more exclusion of N5-[¹⁸F]fluoroacetylornithine (N5-criteria

[¹⁸F]FAO) for PET imaging of ornithine decarboxylase (ODC). *Molecular Imaging and Biology*. 2010. 2):S929

- L1 Baguet, T., Verhoeven, J., De Lombaerde, S., Piron, One or more exclusion S., Descamps, B., Vanhove, C., Beyzavi, H., De Vos, F.. criteria Radiosynthesis, in vitro and in vivo evaluation of [¹⁸F]Fluorphenylglutamine and [<sup>F]Fluorbiphenylglutamine as novel ASCT-2 directed tumor tracers. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S500-S502
- Villeneuve, P. J., Morrison, H. I., Lane, R.. Radon and lung One or more exclusion cancer risk: an extension of the mortality follow-up of the criteria Newfoundland fluorspar cohort. *Health Phys.* 2007. 92:157-69
- Old, O. J., Isabelle, M., Lloyd, G., Kendall, C., Barr, H., Stone, One or more exclusion
 N.. Raman mapping for pathology classification: The need criteria
 for speed. *Gut.* 2015. 1):A485-A486
- L1 Kirsch, M., Schackert, G., Salzer, R., Krafft, C.. Raman One or more exclusion spectroscopic imaging for in vivo detection of cerebral brain criteria metastases. *Anal Bioanal Chem.* 2010. 398:1707-13
- L1 Barr, H.,Isabelle, M.,Old, O.,Lloyd, G.,Lau, K.,Dorney, One or more exclusion J.,Lewis, A.,Geraint, T.,Shepherd, N.,Bell, I.,Stone, criteria N.,Kendall, C.. Raman spectroscopycancer diagnostic for pathology of barrett's oesophagus. *Gut.* 2016. 65 (Supplement 1):A177
- L1 Aljammaz, I.,Al-Otaibi, B.,Aboussekhra, A.,Okarvi, S.. One or more exclusion Rapid and one-step radiofluorination of bioactive peptides: criteria

Potential PET radiopharmaceutical. *European Journal of Nuclear Medicine and Molecular Imaging*. 2013. 2):S281-S282

Valdora, F., Houssami, N., Rossi, F., Calabrese,
 M., Tagliafico, A. S.. Rapid review: radiomics and breast cancer. *Breast Cancer Res Treat*. 2018. 169:217-229

One or more exclusion criteria

L1 Lisova, K., Chen, B. Y., Wang, J., Fong, K. M., Clark, P. M., van Dam, R. M.. Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[(18)F]fluoroethyl)-L-tyrosine ([(18)F]FET). *EJNMMI Radiopharm Chem.* 2019. 5:1

One or more exclusion criteria

- L1 Family, L.,Zheng, G.,Cabezas, M.,Cloud, J.,Hsu, S.,Rubin, One or more exclusion E.,Smith, L. V.,Kuo, T.. Reasons why low-income people in criteria urban areas do not drink tap water. *J Am Dent Assoc.* 2019. 150:503-513
- L1 Craig, L.,Lutz, A.,Berry, K. A.,Yang, W.. Recommendations One or more exclusion for fluoride limits in drinking water based on estimated daily criteria fluoride intake in the Upper East Region, Ghana. *Science of the Total Environment*. 2015. 532:127-37
- Kurland, E. S., Schulman, R. C., Zerwekh, J. E., Reinus, W. One or more exclusion R., Dempster, D. W., Whyte, M. P.. Recovery from skeletal criteria fluorosis (an enigmatic, American case). *J Bone Miner Res.* 2007. 22:163-70
- L1 Tripathi, M., Gupta, R., Sharma, U. D.. Recovery of adverse One or more exclusion effects induced by fluoride after ascorbic acid treatment in criteria Channa punctatus (bloch). *Journal of Ecophysiology and Occupational Health.* 2008. 8:147-152

Level	Bibliography	Reason for Exclusion
L1	Laursen, K., White, T. J., Cresswell, D. J. F., Wainwright, P. J., Barton, J. R Recycling of an industrial sludge and marine clay as light-weight aggregates. <i>Journal of Environmental Management</i> . 2006. 80:208-213	One or more exclusion criteria
L1	Ishibashi, K.,Kawasaki, K.,Ishiwata, K.,Ishii, K Reduced uptake of 18F-FDG and 15O-H2O in Alzheimer's disease-related regions after glucose loading. <i>J Cereb Blood Flow Metab.</i> 2015. 35:1380-5	One or more exclusion criteria
L1	Indermitte, E., Saava, A., Karro, E Reducing exposure to high fluoride drinking water in Estonia-a countrywide study. International Journal of Environmental Research & Public Health [Electronic Resource]. 2014. 11:3132-42	One or more exclusion criteria
L1	Cherng, A. M., Takagi, S., Chow, L Reduction in dentin permeability using a slurry containing dicalcium phosphate and calcium hydroxide. <i>Journal of Biomedical Materials</i> Research - Part B Applied Biomaterials. 2006. 78:291-MA	One or more exclusion criteria
L1	Manne, M., Validandi, V., Khandare, A. L Reduction of fluoride toxicity by tamarind components: An in silico study. <i>Fluoride</i> . 2018. 51:122-136	One or more exclusion criteria
L1	Mandinic, Z., Curcic, M., Antonijevic, B., Carevic, M Relationship between dental fluorosis and fluoride content in hair of schoolchildren from fluorotic and non-fluorotic regions in Serbia. <i>Toxicology Letters</i> . 2009. 1):S236	One or more exclusion criteria
L1	Mandinic, Z., Curcic, M., Antonijevic, B., Lekic, C. P., Carevic, M Relationship between fluoride intake in Serbian children living in two areas with different natural levels of fluorides and occurrence of dental fluorosis. <i>Food and Chemical Toxicology.</i> 2009. 47:1080-1084	

Level	Bibliography	Reason for Exclusion
L1	Yang, C. C.,Li, B. L.,Zhao, X. H.,Huang, Y. X.,Chen, J. K.,Chen, S. H.,Zhang, G. S.,Ou, H. H.,Chen, S. X Relationship between urinary fluoride level, incidences of dental fluorosis and caries of children in fluorosis areas after change of water sources. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:673-676	One or more exclusion criteria
L1	Xiang, Q.,Zhou, M.,Wu, M.,Zhou, X.,Lin, L.,Huang, J.,Liang, Y Relationships between daily total fluoride intake and dental fluorosis and dental caries. <i>Journal of Nanjing Medical University</i> . 2009. 23:33-39	One or more exclusion criteria
L1	de Vries, A.,Moonen, R.,Yildirim, M.,Langereis, S.,Lamerichs, R.,Pikkemaat, J. A.,Baroni, S.,Terreno, E.,Nicolay, K.,Strijkers, G. J.,Grull, H Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. <i>Contrast Media and Molecular Imaging</i> . 2014. 9:83-91	One or more exclusion criteria
L1	Mirhashemi, A. H., Jahangiri, S., Kharrazifard, M. J Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes. Progress in Orthodontics. 2018. 19 (1) (no pagination):#pages#	One or more exclusion criteria
L1	Shen, J., Schafer, A Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere. 2014. 117:679-691	One or more exclusion criteria
L1	Jha, A. K.,Mishra, B Removal of fluoride by bentonite minerals of Rajmahal Hills. <i>Journal of the Indian Chemical Society.</i> 2012. 89:519-521	One or more exclusion criteria
L1	Solangi, I. B., Memon, S., Bhanger, M. I Removal of	One or more exclusion

Level	Bibliography	Reason for Exclusion
	fluoride from aqueous environment by modified Amberlite resin. <i>Journal of Hazardous Materials</i> . 2009. 171:815-9	criteria
L1	Akafu, T., Chimdi, A., Gomoro, K Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide. <i>J Anal Methods Chem.</i> 2019. 2019:4831926	One or more exclusion criteria
L1	Ganvir, V.,Das, K Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash. <i>Journal of Hazardous Materials</i> . 2011. 185:1287-94	
L1	Ramaiah, K. P.,Satyasri, D.,Sridhar, S.,Krishnaiah, A Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers. <i>J Hazard Mater.</i> 2013. 261:362-71	One or more exclusion criteria
L1	Tran, H. N., Nguyen, H. C., Woo, S. H., Nguyen, T. V., Vigneswaran, S., Hosseini-Bandegharaei, A., Rinklebe, J., Kumar Sarmah, A., Ivanets, A., Dotto, G. L., Bui, T. T., Juang, R. S., Chao, H. P Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review. <i>Critical Reviews in Environmental Science and Technology</i> . 2019. 49:2155-2219	One or more exclusion criteria
L1	Sen, S. K.,Rattan, R.,Meenakshi, V.,Sripradha,,Kumar, A.,Nanda, N Renal stones analysis: Our experience at	One or more exclusion criteria

L1 Sen, S. K.,Rattan, R.,Meenakshi, V.,Sripradha,,Kumar, One or more exclusion A.,Nanda, N.. Renal stones analysis: Our experience at Pondicherry institute of medical sciences. *Biomedicine* (*India*). 2009. 29:284-285

L1 Rocha, M. J. A., Tazinafo, L. F., Basso, P. J., Silva, M. F.. One or more exclusion Replacing laboratory animals by alternative material for criteria

Level	Bibliography	Reason for Exclusion
	teaching diabetes in practical classes. FASEB Journal. Conference: Experimental Biology. 2012. 26:#pages#	
L1	Whelan, E. M Reply. <i>MedGenMed Medscape General Medicine</i> . 2008. 10 (4) (no pagination):#pages#	One or more exclusion criteria
L1	Sun, D Report on the surveillance of endemic fluorosis of drinking water type in China in 2005 and 2006. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:175-180	One or more exclusion criteria
L1	Wei, S. Y., Ding, P., Ding, S. R., Zhang, H. Y., Li, S. B., Zhang, X. L., Chen, W. G., Lu, A., Li, Y. F Report on the surveillance results of endemic fluorosis in Qinghai Province in 2007. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:671-672	One or more exclusion criteria
L1	Khandare, A. L Report on the XXXIIIRD conference of the international society for fluoride research, debilitating fluorosis: Current status, health challenges, and mitigation measures, Hyderabad, India, November 9-11, 2016. <i>Fluoride</i> . 2016. Part 2. 49:467-470	One or more exclusion criteria
L1	Ema, M., Naya, M., Yoshida, K., Nagaosa, R Reproductive and developmental toxicity of degradation products of refrigerants in experimental animals. <i>Reprod Toxicol.</i> 2010. 29:1-9	criteria
L1	Hong, F.,Cao, Y.,Yang, D.,Wang, H Research on the effects of fluoride on child intellectual development under different environmental conditions. <i>Fluoride</i> . 2008. 41:156-160	One or more exclusion criteria

Chen, Y., Han, F., Zhou, Z., Zhang, H., Jiao, X., Zhang,

S., Huang, M., Chang, T., Dong, Y.. Research on the

intellectual development of children in high fluoride areas.

L1

One or more exclusion

criteria

Fluoride, 2008, 41:120-124

- L1 Kumar, A.,Bajpai, S.,Tripathi, N.,Tripathi, M.. Respiratory One or more exclusion response of asian catfish, clarias batrachus, to fluoride. criteria

 Fluoride. 2010. 43:119-123
- L1 Frood, R.,McDermott, G.,Scarsbrook, A.. Respiratory-gated One or more exclusion PET/CT for pulmonary lesion characterisation-promises criteria and problems. *Br J Radiol.* 2018. 91:20170640
- L1 Farooqi, A.,Zafar, M. I.. Response to "Co-occurrence of One or more exclusion arsenic and fluoride in the groundwater of Punjab, criteria

 Pakistan: source discrimination and health risk assessment" by Rasool et al. 2015. *Environ Sci Pollut Res*Int. 2016. 23:13578-80
- L1 Gartenschläger, M.,Schreckenberger, M.,Buchholz, H. One or more exclusion G.,Reiner, I.,Beutel, M. E.,Adler, J.,Michal, M.,Jing, C.,Cui, criteria J.,Huang, Y.,Li, A.. Resting Brain Activity Related to Fabrication, characterization, and application of a composite adsorbent for simultaneous removal of arsenic and fluoride. Mindfulness (N Y). 2017. 8:1009-1017 Dispositional Mindfulness: a PET Study
- Wu, J. Q., Dai, C. F., Wu, H. Y., Feng, G. H., Du, G. X.. One or more exclusion Results of the national surveillance on endemic fluorosis in criteria
 Fengshun County of Guangdong Province in 2005-2006.
 [Chinese]. Chinese Journal of Endemiology. 2008. 27:673-674
- L1 Zhang, H. M., Luo, Z. W., Nie, J., Wen, T. A., Ping, B.. One or more exclusion Retrospective analysis of prevention of fluorosis of coalburning type in Longli County, Guizhou. [Chinese]. *Chinese Journal of Endemiology.* 2006. 25:713-715

Level	Bibliography	Reason for Exclusion
L1	Selvam, P.,Bharatwaj, B.,Porcar, L.,da Rocha, S. R Reverse aqueous microemulsions in hydrofluoroalkane propellants and their aerosol characteristics. <i>Int J Pharm.</i> 2012. 422:428-35	One or more exclusion criteria
L1	Gebrewold, M. A Review article: Neurological complications of endemic skeletal fluorosis in Ethiopia. <i>European Journal of Neurology.</i> 2012. 19 (SUPPL.1):801	One or more exclusion criteria
L1	Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., Singh, P Review of fluoride removal from drinking water. <i>Journal of Environmental Management</i> . 2009. 91:67-77	One or more exclusion criteria
L1	Carton, R. J Review of the 2006 United States National Research Council report: Fluoride in drinking water. <i>Fluoride</i> . 2006. 39:163-172	One or more exclusion criteria
L1	Satur, J. G., Gussy, M. G., Morgan, M. V., Calache, H., Wright, C Review of the evidence for oral health promotion effectiveness. <i>Health Education Journal</i> . 2010. 69:257-266	One or more exclusion criteria
L1	Jarquin-Yanez, L., Mejia-Saavedra, J., Molina-Frechero, N., Pozos-Guillen, A., Alvarez, G Risk assessment by exposure to fluorine through water consumption, by determining susceptibility biomarkers and effect in child population of San Luis Potosi. <i>Toxicology Letters</i> . 2016. 259 (Supplement 1):S123-S124	One or more exclusion criteria
L1	Guissouma, W.,Hakami, O.,Al-Rajab, A. J.,Tarhouni, J Risk assessment of fluoride exposure in drinking water of Tunisia. <i>Chemosphere</i> . 2017. 177:102-108	One or more exclusion criteria
L1	Waugh, D. T., Potter, W., Limeback, H., Godfrey, M Risk assessment of fluoride intake from tea in the republic of	One or more exclusion

Level	Bibliography	Reason for Exclusion
	ireland and its implications for public health and water fluoridation. <i>International Journal of Environmental Research and Public Health.</i> 2016. 13 (3) (no pagination):#pages#	criteria
L1	Nakatani, K., Nakamoto, Y., Togashi, K Risk factors for extensive skeletal muscle uptake in oncologic FDG-PET/CT for patients undergoing a 4-h fast. <i>Nuclear Medicine Communications</i> . 2012. 33:648-655	One or more exclusion criteria
L1	Arulazhagan, P., Vasudevan, N Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. <i>Mar Pollut Bull.</i> 2009. 58:256-62	One or more exclusion criteria
L1	Liu, Q. B., Liu, X. B., Wang, S. J., Liu, X. H., Yu, B., Jiang, Z. L., Wang, Z. J., Zhou, M. R., Zhang, X. K., Tian, S. C Role of brick tea with low-fluoride level in prevention of tea type fluorosis. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2012. 31:156-158	
L1	Daiwile, A. P., Tarale, P., Sivanesan, S., Naoghare, P. K., Bafana, A., Parmar, D., Kannan, K Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis. <i>Ecotoxicol Environ Saf.</i> 2019. 169:410-417	One or more exclusion criteria
L1	Chen, Y.,Li, H.,Li, M.,Niu, S.,Wang, J.,Shao, H.,Li, T.,Wang, H Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways. <i>J Ethnopharmacol.</i> 2017. 200:165-173	One or more exclusion criteria

L1

Wang, Z. L.. Sanitation of rural drinking water and endemic One or more exclusion

Level	Bibliography	Reason for Exclusion
	fluorosis in Hunyuan county of Shanxi province: An analysis of monitoring results. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:309-311	criteria
L1	Khandare, H. W Scenario of nitrate contamination in groundwater: Its causes and prevention. <i>International Journal of ChemTech Research</i> . 2013. 5:1921-1926	One or more exclusion criteria
L1	Allukian, M., Carter-Pokras, O. D., Gooch, B. F., Horowitz, A. M., Iida, H., Jacob, M., Kleinman, D. V., Kumar, J., Maas, W. R., Pollick, H., Rozier, R. G Science, Politics, and Communication: The Case of Community Water Fluoridation in the US. <i>Annals of Epidemiology</i> . 2018. 28:401-410	One or more exclusion criteria
L1	Kudinov, K. A., Cooper, D. R., Ha, J. K., Hill, C. K., Nadeau, J. L., Seuntjens, J. P., Bradforth, S. E Scintillation Yield Estimates of Colloidal Cerium-Doped LaF(3) Nanoparticles and Potential for "Deep PDT". <i>Radiat Res.</i> 2018. 190:28-36	criteria
L1	Kudinov, K. A., Cooper, D. R., Ha, J. K., Hill, C. K., Nadeau, J. L., Seuntjens, J. P., Bradforth, S. E Scintillation Yield Estimates of Colloidal Cerium-Doped LaF ₃ Nanoparticles and Potential for "Deep PDT". <i>Radiation Research</i> . 2018. 190:28-36	One or more exclusion criteria
L1	Zhu, C.,Bai, G.,Liu, X.,Li, Y Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shaanxi province in western China. <i>Water Research.</i> 2006. 40:3015-22	One or more exclusion criteria
L1	Sergeev, M., Morgia, F., Lazari, M., Van Dam, R Screening of catalytic activity of transition metal oxides in radiofluorination of tosylated substrates in highly aqueous	One or more exclusion criteria

media. European Journal of Nuclear Medicine and Molecular Imaging. 2014. 2):S244

- Ebrahim, F. M., Nguyen, T. N., Shyshkanov, S., Gladysiak, One or more exclusion A., Favre, P., Zacharia, A., Itskos, G., Dyson, P. J., Stylianou, criteria
 K. C.. Selective, Fast-Response, and Regenerable Metal-Organic Framework for Sampling Excess Fluoride Levels in Drinking Water. *Journal of the American Chemical Society*.
 2019. 141:3052-3058
- L1 Linhares, D. P. S.,Garcia, P. V.,Amaral, L.,Ferreira, One or more exclusion T.,Cury, J. A.,Vieira, W.,Rodrigues, A. D. S.. Sensitivity of criteria two biomarkers for biomonitoring exposure to fluoride in children and women: A study in a volcanic area.

 Chemosphere. 2016. 155:614-620
- L1 Jahanshahi, M., Kowsari, E., Haddadi-Asl, V., Khoobi, One of M., Lee, J. H., Kadumudi, F. B., Talebian, S., Kamaly, Criteria N., Mehrali, M.. Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting. *Int J Pharm.* 2019. 572:118791

One or more exclusion criteria

L1 Fernando, W. B. N. T., Nanayakkara, N., Gunarathne, L., Chandrajith, R.. Serum and urine fluoride levels in populations of high environmental fluoride exposure with endemic CKDu: a case-control study from Sri Lanka.

Environmental geochemistry and health.. 2019.
22:#pages#

One or more exclusion criteria

L1 Ba, Y.,Zhu, J. Y.,Yang, Y. J.,Yu, B.,Huang, H.,Wang, One or G.,Ren, L. J.,Cheng, X. M.,Cui, L. X.,Zhang, Y. W.. Serum criteria calciotropic hormone levels, and dental fluorisis in children

One or more exclusion criteria

- exposed to different concentrations of fluoride and iodine in drinking water. *Chin Med J (Engl)*. 2010. 123:675-9
- L1 Koroglu, B. K., Ersoy, I. H., Koroglu, M., Balkarli, A., Ersoy, One or more exclusion S., Varol, S., Tamer, M. N.. Serum parathyroid hormone criteria levels in chronic endemic fluorosis. *Biological Trace Element Research.* 2011. 143:79-86
- L1 Flueck, W. T., Smith-Flueck, J. A.. Severe dental fluorosis in One or more exclusion juvenile deer linked to a recent volcanic eruption in criteria

 Patagonia. *J Wildl Dis.* 2013. 49:355-66
- L1 Fioravanti, A., Tenti, S., Giannitti, C., Fortunati, N. One or more exclusion A., Galeazzi, M.. Short- and long-term effects of mud-bath criteria treatment on hand osteoarthritis: A randomized clinical trial.

 International Journal of Biometeorology. 2014. 58:79-86
- Yap, H. Y.,Fung, S. Y.,Ng, S. T.,Tan, C. S.,Tan, N. H.. One or more exclusion Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. *J*Ethnopharmacol. 2015. 174:437-51
- L1 Kim, M.,Lee, S. J.,Ko, N. R.,Kim, D. H.,Kim, J. S.,Oh, S. J.. One or more exclusion Simple and fully automatic production of criteria [¹⁸F]fluorodeprenyl-D2 using FXFN chemistry module. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S332
- L1 Hyun, J. S.,Lee, S. J.,Ryu, J. S.,Oh, S. J.. Simple and high One or more exclusion yield production of 3'-deoxy-3'
 [¹⁸F]fluorothymidine([¹⁸F]FLT)

 using SPE method and the minimum precursor amount.

 Journal of Labelled Compounds and

ו בעבו	Bibliograpl	hv
Level	DIDITOGIADI	ΙV

Reason for Exclusion

Radiopharmaceuticals. 2013. 1):S463

- L1 Nandy, S. K., Chakraborty, A., Pawar, Y., Moghe, S. H., Rajan, M. G. R.. Simplified and automated synthesis of criteria o-(2-[18f]fluoroethyl)-l-tyrosine ([18f]fet) using a single pot, two-stage procedure and solid-phase extraction purification. European Journal of Nuclear Medicine and Molecular Imaging. 2014. 2):S421
 - One or more exclusion

L1 Soloviev, D., Lewis, D. Y., Ros, S., Hu, D. E., D'Santos, P., Brindle, K. M.. Simplified synthesis of [18F]tetrafluoroborate for NIS reporter imaging by PET. Molecular Imaging and Biology. 2016. 18 (2) Supplement):S1197-S1198

One or more exclusion criteria

L1 Zhuang, X. M., Liu, P. X., Zhang, Y. J., Li, C. K., Li, Y., Wang, One or more exclusion J., Zhou, L., Zhang, Z. Q.. Simultaneous determination of triptolide and its prodrug MC002 in dog blood by LC-MS/MS and its application in pharmacokinetic studies. J Ethnopharmacol. 2013. 150:131-7

criteria

L1 Komori, K., Nada, J., Nishikawa, M., Notsu, H., Tatsuma, T., Sakai, Y.. Simultaneous evaluation of toxicities using a mammalian cell array chip prepared by photocatalytic lithography. Anal Chim Acta. 2009. 653:222-7

One or more exclusion

criteria

L1 Ingallinella, A. M., Pacini, V. A., Fernandez, R. G., Vidoni, R. One or more exclusion M., Sanguinetti, G.. Simultaneous removal of arsenic and fluoride from groundwater by coagulation-adsorption with polyaluminum chloride. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2011. 46:1288-1296

criteria

L1 Schofield, R. C., Mendu, D., Ramanathan, L. V., Pessin, M. One or more exclusion

25 March 2023 1103

Level	Bibliography	Reason for Exclusion
	S.,Carlow, D. C Simultaneous sensitive quantitation of testosterone and estradiol in serum by LC-MS/MS without derivatization. <i>Clinical Chemistry</i> . 2015. 1):S78-S79	criteria
L1	Bajpai, A.,Lakshminarayanan, N.,Khushwaha, K.,Banerjee, S Simultaneous synthesis of O-(2'-[¹⁸ F] fluoroethyltyrosine and [¹⁸ F] fluoromisonidazole using solid phase extraction method. <i>Indian Journal of Nuclear Medicine</i> . 2017. 32 (5 Supplement 1):S15	One or more exclusion criteria
L1	Guo, H.,Qian, H.,Idris, N. M.,Zhang, Y Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. <i>Nanomedicine</i> . 2010. 6:486-95	One or more exclusion criteria
L1	Kumar, H.,Boban, M.,Tiwari, M Skeletal fluorosis causing high cervical myelopathy. <i>J Clin Neurosci.</i> 2009. 16:828-30	
L1	Izuora, K.,Twombly, J. G.,Whitford, G. M.,Demertzis, J.,Pacifici, R.,Whyte, M. P Skeletal fluorosis from brewed tea. <i>J Clin Endocrinol Metab.</i> 2011. 96:2318-24	One or more exclusion criteria
L1	Whyte, M. P., Totty, W. G., Lim, V. T., Whitford, G. M Skeletal fluorosis from instant tea. <i>J Bone Miner Res.</i> 2008. 23:759-69	One or more exclusion criteria
L1	Fabreau, G. E.,Bauman, P.,Coakley, A. L.,Johnston, K.,Kennel, K. A.,Gifford, J. L.,Sadrzadeh, H. M.,Whitford, G. M.,Whyte, M. P.,Kline, G. A Skeletal fluorosis in a resettled refugee from Kakuma refugee camp. <i>Lancet</i> . 2019. 393:223-225	One or more exclusion criteria
L1	Mohammadi, A. A., Yousefi, M., Yaseri, M., Jalilzadeh, M., Mahvi, A. H Skeletal fluorosis in relation to drinking	One or more exclusion

Level	Bibliography	Reason for Exclusion
	water in rural areas of West Azerbaijan, Iran. <i>Sci Rep.</i> 2017. 7:17300	criteria
L1	Hewavithana, P. B., Jayawardhane, W. M., Gamage, R., Goonaratna, C Skeletal fluorosis in Vavuniya District: an observational study. <i>Ceylon Med J.</i> 2018. 63:139-142	One or more exclusion criteria
L1	Kumar, S., Kakar, A., Gogia, A., Byotra, S. P Skeletal fluorosis mimicking seronegative spondyloarthropathy: A deceptive presentation. <i>Tropical Doctor</i> . 2011. 41:247-248	One or more exclusion criteria
L1	Crowley, H Skeletal fluorosis: As encountered in rural India and its implications for physiotherapists in Asia and Africa. <i>Physiotherapy (United Kingdom).</i> 2011. 1):eS1464	One or more exclusion criteria
L1	McNally, R.,Blakey, K.,Feltbower, R.,Parslow, R.,James, P.,Pozo, B. G.,Stiller, C.,Vincent, T.,Norman, P.,McKinney, P.,Murphy, M.,Craft, A Small-area analyses of bone cancer in Great Britain, 1980-2005. <i>Pediatric Blood and Cancer.</i> 2010. 55 (5):932-933	One or more exclusion criteria
L1	Karunanidhi, D.,Aravinthasamy, P.,Kumar, D.,Subramani, T.,Roy, P. D Sobol sensitivity approach for the appraisal of geomedical health risks associated with oral intake and dermal pathways of groundwater fluoride in a semi-arid region of south India. <i>Ecotoxicol Environ Saf.</i> 2020. 194:110438	One or more exclusion criteria
L1	Frazao, P., Capel Narvai, P Socio-environmental factors associated with dental occlusion in adolescents. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> . 2006. 129:809-816	
L1	Bansal, A., Peng, K. W., Pandey, M. K., Suksanpaisan, L., Russell, S. J., DeGrado, T. R Sodium	One or more exclusion

Laval	Bibliography	,
FEAGI	Dibliography	/

Reason for Exclusion

[¹⁸F]Tetrafluoroborate criteria ([¹⁸F]BF4) as a sodium/iodide symporter gene therapy reporter probe: Synthesis and effect of specific activity in a C6 glioma xenografted mice. *Molecular Imaging and Biology*. 2013. 1):S117

L1 Sato, M., Hanmoto, T., Yachiguchi, K., Tabuchi, Y., Kondo, T., Endo, M., Kitani, Y., Sekiguchi, T., Urata, M., Hai, T. N., Srivastav, A. K., Mishima, H., Hattori, A., Suzuki, N.. Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassius auratus. *Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology.* 2016. 189:54-60

One or more exclusion criteria

- Lu, X., Wang, F., Xu, C., Soodvilai, S., Peng, K., Su, J., Zhao, One or more exclusion L., Yang, K. T., Feng, Y., Zhou, S. F., Gustafsson, J. Soluble criteria (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. *Proc Natl Acad Sci U S A.* 2016. 113:E1898-906
- L1 Firempong, C.,Nsiah, K.,Awunyo-Vitor, D.,Dongsogo, J.. One or more exclusion Soluble fluoride levels in drinking water-a major risk factor criteria of dental fluorosis among children in Bongo community of Ghana. *Ghana medical journal*. 2013. 47:16-23
- L1 Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K.. Source One or more exclusion and chemical species characterization of PM(10) and criteria human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India. *Chemosphere*.

 2018. 207:626-636
- L1 Kumar, R., Mittal, S., Sahoo, P. K., Sahoo, S. K.. Source One or more exclusion

Level Bibliography

Reason for Exclusion

apportionment, chemometric pattern recognition and health criteria risk assessment of groundwater from southwestern Punjab, India. Environ Geochem Health. 2020. #volume#:#pages#

L1 Atallah, A. N.. Sources of evidence. Sao Paulo Medical Journal. 2008. 126:73-74

One or more exclusion criteria

L1 Sakizadeh, M., Ahmadpour, E., Sharafabadi, F. M., Spatial analysis of chromium in southwestern part of Iran: probabilistic health risk and multivariate global sensitivity analysis. Environ Geochem Health. 2019. 41:2023-2038

One or more exclusion criteria

L1 Chen, H., Yan, M., Yang, X., Chen, Z., Wang, G., Schmidt-Vogt, D., Xu, Y., Xu, J.. Spatial distribution and temporal variation of high fluoride contents in groundwater and prevalence of fluorosis in humans in Yuanmou County, Southwest China. Journal of Hazardous Materials, 2012. 235-236:201-9

One or more exclusion criteria

L1 Chowdhury, C. R., Shahnawaz, K., Kumari, D., Chowdhury, A., Bedi, R., Lynch, E., Harding, S., Grootveld, M., Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects. Perspectives in Public Health. 2016. 136:353-360

One or more exclusion criteria

L1 Zhang, L., Zhao, L., Zeng, Q., Fu, G., Feng, B., Lin, X., Liu, Z., Wang, Y., Hou, C.. Spatial distribution of fluoride in drinking water and health risk assessment of children in typical fluorosis areas in north China. *Chemosphere*. 2020. 239:124811

One or more exclusion criteria

L1 Ranasinghe, N., Kruger, E., Tennant, M.. Spatial distribution One or more exclusion of groundwater fluoride levels and population at risk for dental caries and dental fluorosis in Sri Lanka. Int Dent J.

criteria

25 March 2023 1107 2019. 69:295-302

- Yousefi, M., Asghari, F. B., Zuccarello, P., Conti, G. O., Ejlali, One or more exclusion A., Mohammadi, A. A., Ferrante, M.. Spatial distribution criteria variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: A case study in an endemic fluorosis region of northwest Iran. *Int J Environ Res Public Health.* 2019. 16 (4) (no pagination):#pages#
- L1 Wyss, M. T.,Hofer, S.,Hefti, M.,Bärtschi, E.,Uhlmann, C.,Treyer, V.,Roelcke, U.. Spatial heterogeneity of low-grade gliomas at the capillary level: a PET study on tumor blood flow and amino acid uptake. *J Nucl Med.* 2007. 48:1047-52

One or more exclusion criteria

L1 Zheng, D.,Liu, Y.,Luo, L.,Shahid, M. Z.,Hou, D.. Spatial One or variation and health risk assessment of fluoride in drinking criteria water in the Chongqing urban areas, China. *Environ Geochem Health.* 2020. #volume#:#pages#

One or more exclusion criteria

L1 Fallahzadeh, R. A., Miri, M., Taghavi, M., Gholizadeh, A., Anbarani, R., Hosseini-Bandegharaei, A., Ferrante, M., Oliveri Conti, G.. Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water. *Food Chem Toxicol.* 2018. 113:314-321

One or more exclusion criteria

L1 Sisay, T.,Beyene, A.,Alemayehu, E.. Spatiotemporal variability of drinking water quality and the associated health risks in southwestern towns of Ethiopia. *Environ Monit Assess.* 2017. 189:569

One or more exclusion criteria

L1 Saifullah, N.,Ahmed, I.,Qayyum, S.,Khan, N.,Hameed Khan, M.. Spirometry changes due to prolonged exposure to high level of fluoride in drinking water. *European*

One or more exclusion criteria

Respiratory Journal. Conference: European Respiratory Society Annual Congress. 2013. 42:#pages#

L1 de Silva-Sanigorski, A. M., Waters, E., Calache, H., Smith, M., Gold, L., Gussy, M., Scott, A., Lacy, K., Virgo-Milton, M. Splash!: a prospective birth cohort study of the impact of environmental, social and family-level influences on child oral health and obesity related risk factors and outcomes. BMC Public Health, 2011, 11:505

One or more exclusion criteria

- L1 Kaisam, J. P., Kawa, Y. K., Moiwo, J. P., Lamboi, U. State of One or more exclusion well-water quality in Kakua Chiefdom, Sierra Leone. Water criteria Science and Technology: Water Supply. 2016. 16:1243-1254
- L1 Nagaraju, A., Thejaswi, A., Sun, L.. Statistical analysis of high fluoride groundwater hydrochemistry in Southern India: Quality assessment and implications for source of fluoride. Environmental Engineering Science. 2016. 33:471-477

One or more exclusion criteria

L1 Usman, A., Kontagora, N. M.. Statistical process control on One or more exclusion production: A case study of some basic chemicals used in criteria pure water production. Pakistan Journal of Nutrition. 2010. 9:387-391

L1 Choubisa, S. L., Choubisa, D.. Status of industrial fluoride pollution and its diverse adverse health effects in man and criteria domestic animals in India. Environmental science and pollution research international. 2016. 23:7244-7254

One or more exclusion

L1 Gryshuk, A., Chen, Y., Goswami, L. N., Pandey, S., Missert, J. R., Ohulchanskyy, T., Potter, W., Prasad, P. N., Oseroff, A., Pandey, R. K., Structure-activity relationship among

One or more exclusion criteria

25 March 2023 1109 purpurinimides and bacteriopurpurinimides: trifluoromethyl substituent enhanced the photosensitizing efficacy. *J Med Chem.* 2007. 50:1754-67

L1 Rathore, S.,Meena, C.,Gonmei, Z.,Toteja, G. S.,Bala, K..
Study of excess fluoride ingestion and effect on liver
enzymes in children living in Jodhpur district of Rajasthan.

Indian Journal of Public Health Research and

Development. 2018. 9:412-416

One or more exclusion criteria

L1 Rathore, S.,Meena, C.,Gonmei, Z.,Dwivedi, S.,Toteja, G. S.,Bala, K.. Study of excess fluoride ingestion and thyroid hormone derangement in relation with different fluoride levels in drinking water among children of Jodhpur District, Rajasthan, India. *Asian Journal of Microbiology, Biotechnology and Environmental Sciences.* 2018. 20:327-331

One or more exclusion criteria

L1 Gautam, R.,Bhardwaj, N.,Saini, Y.. Study of fluoride content in groundwater of Nawa Tehsil in Nagaur, Rajasthan. *Journal of Environmental Biology.* 2011. 32:85-9

One or more exclusion criteria

- L1 Sahu, A., Vaishnav, M. M.. Study of fluoride in ground water One or more exclusion around the BALCO, Korba area (India). *Journal of criteria Environmental Science & Engineering.* 2006. 48:65-8
- L1 Devesa, V.,Rocha, R.,Montoro, R.,Velez, D.. Study of One or more exclusion intestinal transport of F using Caco-2 cell line. *Toxicology* criteria *Letters*. 2010. 1):S306
- L1 Misra, A. K., Mishra, A.. Study of quaternary aquifers in One or more exclusion Ganga Plain, India: focus on groundwater salinity, fluoride criteria and fluorosis. *Journal of Hazardous Materials*. 2007.

144:438-48

- L1 Kumar, T., Takalkar, A.. Study of the effects of drinking One or more exclusion water naturally contaminated with fluorides on the health of criteria children. *Biomedical Research*. 2010. 21:423-427
- Liu, G.,Ye, Q.,Chen, W.,Zhao, Z.,Li, L.,Lin, P.. Study of the One or more exclusion relationship between the lifestyle of residents residing in criteria fluorosis endemic areas and adult skeletal fluorosis.

 Environ Toxicol Pharmacol. 2015. 40:326-32
- L1 Sigchi, S.,Khard, M.,Singh, K. N.,Khare, S.. Study of One or more exclusion urinary fluoride estimation among infertility cases in fluorosis endemic area. *BJOG: An International Journal of Obstetrics and Gynaecology.* 2014. 2):77
- L1 Nagabhushana, S. R., Sunilkumar, Suresh, S., Sannappa, One or more exclusion J., Srinivasa, E.. Study on activity of radium, radon and physicochemical parameters in ground water and their health hazards around Tumkur industrial area. *Journal of Radioanalytical and Nuclear Chemistry.* 2020. 323:1393-1403
- L1 Shashi, A.,Bhardwaj, M.. Study on blood biochemical One or more exclusion diagnostic indices for hepatic function biomarkers in endemic skeletal fluorosis. *Biol Trace Elem Res.* 2011. 143:803-14
- Liang, Y., Wang, S. P., Luo, H., Zhou, J. H., Wang, J. W., Rao, One or more exclusion H. X., Chai, B.. Study on relationship between drinking criteria water endemic fluorosis and urine fluorine in Linyi county, Shanxi province. [Chinese]. *Chinese Journal of Endemiology*. 2010. 29:193-195

Level Bibliography

Reason for Exclusion

- L1 Huang, J. N.,Zhou, X. Y.,Ling, L.,Xiang, Q. Y.,Zhang, Z. D.. One or more exclusion Study on the dose-response relationships between the criteria drinking water and bone mineral density, and serum osteocalcin. [Chinese]. *Chinese Journal of Endemiology*. 2009. 28:150-153
- L1 Mitri, E.,Birarda, G.,Vaccari, L.,Kenig, S.,Tormen, One or more exclusion M.,Grenci, G.. SU-8 bonding protocol for the fabrication of microfluidic devices dedicated to FTIR microspectroscopy of live cells. *Lab Chip.* 2014. 14:210-8
- L1 Baglar, S.. Sub-ablative Er,Cr:YSGG laser irradiation under One or more exclusion all-ceramic restorations: effects on demineralization and criteria shear bond strength. *Lasers in Medical Science*. 2018.

 33:41-49
- L1 Malde, M. K., Scheidegger, R., Julshamn, K., Bader, H. P.. One or more exclusion Substance flow analysis: a case study of fluoride exposure criteria through food and beverages in young children living in Ethiopia. *Environmental Health Perspectives*. 2011. 119:579-84
- L1 Jung, S.,An, J.,Na, H.,Kim, J.. Surface Energy of Filtration One or more exclusion Media Influencing the Filtration Performance against Solid criteria Particles, Oily Aerosol, and Bacterial Aerosol. *Polymers* (Basel). 2019. 11:#pages#
- L1 Tambe, V.,Thakkar, S.,Raval, N.,Sharma, D.,Kalia, One or more exclusion K.,Tekade, R. K.. Surface Engineered Dendrimers in siRNA criteria Delivery and Gene Silencing. *Curr Pharm Des.* 2017. 23:2952-2975
- L1 Boyer, J. C., Manseau, M. P., Murray, J. I., van Veggel, F. C.. One or more exclusion Surface modification of upconverting NaYF4 nanoparticles criteria

with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. *Langmuir.* 2010. 26:1157-64

- He, F. Z.,Guo,
 M.,Danzengsangbu,,Nimacangjue,,Baimayangjin,.
 Surveillance analysis of drinking water borne fluorosis in
 Tibet autonomous region in 2009. [Chinese]. Chinese
 Journal of Endemiology. 2011. 30:194-196
- One or more exclusion criteria
- L1 Hu, L. A., Wang, Y., Li, X. L., Wu, N.. Surveillance analysis of One or more exclusion drinking water-born endemic fluorosis in 2009 in Xuchang criteria city, Henan province. [Chinese]. *Chinese Journal of Endemiology.* 2012. 31:318-320
- Yu, B., Liu, Y., Yuan, C. S., Kang, J. S., Huang, H. Q., Wei, J. One or more exclusion J., Hu, L. A., Li, A. R.. Surveillance of coal-burning endemic criteria fluorosis prevailing status in Henan province. [Chinese].
 Chinese Journal of Endemiology. 2009. 28:191-193
- L1 Sun, D. J.. Surveillance on endemic fluorosis of drinking One or more exclusion water type in China: A two-year report of 2003 and 2004. criteria [Chinese]. *Chinese Journal of Endemiology.* 2007. 26:161-164
- Wu, J. Q., Yin, D. M., Dai, C. F., Wu, H. Y., Feng, G. H., Du, One or more exclusion G. X.. Surveillance on water-related endemic fluorosis in criteria
 Fengshun County Guangdon Province from 1991 to 2005:
 An outcome analysis. [Chinese]. Chinese Journal of Endemiology. 2007. 26:165-167
- L1 Liu, J. Y.,Liu, H.,Dong, W.,Gao, B.,Liu, Y. Q.,Sun, D. J.. One or more exclusion Survey of adult carotid atherosclerosis in water-related criteria endemic fluorosis areas in Heilongjiang province in 2008.

 [Chinese]. Chinese Journal of Endemiology. 2010. 29:634-

636

- Wang, S. X., Li, J., Wang, Z. H., Jia, Q. Z., Zhang, X. One or more exclusion D., Cheng, X. T., Wen, X. P.. Survey of defluoridation water criteria improvement project in Shanxi province from 2005 to 2009.
 [Chinese]. Chinese Journal of Endemiology. 2011. 30:56-59
- L1 Chen, P. Z., Yun, Z. J., Li, H. X., Bian, J. C., Ma, A. H., Gao, One or more exclusion H. X., Wang, Y. T., Gao, Jie. Survey of water improvement criteria project to reduce fluoride in Shandong province. [Chinese].

 Chinese Journal of Endemiology. 2011. 30:64-67
- L1 Bai, S. Y.,Ge, P. F.,Shao, J. Y.,Xu, J. M.,Jia, J. X.,Wang, One or more exclusion W. L.,Ren, Y. G.. Survey on water fluoride content and water-improving defluoridation projects in the endemic fluorosis areas of Gansu Province in 2005. [Chinese].

 Chinese Journal of Endemiology. 2008. 27:437-440
- L1 Faidallah, H. M.,Al-Mohammadi, M. M.,Alamry, K. A.,Khan, One or more exclusion K. A.. Synthesis and biological evaluation of criteria fluoropyrazolesulfonylurea and thiourea derivatives as possible antidiabetic agents. *J Enzyme Inhib Med Chem.* 2016. 31:157-163
- Kim, H.,Choi, J. Y.,Lee, K. H.,Kim, B. T.,Choe, Y. S.. One or more exclusion Synthesis and characterization of a difluoroboron complex of fluorine-18 labeled curcumin derivative for beta-amyloid plaque imaging. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S390-S391
- L1 Yu, J.,Mason, R. P.. Synthesis and characterization of One or more exclusion novel lacZ gene reporter molecules: detection of beta-

galactosidase activity by 19F nuclear magnetic resonance of polyglycosylated fluorinated vitamin B6. *J Med Chem.* 2006. 49:1991-9

- L1 Cai, L.,Liow, J. S.,Morse, C.,Davies, R.,Frankland, One or more exclusion M.,Zoghbi, S.,Innis, R.,Pike, V.. Synthesis and evaluation in criteria rats of [¹¹C] NR2B-Me as a PET radioligand for NR2B subunits in NMDA receptors. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S75-S77
- Attia, K., Visser, T., Steven, J., Slart, R., Antunes, I., Van Der One or more exclusion Hoek, S., Elsinga, P., Heerspink, H.. Synthesis and criteria evaluation of [¹⁸F] canagliflozin for imaging SGLT-2-transporters in diabetic patients. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2019. 62 (Supplement 1):S27-S29
- Yoon, K. Y.,Lee, I.,Yang, J.,Lee, J. H.,Choe, Y. S.. One or more exclusion Synthesis and evaluation of [F-18] fluoroethyl-RS-0406 as criteria a radioligand for beta-amyloid plaque imaging. *Journal of Nuclear Medicine*. *Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI*. 2010. 51:#pages#
- Lee, I.,Kang, C. M.,Choe, Y. S.,Choi, J. Y.,Lee, K. H.,Kim, One or more exclusion B. T.. Synthesis and evaluation of a F-18 labeled reveratrol criteria derivative for beta-amyloid plaque imaging. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2011.

 1):S291
- L1 Mangaiyarkarasi, R., Chinnathambi, S., Aruna, P., Ganesan, One or more exclusion S.. Synthesis and formulation of methotrexate (MTX) criteria

conjugated LaF3:Tb(3+)/chitosan nanoparticles for targeted drug delivery applications. *Biomed Pharmacother*. 2015. 69:170-8

- L1 Ko, Y. J., Yun, K. J., Kang, M. S., Park, J., Lee, K. T., Park, S. One or more exclusion B., Shin, J. H.. Synthesis and in vitro photodynamic criteria activities of water-soluble fluorinated tetrapyridylporphyrins as tumor photosensitizers. *Bioorg Med Chem Lett.* 2007. 17:2789-94
- L1 Kumar, P.,Sun, W.,Wuest, M.,Knaus, E. E.,Wiebe, L. I.. One or more exclusion Synthesis and initial in vitro and in vivo evaluation of 2'- criteria [¹⁸F]Fluoro-2'-deoxythymidine ([¹⁸F]FT) in TK-expressing tumor cells and tissue. *Molecular Imaging and Biology.* 2010. 2):S1010
- L1 Izuagie, A. A., Gitari, W. M., Gumbo, J. R.. Synthesis and One or more exclusion performance evaluation of Al/Fe oxide coated criteria diatomaceous earth in groundwater defluoridation: Towards fluorosis mitigation. Journal of Environmental Science & Health Part A-Toxic/Hazardous Substances & Environmental Engineering. 2016. 51:810-24
- Selivanova, S. V., Schubiger, A. P., Ametamey, S. One or more exclusion M., Stellfeld, T., Heinrich, T. K., Meding, J., Bauser, M., Hutter, criteria J.. Synthesis and radiofluorination of a high affinity MMP2/MMP9 inhibitor as a potential imaging tracer:
 Systematic study of diaryliodonium salts precursors.
 Journal of Labelled Compounds and Radiopharmaceuticals. 2011. 1):S5
- L1 Rodriguez Castillo, A. S.,Guihéneuf, S.,Le Guével, One or more exclusion R.,Biard, P. F.,Paquin, L.,Amrane, A.,Couvert, A.. criteria

Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor. *J Hazard Mater.* 2016. 307:221-30

- L1 Eskola, O., Yim, C. B., Johnson, T., Bergman, J., Solin, O.. One or more exclusion Synthesis of (18)F-labelled fragmented antibody (18)F Fab. criteria *Journal of Labelled Compounds and Radiopharmaceuticals.* 2019. 62 (Supplement 1):S186-S187
- Jiang, H., Pandey, M. K., DeGrado, T. R.. Synthesis of 18F One or more exclusion
 Tetrafluoroborate via Radiofluorination of BF3. *Journal of criteria Labelled Compounds and Radiopharmaceuticals*. 2015.
 1):S255
- L1 Jiang, H.,Bansal, A.,Pandey, M. K.,Peng, K. One or more exclusion W.,Suksanpaisan, L.,Russell, S. J.,DeGrado, T. R.. criteria Synthesis of 18F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation in a Murine C6-Glioma Tumor Model. *J Nucl Med.* 2016. 57:1454-9
- L1 Yoshimoto, M.,Honda, N.,Takahashi, K.,Kurihara, H.,Fujii, One or more exclusion H.. Synthesis of 4-borono-2-¹⁸F-fluoro-criteria phenylalanine using copper-mediated nucleophilic radiofluorination. *Journal of Nuclear Medicine. Conference.* 2019. 60:#pages#
- L1 Inkster, J., Dearling, J., Snay, E., Packard, A.. Synthesis of One or more exclusion 18lead a cridinium cations: A new class of criteria potential myocardial perfusion imaging agents. *Journal of Nuclear Medicine. Conference.* 2019. 60:#pages#
- L1 Li, M. H., Shiue, C. Y., Chang, H. C., Chu, H. H.. Synthesis of One or more exclusion

- [18F]benzamide ([18F]INER-1577) as Histone Deacetylase criteria (HDACs) imaging agent. *Journal of Nuclear Medicine.*Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI. 2016. 57:#pages#
- L1 Rahman, O., Ulin, J., & Langstrom, B. (2010). Synthesis of One or more exclusion [18F]fluoroacetate ([18F]FACE) from butyl acetate using criteria commercial platform. Paper presented at the 2010 World Molecular Imaging Congress, Kyoto, Japan.
- L1 Huang, X.,Tian, H.. Synthesis of [¹⁸F]IDO5L: One or more exclusion A novel potential PET probe for imaging of IDO-1 criteria expression. *Journal of Labelled Compounds and Radiopharmaceuticals.* 2015. 1):S197
- L1 Apte, S. D., Chin, F. T., Graves, E. E.. Synthesis of a new One or more exclusion PET radiotracer targeting carbonic anhydrase IX. *Journal of criteria Labelled Compounds and Radiopharmaceuticals*. 2009.

 1):S408
- L1 Kniess, T.,Kuchar, M.,Steinbach, J.,Wuest, F.. Synthesis of One or more exclusion a potential tyrosine kinase inhibitor by Knoevenagel criteria condensation of oxindole with 4-[18F]fluorobenzaldehyde.

 Journal of Labelled Compounds and Radiopharmaceuticals. 2009. 1):S182
- L1 Park, J.,Kim, H. J.,Kim, S.,Hur, M. G.,Yang, S.,Yu, K. H.. One or more exclusion Synthesis of F-18 labelled ammonium salts as inhibitor for criteria hEAG1 channels. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2009. 1):S372
- L1 Rokka, J., Snellman, A., Zona, C., La Ferla, B., Re, One or more exclusion F., Masserini, M., Haaparanta, M., Rinne, J., Solin, O.. criteria Synthesis of functionalized [¹⁸F]liposomes for

preclinical PET imaging in Alzheimer's disease. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2013. 1):S246

- L1 Xiong, L.,Shen, B.,Behera, D.,Gambhir, S. S.,Chin, F. One or more exclusion T.,Rao, J.. Synthesis of ligand-functionalized water-soluble criteria [18F]YF3 nanoparticles for PET imaging. *Nanoscale*. 2013. 5:3253-6
- L1 Akula, M. R.,Blevins, D. W.,Kabalka, G. W.,Osborne, D.. One or more exclusion Synthesis of N-[4-(2'- criteria [¹⁸F]fluoroethyloxybenzoyl)]pyrrolidin-2-one, a potential new brain imaging agent. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2015. 1):S214
- L1 Mueller, D.,Klette, I.,Kalb, F.,Baum, R.. Synthesis of O-(- One or more exclusion 2[18F]Fluoroethyl)-L-tyrosine based on a cartridge cleaning criteria method. *Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.* 2010. 51:#pages#
- L1 Kumar, N.,Hazari, P. P.,Sony, S.,Swatantra,,Panchal, K. K.,Ramgopal,,Mishra, A. K.. Synthesis of O-(2-[18F] fluoroethyl)-L-Tyrosine based on a cartridge purification method: A simple, fast, and high-yielding automated synthesis. *Indian Journal of Nuclear Medicine*. 2017. 32 (5 Supplement 1):S45

One or more exclusion criteria

- Mueller, D., Klette, I., Kalb, F., Baum, R. P.. Synthesis of O- One or more exclusion (2-[18F]fluoroethyl)-L-tyrosine based on a cartridge criteria purification method. *Nucl Med Biol.* 2011. 38:653-8
- Yim, C. B.,Mikkola, K.,Nuutila, P.,Solin, O.. Synthesis of One or more exclusion pancreatic beta cell-specific [¹⁸F]fluoro-criteria

exendin-4 via strain-promoted aza-

dibenzocyclooctyne/azide cycloaddition. EJNMMI

Radiopharmacy and Chemistry. Conference: 18th

European Symposium on Radiopharmacy and

Radiopharmaceuticals. Austria.. 2016. 1:#pages#

- L1 Seyedlar, R. M.,Rezvani, M.,Barari, S.,Imani, M.,Nodehi, A.,Atai, M.. Synthesis of plate-like beta-tricalcium phosphate nanoparticles and their efficiency in remineralization of incipient enamel caries. *Progress in Biomaterials*, 2019, 8:261-276
- One or more exclusion criteria

- L., Tidmore, R. P., George, C. S., Strecker, T. E., Devkota, One or more exclusion L., Tidmore, J. K., Lin, C. M., Herdman, C. A., Macdonough, criteria M. T., Sriram, M., Chaplin, D. J., Trawick, M. L., Pinney, K. G.. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents.
 Bioorg Med Chem. 2013. 21:8019-32
- Martić, M., Pernot, L., Westermaier, Y., Perozzo, R., Kraljević, One or more exclusion T. G., Krištafor, S., Raić-Malić, S., Scapozza, L., Ametamey, criteria S.. Synthesis, crystal structure, and in vitro biological evaluation of C-6 pyrimidine derivatives: new lead structures for monitoring gene expression in vivo.
 Nucleosides Nucleotides Nucleic Acids. 2011. 30:293-315
- L1 Caballero, J., Munoz, C., Alzate-Morales, J. H., Cunha, S., Gano, L., Bergmann, R., Steinbach, J., Kniess, T.. Synthesis, in silico, in vitro, and in vivo investigation of 5-[11C]methoxy-substituted sunitinib, a tyrosine kinase inhibitor of VEGFR-2. *European Journal of Medicinal Chemistry*. 2012. 58:272-80

One or more exclusion

criteria

Level	Bibliography	Reason for Exclusion
L1	Yrjölä, S.,Sarparanta, M.,Airaksinen, A. J.,Hytti, M.,Kauppinen, A.,Pasonen-Seppänen, S.,Adinolfi, B.,Nieri, P.,Manera, C.,Keinänen, O.,Poso, A.,Nevalainen, T. J.,Parkkari, T Synthesis, in vitro and in vivo evaluation of 1,3,5-triazines as cannabinoid CB2 receptor agonists. <i>Eur S Pharm Sci.</i> 2015. 67:85-96	
L1	Wang, Y.,McKee, M.,Torbica, A.,Stuckler, D.,Herndon, J. M Systematic Literature Review on the Spread of Health- related Misinformation on Social Media Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification. Soc Sci Med. 2019. 240:112552	One or more exclusion criteria
L1	Boyles, A. L., Blain, R. B., Rochester, J. R., Avanasi, R., Goldhaber, S. B., McComb, S., Holmgren, S. D., Masten, S. A., Thayer, K. A Systematic review of community health impacts of mountaintop removal mining. <i>Environment International</i> . 2017. 107:163-172	One or more exclusion criteria
L1	Czajka, M Systemic effects of fluoridation. <i>Journal of Orthomolecular Medicine</i> . 2012. 27:123-130	One or more exclusion criteria
L1	Indermitte, E., Karro, E., Saava, A Tap water fluoride levels in Estonia. <i>Fluoride</i> . 2007. 40:244-247	One or more exclusion criteria
L1	Sikorska-Jaroszynska, M. H. J., Mielnik-Blaszczak, M., Krawczyk, D., Wrobel, R., Blaszczak, J Tea - Natural source of fluoride compounds. <i>Annales Universitatis Mariae Curie-Sklodowska, Sectio DDD: Pharmacia.</i> 2012. 25:247-249	One or more exclusion criteria
L1	Hasan, R., Talha, M., Weinstein, R. S Tea drinker's fluorosis. <i>Endocrine Reviews. Conference: 99th Annual</i>	One or more exclusion criteria

Level	Bibliography
	Dibliography

Meeting of the Endocrine Society, ENDO. 2017. 38:#pages#

L1 Yang, F., Cui, M.. Technetium-99m labeled phenylquinoxaline derivatives as potential tau-selective imaging probes for diagnosis of Alzheimer's disease. Nuclear Medicine and Biology. 2019. 72-73 (Supplement 1):S56

One or more exclusion criteria

L1 Behnam, B. A., Ashique, R., Labiris, R., Chirakal, R.. Temperature effect on the stereospecificity of nucleophilic fluorination: Formation of [18F]trans-4-fluoro-L-proline during the synthesis of [18F]cis-4-fluoro-L-proline. Journal of Labelled Compounds and Radiopharmaceuticals. 2009. 1):S206

One or more exclusion

criteria

L1 Azad, B. B., Ashique, R., Labiris, N. R., Chirakal, R., Temperature effects on the stereospecificity of nucleophilic criteria fluorination: Formation of trans-[¹⁸F]4-fluoro-lproline during the synthesis of cis-[¹⁸F]4fluoro-l-proline. Journal of Labelled Compounds and Radiopharmaceuticals. 2012. 55:23-28

One or more exclusion

L1 Liu, G., Sun, Z., Fu, Z., Ma, L., Wang, X.. Temperature sensing and bio-imaging applications based on polyethylenimine/CaF(2) nanoparticles with upconversion fluorescence. Talanta. 2017. 169:181-188

One or more exclusion

criteria

L1 Moon, S. H., Wilks, M., Takahashi, K., Han, P., Ma, C., Yuan, One or more exclusion H., El Fakhri, G., Shoup, T., Normandin, M., TEMPO as a PET/MR probe of oxidative stress in cell membranes. Journal of Nuclear Medicine. Conference. 2019. 60:#pages#

criteria

25 March 2023 1122

Level Bibliography

Reason for Exclusion

- L1 Ahrari, F.,Eslami, N.,Rajabi, O.,Ghazvini, K.,Barati, S.. The One or more exclusion antimicrobial sensitivity of Streptococcus mutans and criteria Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. *Dent Res J* (*Isfahan*). 2015. 12:44-9
- L1 Leili, M., Naghibi, A., Norouzi, H. A., Khodabakhshi, M.. The One or more exclusion assessment of chemical quality of drinking water in criteria

 Hamadan Province, West of Iran. *Journal of Research in Health Sciences*, 2015, 15:234-238
- L1 Angulo, M., Cuitiño, E., Molina-Frechero, N., Emilson, C. G.. One or more exclusion The association between the prevalence of dental fluorosis criteria and the socio-economic status and area of residence of 12-year-old students in Uruguay. *Acta Odontol Scand.* 2020. 78:26-30
- L1 Allwood-Newhook, L. A., Chafe, R., Aslanov, R., Clarke, One or more exclusion J., Gregory, P., Gill, N., Sarkar, A.. The association of type 1 criteria diabetes mellitus and concentrations of drinking water components in Newfoundland and Labrador, Canada.

 Pediatric Diabetes. 2017. 18 (Supplement 25):64
- L1 Feng, H. Q.,Shi, Y. X.,Sun, D. J.. The bone metabolism test One or more exclusion of rats drinking brick tea liquor before and after criteria defluoridation by Serpentine. [Chinese]. *Chinese Journal of Endemiology*. 2006. 25:139-141
- L1 Skillman, S. M., Doescher, M. P., Mouradian, W. E., Brunson, One or more exclusion D. K.. The challenge to delivering oral health services in criteria rural America. *Journal of Public Health Dentistry*. 2010. 70 Suppl 1:S49-57
- L1 Mirzabeygi Rad Fard, M., Yousefi, M., Soleimani, One or more exclusion

Level	Bibliog	graphy

criteria

H.,Mohammadi, A. A.,Mahvi, A. H.,Abbasnia, A.,Wasana, H. M.,Perera, G. D.,De Gunawardena, P. S.,Bandara, J.. The The impact of aluminum, fluoride, and aluminum-fluoride complexes in drinking water on chronic kidney disease. Data Brief. 2018. 18:40-46 concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran

- L1 Genovesi, A., Sachero, E., Lorenzi, C.. The dental One or more exclusion hygienist's role in the laser treatment of the dentine criteria hipersensitivity. [Italian]. *Prevenzione e Assistenza Dentale.* 2010. 36:32-35
- Yook, C. M., Lee, S. J., Oh, S. J., Ha, H. J., Lee, J. J.. The development of new amino acid derivatives using click reaction and simple SPE purification method. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2015. 1):S194

One or more exclusion criteria

L1 Yook, C. M., Lee, S. J., Lee, J. J., Ryu, J. S., Oh, S. J.. The development of new amino acid derivatives using one pot simultaneous two click reaction. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2013. 1):S365

One or more exclusion criteria

L1 Spittle, B.. The diagnosis of chronic fluoride intoxication including the use of serum and urinary fluoride ion levels and a forearm radiograph in the diagnosis of stage II and III skeletal fluorosis. *Fluoride*. 2018. 51:3-12

One or more exclusion criteria

L1 Liu, Y.,Sun, J.,Li, B.,Liu, X.,Li, M.,Cui, J.,Liu, H.,Sun, Z.,Li, One or more exclusion Y.,Wu, J.,Zhang, W.,Gao, Y.. The differences of brick-tea criteria fluorosis of four ethnic in China. [Chinese]. *Chinese Journal of Endemiology.* 2014. 33:315-319

Level	Bibliography	Reason for Exclusion
L1	Lu, Q.,He, D.,Yang, P.,Li, S.,Jiang, H.,Chen, P.,Pa, G.,Wu, H.,La, C.,Wei, S The distribution of drinking-tea-borne fluorosis in the six ethnics in Qinghai Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:404-406	One or more exclusion criteria
L1	Tirapelli, C., Panzeri, H., Lara, E. H., Soares, R. G., Peitl, O., Zanotto, E. D The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a long-term clinical study. <i>J Oral Rehabil.</i> 2011. 38:253-62	One or more exclusion criteria
L1	Lyaruu, D. M.,Bronckers, A. L. J. J.,Santos, F.,Mathias, R.,DenBesten, P The effect of fluoride on enamel and dentin formation in the uremic rat incisor. <i>Pediatric Nephrology</i> . 2008. 23:1973-1979	One or more exclusion criteria
L1	Ramesh, M., Narasimhan, M., Krishnan, R., Aruna, R. M., Kuruvilla, S The effect of fluorosis on human teeth under light microscopy: A cross-sectional study. <i>J Oral Maxillofac Pathol.</i> 2017. 21:345-350	One or more exclusion criteria
L1	Crocombe, L. A., Brennan, D. S., Slade, G. D., Stewart, J. F., Spencer, A. J The effect of lifetime fluoridation exposure on dental caries experience of younger rural adults. <i>Aust Dent J.</i> 2015. 60:30-7	One or more exclusion criteria
L1	Spittle, B The effect of the fluoride ion on reproductive parameters and an estimate of the safe daily dose of fluoride to prevent female infertility and miscarriage, and foetal neurotoxicity. <i>Fluoride</i> . 2017. 50:287-291	One or more exclusion criteria
L1	Nguyen, A The effect of various hindered tertiary alcohols on the SN2 radiofluorination of 3'-deoxy-3'-[18 F]fluorothymidine and its in vivo application as a proliferation imaging probe in acute myeloid leukemia.	One or more exclusion criteria

Molecular Imaging and Biology. 2017. 19 (1 Supplement 1):S589

- L1 Shim, M. Y., Parr, C., Pesti, G. M.. The effects of dietary One or more exclusion fluoride on growth and bone mineralization in broiler chicks. criteria

 Poult Sci. 2011. 90:1967-74
- Mendoza-Schulz, A., Solano-Agama, C., Arreola-Mendoza, One or more exclusion L., Reyes-Marquez, B., Barbier, O., Del Razo, L. criteria
 M., Mendoza-Garrido, M. E.. The effects of fluoride on cell migration, cell proliferation, and cell metabolism in GH4C1 pituitary tumour cells. *Toxicology Letters*. 2009. 190:179-86
- L1 Spittle, B.. The effects of fluoride on inflammation and cancer. *Fluoride*. 2019. 52:7-8 criteria
- L1 Kim, S. Y.,Kim, E. J.,Kim, D. S.,Lee, I. B.. The evaluation of One or more exclusion dentinal tubule occlusion by desensitizing agents: a real-criteria time measurement of dentinal fluid flow rate and scanning electron microscopy. *Oper Dent.* 2013. 38:419-28
- L1 Xu, G. Y.,Li, J. X.,Hua, J. L.. The evaluation report for one or more exclusion restoration and reconstruction of endemic disease criteria prevention needed in areas severely hit by the earthquake in Shaanxi province. [Chinese]. *Chinese Journal of Endemiology.* 2010. 29:295-298
- L1 Mel'Nichuk, L. P.,Khodasevich, L. S.. The external application of "Plastunskaya" fluoride-containing mineral water in the course of the combined spa and health resort-based treatment of deforming osteoarthrosis. [Russian]. Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury. 2015. 92:48-50

One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Al-Jiboury, H., Wilgus, J., Benhammou, J., Patel, A., Jacob, N., Ohning, G., Otomo-Corgel, J., Pisegna, J. R The gastric refluxate in patients with gastroesophageal reflux disease (GERD) has a protective effect on periodontal microbiota. American Journal of Gastroenterology. 2015. 1):S731	One or more exclusion criteria
L1	Foth, M The increasing relevance of public health research in the last 95 years. <i>Journal of Public Health</i> (Germany). 2012. 20:209-211	One or more exclusion criteria
L1	Ramadan, A., Hilmi, Y The influence of climate on the determination of the upper permissible fluoride level in potable water in sudan. <i>Fluoride</i> . 2014. 47:170-180	One or more exclusion criteria
L1	Dec, K.,Lukomska, A.,Maciejewska, D.,Jakubczyk, K.,Baranowska-Bosiacka, I.,Chlubek, D.,Wasik, A.,Gutowska, I The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. <i>Biological Trace Element Research.</i> 2017. 177:224-234	One or more exclusion criteria
L1	Esteves-Oliveira, M., Zezell, D. M., Velloso, W. F., Meister, J., Franzen, R., Lampert, F., Eduardo, C. P., Apel, C The influence of pulse duration and irradiation time of a CO2 laser on enamel caries resistance. <i>Lasers in Medical Science</i> . 2009. 24 (3):496	One or more exclusion criteria
L1	Huang, D. Y.,Zhang, X. H.,Pu, Y.,Yu, M. J The intervention effects of soybean, selenium powder, spiral algae on rats of fluoride poisoning with high aluminum. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:376-380	One or more exclusion criteria
L1	Jia, L. H.,Ma, J.,Du, Y. G.,Ma, D. R.,Yao, G. J.,Liang, S.	One or more exclusion

Level Bibliography

Reason for Exclusion

criteria

L.,Zhang, J. Q.,Chong, Z. S.,Zhao, J.,Xu, D.. The investigation of drinking-water-borne endemic fluorosis in Hebei province in 2009. [Chinese]. *Chinese Journal of Endemiology*. 2011. 30:184-187

- L1 Chachra, D.,Limeback, H.,Willett, T. L.,Grynpas, M. D.. The One or more exclusion long-term effects of water fluoridation on the human criteria skeleton. *J Dent Res.* 2010. 89:1219-23
- Petrova, A.,Ol'shevskaya, V.,Zaitsev, A.,Tatarskiy, One or more exclusion V.,Radchenko, A.,Kostyukov, A.,Kalinina, E.,Kuzmin, criteria
 V.,Miyoshi, N.,Shtil, A.. The novel tetracarboranylchlorin derivative for binary anticancer treatment: rapid tumor elimination via superoxide anion production. *FEBS Open Bio.* 2019. 9 (Supplement 1):334-335
- L1 Bharatwaj, B., Wu, L., Whittum-Hudson, J. A., da Rocha, S. One or more exclusion R.. The potential for the noninvasive delivery of polymeric criteria nanocarriers using propellant-based inhalers in the treatment of Chlamydial respiratory infections. *Biomaterials*. 2010. 31:7376-85
- L1 Jarvis, H. G.,Heslop, P. S.,Kissima, J.,Walker, R.. The One or more exclusion prevalence and characteristics of fluorosis causing skeletal criteria deformities in rural Tanzania. *Arthritis and Rheumatism*. 2010. 10):1568
- L1 Akosu, T. J., Zoakah, A. I., Chirdan, O. A.. The prevalence One or more exclusion and severity of dental fluorosis in the high and low altitude criteria parts of Central Plateau, Nigeria. *Community Dent Health.* 2009. 26:138-42
- L1 Alavi, A. A., Amirhakimi, E., Karami, B.. The prevalence of One or more exclusion dental caries in 5 18-year-old insulin-dependent diabetics criteria

of Fars Province, southern Iran. *Arch Iran Med.* 2006. 9:254-60

- Zhao, H.,Zhang, H.,Cui, P.,Ding, F.,Wang, G.,Li, R.,Jenks, One or more exclusion M. A.,Lu, S.,Xiong, L.. The Putative E3 Ubiquitin Ligase criteria
 ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination
 Growth in Arabidopsis. *Plant Physiology*. 2014. 165:1255-1268
- L1 Mustafa, D. E., Younis, U. M., Elhag, S. A. A.. The One or more exclusion relationship between the fluoride levels in drinking water criteria and the schooling performance of children in rural areas of Khartoum state, Sudan. *Fluoride*. 2018. 51:102-113
- Ding, Y., YanhuiGao,, Sun, H., Han, H., Wang, W., Ji, X., Liu, One or more exclusion X., Sun, D.. The relationships between low levels of urine fluoride on children's intelligence, dental fluorosis in endemic fluorosis areas in Hulunbuir, Inner Mongolia,
 China. Journal of Hazardous Materials. 2011. 186:1942-1946
- L1 Arpaia, D., Montuori, P., Ciancia, G., Ippolito, S., Ferraro, One or more exclusion A., Galante, F., Lombardi, G., Pettinato, G., Triassi, M., Biondi, criteria B.. The risk of thyroid cancer related to the vesuvius in the region of Campania, Italy. *European Thyroid Journal*. 2011.

 Conference Publication: (var.pagings).:140-141
- L1 Gooch, B. F.,Griffin, S. O.,Malvitz, D. M.. The role of One or more exclusion evidence in formulating public health programs to prevent criteria oral disease and promote oral health in the United States. *J Evid Based Dent Pract.* 2006. 6:85-9
- L1 Pollick, H.. The Role of Fluoride in the Prevention of Tooth One or more exclusion

Level	Bibliography	Reason for Exclusion
	Decay. <i>Pediatric Clinics of North America</i> . 2018. 65:923-940	criteria
L1	Wimalawansa, S. J The role of ions, heavy metals, fluoride, and agrochemicals: critical evaluation of potential aetiological factors of chronic kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication. <i>Environ Geochem Health</i> . 2016. 38:639-78	One or more exclusion criteria
L1	Shcherbatykh, I., Carpenter, D. O The role of metals in the etiology of Alzheimer's disease. <i>Journal of Alzheimer's Disease</i> . 2007. 11:191-205	One or more exclusion criteria
L1	Shcaira, V.,Gambareli, F.,Correa, M. E.,Moraes, P The role of mouth disease diagnosis in the context of the Brazilian health system. A 19 years retrospective study in Cosmopolis city with emphasis in oral cancer. <i>Supportive Care in Cancer.</i> 2010. 3):S141	One or more exclusion criteria
L1	Chiu, R. S., Nahal, H., Provart, N. J., Gazzarrini, S The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. <i>BMC Plant Biol.</i> 2012. 12:15	One or more exclusion criteria
L1	Li, Z.,Zhang, H.,Zhao, C.,Li, Y.,Chen, B The situation of brick tea type fluorosis in inner mongolia in 2009 and 2012. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2014. 33:530-533	
L1	Pepper, I. L The soil health-human health nexus. <i>Critical Reviews in Environmental Science and Technology.</i> 2013. 43:2617-2652	

Level	Bibliography	Reason for Exclusion
L1	Stafford, R The spin-echo sequence; K-space. <i>Medical Physics</i> . 2017. 44 (6):3094	One or more exclusion criteria
L1	Shen, Z.,Ning, L.,Wu, R.,Brindle, K The technique methods and progress of MR pH imaging. <i>Neuroradiology Journal</i> . 2010. 1):304	One or more exclusion criteria
L1	Whelan, E. M The top ten unfounded health scares of the year. <i>MedGenMed Medscape General Medicine</i> . 2008. 10 (2) (no pagination):#pages#	
L1	Kanduti, D., Sterbenk, P., Artnik, B The use of fluoride and its effect on health. [Slovene]. <i>Zdravniski Vestnik</i> . 2016. 85:348-353	One or more exclusion criteria
L1	Yu, S.,Zhang, W.,Hao, F.,Zhang, L Therapeutic mechanism of shen qi fu zheng zhu she ye toward the adrenal cortex ultrastructure in cancer-related fatigue. [Chinese]. <i>Chinese Journal of Clinical Oncology.</i> 2013. 40:621-624+633	One or more exclusion criteria
L1	Tailor, R., Tolani, N., Ibbott, G. S Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water. <i>Med Phys.</i> 2008. 35:4063-9	One or more exclusion
L1	Talpos, S They persisted. <i>Science</i> . 2019. 364:622-626	One or more exclusion criteria
L1	Yu, X.,Chen, J.,Li, Y.,Liu, H.,Hou, C.,Zeng, Q.,Cui, Y.,Zhao L.,Li, P.,Zhou, Z.,Pang, S.,Tang, S.,Tian, K.,Zhao, Q.,Dong L.,Xu, C.,Zhang, X.,Zhang, S.,Liu, L.,Wang, A Threshold effects of moderately excessive fluoride exposure on children's health: A potential association between dental fluorosis and loss of excellent intelligence. <i>Environment</i>	

International, 2018, 118:116-124

- L1 Savchenkov, M. F.,Efimova, N. V.,Manueva, R. One or more exclusion S.,Nikolaeva, L. A.,Shin, N. S.. Thyroid gland pathology in criteria children population exposed to the combination of iodine deficiency and fluoride pollution of environment. [Russian]. *Gigiena i sanitariia*. 2016. 95:1201-1205
- L1 Abd El Naser Yamamah, G.,Kamel, A. F.,Abd-El Dayem, One or more exclusion S.,Hussein, A. S.,Salama, H.. Thyroid volumes and iodine criteria status in Egyptian South Sinai schoolchildren. *Archives of Medical Science*. 2013. 9:548-54
- Yang, K., Yang, X., Zhao, X., Lamy de la Chapelle, M., Fu, One or more exclusion
 W.. THz Spectroscopy for a Rapid and Label-Free Cell criteria
 Viability Assay in a Microfluidic Chip Based on an Optical
 Clearing Agent. Anal Chem. 2019. 91:785-791
- L1 Chaithra, B.,Sarjan, H. N.,Shivabasavaiah,. Timedependent effect of ground water fluoride on motility,
 abnormality and antioxidant status of spermatozoa: An in
 vitro study. *Toxicology and Industrial Health.* 2019. 35:368377
- L1 Masuda, Y.,Ohji, T.,Kato, K.. Tin oxide nanosheet One or more exclusion assembly for hydrophobic/hydrophilic coating and cancer criteria sensing. *ACS Appl Mater Interfaces*. 2012. 4:1666-74
- L1 Holmström, K. E.,Berger, U.. Tissue distribution of One or more exclusion perfluorinated surfactants in common guillemot (Uria aalge) criteria from the Baltic Sea. *Environ Sci Technol.* 2008. 42:5879-84
- L1 Sankhala, S. S., Harshwal, R., Paliwal, P., Agarwal, A.. Toe One or more exclusion nails as a biomarker of chronic fluoride exposure secondary criteria to high water fluoride content in areas with endemic

Level	Bibliography

308

Reason for Exclusion

fluorosis. Fluoride. 2014. 47:235-240

L1 Gore, F., Fawell, J., Bartram, J., Too much or too little? A review of the conundrum of selenium. Journal of Water & Health. 2010. 8:405-16

One or more exclusion criteria

L1 Clark, D., Levin, L.. Tooth hypersensitivity treatment trends One or more exclusion among dental professionals. Quintessence Int. 2018. 49:147-151

criteria

L1 Barros, E. L. D., Pinto, S. C. S., Borges, A. H., Tonetto, M. R., Ellwood, R. P., Pretty, I., Bandeca, M. C.. Toothpaste prevents debonded brackets on erosive enamel. Scientific World Journal. 2015. 2015 (no pagination):#pages#

One or more exclusion criteria

L1 Aurlene, N., Manipal, S., Rajmohan, Prabu, D., Sindhu, R. Topical fluoride as a panacea for dental caries: A review. Journal of Pharmaceutical Sciences and Research. 2019. 11:3320-3325

One or more exclusion criteria

- L1 Machado, I., Buhl, V., Manay, N.. Total arsenic and inorganic One or more exclusion arsenic speciation in groundwater intended for human criteria consumption in Uruguay: Correlation with fluoride, iron, manganese and sulfate. Science of the Total Environment. 2019. 681:497-502
- L1 Zhu, L., Zhang, H. H., Xia, B., Xu, D. R.. Total fluoride in One or more exclusion Guangdong soil profiles, China: Spatial distribution and criteria vertical variation. Environment International, 2007, 33:302-
- L1 Paiste, M., Levine, M., Bono, J. V.. Total knee arthroplasty in One or more exclusion a patient with skeletal fluorosis. *Orthopedics*. 2012. criteria 35:e1664-7

25 March 2023 1133

Level	Bibliography	Reason for Exclusion
L1	McCready, R.,Dizdarevic, S Towards improving the sensitivity of ¹⁸ F bone imaging. <i>Nuclear Medicine Communications</i> . 2014. 35 (5):554	One or more exclusion criteria
L1	Johnson, C. A.,Berg, M.,Sabatini, D Towards sustainable safe drinking water supply in low- and middle-income countries: The challenges of geogenic contaminants and mitigation measures. <i>Science of the Total Environment.</i> 2014. 488-489:475-476	One or more exclusion criteria
L1	Steen, J., Denk, C., Norregaard, K., Jorgensen, J., Rossin, R., Svatunek, D., Edem, P., Robillard, M., Kjaer, A., Kristensen, J., Mikula, H., Herth, M Towards the dual click ¹⁸ F-labeling of Antibodies. <i>Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria
L1	Farooqi, A., Masuda, H., Firdous, N Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. <i>Environmental Pollution</i> . 2007. 145:839-849	One or more exclusion r criteria
L1	Choubisa, S. L., Modasiya, V., Bahura, C. K., Sheikhc, Z Toxicity of fluoride in cattle of the indian thar desert, Rajasthan, India. <i>Fluoride</i> . 2012. 45:371-376	One or more exclusion criteria
L1	Grandjean, P.,Herz, K. T Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic. #journal#. 2015. 31:#pages#	One or more exclusion criteria
L1	Frezzo, J. A., Hoang, D. M., Wadghiri, Y. Z., Montclare, J. K Traceable and thermoresponsive multifunctional engineered protein drug delivery agents for metastatic	One or more exclusion criteria

ו בעב	Bibliograpl	hv
Levei	DIDITOGIADI	ΙV

breast cancer. *Molecular Imaging and Biology.* 2016. 18 (2 Supplement):S279

L1 Wickramarathna, S.,Balasooriya, S.,Diyabalanage, S.,Chandrajith, R.. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach. *J Trace Elem Med Biol.* 2017. 44:298-306

One or more exclusion criteria

L1 Janka, Z.. Tracing trace elements in mental functions.

[Hungarian]. *Ideggyogyaszati Szemle*. 2019. 72:367-379

One or more exclusion criteria

L1 Kislukhin, A. A.,Xu, H.,Adams, S. R.,Narsinh, K.,Tsien, R. Y.,Ahrens, E. T.. Tracking transplanted cells with paramagnetic fluorinated nanoemulsions. *Cancer Research. Conference: 106th Annual Meeting of the American Association for Cancer Research, AACR.* 2015. 75:#pages#

One or more exclusion criteria

L1 Chao, W.,Zhang, Y.,Chai, L.,Wang, H.. Transcriptomics provides mechanistic indicators of fluoride toxicology on endochondral ossification in the hind limb of Bufo gargarizans. *Aquat Toxicol.* 2018. 201:138-150

One or more exclusion criteria

L1 Sikora, B.,Fronc, K.,Kaminska, I.,Koper, K.,Szewczyk, One or S.,Paterczyk, B.,Wojciechowski, T.,Sobczak, K.,Minikayev, criteria R.,Paszkowicz, W.,Stepien, P.,Elbaum, D.. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells. *Nanotechnology*. 2013. 24:235702

One or more exclusion

L1 Wang, P.,Lu, Y.,Wang, T.,Zhu, Z.,Li, Q.,Zhang, Y.,Fu, Y.,Xiao, Y.,Giesy, J. P.. Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River estuary, China. *Environ Sci*

One or more exclusion criteria

	Diki	 _ ~	40 10	h.,
Level	DID	IIOU	rab	ΠV

Pollut Res Int. 2015. 22:9626-36

L1 Farkas, A., Wolf, M., Landzberg, E., Woods, K., Lynch, M.. Treatment of ventricular fibrillation due to ammonium bifluoride poisoning with hemodialysis. Clinical Toxicology. 2018. 56 (10):1063

One or more exclusion criteria

L1 Wang, X. Y., Tao, F., Xiao, D., Lee, H., Deen, J., Gong, J., Zhao, Y., Zhou, W., Li, W., Shen, B., Song, Y., Ma, J., Li, Z. M., Wang, Z., Su, P. Y., Chang, N., Xu, J. H., Ouyang, P. Y., von Seidlein, L., Xu, Z. Y., Clemens, J. D.. Trend and disease burden of bacillary dysentery in China (1991-2000). Bull World Health Organ. 2006. 84:561-8

One or more exclusion criteria

L1 An, N., Zhu, J., Ren, L., Liu, X., Zhou, T., Huang, H., Sun, L., Ding, Z., Li, Z., Cheng, X., Ba, Y.. Trends of SHBG and ABP levels in male farmers: Influences of environmental fluoride exposure and ESR alpha gene polymorphisms. Ecotoxicology & Environmental Safety. 2019. 172:40-44

One or more exclusion criteria

- L1 Loi, E. I. H., Yeung, L. W. Y., Taniyasu, S., Lam, P. K. One or more exclusion S., Kannan, K., Yamashita, N.. Trophic magnification of poly-criteria and perfluorinated compounds in a subtropical food web. Environmental Science and Technology, 2011, 45:5506-5513
- L1 Sezgin, B. I., Onur Ş, G., Menteş, A., Okutan, A. E., Haznedaroğlu, E., Vieira, A. R., Two-fold excess of fluoride in the drinking water has no obvious health effects other than dental fluorosis. J Trace Elem Med Biol. 2018. 50:216-222

One or more exclusion criteria

L1 Gooch, B. F.. U.S. public health service recommendation for fluoride concentration in drinking water for the

One or more exclusion criteria

25 March 2023 1136

Level	Biblio	ogran	bhv

prevention of dental caries. Public Health Reports. 2015. 130:318-331

L1 Singh, P., Das, T. K.. Ultrastructural localization of 4hydroxynonenal adducts in fluoride-exposed cells: Protective role of dietary antioxidants. Fluoride. 2019. 52:49-58

One or more exclusion criteria

L1 Daly, N., Farren, M., McKeating, A., Moffitt, K., Sheehan, S. R., Turner, M. J.. Universal screening for gestational diabetes mellitus (GDM) with a fasting plasma glucose measurement under strict preanalytical conditions at the first prenatal visit. American Journal of Obstetrics and Gynecology. 2016. 1):S169-S170

One or more exclusion criteria

L1 Wanigasuriya, K.. Update on uncertain etiology of chronic One or more exclusion kidney disease in Sri Lanka's north-central dry zone. MEDICC Rev. 2014, 16:61-5

criteria

L1 Degrossi, O. J., Gutierrez, S., Fadel, A., Degrossi, E. B., Valdivieso, M. C., Balbuena, R. L., Del, C. A. M., De Cabrejas, M.. Uptake of 131-I in maxillary bones mimicking salivary glands. False-positive images in patients with Differentiated Thyroid Carcinoma. DTC. [Spanish]. Revista Argentina de Endocrinologia y Metabolismo. 2008. 45:67-74

One or more exclusion criteria

L1 Babiuch, K., Pretzel, D., Tolstik, T., Vollrath, A., Stanca, S., Foertsch, F., Becer, C. R., Gottschaldt, M., Biskup, C., Schubert, U. S.. Uptake of well-defined, highly glycosylated, pentafluorostyrene-based polymers and nanoparticles by human hepatocellular carcinoma cells. Macromol Biosci. 2012. 12:1190-9

One or more exclusion criteria

25 March 2023 1137

Level Bibliography

Reason for Exclusion

- Diwan, V.,Sar, S. K.,Biswas, S.,Dewangan, R.,Baghel, T.. One or more exclusion
 Uranium in ground water of Rajnandgaon District of Central criteria
 India. *Journal of Radioanalytical and Nuclear Chemistry*.
 2019. 321:293-302
- L1 Srikanth, R.,Gautam, A.,Jaiswal, S. C.,Singh, P.. Urinary One or more exclusion fluoride as a monitoring tool for assessing successful criteria intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India. *Environmental Monitoring and Assessment*. 2013. 185:2343-2350
- L1 Liu, H. Y., Chen, J. R., Hung, H. C., Hsiao, S. Y., Huang, S. One or more exclusion T., Chen, H. S.. Urinary fluoride concentration in children criteria with disabilities following long-term fluoride tablet ingestion.

 Res Dev Disabil. 2011. 32:2441-8
- L1 Cox, K. D., English, J. C., Bhat, V.. Use of "read-across" and One or more exclusion threshold of toxicological concern approaches to establish criteria allowable concentrations in drinking water: A case study.

 Toxicology Letters. 2017. 280 (Supplement 1):S101
- L1 Renfrew, A. K., Scopelliti, R., Dyson, P. J.. Use of One or more exclusion perfluorinated phosphines to provide thermomorphic criteria anticancer complexes for heat-based tumor targeting. *Inorg*Chem. 2010. 49:2239-46
- L1 Samdan, N.. Use of some medicinal plants in ageing. One or more exclusion Wiener Klinische Wochenschrift. 2009. 121:S80-S82 criteria
- L1 Campbell-Verduyn, L. S., Mirfeizi, L., Dierckx, R. A., Elsinga, One or more exclusion P. H., Feringa, B. L.. Using "Click" Chemistry as a Tool for criteria Fluorine-18 Radiolabelling of Bombesin. *Journal of Labelled Compounds and Radiopharmaceuticals*. 2011.

1):S487

- L1 Wang, J., Holloway, T., Van Dam, R. M.. Using a One or more exclusion microdroplet reactor for rapid, nucleophilic synthesis of criteria [¹⁸F]FDOPA. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S337-S339
- L1 Mirfeizi, L., Campbell-Verduyn, L. S., Yu, Z., Feringa, B. One or more exclusion
 L., Dierckx, R. R., De Jong, J. I., Helfrich, W., Elsinga, P. H.. criteria
 Using copper free click chemistry for PET as a tool for
 fluorine-18 radiolabelling of Bombesin. European Journal of
 Nuclear Medicine and Molecular Imaging. 2011. 2):S208
- Wang, Y., Chen, X. D., Wang, C. S.. Using inverse distance One or more exclusion weighting in studying the distribution of endemic fluorosis in criteria
 Jiangsu Province. [Chinese]. *Chinese Journal of Endemiology*. 2009. 28:97-100
- L1 Dubey, S. P., Gopal, K., Bersillon, J. L.. Utility of adsorbents One or more exclusion in the purification of drinking water: A review of criteria characterization, efficiency and safety evaluation of various adsorbents. *Journal of Environmental Biology.* 2009. 30:327-332
- L1 Risheq, F. Y., Alrisheq, M. F., Al-Sadoon, S. J., Qwarik, A. A.. One or more exclusion
 Utility of Delayed 18 FDG PET/CT imaging for lesions criteria
 detection enhancement. *European Journal of Nuclear*Medicine and Molecular Imaging. 2015. 1):S395-S396
- Bondu, J. D., Selvakumar, R., Fleming, J. J.. Validating a One or more exclusion
 High Performance Liquid Chromatography-Ion criteria
 Chromatography (HPLC-IC) Method with Conductivity
 Detection After Chemical Suppression for Water Fluoride

Level	Bibliography
	Estimation. Indian Journal of Clinical Biochemistry. 2018.
	33:86-90

L1 De Arcocha Torres, M.,Ortega-Nava, F.,Portilla- One or more exclusion Quattrociocchi, H.,Martinez-Rodriguez, I.,Quirce, criteria R.,Medina-Quiroz, P.,Del Carpio-Bellido, L.,Carril, J.. Validation of the Synthesis of (18)F-FNa. European Journal of Nuclear Medicine and Molecular Imaging. 2011. 2):S292

Reason for Exclusion

- L1 Chang, E. T., Adami, H. O., Bailey, W. H., Boffetta, One or more exclusion P., Krieger, R. I., Moolgavkar, S. H., Mandel, J. S.. Validity of criteria geographically modeled environmental exposure estimates.

 Critical Reviews in Toxicology. 2014. 44:450-466
- L1 Leslie, D. L., Lyons, W. B.. Variations in Dissolved Nitrate, One or more exclusion Chloride, and Sulfate in Precipitation, Reservoir, and Tap criteria Waters, Columbus, Ohio. *Int J Environ Res Public Health*. 2018. 15:#pages#
- L1 Hari Kumar, K. V. S., Singh, Y.. Visual vignette. *Endocrine* One or more exclusion *Practice*. 2019. 25:1082 criteria
- L1 Tian, Y.,Xiao, Y.,Wang, B.,Sun, C.,Tang, K.,Sun, F.. One or more exclusion Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways. *Bioscience Reports*. 2018. 38 (4) (no pagination):#pages#
- L1 Minana, I. V.. Vitamins and trace elements. *Pediatria* One or more exclusion *Integral.* 2015. 19:324-336 criteria
- L1 Connett, M. P.. Vulvar Paget's disease: Recovery without One or more exclusion surgery following change to very low-fluoride spring and criteria well water. *Fluoride*. 2007. 40:96-100

Level	Bibliography	Reason for Exclusion
L1	Su, L.,Zhang, Z.,Xiong, Y Water dispersed two-dimensional ultrathin Fe(iii)-modified covalent triazine framework nanosheets: peroxidase like activity and colorimetric biosensing applications. <i>Nanoscale</i> . 2018. 10:20120-20125	One or more exclusion criteria
L1	Newton, J. N., Young, N., Verne, J., Morris, J Water fluoridation and hypothyroidism: results of this study need much more cautious interpretation. <i>J Epidemiol Community Health</i> . 2015. 69:617-8	One or more exclusion criteria
L1	Yeung, C. A Water fluoridation could save NHS millions every year. <i>BMJ (Online)</i> . 2014. 348 (no pagination):#pages#	One or more exclusion criteria
L1	Rabb-Waytowich, D Water fluoridation in Canada: past and present. <i>J Can Dent Assoc</i> . 2009. 75:451-4	One or more exclusion criteria
L1	Osmunson, B Water fluoridation intervention: Dentistry's crown jewel or dark hour?. <i>Fluoride</i> . 2007. 40:214-221	One or more exclusion criteria
L1	Kumar, S Water fluoridation, dental fluorosis, bone fluorosis, and skeletal fluorosis among persons in the hojai sub-division, Nagaon District, Assam, India: A quantitative overview. <i>Fluoride</i> . 2012. 45 (3 PART 1):180-181	One or more exclusion criteria
L1	Connett, P Water fluoridationa public health hazard. <i>Int Socup Environ Health</i> . 2006. 12:88-91	One or more exclusion criteria
L1	Peckham, S., Awofeso, N Water fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. <i>The Scientific World Journal</i> . 2014. 2014 (no pagination):#pages#	One or more exclusion criteria
L1	Amenu, K., Markemann, A., Valle Zárate, A Water for	One or more exclusion

Level	Bibliography	Reason for Exclusion
	human and livestock consumption in rural settings of Ethiopia: assessments of quality and health aspects. Environ Monit Assess. 2013. 185:9571-86	criteria
L1	Fang, J., Wu, X., Xu, J., Yang, X., Song, X., Wang, G., Yan, M., Yan, M., Wang, D Water management challenges in the context of agricultural intensification and endemic fluorosis: the case of Yuanmou County. <i>Ecohealth</i> . 2011. 8:444-55	
L1	Pinto, U., Thoradeniya, B., Maheshwari, B Water quality and chronic kidney disease of unknown aetiology (CKDu) in the dry zone region of Sri Lanka: impacts on well-being of village communities and the way forward. <i>Environmental science and pollution research international</i> . 2020. 27:3892-3907	One or more exclusion criteria
L1	Bermejo, I. A., Usabiaga, I., Compañón, I., Castro-López, J., Insausti, A., Fernández, J. A., Avenoza, A., Busto, J. H., Jiménez-Barbero, J., Asensio, J. L., Peregrina, J. M., Jiménez-Osés, G., Hurtado-Guerrero, R., Cocinero, E. J., Corzana, F Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. <i>J Am Chem Soc.</i> 2018. 140:9952-9960	One or more exclusion criteria
L1	Varol, E., Varol, S Water-borne fluoride and primary hypertension. <i>Fluoride</i> . 2013. 46:3-6	One or more exclusion criteria
L1	Nemoto, A., Chosa, N., Kyakumoto, S., Yokota, S., Kamo, M., Noda, M., Ishisaki, A Water-soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells. <i>Mol Med Rep.</i> 2018. 17:3448-3454	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ogbu, I. S. I.,Okoro, O. I. O.,Ugwuja, E. I Well waters fluoride in Enugu, Nigeria. <i>International Journal of Occupational and Environmental Medicine</i> . 2012. 3:96-98	One or more exclusion criteria
L1	Samstein, M., Kaplan, B., Ponda, P What's Not in the Water? Pseudoallergic Reactions to Niacinamide Containing Flouridated Multivitamins. <i>Annals of Allergy, Asthma and Immunology.</i> 2019. 123 (5 Supplement):S67	One or more exclusion criteria
L1	Armfield, J. M When public action undermines public health: A critical examination of antifluoridationist literature. Australia and New Zealand Health Policy. 2007. 4 (1) (no pagination):#pages#	One or more exclusion criteria
L1	Baysoy, G., Uzulmez, R. H Who is your dietitian? Diet of breastfeeding mothers with an allergic infant lacks many essential nutrients. <i>Journal of Pediatric Gastroenterology and Nutrition</i> . 2018. 66 (Supplement 2):981	One or more exclusion criteria
L1	Wasana, H. M., Perera, G. D., Gunawardena, P. S., Fernando, P. S., Bandara, J WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. <i>Sci Rep.</i> 2017. 7:42516	One or more exclusion criteria
L1	Johansson, E., Lubberink, M., Heurling, K., Eriksson, J. W., Skrtic, S., Ahlstrom, H., Kullberg, J Whole-body imaging of tissue-specific insulin sensitivity and body composition by using an integrated PET/MR system: A feasibility study. <i>Radiology.</i> 2018. 286:271-278	One or more exclusion criteria
L1	Kennett, J Will routine use of statins after age 50 become as common as fluoridating drinking water? It should!. <i>Mo Med.</i> 2013. 110:342-3	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Huang, C. Q X-ray signs of bone and joint among residents of endemic fluorosis area 40 years after improvement of water. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2006. 25:192-195	One or more exclusion criteria
L1	Huang, C. Q X-rays changes of forearm and shank of residents from areas with different fluoride contents in drinking water in Jilin province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:208-212	One or more exclusion criteria
L1	Li, Z.,Jia, K.,Duan, Y.,Wang, D.,Zhou, Z.,Dong, S Xanomeline derivative EUK1001 attenuates Alzheimer's disease pathology in a triple transgenic mouse model. <i>Mol Med Rep.</i> 2017. 16:7835-7840	One or more exclusion criteria
L1	Venault, A.,Lin, K. H.,Tang, S. H.,Dizon, G. V.,Hsu, C. H.,Maggay, I. V. B.,Chang, Y Zwitterionic electrospun PVDF fibrous membranes with a well-controlled hydration for diabetic wound recovery. <i>Journal of Membrane Science</i> 2020. 598 (no pagination):#pages#	One or more exclusion criteria
L2	Bian, J.,Lin, X.,Yang, X.,Fan, T.,Zhu, Q [Changes of certain oxidative, anti-oxidative and vascular function indexes of New Zealand rabbit exposed by high-fluoride]. [Chinese]. Wei sheng yan jiu = Journal of hygiene research. 2010. 39:751-754	Non-English publication
L2	Biloklyts'ka, H. F.,Pohrebniak, H. V.,Khalili, D [Effect of the diet with different microelement composition on the state of alveolar and pelvic bones in rats]. <i>Fiziol Zh.</i> 2008. 54:74-8	Non-English publication
L2	Chen, C.,Lu, Y.,Wang, S. Y.,Li, X. H Research on residual alveolar bone in fluorosis rats. [Chinese]. <i>Journal of Xi'an</i>	Non-English publication

- Jiaotong University (Medical Sciences). 2012. 33:110-113
- L2 Chen, R.,Zhu Li De Zi, T.,Zhao, L.,Tian, J. G.,Ruan, J. P.. Non-English publication Effects of fluoride on the expressions of MMP-20 and KLK4 in rat ameloblasts. [Chinese]. *Journal of Xi'an Jiaotong University (Medical Sciences)*. 2013. 34:433-436
- L2 Chen, X. S., Yu, Y. N., Yi, W., Wan, L. B., Xie, Y.. Effect of Non-English publication fluoride on expression of mRNA and protein of Wnt3a and beta-catenin in osteoblast of rats. [Chinese]. *Chinese Journal of Endemiology.* 2013. 32:140-145
- L2 Chen, X. Y.,Liang, B.,Tang, F. W.,Zhang, Y. C.,Sun, F.,Gu, Non-English publication J.,Zhang, S.. Role of stanniocalcin 1 in brain injury of coalburning-borne fluorosis rats. [Chinese]. *Chinese Journal of Endemiology.* 2013. 32:129-132
- Cui, Y. S., Zhong, Q., Li, W. F., Liu, Z. H., Wang, Y., Hou, C. Non-English publication
 C.. [Effects of fluoride exposure on thyroid hormone level and intelligence in rats]. *Zhonghua Lao Dong Wei Sheng* Zhi Ye Bing Za Zhi. 2017. 35:888-892
- L2 Deng, C. N., Yu, Y. N., Xie, Y., Zhao, L. N.. [Expression of Non-English publication calcineurin and nuclear factor of activated T cells 1 in testis of rats with chronic fluorosis]. [Chinese]. *Zhonghua yu fang yi xue za zhi* [Chinese journal of preventive medicine]. 2013. 47:1142-1147
- L2 Deng, C. N., Yu, Y. N., Yang, D., Zhu, H. Z.. Expression of Non-English publication nuclear factor kappa B-related mRNA and protein in bone tissue of fluorosis rats. [Chinese]. *Chinese Journal of Endemiology*. 2012. 31:135-139
- L2 Deng, C. N., Yu, Y. N., Yang, D., Zhu, H. Z.. Relationship of Non-English publication nuclear factor kappa B-related gene expression and

osteoclast apoptosis induced by fluoride in bone tissue. [Chinese]. *Chinese Journal of Endemiology.* 2012. 31:518-522

- Deng, C. N., Zhang, Y., Xu, L., Zhao, L. N., Linghu, Y., Yu, Y. Non-English publication
 N.. [Change and relationship between Gli1 and beta-catenin on rats' bone formation with chronic fluorosis].
 Chung-Hua Ping Li Hsueh Tsa Chih Chinese Journal of
 Pathology. 2020. 49:168-173
- L2 Deng, C.,Yu, Y.,Zhang, Y.. Expressions of transforming Non-English publication growth factor-beta1 and interleukin 6 mRNA and protein in bone of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology.* 2014. 33:609-614
- L2 Dong, Y., Wang, Y., Wei, N., Guan, Z.. Expression levels of Non-English publication brain muscarinic acetylcholine receptor in offspring rats of drinking-water borne fluorosis. [Chinese]. *Chinese Journal of Endemiology*. 2015. 34:326-330
- L2 Dong, Y., Wang, Y., Wei, N., Guan, Z.. Expression of Non-English publication muscarinic acetylcholine receptors in the brain of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology.* 2015. 34:84-88
- L2 Ersan, Y.,Koc, E.,Ari, I.,Karademir, B.. Histopathological Non-English publication effects of chronic fluorosis on the liver of mice (Swiss albino). [Turkish]. *Turkish Journal of Medical Sciences*. 2010. 40:619-622
- L2 Fan, S. L.,Bai, S. B.,Qin, W.,Zhang, Y. L.,Zhong, J. Non-English publication J.,Chen, R.,Li, T.,Feng, S. M.,Liu, K. T.,Luo, X. G.,Chen, L.,Liao, L. B.. Morphological changes of bone in the progress of rat chronic fluorosis. [Chinese]. *Chinese*

Journal of Endemiology. 2012. 31:151-155

- L2 Gao, Q.,Liu, Y. J.,Wu, C. X.,Long, Y. G.,Guan, Z. Z.. Level Non-English publication of oxidative stress in rat brains and learning and memory function of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology.* 2008. 27:371-373
- L2 Gao, Y. H.,Fu, S. B.,Sun, H.,Zhou, L. W.,Yu, J.,Li, Non-English publication Y.,Wang, Y.,Sun, D. J.. Dynamic analysis on bone pathologic change of fluorosis in rats. [Chinese]. *Chinese Journal of Endemiology.* 2007. 26:18-21
- L2 Gao, Y. H.,Fu, S. B.,Sun, H.,Zhou, L. W.,Yu, J.,Li, Non-English publication Y.,Wang, Y.,Sun, D. J.. Expression of the transforming growth factor-beta superfamily in bone turnover of fluorosis. [Chinese]. *Chinese Journal of Endemiology.* 2006. 25:374-378
- L2 Gao, Y. H.,Geng, L. B.,Zhao, L. J.,Zhang, L. W.,Wei, Non-English publication W.,Huo, L. L.,Liu, K. K.. Effect of fluoride on bone metabolism in rats. [Chinese]. *Chinese Journal of Endemiology.* 2010. 29:613-615
- L2 Gao, Y. H.,Sun, D. J.,Zhou, L. W.,Yu, J.,Li, Y.,Wang, Y.. Non-English publication Effect of subchronic fluoride intoxication on inducible nitric oxide synthase expression in rat bone tissue. [Chinese].

 Chinese Journal of Endemiology. 2008. 27:124-127
- L2 Gui, C. Z.,Ran, L. Y.,Guan, Z. Z.. Expression levels of brain Non-English publication nicotinic acetylcholine receptor mRNA and protein in coalburning type of fluorosis rats. [Chinese]. *Chinese Journal of Endemiology.* 2011. 30:239-242
- L2 Guo, X.,Wu, S.,He, Y.,Zhang, Z.,Sun, G.. [Effect of Non-English publication subchronic fluoride exposure on pathologic change and

Level Bibliography

Reason for Exclusion

beta-catenin expression in rat bone tissue]. [Chinese]. Wei sheng yan jiu = Journal of hygiene research. 2011. 40:304-307

L2 Gutierrez-Salinas, J., Morales-Gonzalez, J. A.. Sodium fluoride ingestion induced oxidative stress in buccal mucosa in rat. [Spanish]. Revista Mexicana de Ciencias Farmaceuticas. 2006. 37:11-22

Non-English publication

L2 Jia, Z., Yu, Y., Yang, X., Wan, W., Xu, W.. Effects of chronic Non-English publication fluorosis on expressions of matrix metalloproteinase-9 mRNA and protein in the osteoclast of bone tissue of rats. [Chinese]. Chinese Journal of Endemiology. 2014. 33:133-137

L2 Jin, T. X., Guan, Z. Z., Zhang, H.. The effect of fluoride on alpha subunit of calcium/calmodulin-dependent protein kinase-II mRNA and protein expression in central nervous system. [Chinese]. Chinese Journal of Endemiology. 2011. 30:247-250

Non-English publication

L2 Kelimu, A., Liu, K. T., Lian, J., Hu, H. H., Zheng, Y. J., Wang, Non-English publication T. M.. Effects of vitamin C and E on the ultrastructure in liver, kidney and brain of fluorosis rats. [Chinese]. *Chinese* Journal of Endemiology, 2008, 27:378-381

L2 Li, H., Cai, Q., Wang, D.. Effects of fluoride on rat thyroid morphology, thyroid peroxidase activity and the expression of thyroid peroxidase protein. [Chinese]. Chinese Journal of Endemiology. 2012. 31:271-274

Non-English publication

L2 Li, J. Y., Liang, Z. P., Ma, H. S.. Changes of the femur biomechanics in fluorosis rats. [Chinese]. Chinese Journal of Endemiology. 2009. 28:154-156

Non-English publication

25 March 2023 1148

Level Bibliography

Reason for Exclusion

- L2 Liu, Y. J.,Gao, Q.,Long, Y. G.,Yu, Y. N.,Guan, Z. Z.. Non-English publication Influence of chronic fluorosis on expression of phospho-Elk-1 in rat brains. [Chinese]. *Chinese Journal of Endemiology.* 2011. 30:251-255
- Liu, Y. J., Gao, Q., Wu, C. X., Guan, Z. Z.. Changes of the c- Non-English publication Jun N-terminal kinase in the brains of rats with chronicfluorosis. [Chinese]. *Chinese Journal of Endemiology*. 2010. 29:608-612
- Liu, Y. J., Gao, Q., Wu, C. X., Long, Y. G., Guan, Z. Z.. Non-English publication Modified expression of extracellular signal-regulated protein kinase signal transduction in rat brains and changed capacity of learning and memory of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology*. 2009. 28:32-35
- Lou, D. D., Liu, Y. F., Qin, S. L., Zhang, K. L., Yu, Y. N., Guan, Non-English publication Z. Z.. Changed transcription level of mitochondrial fission and fusion gene loci in cortical neurons of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology*. 2012. 31:125-129
- Lou, D. D., Liu, Y. F., Zhang, K. L., Yu, Y. N., Guan, Z. Z.. Non-English publication Changes of reactive oxygen species level and mitochondria fission-fusion in cortical neurons of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology.* 2011. 30:256-260
- L2 Lou, D. D., Pan, J. G., Zhang, K. L., Qin, S. L., Liu, Y. F., Yu, Non-English publication Y. N., Guan, Z. Z.. [Changed expression of mito-fusion 1 and mitochondrial fragmentation in the cortical neurons of rats with chronic fluorosis]. [Chinese]. *Zhonghua yu fang yi*

xue za zhi [Chinese journal of preventive medicine]. 2013. 47:170-174

- Lou, D. D., Zhang, K. L., Pan, J. G., Qin, S. L., Liu, Y. F., Yu, Non-English publication Y. N., Guan, Z. Z.. [Influence of chronic fluorosis on the expression of mitochondrial fission protein dynamin-related 1 in the cortical neurons of rats]. [Chinese]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]. 2013. 47:561-564
- Lou, D. D., Zhang, K. L., Qin, S. L., Liu, Y. F., Liu, Y. J., Guan, Non-English publication Z. Z.. Effects of chronic fluorosis on 4.8 kb mitochondrial DNA in liver, kidney and brain of rats. [Chinese]. *Chinese Journal of Endemiology*. 2013. 32:121-124
- L2 Ma, T. X., Yu, H. T., Song, K. Q.. Expression of c-fos and Non-English publication Caspase 8 in cerebral cortex of rats with experimental fluorosis. [Chinese]. *Chinese Journal of Endemiology.* 2008. 27:131-133
- Mei, M., Yu, Y. N., Guo, B.. Effect of fluoride on expression Non-English publication of Runx2 mRNA and protein in bone tissue of rats.
 [Chinese]. Chinese Journal of Endemiology. 2010. 29:493-495
- L2 Mo, F.,Qu, W.,Xia, S. H.,Yu, M. J.,Tu, F.. Effects of Non-English publication soybean, selenium and spirulina on hemoglobin of rats intoxicated with fluorine and aluminium. [Chinese]. *Chinese Journal of Endemiology.* 2010. 29:384-386
- Ortega Garcia, J. A., Ferris, I. Tortajada J., Berbel Tornero, Non-English publication O., Romero, K. J., Rubalcava, L., Martinez Salcedo,
 E., Apolinar Valiente, E., Crehua Gaudiza, E., Hernandez Gil,
 M. D., Environmental neurotoxins (IV), Tobacco, alcohol,

Level Bibliography

Reason for Exclusion

solvents, fluoride, food additives: Adverse effects on the fetal and postnatal nervous system. Preventive measures. [Spanish]. *Acta Pediatrica Espanola*. 2006. 64:493-502

- Qin, J. H., Dilinuer, A., Saimire, S., Kalibinuer, A., Yusufu, Non-English publication M., Yirizhati, A., Cui, S. S., Nuersimanguli, M., Chen, W.
 J., Bai, S. B.. [Excessive fluoride increases the expression of osteocalcin in the mouse testis]. *Zhong Hua Nan Ke Xue.* 2017. 23:782-785
- L2 Qin, S.,Lou, D. D.,Liu, Y. F.,Yu, Y. N.,Guan, Z. Z.. Non-English publication Expression of mitochondrial fission protein locus Fis1 and ultrastructural changes in the renal cells of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology*. 2013. 32:125-128
- Qiu, Y. H., Kong, D. M., Yang, Q., Zhao, N.. Influence of Non-English publication high-fluoride on thyroid function and brain damage in rats.
 [Chinese]. Chinese Journal of Endemiology. 2010. 29:146-149
- Shen, Q. F., Li, H. N., Xu, T. T., Xia, Y. P.. Damage of blood Non-English publication brain barrier of spinal cord in rats with chronic fluorosis.
 [Chinese]. *National Medical Journal of China*. 2012.
 92:2357-2361
- L2 Shen, Q., Tian, R., Li, H., Xu, T., Xia, Y.. White matter injury Non-English publication of spinal cord in rats with chronic fluorosis and recovery after defluoriation. [Chinese]. *National Medical Journal of China*. 2014. 94:1189-1192
- L2 Sun, D. J.,Gao, Y. H.,Zhou, L. W.,Yu, J.,Li, Y.,Wang, Yu. Non-English publication Effects of sodium fluoride on matrix metal proteinases-13 mRNA and tissue inhibitor of metal protease-1 mRNA in rat

Level	Bibliog	graphy

Reason for Exclusion

bone tissue. [Chinese]. Chinese Journal of Endemiology. 2008. 27:364-367

L2 Sun, J. C., Wang, C. Y., Xu, H., Li, G. S.. Effect of endoplasmic reticulum stress in renal injury of fluorosis rats. [Chinese]. Journal of Jilin University Medicine Edition. 2009. 35:992-995

Non-English publication

L2 Tang, L., Bai, S. B., Zhang, Y. L., Liu, K. T., Zhang, Y. X., Jin-Non-English publication jie, Z.. Experimental study of cartilage lesions and COLIXA 3 protein expression in rats cartilage with chronic fluorosis. [Chinese]. Chinese Journal of Endemiology. 2011. 30:389-392

L2 Tao, H., Wang, L., Hou, T. Z., Zhang, L., Wang, X. R.. Ameloblastin gene expression in fluoride-induced mus musculus incisors in mice. [Chinese]. Journal of Xi'an Jiaotong University (Medical Sciences). 2011. 32:238-241

Non-English publication

L2 Tao, H., Wang, L., Hou, T. Z., Zhang, L., Wang, X. R.. Amelogenin gene expression in fluoride-induced mus musculus incisors of mice. [Chinese]. Journal of Xi'an Jiaotong University (Medical Sciences). 2010. 31:756-759 Non-English publication

L2 Wang, C. S., Tang, Y., Wang, C.. Effect of subchronic exposure to fluoride on mRNA expression of estrogen receptor in female mice. [Chinese]. Chinese Journal of Endemiology. 2013. 32:146-148

Non-English publication

L2 Wei, N., Dong, Y., Wang, Y., Guan, Z.. Effects of chronic fluorosis on neurobehavioral development in offspring of rats and antagonistic effect of Vitamin E. [Chinese]. Chinese Journal of Endemiology. 2014. 33:125-128

Non-English publication

25 March 2023 1152

Level Bibliography

Reason for Exclusion

- L2 Wu, Y.,Xu, X.,Zeng, B.,Xiang, R.,Cao, F.,Fan, X.,Wei, Y.. Non-English publication Impact of excessive fluoride intake on bone tissue oxidative stress. [Chinese]. *Chinese Journal of Endemiology*. 2015. 34:729-732
- L2 Xiao, Y. M.,Sun, X. J.,Yu, Y. N.. Effect of fluoride on the Non-English publication expression of osteoprotegerin/receptor activator of nuclear factor kappabeta ligand/receptor activator of nuclear factor kappabeta system proteins of rats with fluorosis and the antagonism of Danlan Xianpeng capsule. [Chinese].
 Chinese Journal of Endemiology. 2010. 29:487-492
- L2 Xie, Y.,Yu, Y. N.,Wan, L. B.,Chen, X. S.. Effect of fluoride Non-English publication on expression of CaN mRNA and protein in bone tissue of rats. [Chinese]. *Chinese Journal of Pathology.* 2012. 41:761-764
- L2 Xu, H.,Fan, H. Q.,Zhang, J. M.,Li, G. S.. Study on oxidative Non-English publication stress and activity of alkaline phosphatase of rats exposed to different period of fluoride. [Chinese]. *Chinese Journal of Endemiology.* 2010. 29:124-126
- L2 Xu, H.,Jing, L.,Zhang, J. M.,Li, G. S.. Proteomical analysis Non-English publication of kidney of the fluoride-treated rat. [Chinese]. *Chinese Journal of Endemiology.* 2008. 27:30-33
- L2 Xu, H.,Zhao, Z. T.,Jing, L.,Li, G. S.. Study on endoplasmic Non-English publication reticulum stress in bone tissue of fluorosis rats. [Chinese].

 Chinese Journal of Endemiology. 2009. 28:36-40
- L2 Xu, P.,Yao, J.,Cai, Q.,Zhang, Y.,Du, X.,Guo, X.. Preventive Non-English publication effect of the supplemental dietary boron on bone damage of rats with excess fluoride ingestion. [Chinese]. *Journal of Xi'an Jiaotong University (Medical Sciences)*. 2008. 29:625-

628

- Yang, L. P., Wang, K. Y., Shi, X. Q., Li, H.. Joint effects of Non-English publication fluoride and aluminum on biomarkers of bone metabolism in mice. [Chinese]. *Chinese Journal of Endemiology.* 2008. 27:374-377
- L2 Yang, L. P., Wang, K. Y., Shi, X. Q., Li, H.. Study on Non-English publication pathology and histomorphometry of mouse bone in combined intoxication of fluoride and aluminum. [Chinese].
 Chinese Journal of Endemiology. 2008. 27:137-140
- Yang, M.,Ren, Z.,Zhou, B.,Guan, Z.,Yu, W.. Expression of Non-English publication endonuclease G in the brain tissue of rats with chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology*.
 2017. 36:327-332
- Yang, Q.,Chu, Y.,Jiang, W.,Li, J.,Li, Y.,Boo, Y.,Chen, F.,Li, Non-English publication B.,Yang, Y.,Guo, Y.. Effects of different doses of sodium fluoride on cartilage lesion and expression of interleukin-6 in Balb/c mice. [Chinese]. *Chinese Journal of Endemiology*.
 2017. 36:408-413
- Yi, G. K., Liu, L., Li, X. Z.. Over-dose fluoride induces the Non-English publication degeneration and ossification of the ligamentum flavum.
 [Chinese]. Chinese Journal of Tissue Engineering
 Research. 2015. 19:5301-5305
- L2 Yuan, X. J., Liu, N. Y., Ma, F. H., Suo, F., Chen, J. M., Yang, Non-English publication F.. Effect of selenium-germenium agent on antioxidase and major elements in fluorosis rats. [Chinese]. *Chinese Journal of Endemiology*. 2007. 26:137-139
- L2 Zhang, K. L.,Lou, D. D.,Guan, Z. Z.. Changes of syndecan- Non-English publication 4 and nuclear factor kappaB in the kidney of rat with

- chronic fluorosis. [Chinese]. *Chinese Journal of Endemiology*. 2013. 32:133-135
- Zhang, K. L., Lou, D. D., Guan, Z. Z.. Expression of receptor Non-English publication for advanced glycation endproducts and nuclear factor kappaB in brain hippocampus of rat with chronic fluorosis.
 [Chinese]. Chinese Journal of Endemiology. 2013. 32:625-628
- L2 Zhang, K. L., Lou, D. D., Liu, Y. F., Qin, S. L., Guan, Z. Z.. Non-English publication Changes of P-glycoprotein and nuclear factor kappaB in the cerebral cortex of rat with chronic fluorosis. [Chinese]. Chinese Journal of Endemiology. 2012. 31:613-616
- L2 Zhang, W. L., Sun, L., Xue, L. J., Wu, Y., Li, G. S.. Study on Non-English publication the relationship of low nutritional calcium with over-load of intracellular calcium in fluorosis mice. [Chinese]. *Chinese Journal of Endemiology.* 2006. 25:622-624
- L2 Zhang, W. L., Xue, L. J., Cui, Y. N., Li, G. S.. The effect of Non-English publication different dosage of fluoride intake on activation of osteoblasts and the expression of BMP-2, BMP-4 and Smad-4. [Chinese]. *Chinese Journal of Endemiology*. 2006. 25:125-128
- Zhang, X. Y., Lu, P., Zhang, J. M., Zhao, Z. T., Xu, H., Li, G. Non-English publication
 S.. Immunoglobulin binding protein gene and protein
 expression in femur tissue of fluorosis rats. [Chinese].
 Chinese Journal of Endemiology. 2011. 30:502-505
- Zhao, Q.,Wu, Y.,Zhang, Z. G.,Yang, S. P.. Protective effect Non-English publication of selenium on fluoride-induced renal impairments in rats.
 [Chinese]. Chinese Journal of Endemiology. 2011. 30:137-141

Level Bibliography

Reason for Exclusion

- Zhu, H. Z., Yu, Y. N., Deng, C. N., Yang, D.. Effect of fluoride Non-English publication on expression of phosphoinositide 3-kinase, protein kinase
 B1 mRNA and protein in bone tissue of rats. [Chinese].
 Chinese Journal of Endemiology. 2011. 30:261-265
- L2 Zhu, Z.,Yu, Y.,Too, X.,Zhao, L.. Expression of Janus Non-English publication kinase/signal transduction and transcriptional activation (JAK1 and STAT3) in liver of fluorosis rats. [Chinese].

 Chinese Journal of Endemiology. 2015. 34:733-738
- L2 Adejumobi, O.,Omobowale, T.,Oyagbemi, A.,Ayenuro, Full-text not available O.,Ola-Davies, O.,Adedapo, A.,Yakubu, M.. Amelioration of sodium fluorideinduced hypertension, cardio-renal oxidative stress and genotoxicity by azadirachta indica through antioxidant and extracellular signalregulated kinase (erk) 1/2 signal-ling. FASEB Journal. Conference: Experimental Biology. 2017. 31:#pages#
- Afolabi, J. M., Oyagbemi, A. A., Omobowale, T. O., Asenuga, Full-text not available E. R., Ajibade, T. O., Adejumobi, O. A., Hassan, F. O., Adedapo, A. A., Yakubu, M. A.. Quercetin attenuates Sodium fluoride (NaF)-induced hypertension through reduction in oxidative stress and heat shock proteins (HSP 70)/extracellular signal regulated kinase (ERK) pathways in rats. FASEB Journal. Conference: Experimental Biology. 2017. 31:#pages#
- L2 Anacletus, F. C.,Onyegeme-Okerenta, B. M.,Iheka, C. U.. Full-text not available Management of fluoride toxicity on adult male wistar rats' fecundity using some selected antioxidants. FASEB

 Journal. Conference: Experimental Biology. 2016.
 30:#pages#

Level Bibliography Reason for Exclusion L2 Anonymous,. Translations of twelve Chinese studies on developmental fluoride neurotoxicity. Fluoride. 2008. 41:111-114

- L2 Bhaskara Rao, A. V.. Genotoxicity in mice, mus norvegicus Full-text not available albinus on exposure to fluoride aluminum and their combination. *Environmental and Molecular Mutagenesis*. 2012. 1):S49
- Bielec, B., Stawiarska-Pieta, B., Iskra, A., Kabala-Dzik, Full-text not available A., Kubina, R., Zalejska-Fiolka, J. E., Grzegorzak, N., Birkner,
 E.. Morphological picture of the kidneys and the activity of selected enzymes after administration of vitamin e and methionine to rats exposed to sodium fluoride. *Fluoride*.
 2012. 45 (3 PART 1):155-156
- L2 Brun, L. R.,Roma, S. M.,Perez, F.,Rigalli, A.. Inflammation Full-text not available in rat bone induced by sodium fluoride. *Actualizaciones en Osteologia*. 2012. 8:19-28
- L2 Choi, A. L., Sun, G., Zhang, Y., Grandjean, P.. Meta-analysis Full-text not available of 27 studies of fluoride neurotoxicity in children.

 Epidemiology. 2012. 1):S25
- de Carvalho, J. G., Cestari, T. M., de Oliveira, R. C., Buzalaf, Full-text not available
 M. A. R.. Fluoride effects on ectopic bone formation in
 young and old rats. Methods and Findings in Experimental
 and Clinical Pharmacology. 2008. 30:287-294
- de Carvalho, J. G., Cestari, T. M., de Oliveira, R. C., Buzalaf, Full-text not available
 M. A.. Fluoride effects on ectopic bone formation in young
 and old rats. *Methods Find Exp Clin Pharmacol.* 2008.
 30:287-94

Level	Bibliography	Reason for Exclusion
L2	Fina, B. L., Lupo, M., DaRos, E. R., Moreno, H., Roma, S. M., Rigalli, A Effect of sodium fluoride on biomechanical and histomorphometric bone parameters: Identification of variables that determine the fracture load in NaF-treated rats. <i>Fluoride</i> . 2012. 45 (3 PART 1):163-164	Full-text not available
L2	Guan, Z. Z.,Liu, Y. J.,Gui, C. Z.,Ran, L. Y.,Gao, Q Changed cholinergic system and neuronal signal transduction in rats with deficit of learning and memory induced by chronic fluorosis. <i>Fluoride</i> . 2012. 45 (3 PART 1):166-167	Full-text not available
L2	Han, H.,Sun, Z.,Luo, G.,Wang, C.,Wei, R.,Wang, J Fluoride exposure changed the structure and the expressions of reproductive related genes in the hypothalamus-pituitary-testicular axis of male mice. Chemosphere. 2015. 135:297-303	Full-text not available
L2	Jetti, R.,Raghuveer, C. V.,Chamallamudi, M. R.,Somayaji, S. N.,Billakanti, P. B Ameliorative effect of ginkgo biloba on neurodegeneration caused by fluoride. <i>Annals of Anatomy</i> . 2014. 1):62	Full-text not available
L2	Khan, I.,Ranga, A Sodium fluoride induced toxicity in the kidney of Swiss albino mice and its amelioration by ascorbic acid. <i>International Journal of Pharma and Bio Sciences</i> . 2014. 5:B187-B195	Full-text not available
L2	Krook, L. P., Justus, C Erratum: Fluoride poisoning of horses from artificially fluoridated drinking water (Flouride (2006) 39, 1 (1-3)). <i>Fluoride</i> . 2006. 39:156	Full-text not available
L2	Losso, E. M., Pereira, M., Dombrowski, P. A., Da Cunha, C., Andreatini, R Sodium fluoride induced memory	Full-text not available

- impairment is associated with changes in striatal monoamlnerglc levels. *European Neuropsychopharmacology*. 2009. 3):S329-S330
- L2 Luis, H.. Commentary. *Journal of Neurosciences in Rural* Full-text not available *Practice*. 2012. 3:151
- L2 Manna, P.,Sinha, M.,Sil, P. C.. A 43 kD protein isolated Full-text not available from the herb Cajanus indicus L attenuates sodium fluoride-induced hepatic and renal disorders in vivo. *J Biochem Mol Biol.* 2007, 40:382-95
- L2 Oner, A. C., Komuroglu, A. U., Dede, S., Yur, F., Oner, A.. Full-text not available
 The effect of vitamin C and vitamin E on oxidative damage
 in ratswith fluorosis. *Turkish Journal of Biochemistry*. 2017.

 42 (Supplement 1):24
- L2 Oner, A. C., Yur, F., Oner, A., Komuroglu, A. U., Dede, S.. Full-text not available Effect of vitamin C and vitamin E on serum biochemistry for protection inflorosis. *Turkish Journal of Biochemistry*. 2017.
 42 (Supplement 1):50
- L2 Raju, S.,Sivanesan, S.,Gudemalla, K.,Mundugaru, Full-text not available R.,Swaminathan, M.. Effect of ginkgo biloba extract on hematological and biochemical alterations in fluoride intoxicated wistar rats. *Research Journal of Pharmacy and Technology*. 2019. 12:3839-3846
- Ranjan, R., Swarup, D., Patra, R. C., Varshney, V. P.. Full-text not available Changes in cortisol, oxidative stress indices, and serum biochemistry in fluoride-intoxicated rabbits. *Fluoride*. 2012.
 45 (3 PART 1):191
- L2 Shankar, P.,Khandare, A. L.. Regulation and reversal of Full-text not available effects of fluoride on calcium homeostasis in rats. *Fluoride*.

2012. 45 (3 PART 1):198-199

- L2 Shanthakumari, D.,Srinivasalu, S.,Subramanian, S.. Effect Full-text not available of fluoride intoxication on the levels of intestinal antioxidants studied in rats. *Methods & Findings in Experimental & Clinical Pharmacology*. 2007. 29:93-9
- L2 Shashi, A.,Bhardwaj, M.,Sharma, N.. Pathologic alterations Full-text not available in endocrine pancreatic islet cells during experimental flruoosis. *Asian Journal of Microbiology, Biotechnology and Environmental Sciences*. 2007. 9:977-981
- L2 Shashi, A., Neeraj, S., Sharma, N.. Cytotoxic effect of Full-text not available fluoride on rat pancreatic proteins. *Asian Journal of Microbiology, Biotechnology and Environmental Sciences*. 2009. 11:349-353
- L2 Shashi, A.,Sharma, N.,Bhardwaj, M.. Fluoride induced DNA Full-text not available damage and apoptosis in rat pancreas. *Asian Journal of Microbiology, Biotechnology and Environmental Sciences*. 2007. 9:953-957
- L2 Singh, P. K., Feroz, A. D., Sheeba, H., Khalil, A., Samir, A. Full-text not available M.. Beneficial effect of Tamarindus indica on the testes of albino rat after fluoride intoxication. *International Journal of Pharma and Bio Sciences*. 2012. 3:B487-B493
- L2 Singh, R., Srivastava, A. K., Gangwar, N. K.. Clinico-Full-text not available pathological studies on the co-exposure of cypermethrin and fluoride in experimental rats with ameliorative action of Vitamin E. Veterinary Practitioner. 2017. 18:207-210
- L2 Spittle, B. J.. Fluoride-induced cell ultrastructure changes. Full-text not available *Fluoride*. 2012. 45 (3 PART 1):201-203

Level	Bibliography	Reason for Exclusion
L2	Spittle, B Fluoride and fertility. <i>Fluoride</i> . 2008. 41:98-100	Full-text not available
L2	Strunecka, A.,Blaylock, R. L.,Strunecky, O Fluoride, aluminum, and aluminofluoride complexes in pathogenesis of the autism spectrum disorders: A possible role of immunoexcitotoxicity. <i>Journal of Applied Biomedicine</i> . 2016. 14:171-176	Full-text not available
L2	Sumida, D. H., Chiba, F. Y., Colombo, N. H., Shirakashi, D. J., Garbin, C. A. S The chronic exposure to fluoride inhibits insulin signal in the adipose tissue and causes insulin resistance in rats. <i>Diabetes</i> . 2011. 1):A677	
L2	Tehrani, A., Morvaridi, A., Beikzadeh, B., Hamedani, A. P., Khadir, F., Tabari, M. M Histological and histometrical studies on the effects of Fluoride on the Femur in rats. <i>Research in Molecular Medicine</i> . 2015. 3:34-38	Full-text not available
L2	Braga, T. M., Braga, D. N., Moreno-Carvalho, E., Bauer, J. O., Turssi, C. P Calcium Pre-Rinse: Effect on permeability of dentin tubules by fluoride rinse. <i>J Clin Exp Dent.</i> 2019. 11:e303-e309	Only dental outcomes
L2	Kakei, M., Sakae, T., Yoshikawa, M., Tamura, N Effect of fluoride ions on apatite crystal formation in rat hard tissues. <i>Annals of Anatomy</i> . 2007. 189:175-181	Only dental outcomes
L2	Macicek, P., Krook, L. P Fluorosis in horses drinking artificially fluoridated water. <i>Fluoride</i> . 2008. 41:177-183	Only dental outcomes
L2	Mofatto, L. S., Frozoni, M. R., do Espírito Santo, A. R., Guimarães, G. N., de Souza, A. P., de Campos Vidal, B., Line, S. R Fluoride effect on the secretory-stage enamel organic extracellular matrix of mice. <i>Connect</i>	Only dental outcomes

Level	Bibliography	Reason for Exclusion
	Tissue Res. 2011. 52:212-7	
L2	Cao, J., Chen, J., Wang, J., Wu, X., Li, Y., Xie, L Tissue distributions of fluoride and its toxicity in the gills of a freshwater teleost, Cyprinus carpio. <i>Aquatic Toxicology</i> . 2013. 130-131:68-76	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Cardenas-Gonzalez, M., Jacobo Estrada, T., Rodriguez-Munoz, R., Barrera-Chimal, J., Bobadilla, N. A., Barbier, O. C., Del Razo, L. M Sub-chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin. <i>Journal of Applied Toxicology</i> . 2016. 36:309-19	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Casellato, S., Masiero, L., Ballarin, L Toxicity of fluoride to the freshwater mollusc Dreissena polymorpha: Effects on survival, histology, and antioxidant enzyme activity. <i>Fluoride</i> . 2012. 45:35-46	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Chai, L., Dong, S., Zhao, H., Deng, H., Wang, H Effects of fluoride on development and growth of Rana chensinensis embryos and larvae. <i>Ecotoxicology and Environmental Safety</i> . 2016. 126:129-137	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Chai, L., Wang, H., Zhao, H., Dong, S Chronic Effects of Fluoride Exposure on Growth, Metamorphosis, and Skeleton Development in Bufo gargarizans Larvae. <i>Bull Environ Contam Toxicol.</i> 2017. 98:496-501	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-

Erciyas, K., Sarikaya, R.. Genotoxic evaluation of sodium

L2

mammalian species etc)

Other exclusion reasons

Level	Bibliography	Reason for Exclusion
	fluoride in the Somatic Mutation and Recombination Test (SMART). Food Chem Toxicol. 2009. 47:2860-2	(route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Feng, P., Wei, J., Zhang, Z Intervention of selenium on chronic fluorosis-induced injury of blood antioxidant capacity in rats. <i>Biological Trace Element Research</i> . 2011. 144:1024-31	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Gui, C. Z.,Ran, L. Y.,Li, J. P.,Guan, Z. Z Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis. <i>Neurotoxicology and Teratology</i> . 2010. 32:536-541	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Jianjie, C., Wenjuan, X., Jinling, C., Jie, S., Ruhui, J., Meiyan, L Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio). <i>Aquatic Toxicology</i> . 2016. 171:48-58	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Karademir, B Effects of fluoride ingestion on serum levels of the trace minerals Co, Mo, Cr, Mn, and Li in adult male mice. <i>Fluoride</i> . 2010. 43:174-178	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Khanum, Z.,Suleman, S.,Mustanser, A.,UI Hassan, M. W.,Raees, K.,Kanwal, M. A.,Zia, A.,Ahmad, K. R Comparative teratological outcomes of fluoride ions and a fluoridated insecticide (Bifenthrin) in chick embryos.	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-

Level	Bibliography	Reason for Exclusion
	Fluoride. 2019. 52:59-65	mammalian species etc)
L2	Lu, J.,Xu, Q.,Zheng, J.,Liu, H.,Li, J.,Chen, K Comparative proteomics analysis of cardiac muscle samples from pufferfish Takifugu rubripes exposed to excessive fluoride: Initial molecular response to fluorosis Cardiac muscle proteomics of fish Jian Lu et al. <i>Toxicology Mechanisms and Methods.</i> 2009. 19:468-475	(route of exposure other
L2	Lu, J.,Xu, Q.,Zheng, J.,Liu, H.,Li, J.,Chen, K Comparative proteomics analysis of cardiac muscle samples from pufferfish Takifugu rubripes exposed to excessive fluoride: initial molecular response to fluorosis. <i>Toxicology Mechanisms & Methods</i> . 2009. 19:468-75	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Lu, J., Zheng, J., Liu, H., Li, J., Xu, Q., Chen, K Proteomics analysis of liver samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis. <i>Journal of Biochemical & Molecular Toxicology</i> . 2010. 24:21-8	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Mukhopadhyay, D.,Priya, P.,Chattopadhyay, A Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1. <i>Environmental Toxicology and Pharmacology</i> . 2016. 40:352-359	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Nabavi, S. F.,Eslami, S.,Moghaddam, A. H.,Nabavi, S. M Protective effects of curcumin against fluoride-induced oxidative stress in the rat brain. <i>Neurophysiology</i> . 2011. 43:287-291	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Nabavi, S. F., Moghaddam, A. H., Eslami, S., Nabavi, S. M	Other exclusion reasons

Level	Bibliography	Reason for Exclusion
	Protective effects of curcumin against sodium fluoride- induced toxicity in rat kidneys. <i>Biological Trace Element</i> <i>Research.</i> 2012. 145:369-374	(route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Nabavi, S. F.,Moghaddam, A. H.,Nabavi, S. M.,Eslami, S Protective effect of curcumin and quercetin on thyroid function in sodium fluoride intoxicated rats. <i>Fluoride</i> . 2011. 44:147-152	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Nabavi, S. M., Nabavi, S. F., Eslami, S., Moghaddam, A. H In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. <i>Food Chemistry</i> . 2012. 132:931-935	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Nabavi, S. M., Nabavi, S. F., Habtemariam, S., Moghaddam, A. H., Latifi, A. M Ameliorative effects of quercetin on sodium fluoride-induced oxidative stress in rat's kidney. <i>Ren Fail.</i> 2012. 34:901-6	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Nabavi, S. M., Nabavi, S. F., Loizzo, M. R., Sureda, A., Amani, M. A., Moghaddam, A. H Cytoprotective effect of Silymarin against sodium fluoride-induced oxidative stress in rat erythrocytes. <i>Fluoride</i> . 2012. 45:27-34	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Palczewska-Komsa, M., Kalisinska, E., Kosik-Bogacka, D. I., Lanocha, N., Budis, H., Baranowska-Bosiacka, I., Gutowska, I., Chlubek, D Fluoride accumulation in dog bones. <i>Fluoride</i> . 2014. 47:98-108	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-

Level	Bibliography	Reason for Exclusion
		mammalian species etc)
L2	Ranjan, R., Swarup, D., Patra, R. C Changes in levels of zinc, copper, cobalt, and manganese in soft tissues of fluoride-exposed rabbits. <i>Fluoride</i> . 2011. 44:83-88	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Santoyo-Sanchez, M. P.,Del Carmen Silva-Lucero, M.,Arreola-Mendoza, L.,Barbier, O. C Effects of acute sodium fluoride exposure on kidney function, water homeostasis, and renal handling of calcium and inorganic phosphate. <i>Biological Trace Element Research</i> . 2013. 152:367-372	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Sarkar, S. D., Maiti, R., Ghosh, D Management of fluoride induced testicular disorders by calcium and vitamin-E coadministration in the albino rat. <i>Reprod Toxicol.</i> 2006. 22:606-12	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Schieferstein, H.,Betzel, T.,Haller, S.,Cindy, F.,Muller, C.,Ross, T. L Total evaluation of a new polar 18F-labeled PEG-click-folate. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2013. 1):S183	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Shashi, A.,Bhushan, B.,Bhardwaj, M Histochemical pattern of gastrocnemius muscle in fluoride toxicity syndrome. <i>Asian Pacific Journal of Tropical Medicine</i> . 2010. 3:136-140	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Shashi, A., Sharma, N., Bhardwaj, M Pathological	Other exclusion reasons

Level	Bibliography	Reason for Exclusion
	evaluation of pancreatic exocrine glands in experimental fluorosis. <i>Asian Pacific Journal of Tropical Medicine</i> . 2010. 3:36-40	(route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Shi, X.,Zhuang, P.,Zhang, L.,Feng, G.,Chen, L.,Liu, J.,Qu, L.,Wang, R The bioaccumulation of fluoride ion (F(-)) in Siberian sturgeon (Acipenser baerii) under laboratory conditions. <i>Chemosphere</i> . 2009. 75:376-80	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Singh, R., Hussain, M. A., Kumar, J., Kumar, M., Kumari, U., Mazumder, S Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus. <i>Aquat Toxicol.</i> 2017. 192:30-39	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Singh, R.,Khatri, P.,Srivastava, N.,Jain, S.,Brahmachari, V.,Mukhopadhyay, A.,Mazumder, S Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections. <i>Fish Shellfish Immunol.</i> 2017. 63:314-321	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Srilatha, K.,Banji, D.,Banji, O. J. F.,Vinod, K. R.,Saidulu, A Investigation on the anti-genotoxic effect of Ocimum Sanctum in Fluoride induced genotoxicity. <i>International</i> Research Journal of Pharmacy. 2013. 4:160-164	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non- mammalian species etc)
L2	Thammitiyagodage, M. G., De Silva, N. R., Rathnayake, C., Karunakaran, R., Wgss, K., Gunatillka, M. M., Ekanayaka, N., Galhena, B. P., Thabrew, M. I Biochemical and	Other exclusion reasons (route of exposure other than drinking water,

Level	Bibliography	Reason for Exclusion
	histopathological changes in Wistar rats after consumption	mixture exposure, non-
	of boiled and un-boiled water from high and low disease	mammalian species etc)
	prevalent areas for chronic kidney disease of unknown	
	etiology (CKDu) in north Central Province (NCP) and its	
	comparison with low disease prevalent Colombo, Sri	
	Lanka. BMC Nephrology. 2020. 21 (1) (no	
	pagination):#pages#	
L2	Thammitiyagodage, M. G., Gunatillaka, M. M., Ekanayaka,	Other exclusion reasons
	N.,Rathnayake, C.,Horadagoda, N. U.,Jayathissa,	(route of exposure other
	R., Gunaratne, U. K., Kumara, W. G., Abeynayake, P	than drinking water,
	Ingestion of dug well water from an area with high	mixture exposure, non-
	prevalence of chronic kidney disease of unknown etiology	mammalian species etc)
	(CKDu) and development of kidney and liver lesions in rats.	
	Ceylon Med J. 2017. 62:20-24	
L2	Vasant, R. A., Narasimhacharya, A. V. R. L Alleviation of	Other exclusion reasons
	fluoride-induced hepatic and renal oxidative stress in rats	(route of exposure other
	by the fruit of Limonia acidissima. Fluoride. 2011. 44:14-20	than drinking water,
		mixture exposure, non-
		mammalian species etc)
L2	Vasant, R. A., Narasimhacharya, A. V. R. L Ameliorative	Other exclusion reasons
	effect of tamarind leaf on fluoride-induced metabolic	(route of exposure other
	alterations. Environmental Health and Preventive Medicine.	than drinking water,
	2012. 17:484-493	mixture exposure, non-
		mammalian species etc)
L2	Yu, Z.,Xu, C.,Yuan, K.,Gan, X.,Feng, C.,Wang, X.,Zhu,	Other exclusion reasons

L., Zhang, G., Xu, D.. Characterization and adsorption

mechanism of ZrO(2) mesoporous fibers for health-

hazardous fluoride removal. J Hazard Mater. 2018. 346:82- mixture exposure, non-

(route of exposure other

than drinking water,

Level	Bibliography	Reason for Exclusion
	92	mammalian species etc)
L2	Broadbent, J. M., Thomson, W. M., Moffitt, T. E., Poulton, R Health effects of water fluoridation: A response to the letter by Menkes et al. <i>New Zealand Medical Journal</i> . 2015. 128:73-74	Human subjects
L2	Chaitanya, Ncsk, Karunakar, P., Allam, N. S. J., Priya, M. H., Alekhya, B., Nauseen, S A systematic analysis on possibility of water fluoridation causing hypothyroidism. <i>Indian J Dent Res.</i> 2018. 29:358-363	Human subjects
L2	Choi, A. L.,Sun, G.,Zhang, Y.,Grandjean, P Developmental fluoride neurotoxicity: a systematic review and meta-analysis. <i>Environ Health Perspect.</i> 2012. 120:1362-8	Human subjects
L2	Yeung, C. A A systematic review of the efficacy and safety of fluoridation. <i>Evid Based Dent.</i> 2008. 9:39-43	Human subjects
L2	Yin, X. H., Huang, G. L., Lin, D. R., Wan, C. C., Wang, Y. D., Song, J. K., Xu, P Exposure to fluoride in drinking water and hip fracture risk: a meta-analysis of observational studies. <i>PLoS One.</i> 2015. 10:e0126488	Human subjects
L2	Matsui, H., Morimoto, M., Horimoto, K., Nishimura, Y Some characteristics of fluoride-induced cell death in rat thymocytes: cytotoxicity of sodium fluoride. <i>Toxicology in Vitro</i> . 2007. 21:1113-20	In-vitro models (mammalian cells/ tissues, bacterial cells, plant cells etc.)
L2	Oliveira, R. C. D., Matsuda, S. S., Silva, T. L. D., Buzalaf, M. A. R Effects of sodium fluoride during osteoblasts mineralization in C57BL/6J and C3H/HeJ inbred strains of mice. <i>Bone.</i> 2012. 1):S84	In-vitro models (mammalian cells/ tissues, bacterial cells, plant cells etc.)

Level Bibliography **Reason for Exclusion** L2 Choubisaa, S. L.. A brief and critical review of endemic Non-systematic review hydrofluorosis in Rajasthan, India. Fluoride. 2018. 51:13-33 L2 Dhar, V., Bhatnagar, M.. Physiology and toxicity of fluoride. Non-systematic review Indian J Dent Res. 2009. 20:350-5 L2 Dharmaratne, R. W.. Exploring the role of excess fluoride in Non-systematic review chronic kidney disease: A review. Human and Experimental Toxicology. 2019. 38:269-279 L2 Gouri Pratusha, N., Banji, O. J. F., Banji, D., Ragini, Non-systematic review M., Pavani, B., Fluoride toxicity - A harsh reality. International Research Journal of Pharmacy. 2011. 2:79-85 L2 Kabir, H., Gupta, A. K., Tripathy, S.. Fluoride and human Non-systematic review health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology.. 2019. #volume#:#pages# L2 Perumal, E., Paul, V., Govindarajan, V., Panneerselvam, L.. Non-systematic review A brief review on experimental fluorosis. *Toxicol Lett.* 2013. 223:236-51 L2 Prystupa, J., Fluorine - A current literature review. An NRC Non-systematic review and ATSDR based review of safety standards for exposure to fluorine and fluorides. Toxicology Mechanisms and Methods, 2011, 21:103-170 L2 Sharma, D., Singh, A., Verma, K., Paliwal, S., Sharma, Non-systematic review S., Dwivedi, J.. Fluoride: A review of pre-clinical and clinical studies. Environ Toxicol Pharmacol. 2017, 56:297-313 L2 Strunecka, A., Strunecky, O.. Chronic Fluoride Exposure Non-systematic review and the Risk of Autism Spectrum Disorder. Int J Environ

25 March 2023 1170

Res Public Health. 2019. 16:#pages#

Level	Bibliography	Reason for Exclusion
L2	Barbier, O., Cardenas-Gonzalez, M., Parada-Cruz, B., Lopez V. D., Jimenez-Cordova, M., Solis-Angeles, S., Del Razo, L. M Fluoride: An underestimated nephrotoxic. <i>Toxicology Letters</i> . 2016. 259 (Supplement 1):S13	•
L2	Burgstahler, A. W.,Freeman, R. F.,Jacobs, P. N Toxic effects of silicofluoridated water in chinchillas, caimans, alligators, and rats held in captivity. <i>Fluoride</i> . 2008. 41:83-88	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Cardenas-Gonzalez, C.,Del Razo, L. M.,Barbier, O.,Jacobo, T Effect of nephrotoxic treatment with gentamicin on rats exposed to fluoride. <i>Toxicology Letters</i> . 2012. 1):S4	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Choi, A. L., Grandjean, P., Sun, G., Zhang, Y Developmental fluoride neurotoxicity: Choi et al. Respond. Environ Health Perspect. 2013. 121:A70	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Dian, B. J., Selvakumar, R., Joseph, F. J., Teresa, M. M., Thomas, V. P., Sheshadri, M. S Does Vitamin D Deficiency and Renal Dysfunction play a role in the pathogenesis of Fluorotoxic Metabolic Bone Disease (FMBD). <i>Indian Journal of Endocrinology and Metabolism</i> . 2017. 21 (7 Supplement 1):65	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Fina, B. L.,Rigalli, A Effect of fluoride on oxygen consumption (OC) by rat tissues. <i>Bone.</i> 2011. 48 (6):S284	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Fina, B. L.,Roma, S. M.,Bues, F.,Di Loreto, V. E Effect of sodium fluoride (F) on rat growth plate cartilage (GPC).	Commentary/ communication/ editorial/

Level	Bibliography	Reason for Exclusion
	Bone. 2015. 71:258	letter/ conference abstract/ poster/ presentation
L2	Gama-Dominguez, Y.,Jacobo-Estrada, T.,Lopez-Ventura, D.,Moreno-Licona, N. J.,Trevino, S.,Barbier, O Effect of renal ischemia on sub-chronically exposed rats to fluoride evaluated by the expression of hypoxia-inducible factor 1alpha (HIF-1alpha). <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S241-S242	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Iano, F. G., Ferreira, M. C. F., Fernandes, M., Oliveira, R., Ximenes, V. F., Buzalaf, M. A. R Chronic toxicity of fluoride in the Liver antioxidant defense. <i>Free Radical Biology and Medicine</i> . 2010. 1):S221	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Iano, F. G., Ferreira, M. C. F., Quaggio, G. B., Oliveira, R. C., Ximenes, V. F., Buzalaf, M. A. R Effect of fluoride in antioxidant systems of the heart. <i>Free Radical Biology and Medicine</i> . 2011. 1):S57	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Jain, A., Mehta, V. K., Mahdi, A. A., Bhatnagar, M The effects of fluoride and arsenic exposure on the cholinergic-nitrergic system, cognitive functions and inflammatory markers. <i>Journal of Neurochemistry</i> . 2015. 1):141-142	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Khalili, J.,Biloklytska, H The activity of fructose diphosphatase and acid-base status in rats exposed to fluoride and ammonium chloride. <i>Toxicology Letters</i> . 2009. 1):S108-S109	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Krook, L. P., Justus, C Fluoride poisoning of horses from artificially fluoridated drinking water. <i>Fluoride</i> . 2006. 39:3-10	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation

Level	Bibliography	Reason for Exclusion
L2	Sabour, S., Ghorbani, Z Developmental fluoride neurotoxicity: clinical importance versus statistical significance. <i>Environ Health Perspect</i> . 2013. 121:A70	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Spittle, B Fluoride toxicity and donkeys. <i>Fluoride</i> . 2010. 43:4	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Spittle, B Halting the inertia of indifference: Fluoride and fertility revisited. <i>Fluoride</i> . 2009. 42:159-161	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation

Section 5. Literature search for in-vitro studies

Strategy

Search	Are there any health risks	s due to fluoride exposure?
Question		
Major	1. Fluoride	
Concepts	2. Outcomes: cancer, imm	unotoxicity, genotoxicity and all other potential
	adverse effects	
Search	Concept 1	Concept 2
Terms	Fluorides, fluorine, flurine,	Mechanism of action, mode of action, cancer,
	fluride, fluoridation	immunotoxicity, genotoxicity, toxicokinetics,
		pharmacokinetics

Summary of output

Searched databases	Publi	ications	Level of selection of
	All Reviews		publications
	types		
Medline	7,939	719	2 concepts (2006-current)
EMBASE	12,185	843	2 concepts (2006-current)
PubMed	5,026	248	2 concepts (2006-current)
TOTAL – before deduplication			
TOTAL ³⁰ – after deduplication			

³⁰ Not including bibliographies of examined references/studies/reviews

Bibliographic database search terms and output

Medline Ovid

Concept	#	Medline query	Results
Fluoride	1	exp Fluorides/	36692
	2	exp Fluoridation/	5807
	3	fluorid*.tw.	46854
	4	fluorin*.tw.	24726
	5	flurin*.tw.	6
	6	flurid*.tw.	232
	7	or/1-6	84015
Outcomes	8	Mechanism of action.mp.	70346
	9	(mechanism* adj3 action*).tw.	127638
	10	mode of action.mp.	31469
	11	(mode* adj3 action*).tw.	45237
	12	exp Adverse Outcome Pathways/	74
	13	exp Toxicity Tests/	110616
	14	(toxic* adj3 test*).tw.	16946
	15	exp Animal Testing Alternatives/	3293
	16	(toxic* adj3 test*).tw.	16946
	17	Molecular initiating events.mp.	84
	18	exp In Vitro Techniques/	590172
	19	in vitro testing.mp.	3264
	20	in vitro test*.mp.	12152
	21	Structure-Activity Relationship/	174437
	22	structure activity relationship*.tw.	35238
	23	exp Pharmacokinetics/	305321
	24	pharmacokinetic*.tw.	156167
	25	toxicokinetics/	564
	26	toxicokinetic*.tw.	3957
	27	exp Neoplasms/	3272969
	28	neoplas*.tw.	256019

Concept #	‡	Medline query	Results
	29	cancer*.tw.	1708153
	30	malignan*.tw.	557197
	31	tumor*.tw.	1399337
	32	tumour*.tw.	264854
	33	sarcoma*.tw.	93788
	34	carcinoma*.tw.	641589
	35	Mutagens/	29170
	36	Mutagenicity Tests/	17114
	37	mutagen*.tw.	112688
	38	Mutation/	419475
	39	mutation*.tw.	619079
	40	genotox*.tw.	33102
	41	Toxicogenetics/	846
	42	toxicogenetic*.tw.	96
	43	micronucle*.tw.	14773
	44	electrophil*.tw.	15711
	45	Carcinogenesis/	12664
	46	carcinogen*.tw.	137554
	47	DNA Damage/	65176
	48	(dna adj3 damage*).tw.	82615
	49	Oxidative Stress/	128743
	50	oxidative stress.tw.	175319
	51	epigenetic*.tw.	76064
	52	Genomic Instability/	7624
	53	(gen* adj3 instabilit*).tw.	15934
	54	DNA Repair/	48704
	55	(dna adj3 repair).tw.	57731
	56	chronic inflamm*.tw.	59714
	57	immortaliz*.tw.	20410
	58	Immunosuppressive Agents/	94418

Concept	#	Medline query	Results
	59	(immunosuppressi* adj3 agent*).tw.	11153
	60	receptor mediated effect*.tw.	1045
	61	Cell Transformation, Neoplastic/	60040
	62	(cell* adj3 transformation*).tw.	21256
	63	Cell Proliferation/	218511
	64	(cell* adj3 proliferation*).tw.	271003
	65	Cell Death/	45588
	66	(cell* adj3 death*).tw.	168258
	67	SAR.tw.	16656
	68	ADME.tw.	2503
	69	or/8-68	6666866
Fluoride +	70	7 and 69	16345
outcomes			
2006 - current	71	limit 70 to yr="2006 -Current"	7939
Rev/ SR /MA /CR	72	limit 71 to (meta analysis or "review" or "scientific	719
		integrity review" or "systematic review" or	
		systematic reviews as topic)	

EMBASE

Concept	#	EMBASE query	Results
Fluoride	1	exp fluoride/	35,467
	2	exp fluoridation/	6,247
	3	fluorid*.tw.	55,347
	4	flurid*.tw.	209
	5	fluorin*.tw.	29,221
	6	flurin*.tw.	21
	7	or/1-6	91,724
Outcomes	8	exp adverse outcome pathway/	303
	9	exp toxicity testing/	45,203
	10	exp animal testing alternative/	2,528
	11	exp in vitro study/	5,967,650
	12	exp structure activity relation/	192,917
	13	exp pharmacokinetics/	728,239
	14	toxicokinetics/	11,781
	15	exp neoplasm/	4,776,218
	16	exp malignant neoplasm/	3,581,546
	17	neoplas*.tw.	366,974
	18	cancer*.tw.	2,479,130
	19	malignan*.tw.	833,939
	20	carcino*.tw.	1,089,354
	21	sarco*.tw.	240,714
	22	tumor*.tw.	1,962,166
	23	tumour*.tw.	426,370
	24	exp mutagenic agent/	19,000
	25	(mutagen* adj3 agen*).tw.	1,431
	26	exp mutagen testing/	30,874
	27	(mutagen* adj3 test*).tw.	4,565
	28	exp mutation/	1,172,173
	29	mutation*.tw.	832,123

Concept	#	EMBASE query	Results
	30	exp gene mutation/	721,611
	31	(gene* adj3 mutation*).tw.	156,767
	32	exp genotoxicity/	32,745
	33	exp genotoxicity assay/	8,698
	34	genotox*.tw.	40,902
	35	exp toxicogenetics/	1,032
	36	toxicogen*.tw.	2,168
	37	carcinogenesis/	182,175
	38	(cancer* adj3 induction).tw.	5,533
	39	(cancer* adj3 theor*).tw.	1,909
	40	cancerogen.tw.	93
	41	neoplasmogen.tw.	-
	42	oncogen.tw.	405
	43	tumorigen.tw.	96
	44	tumourigen.tw.	3
	45	(tumor* adj3 formation).tw.	23,293
	46	(tumour* adj3 formation).tw.	3,400
	47	(tumor* adj3 genesis).tw.	1,164
	48	(tumour* adj3 genesis).tw.	291
	49	(tumor* adj3 induction).tw.	9,484
	50	(tumour* adj3 induction).tw.	1,702
	51	exp micronucleus/	8,775
	52	micronucle*.tw.	17,680
	53	exp DNA damage/	143,856
	54	(dna adj3 damag*).tw.	110,172
	55	(dna adj3 break*).tw.	33,127
	56	(dna adj3 lesion*).tw.	11,399
	57	(dna adj3 fragment*).tw.	62,587
	58	exp DNA repair/	93,230
	59	(dna adj3 repair*).tw.	76,069

Concept	#	EMBASE query	Results
	60	(gen* adj3 repair*).tw.	19,933
	61	exp chromosome aberration/	204,053
	62	(chromosom* adj3 aberration*).tw.	28,335
	63	(chromosom* adj3 anomal*).tw.	6,740
	64	(chromosom* adj3 abnormal*).tw.	31,791
	65	(chromosom* adj3 defect*).tw.	3,580
	66	(chromosom* adj3 error*).tw.	1,009
	67	exp oxidative stress/	280,685
	68	oxidative stress*.tw.	233,273
	69	exp electrophilic stress/	288
	70	electrophil* stress*.tw.	262
	71	exp epigenetics/	72,239
	72	epigenetic*.tw.	106,194
	73	exp cell transformation/	132,325
	74	(cell* adj3 transformation*).tw.	26,817
	75	exp cell proliferation/	502,056
	76	(cell* adj3 proliferat*).tw.	414,852
	77	exp cell death/	148,899
	78	(cell* adj3 death).tw.	217,775
	79	(cell* adj3 necrosis).tw.	17,903
	80	(cell* adj3 aging).tw.	9,410
	81	(cell* adj3 degeneration).tw.	11,723
	82	(cell* adj3 survival).tw.	107,618
	83	(gene* adj3 transformation*).tw.	7,356
	84	genomic instability/	18,837
	85	gen* instabilit*.tw.	18,896
	86	genetic stability/	10,184
	87	(gen* adj3 stabilit*).tw.	17,142
	88	(gen* adj3 damag*).tw.	18,571
	89	exp chronic inflammation/	33,613

Concept	#	EMBASE query	Results
	90	chronic inflammat*.tw.	93,597
	91	or/8-90	
			12,062,946
Fluoride +	92	7 and 91	25,744
outcomes			
2006 - current	93	limit 92 to yr="2006 -Current"	12,185
Reviews only	94	limit 93 to Review	843

PubMed

Concept	#	Pubmed query	Results
Fluoride	1	(((fluoride[MeSH Terms]) OR fluorid*[Text Word]) OR	97522
		fluorin*[Text Word]) OR flurin*[Text Word]	
Mechanistic	2	((((((((((((((((((((((((((((((((((((((
		OR adverse outcome pathway*[Text Word]) OR	
		toxicity test[MeSH Terms]) OR toxicity test*[Text	
		Word]) OR animal testing alternatives[MeSH Terms])	
		OR animal testing alternative*[Text Word]) OR in	
		vitro[MeSH Terms]) OR in vitro stud*[Text Word]) OR	
		in vitro test*[Text Word]) OR structure activity	
		relationships[MeSH Terms]) OR structure activity	
		relationship*[Text Word]) OR	
		pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word]	
Cancer	3	((((((((((((((((((((((((((((((((((((((
		cancer*[Text Word]) OR neoplasm[MeSH Terms])	
		OR neoplas*[Text Word]) OR malignancy[MeSH	
		Terms]) OR malignan*[Text Word]) OR	
		carcinoma[MeSH Terms]) OR carcino*[Text Word])	
		OR sarcoma[MeSH Terms]) OR sarco*[Text Word])	
		OR tumors[MeSH Terms]) OR tumor*[Text Word])	
		OR tumours[MeSH Terms]) OR tumour*[Text Word])	
		OR oncogenesis[MeSH Terms]) OR oncogens[MeSH	
		Terms]) OR oncogen*[Text Word]) OR	
		carcinogenesis tests[MeSH Terms]) OR	
		carcinogens[MeSH Terms]) OR tumor*	
		formation*[Text Word]) OR tumour* formation*[Text	
		Word]) OR tumor* genesis[Text Word]) OR tumour*	

Concept	#	Pubmed query	Results
		genesis) OR cancer induction[MeSH Terms]) OR	
		cancer* induction[Text Word]) OR induction cancer*)	
		OR cancer* theor*[Text Word]	
Genotoxicity	4	((((((((((((((((((((((((((((((((((((((
		tests[MeSH Terms]) OR genotoxicant induced	
		micronuclei[MeSH Terms]) OR genotoxic	
		stresses[MeSH Terms]) OR genotoxins[MeSH	
		Terms]) OR genotox*[Text Word]) OR micronucleus	
		assays[MeSH Terms]) OR micronucle* assa*[Text	
		Word]) OR dna damage[MeSH Terms]) OR dna	
		damag*[Text Word]) OR dna break[MeSH Terms])	
		OR dna break*[Text Word]) OR dna lesion*[Text	
		Word]) OR dna fragmentation[MeSH Terms]) OR dna	
		fragment*[Text Word]) OR dna repair[MeSH Terms])	
		OR dna repair*[Text Word]) OR chromosome	
		aberration[MeSH Terms]) OR chromosom*	
		aberration*[Text Word]) OR chromosom*	
		anomal*[Text Word]) OR chromosome	
		abnormality[MeSH Terms]) OR chromosom*	
		abnormal*[Text Word]) OR chromosome defective	
		micronucleus[MeSH Terms]) OR chromosom*	
		defect*[Text Word]) OR chromosom* error*[Text	
		Word]) OR oxidative stress[MeSH Terms]) OR	
		oxidative stress*[Text Word]) OR electrophilic	
		stress*[Text Word]) OR cell transformation,	
		neoplastic[MeSH Terms]) OR cell*	
		transformation*[Text Word]) OR cell	
		proliferation[MeSH Terms]) OR cell*	
		proliferation*[Text Word]) OR cell aging[MeSH	
		Terms]) OR cell* aging[Text Word]) OR cell*	

Concept	#	Pubmed query	Results
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		necros*[Text Word]) OR cell survival[MeSH Terms])	
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word]	
Outcomes, all	5	earch ((((((((((((((((((((((((((((((((((((1580398
		Terms]) OR adverse outcome pathway*[Text Word])	
		OR toxicity test[MeSH Terms]) OR toxicity test*[Text	
		Word]) OR animal testing alternatives[MeSH Terms])	
		OR animal testing alternative*[Text Word]) OR in	
		vitro[MeSH Terms]) OR in vitro stud*[Text Word]) OR	
		in vitro test*[Text Word]) OR structure activity	
		relationships[MeSH Terms]) OR structure activity	
		relationship*[Text Word]) OR	
		pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word])) OR (((((((((((((((((((((((((((((((
		Terms]) OR cancer*[Text Word]) OR	
		neoplasm[MeSH Terms]) OR neoplas*[Text Word])	
		OR malignancy[MeSH Terms]) OR malignan*[Text	
		Word]) OR carcinoma[MeSH Terms]) OR	

carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumors[MeSH Terms]) OR tumor*[Text Word]) OR tumours[MeSH Terms]) OR tumour*[Text Word]) OR oncogenesis[MeSH Terms]) OR oncogens[MeSH Terms]) OR oncogen*[Text Word]) OR carcinogenesis tests[MeSH Terms]) OR carcinogens[MeSH Terms]) OR tumor* formation*[Text Word]) OR tumour* formation*[Text Word]) OR tumor* genesis[Text Word]) OR tumour* genesis) OR cancer induction[MeSH Terms]) OR cancer* induction[Text Word]) OR induction cancer*) OR cancer* theor*[Text Word])) OR tests[MeSH Terms]) OR genotoxicant induced micronuclei[MeSH Terms]) OR genotoxic stresses[MeSH Terms]) OR genotoxins[MeSH Terms]) OR genotox*[Text Word]) OR micronucleus assays[MeSH Terms]) OR micronucle* assa*[Text Word]) OR dna damage[MeSH Terms]) OR dna damag*[Text Word]) OR dna break[MeSH Terms]) OR dna break*[Text Word]) OR dna lesion*[Text Word]) OR dna fragmentation[MeSH Terms]) OR dna fragment*[Text Word]) OR dna repair[MeSH Terms]) OR dna repair*[Text Word]) OR chromosome aberration[MeSH Terms]) OR chromosom* aberration*[Text Word]) OR chromosom* anomal*[Text Word]) OR chromosome abnormality[MeSH Terms]) OR chromosom* abnormal*[Text Word]) OR chromosome defective micronucleus[MeSH Terms]) OR chromosom*

Concept	#	Pubmed query	Results
		defect*[Text Word]) OR chromosom* error*[Text	
		Word]) OR oxidative stress[MeSH Terms]) OR	
		oxidative stress*[Text Word]) OR electrophilic	
		stress*[Text Word]) OR cell transformation,	
		neoplastic[MeSH Terms]) OR cell*	
		transformation*[Text Word]) OR cell	
		proliferation[MeSH Terms]) OR cell*	
		proliferation*[Text Word]) OR cell aging[MeSH	
		Terms]) OR cell* aging[Text Word]) OR cell*	
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		necros*[Text Word]) OR cell survival[MeSH Terms])	
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word])	
Fluoride +	6	Search (((((fluoride[MeSH Terms]) OR fluorid*[Text	12181
outcomes (all)		Word]) OR fluorin*[Text Word]) OR flurin*[Text	
		Word])) AND (((((((((((((((((((((((((((((((((((
		pathways[MeSH Terms]) OR adverse outcome	
		pathway*[Text Word]) OR toxicity test[MeSH Terms])	
		OR toxicity test*[Text Word]) OR animal testing	
		alternatives[MeSH Terms]) OR animal testing	
		alternative*[Text Word]) OR in vitro[MeSH Terms])	

OR in vitro stud*[Text Word]) OR in vitro test*[Text Word]) OR structure activity relationships[MeSH Terms]) OR structure activity relationship*[Text Word]) OR pharmacokinetics[MeSH Terms]) OR pharmacokinetic*[Text Word]) OR toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text Terms]) OR cancer*[Text Word]) OR neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR malignancy[MeSH Terms]) OR malignan*[Text Word]) OR carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumors[MeSH Terms]) OR tumor*[Text Word]) OR tumours[MeSH Terms]) OR tumour*[Text Word]) OR oncogenesis[MeSH Terms]) OR oncogens[MeSH Terms]) OR oncogen*[Text Word]) OR carcinogenesis tests[MeSH Terms]) OR carcinogens[MeSH Terms]) OR tumor* formation*[Text Word]) OR tumour* formation*[Text Word]) OR tumor* genesis[Text Word]) OR tumour* genesis) OR cancer induction[MeSH Terms]) OR cancer* induction[Text Word]) OR induction cancer*) OR cancer* theor*[Text Word])) OR tests[MeSH Terms]) OR genotoxicant induced micronuclei[MeSH Terms]) OR genotoxic stresses[MeSH Terms]) OR genotoxins[MeSH Terms]) OR genotox*[Text Word]) OR micronucleus assays[MeSH Terms]) OR micronucle* assa*[Text Word]) OR dna damage[MeSH Terms]) OR dna

damag*[Text Word]) OR dna break[MeSH Terms]) OR dna break*[Text Word]) OR dna lesion*[Text Word]) OR dna fragmentation[MeSH Terms]) OR dna fragment*[Text Word]) OR dna repair[MeSH Terms]) OR dna repair*[Text Word]) OR chromosome aberration[MeSH Terms]) OR chromosom* aberration*[Text Word]) OR chromosom* anomal*[Text Word]) OR chromosome abnormality[MeSH Terms]) OR chromosom* abnormal*[Text Word]) OR chromosome defective micronucleus[MeSH Terms]) OR chromosom* defect*[Text Word]) OR chromosom* error*[Text Word]) OR oxidative stress[MeSH Terms]) OR oxidative stress*[Text Word]) OR electrophilic stress*[Text Word]) OR cell transformation, neoplastic[MeSH Terms]) OR cell* transformation*[Text Word]) OR cell proliferation[MeSH Terms]) OR cell* proliferation*[Text Word]) OR cell aging[MeSH Terms]) OR cell* aging[Text Word]) OR cell* degeneration*[Text Word]) OR cell death[MeSH Terms]) OR cell* death*[Text Word]) OR cell* necros*[Text Word]) OR cell survival[MeSH Terms]) OR cell* survival[Text Word]) OR epigenetic[MeSH Terms]) OR epigenetic process[MeSH Terms]) OR epigenomic[MeSH Terms]) OR epigen*[Text Word]) OR genomic stability[MeSH Terms]) OR genomic instability[MeSH Terms]) OR genomic stabilit*[Text Word]) OR genomic instabilit*[Text Word]) OR genom* stabilit*[Text Word]) OR genom*

Concept	#	Pubmed query	Results
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word]))	
2006 - current	7	Search (((((((fluoride[MeSH Terms]) OR fluorid*[Text	5026
		Word]) OR fluorin*[Text Word]) OR flurin*[Text	
		Word])) AND (((((((((((((((((((((((((((((((((((
		pathways[MeSH Terms]) OR adverse outcome	
		pathway*[Text Word]) OR toxicity test[MeSH Terms])	
		OR toxicity test*[Text Word]) OR animal testing	
		alternatives[MeSH Terms]) OR animal testing	
		alternative*[Text Word]) OR in vitro[MeSH Terms])	
		OR in vitro stud*[Text Word]) OR in vitro test*[Text	
		Word]) OR structure activity relationships[MeSH	
		Terms]) OR structure activity relationship*[Text	
		Word]) OR pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word]))	
		Terms]) OR cancer*[Text Word]) OR	
		neoplasm[MeSH Terms]) OR neoplas*[Text Word])	
		OR malignancy[MeSH Terms]) OR malignan*[Text	
		Word]) OR carcinoma[MeSH Terms]) OR	
		carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR	
		sarco*[Text Word]) OR tumors[MeSH Terms]) OR	
		tumor*[Text Word]) OR tumours[MeSH Terms]) OR	
		tumour*[Text Word]) OR oncogenesis[MeSH Terms])	
		OR oncogens[MeSH Terms]) OR oncogen*[Text	
		Word]) OR carcinogenesis tests[MeSH Terms]) OR	
		carcinogens[MeSH Terms]) OR tumor*	
		formation*[Text Word]) OR tumour* formation*[Text	

Word]) OR tumor* genesis[Text Word]) OR tumour* genesis) OR cancer induction[MeSH Terms]) OR cancer* induction[Text Word]) OR induction cancer*) OR cancer* theor*[Text Word])) OR tests[MeSH Terms]) OR genotoxicant induced micronuclei[MeSH Terms]) OR genotoxic stresses[MeSH Terms]) OR genotoxins[MeSH Terms]) OR genotox*[Text Word]) OR micronucleus assays[MeSH Terms]) OR micronucle* assa*[Text Word]) OR dna damage[MeSH Terms]) OR dna damag*[Text Word]) OR dna break[MeSH Terms]) OR dna break*[Text Word]) OR dna lesion*[Text Word]) OR dna fragmentation[MeSH Terms]) OR dna fragment*[Text Word]) OR dna repair[MeSH Terms]) OR dna repair*[Text Word]) OR chromosome aberration[MeSH Terms]) OR chromosom* aberration*[Text Word]) OR chromosom* anomal*[Text Word]) OR chromosome abnormality[MeSH Terms]) OR chromosom* abnormal*[Text Word]) OR chromosome defective micronucleus[MeSH Terms]) OR chromosom* defect*[Text Word]) OR chromosom* error*[Text Word]) OR oxidative stress[MeSH Terms]) OR oxidative stress*[Text Word]) OR electrophilic stress*[Text Word]) OR cell transformation, neoplastic[MeSH Terms]) OR cell* transformation*[Text Word]) OR cell proliferation[MeSH Terms]) OR cell* proliferation*[Text Word]) OR cell aging[MeSH

Concept	#	Pubmed query	Results
		Terms]) OR cell* aging[Text Word]) OR cell*	
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		necros*[Text Word]) OR cell survival[MeSH Terms])	
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word]))) AND ("2006"[Date -	
		Publication] : "2020"[Date - Publication])	
Rev /SR /MA	8	Search ((((((((fluoride[MeSH Terms]) OR fluorid*[Text	248
/CR		Word]) OR fluorin*[Text Word]) OR flurin*[Text	
		Word])) AND (((((((((((((((((((((((((((((((((((
		pathways[MeSH Terms]) OR adverse outcome	
		pathway*[Text Word]) OR toxicity test[MeSH Terms])	
		OR toxicity test*[Text Word]) OR animal testing	
		alternatives[MeSH Terms]) OR animal testing	
		alternative*[Text Word]) OR in vitro[MeSH Terms])	
		OR in vitro stud*[Text Word]) OR in vitro test*[Text	
		Word]) OR structure activity relationships[MeSH	
		Terms]) OR structure activity relationship*[Text	
		Word]) OR pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word])) OR ((((((((((((((((((((((((((((((((((

Terms]) OR cancer*[Text Word]) OR neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR malignancy[MeSH Terms]) OR malignan*[Text Word]) OR carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumors[MeSH Terms]) OR tumor*[Text Word]) OR tumours[MeSH Terms]) OR tumour*[Text Word]) OR oncogenesis[MeSH Terms]) OR oncogens[MeSH Terms]) OR oncogen*[Text Word]) OR carcinogenesis tests[MeSH Terms]) OR carcinogens[MeSH Terms]) OR tumor* formation*[Text Word]) OR tumour* formation*[Text Word]) OR tumor* genesis[Text Word]) OR tumour* genesis) OR cancer induction[MeSH Terms]) OR cancer* induction[Text Word]) OR induction cancer*) OR cancer* theor*[Text Word])) OR tests[MeSH Terms]) OR genotoxicant induced micronuclei[MeSH Terms]) OR genotoxic stresses[MeSH Terms]) OR genotoxins[MeSH Terms]) OR genotox*[Text Word]) OR micronucleus assays[MeSH Terms]) OR micronucle* assa*[Text Word]) OR dna damage[MeSH Terms]) OR dna damag*[Text Word]) OR dna break[MeSH Terms]) OR dna break*[Text Word]) OR dna lesion*[Text Word]) OR dna fragmentation[MeSH Terms]) OR dna fragment*[Text Word]) OR dna repair[MeSH Terms]) OR dna repair*[Text Word]) OR chromosome aberration[MeSH Terms]) OR chromosom* aberration*[Text Word]) OR chromosom*

anomal*[Text Word]) OR chromosome abnormality[MeSH Terms]) OR chromosom* abnormal*[Text Word]) OR chromosome defective micronucleus[MeSH Terms]) OR chromosom* defect*[Text Word]) OR chromosom* error*[Text Word]) OR oxidative stress[MeSH Terms]) OR oxidative stress*[Text Word]) OR electrophilic stress*[Text Word]) OR cell transformation, neoplastic[MeSH Terms]) OR cell* transformation*[Text Word]) OR cell proliferation[MeSH Terms]) OR cell* proliferation*[Text Word]) OR cell aging[MeSH Terms]) OR cell* aging[Text Word]) OR cell* degeneration*[Text Word]) OR cell death[MeSH Terms]) OR cell* death*[Text Word]) OR cell* necros*[Text Word]) OR cell survival[MeSH Terms]) OR cell* survival[Text Word]) OR epigenetic[MeSH Terms]) OR epigenetic process[MeSH Terms]) OR epigenomic[MeSH Terms]) OR epigen*[Text Word]) OR genomic stability[MeSH Terms]) OR genomic instability[MeSH Terms]) OR genomic stabilit*[Text Word]) OR genomic instabilit*[Text Word]) OR genom* stabilit*[Text Word]) OR genom* instabilit*[Text Word]) OR chronic inflammation[MeSH Terms]) OR chronic inflammat*[Text Word]))) AND ("2006"[Date -Publication]: "2020"[Date - Publication])) AND ((((("meta analysis"[Publication Type]) OR "systematic review"[Publication Type]) OR "review"[Publication Type]) OR "scientific integrity

Concept	#	Pubmed query	Results
		review"[Publication Type]) OR "guideline"[Publication	
		Type])	

Section 6. Weight of evidence using Bradford Hill considerations for causality³¹

Reducing IQ scores

Strength of association

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
Feng 2022 [4]	High fluoride group (HFG)	P=0.010	Positive	Children
J	Change in IQ score per 1.0 mg/L increase in UFcr level: β=-			
	2.502 (95% CI: -4.411, -0.593)			
Goodman 2022	Changes in cognitive score per 0.5 mg/L increase in MUFcre	P=0.002	Positive	Children
[<u>6</u>]	GEE population-averaged models			
	FSIQ/GCI: B=-2.12 (95% CI: -3.49, -0.75)			
	PIQ: B=-2.63 (95% CI: -3.87, -1.40)	P<0.001	_	
	VIQ: B=-1.29 (95% CI: -2.60, 0.01);	P=0.053	_	
Ibarluzea 2022 [8]	Changes in cognitive score per unit (mg/g) increase in		Positive	Children
	maternal creatinine-adjusted urinary fluoride (MUFcr), β			
	(95% CI)			
	Bayley Mental Development Index (MDI)			
	Both trimesters MUFcr			
	• All: 1.48 (-4.2, 7.16)			
	• Boys: 3.84 (-5.04, 12.72)			
	• Girls: 0.75 (-6.92, 8.43)			
	McCarthy, verbal	P<0.05	_	
	Both trimesters MUFcr			

³¹: Includes data from RSI-identified studies only.

Study	Effect estimates	Statistical	Effect on lowering	Population
		Significance	IQ scores	
	• All: 13.86 (3.91, 23.82)			
	• Boys: 13.38 (2.81, 23.95)			
	• Girls: -1.31 (-9.35, 6.74)			
	McCarthy, performance	P<0.05	_	
	Both trimesters MUFcr			
	• All: 5.86 (0.32, 11.39)			
	• Boys: 12.24 (2.87, 21.61)			
	• Girls: 2.03 (-4.77, 8.83)			
	McCarthy, numeric	P<0.05	_	
	Both trimesters MUFcr			
	• All: 6.22 (0.65, 11.79			
	• Boys: 11.09 (1.79, 20.4)			
	• Girls: 3.03 (-3.96, 10.03)			
	McCarthy, memory	P<0.05	_	
	Both trimesters MUFcr			
	• All: 11.63 (2.62, 20.63)			
	• Boys: 11.3 (1.90, 20.7)			
	• Girls: -2.12 (-9.32, 5.09)			
	McCarthy, general cognitive	P<0.01	_	
	Both trimesters MUFcr			
	• All: 15.4 (6.32, 24.48)			
	• Boys: 15.03 (5.3, 24.75)			
	• Girls: -0.02 (-7.16, 7.12)			

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	Changes in cognitive score per unit (mg/g) increase in			
	MUFcr, β (95% CI), stratified by fluoridated and non-			
	fluoridated zone			
	Bayley Mental Development Index (MDI)			
	Both trimesters MUFcr			
	Both zones/non-fluoridated: -0.52 (-7, 5.95)			
	 No significant interaction by zone 			
	McCarthy, verbal	• P<0.01	_	
	Both trimesters MUFcr			
	 Both zones/non-fluoridated: 15.58 (3.71, 27.45) 			
	• Fluoridated zone: -2.4 (-11.17, 6.37)			
	McCarthy, performance	P<0.05	_	
	Both trimesters MUFcr			
	Both zones/non-fluoridated: 7.82 (1.58, 14.07)			
	Fluoridated zone: not reported			
	McCarthy, numeric		_	
	Both trimesters MUFcr			
	Both zones/non-fluoridated: 4.08 (-2.21, 10.36)			
	 No significant interaction by zone 			
	McCarthy, memory		_	
	Both trimesters MUFcr			
	Both zones/non-fluoridated: 2.71 (-3.77, 9.18)			
	 No significant interaction by zone 			
	McCarthy, general cognitive	P<0.01	_	
	Both trimesters MUFcr			

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	• Both zones/non-fluoridated: 15.46 (4.55, 26.36)			
	• Fluoridated zone: 1.96 (-6.09, 10.02)			
Saeed 2022 [13]	Non-verbal intelligence quotient (IQ)	P=0.233	Positive	Children/adolescents
	IQ score			
	Control group: 80.25-127.75; mean 100.93 (SD 13.1)			
	Exposed group: 63.97-127.31; mean 97.26 (SD 15.39)			
	Correlation analysis	P=0.006		
	Water fluoride and urinary fluoride: R ² =0.224			
	Water fluoride and IQ score: R ² =-0.034	P=0.683		
	Urinary fluoride and IQ score: R ² =-0.655	P=0.000		
	Intelligence level vs mean (SD) water fluoride (WF), urinary		_	
	fluoride (UF)			
	Superior (IQ score ≥130): no participants with this level			
	Above average (IQ score 120-129)			
	• WF: 1.96±2.77 mg/L			
	• UF: 0.54±0.59 mg/L			
	High Average (IQ score 111-119)			
	• WF: 4.60±4.40 mg/L			
	• UF: 1.20±0.80 mg/L			
	Average (QI score 90-100)			
	• WF: 4.3±3.99 mg/L			
	• UF: 1.99±1.28 mg/L			

Study	Effect estimates	Statistical	Effect on lowering	Population
		Significance	IQ scores	
	Low average (IQ score 80-89)			
	• WF: 3.84±3.63 mg/L			
	• UF: 3.61±2.84 mg/L			
	Borderline (IQ score 70-79)			
	• WF: 6.19±4.59 mg/L			
	• UF: 7.13±2.62 mg/L			
	Retarded (IQ score <70)			
	• WF: 4.92±3.46 mg/L			
	UF: 8.10±5.84 mg/L			
Farmus 2021 [21]	Change (95% CI) in age-normed in FSIQ scores per unit	P=0.012	Positive	Children
	increase in standardized fluoride exposure			
	<u>Males</u>			
	• MUF: -1.86 (-3.22, -0.49)			
	• IFI: -0.01 (-1.67, 1.65)			
	CUF: 0.07 (-1.66, 1.80)			
-	<u>Females</u>	P=0.77		
	• MUF: -0.23 (-2.06, 1.60)			
	• IFI: -0.72 (-2.34, 0.89)			
	CUF: -0.41 (-2.07, 1.24)			
	<u>Overall</u>	P=-0.23	_	
	• MUF: -1.28 (-2.37, -0.18)			
	• IFI: -0.38 (-1.53, 0.78)			
	CUF: -0.18 (-1.38, 1.02)			

Study	Effect estimates	Statistical	Effect on lowering	Population
		Significance	IQ scores	
	Change (95% CI) in age-normed in PIQ scores per unit increase	P=0.01		
	in standardized fluoride exposure			
	<u>Males</u>			
	• MUF: -3.01			
	• IFI: -1.45 (-3.40, 0.49)			
	CUF: -1.49 (-3.50, 0.53)			
	<u>Females</u>	P=0.01	_	
	• MUF: -1.18 (-3.32, 0.96)			
	• IFI: -2.71 (-4.59, -0.83)			
	CUF: -1.53 (-3.45, 0.39)			
	<u>Overall</u>	P=<0.001		
	• MUF: -2.36 (-3.63, -1.08)			
	• IFI: -2.11 (-3.45, -0.76)			
	CUF: -1.51 (-2.90, -0.12)			
	Change (95% CI) in age-normed in VIQ scores per unit increase	P=0.12		
	in standardized fluoride exposure			
	<u>Males</u>			
	• MUF: -0.25 (-1.57, 1.07)			
	• IFI: 1.22 (-0.39, 2.83)			
	CUF: 1.61 (-0.06, 3.29)			
	<u>Females</u>	P=0.30	_	
	• MUF: 0.87 (-0.91, 2.64)			
	• IFI: 1.31 (-0.25, 2.87)			
	CUF: 0.63 (-0.98, 2.23)			
	<u>Overall</u>	P=0.04	_	

Study	Effect estimates	Statistical Significance	Effect on lowering Population IQ scores
	• MUF: 0.15 (-0.91, 1.20)		
	• IFI: 1.27 (0.15, 2.39)		
	CUF: 1.10 (-0.06, 2.26)		
	Change (95% CI) in FSIQ scores per unit increase (0.5 mg/L	P=0.12	_
	MUF; 0.1 mg/day IFI; 0.5 mg/L CUF) in fluoride exposure		
	<u>Males</u>		
	• MUF: -2.48 (-4.30, -0.66)		
	• IFI: -0.01 (-1.25, 1.24)		
	CUF: 0.09 (-2.10, 2.28)		
	<u>Females</u>	P=0.77	_
	• MUF: -0.31 (-2.76, 2.14)		
	• IFI: -0.54 (-1.75, 0.66)		
	CUF: -0.52 (-2.62, 1.58)		
	<u>Overall</u>	P=0.23	_
	• MUF: -1.71 (-3.17, -0.24)		
	• IFI: -0.28 (-1.15, 0.58)		
	CUF: -0.23 (-1.75, 1.29)		
	Change (95% CI) in PIQ scores per unit increase (0.5 mg/L	P=0.01	_
	MUF; 0.1 mg/day IFI; 0.5 mg/L CUF) in fluoride exposure		
	<u>Males</u>		
	• MUF: -4.02 (-6.15, -1.89)		
	• IFI: -1.09 (-2.54, 0.37)		
	CUF: -1.89 (-4.44, 0.67)		
	<u>Females</u>	P=0.01	_
	• MUF: -1.58 (-4.43, 1.28)		

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	• IFI: -2.03 (-3.43, -0.63)			
	CUF: -1.94 (-4.37, 0.50)			
	<u>Overall</u>	P=<0.001	_	
	• MUF: -3.15 (-4.85, -1.44)			
	• IFI: -1.58 (-2.59, -0.57)			
	CUF: -1.91 (-3.68, -0.15)			
	Change (95% CI) in VIQ scores per unit increase (0.5 mg/L	P=0.12	_	
	MUF; 0.1 mg/day IFI; 0.5 mg/L CUF) in fluoride exposure			
	<u>Males</u>			
	• MUF: -0.34 (-2.10, 1.43)			
	• IFI: 0.92 (-0.29, 2.12)			
	CUF: 2.05 (-0.08, 4.16)			
	<u>Females</u>	P=0.30	_	
	• MUF: 1.16 (-1.22, 3.53)			
	• IFI: 0.98 (-0.19, 2.15)			
	CUF: 0.79 (-1.24, 2.82)			
	<u>Overall</u>	P=0.04	_	
	• MUF: 0.20 (-1.22, 1.61)			
	• IFI: 0.95 (0.11, 1.79)			
	CUF: 1.39 (-0.08, 2.86)			
	Sensitivity analysis where influential mother-child dyads were		_	
	removed was conducted			
	 Association of MUF and FSIQ in boys became weaker and not 			
	statistically significant			
	 No change in status of statistical significance for other 			

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	associations tested			
Wang 2021 [32]	IQ, Linear regression		Positive	Children
	• Water fluoride (mg/L): IQ scores, β (95% CI), Q1 (≤ 0.30):			
	Reference:			
	○ Q2 (0.30-1.00)			
	All: 1.77 (-0.73, 4.27)			
	Boys: 1.40 (-2.29, 5.08)			
	Girls: 2.51 (-1.42, 6.45)			
	○ Q3 (1.00-1.60)			
	All: -2.77 (-5.44, -0.10)			
	Boys: -4.45 (-8.41, -0.50)			
	Girls: -1.72 (-5.91, 2.47)			
	○ Q4 (> 1.60)			
	All: -4.10 (-6.71, -1.48)			
	Boys: -5.74 (-9.57, -1.91)			
	Girls: -5.27 (-9.32, -1.22)			
	 Urinary fluoride (mg/L): IQ scores, β (95% CI) 			
	○ Q2 (0.20-0.48)			
	All: -1.99 (-4.64, 0.66)			
	Boys: -1.62 (-5.65, 2.42)			
	Girls: -3.29 (-7.34, 0.77)			
	o Q3 (0.48-0.90)			
	All: -3.02 (-5.71, -0.33)			
	Boys: -3.54 (-7.60, 0.52)			

Study	Effect estimates	Statistical	Effect on lowering	Population
		Significance	IQ scores	
	Girls: -1.86 (-6.01, 2.29)			
	○ Q4 (> 0.90)			
	All: -4.49 (-7.21, -1.77)			
	Boys: -6.09 (-10.29, -1.90)			
	Girls: -5.98 (-9.99, -1.96)			
	IQ, Logistic regression			
	 Water fluoride (mg/L) and IQ scores [OR (95% CI)] 			
	o Superior and above (≥120): 0.69 (0.54, 0.90)			
	o High normal (110-119): 0.86 (0.70, 1.06)			
	o Normal (90-109): 1 (control)			
	o Dull normal and below (≤89): 1.42 (1.08, 1.88)			
	 Urinary fluoride (mg/L) and IQ scores [OR (95% CI)] 			
	o Superior and above (≥120): 0.67 (0.46, 0.97)			
	o High normal (110-119): 0.90 (0.68, 1.18)			
	o Normal (90-109): 1 (control)			
	Dull normal and below (≤89): 1.39 (0.97, 2.00)			
	Similar results were obtained with sensitivity analyses for the		_	
	association between fluoride exposure and IQ reduction			
Cui 2020 [37]	Mean (±SD) IQ by urinary fluoride levels	0.578	Non-significant	Children/
	• < 1.6 mg/L: 112.16 (±11.50)		association	adolescents
	• 1.6 – 2.5 mg/L: 112.05 (±12.01)			
	• ≥ 2.5 mg/L: 110.00 (±14.92)			
Soto-Barreras	Mean (±SD) water fluoride levels (mg/L) by intellectual grade	0.645	No association	Children/ adolescents
2019 [62]	categories			
	• Grade I: 1.48 ± 1.13			

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	• Grade II: 1.05 ± 1.06			
	• Grade III: 1.04 ± 1.06			
	• Grade IV: 0.97 ± 1.10			
	• Grade V: 0.79 ± 1.17			
	Mean (±SD) urinary fluoride levels (mg/L) by intellectual grade	0.559	<u> </u>	
	categories			
	• Grade I: 0.45 ± 0.34			
	• Grade II: 0.54 ± 0.29			
	• Grade III: 0.61 ± 0.38			
	• Grade IV: 0.56 ± 0.33			
	• Grade V: 0.35 ± 0.19			
	Mean (±SD) exposure dose/daily intake by intellectual grade	0.389	_	
	categories			
	• Grade I: 0.03 ± 0.03			
	• Grade II: 0.026 ± 0.03			
	• Grade III: 0.027 ± 0.03			
	• Grade IV: 0.029 ± 0.03			
	• Grade V: 0.016 ± 0.02			
Arulkumar 2017	Serum level of AChE (U/I)	P< 0.001	Possibly positive	Adults (fluorosis
[78]	• Controls: 6.29 ± 0.68			patients)
	• Mild: 4.64 ± 0.54			
	• Moderate: 4.11 ± 0.4			
	• Severe: 3.78 ± 0.35			
	Serum level of ATPase/Na+ K+ ATPase	P< 0.001		-

Study	Effect estimates	Statistical	Effect on lowering	Population
		Significance	IQ scores	
	• Controls: 2.41 ± 0.34			
	• Mild: 2.56 ± 0.31			
	• Moderate: 2.64 ± 0.29			
	• Severe: 2.87 ± 0.4			
Bashash 2017 [79]	Change in outcome per 0.5 mg/L increase in maternal urinary		Positive	Children/ adolescents
	fluoride levels			
	o $GCI: \beta = -3.15 (-5.42, -0.87)$	p = 0.01		
	o $IQ: \beta = -2.50 (-4.12, -0.59)$	p = 0.01	_	
	Change in outcome per 0.5 mg/L increase in child urinary		_	
	fluoride levels			
	o IQ – Without adjustment of maternal urinary fluoride levels:			
	β = - 0.89 (-2.63, 0.85)	Non-significant		
	 IQ – With adjustment of maternal urinary fluoride levels 			
	β = - 0.77 (-2.53, 0.99)	Non-significant		
Yani 2021 [33]	IQ		Positive	Children
	High-fluoride area:			
	o Low: 17 (28.3%)			
	o High: 43 (71.7%)			
	Low-fluoride area:			
	o Low: 0 (0%)			
	o High: 40 (100%)			
	IQ and Dental fluorosis			
	Dental fluorosis:			
	o Low: 15 (37.5%)			

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	o High: 25 (62.5%)			
	No dental fluorosis:			
	o Low: 2 (3.3%)			
	o High: 28 (96.6%)			
Yu 2021 [34]	Does-response relationships of IQ scores with fluoride		Positive	Children
	exposures (β and 95% CI for every 0.50 mg/L increment of			
	water fluoride or urinary fluoride)			
	 Water fluoride (mg/L) 			
	○ 0.20-3.40			
	Crude: -1.24 (-1.48, -0.99)			
	Adjusted: -1.16 (-1.41, -0.91)			
	○ 3.40-3.90			
	Crude: -5.36 (-8.54, -2.18)			
	Adjusted: -4.21 (-7.54, -0.87)			
	Urinary fluoride (mg/L)			
	○ 0.01-1.60			
	Crude: 0.96 (0.29, 1.63)			
	Adjusted: 1.01 (0.34, 1.68)			
	○ 1.60-2.50			
	Crude: -5.08 (-6.94, -3.22)			
	Adjusted: -5.23 (-7.07, -3.39)			
	○ 2.50-5.54			
	Crude: -0.50 (-1.13, 0.14)			
	Adjusted: -0.34 (-0.98, 0.30)			
Zhao 2021 [35]	Associations between UF and IQ scores		Positive	Children

	Statistical Significance	Effect on lowering IQ scores	Population
were inversely linear associated with IQ			
) in both crude model and adjusted model			
59 (- 8.996, - 1.321)			
5.957 (- 9.712, - 2.202)			
ed estimation of the variance: (95% CI: -			
334; p=0.006)			
in IQ score per log-unit increase in urinary		Positive	Children/ adolescents
I participants and by subgroups			
<u>23)</u>			
c, - 0.01), p = 0.049	p = 0.236		
estimate: 95%Cl = -4.97, 0.03]	p = 0.053		
CC or CT (N = 279)			
.24, 1.05)	p = 0.236		
estimate: 95%Cl= -4.14, 0.95]	p = 0.220		
TT (N = 44)		_	
8.69, -5.94), p=< 0.001	p=< 0.001		
estimate: 95%Cl= -19.66, -4.96]	p = 0.001		
shold of urine fluoride levels in the subgroup			
. (1.51-1.97)			
een exposure dose and IQ: r = -0.343	p < 0.01	Positive	Children/ adolescents
een average level of fluoride in drinking water	p = 0.007	Possible positive	Children/ adolescents
	erage level of fluoride in drinking water ool performance score (%):		

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	Overall score: r = -0.51			
	Correlation between average level of fluoride in drinking water	p = 0.012		
	(mg/L) and the prevalence of high school performance score			
	(%):			
	Overall score: r = -0.48			
Till 2020 [48]	An increase of 0.5 mg/L in water fluoride concentration (almost	Significant	Positive	Children/ adolescents
	equal to the difference between fluoridated and non-fluoridated			
	regions) corresponded to reduction in performance IQ:			
	 Formula-fed: 9.3-point (95% CI: −13.77, −4.76) 			
	 Breastfed: 6.2-point (95% CI: −10.45, −1.94). 			
	Association remained significant upon controlling for fetal			
	fluoride exposure			
	 Formula-fed: (b =-7.93, 95% CI: −12.84, −3.01) 			
	 Breastfed: (b =−6.30, 95% CI: −10.92, −1.68) 			
Wang 2020 [49]	Change in IQ scores per 1 mg/L increment of water fluoride	Significant	Positive	Children/ adolescents
	 Water fluoride (continuous): b =−1.59 (−2.61, −0.57), 			
	p=0.002			
	Change in IQ scores per quartile increment of water fluoride			
	compared to the reference (≤0.70 mg/L)			
	Water fluoride (1.00–1.90): −3.07 (−5.64, −0.49), p: 0.02			
Yu 2018 ⁷⁷	Odds (95% CI) of having excellent IQ level per 0.5 mg/L		Positive	Children/ adolescents
	increment of fluoride in water; normal IQ is the control			
	• Fluoride level of 0.20 – 1.40 mg/L: OR = 0.60 (0.47, 0.77)			
	• Fluoride level of 1.40 – 3.90 mg/L: OR = 1.09 (0.88, 1.36)			

Consistency

Study	Design	Country	Population	Association	Time period
Goodman 2022 ^[6]	Cohort	Mexico	Mother-child pairs	Positive	1997-1999
					2001-2003
Feng 2022 [4]	Cross-sectional	China	Children	Positive	2017
Ibarluzea 2022 [8]	Cohort	Spain	Mother-child pairs	Positive	1997–2008
Kaur 2022 ^[9]	Cross-sectional	India	Children	Positive	2011
Saeed 2022 [13]	Cross-sectional	Pakistan	Children and adolescents	Positive	NR
Ahmad 2021 [3]	Cross-sectional	Pakistan	Children	None	NR
Farmus 2021 [21]	Cohort	Canada	Mother-child pairs	Positive	2008-2011
Wang 2021 [32]	Cross-sectional	China	Children	Positive	2015
Yani 2021 [33]	Cross-sectional	Indonesia	Children	Positive	NR
Yu 2021 [34]	Cross-sectional	China	Children	Positive	2015
Zhao 2021 [35]	Cross-sectional	China	Children	Positive	2018
Cui 2020 [37]	Cross-sectional	China	Children/ adolescents	Non-significant	2014 - 2018
Till 2020 [48]	Cohort	Canada	Children/ adolescents	Positive	2008-2011
Wang 2020 [49]	Cross-sectional	China	Children/ adolescents	Positive	2015
Soto-Barreras 2019 [62]	Cross-sectional	Mexico	Children/ adolescents	None	2017
Cui 2018 [67]	Cross-sectional	China	Children/ adolescents	Positive	2014-2015
Mustafa 2018 [72]	Cross-sectional	Sudan	Children/ adolescents	Possible	NR
Yu 2018 💯	Cross-sectional	China	Children/ adolescents	Positive	2015
Bashash 2017 [79]	Cohort	Mexico	Children/ adolescents	Positive	1997-1999
					2001-2003
Arulkumar 2017 [78]	Cross-sectional	India	Adults (fluorosis patients)	Possible	NR
Kousik 2016 [86]	Cross-sectional	India	Children/ adolescents	Positive	NR
Heck 2016 [85]	Cross-sectional	United States	Adults, children/ adolescents	None	NR

Temporality

Study	Design	Outcome, time of assessment
Goodman 2022 ^[6]	Cohort	GCI/FSIQ, PIQ, and VIQ scores across ages 4, 5 and 6–12 years
Ibarluzea 2022 [8]	Cohort	Results in boys suggest improved scores in cognitive domains with maternal urinary concentrations.
Farmus 2021 [21]	Cohort	Performance IQ at the ages of 1.9 and 4.4 years
Till 2020 [48]	Cohort	IQ scores at the age of 3-4 years old
Bashash 2017 [79]	Cohort	GCI scores at the age of 4 years old
		 Full-Scale IQ scores at the age of 6–12 years old
All other studies wer	e cross-sectional (tem	porality is not applicable)

Biological gradient (exposure-response)

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
Arulkumar 2017 [78]	Serum level of AChE (U/I)	P= 0.000	Possible	Adults
	• Controls: 6.29 ± 0.68		positive	(fluorosis
	• Mild: 4.64 ± 0.54			patients)
	 Moderate: 4.11 ± 0.4 			
	• Severe: 3.78 ± 0.35			
	Serum level of ATPase/Na+ K+ ATPase	P= 0.000	=	
	• Controls: 2.41 ± 0.34			
	• Mild: 2.56 ± 0.31			
	 Moderate: 2.64 ± 0.29 			
	• Severe: 2.87 ± 0.4			
Bashash 2017 [79]	Change in outcome per 0.5 mg/L increase in maternal urinary fluoride		Positive	Children/
	levels			adolescents
	\circ GCI: $\beta = -3.15$ (-5.42, -0.87)	p = 0.01		
	o $IQ: \beta = -2.50 (-4.12, -0.59)$	p = 0.01	_	
	Change in outcome per 0.5 mg/L increase in child urinary fluoride levels		-	
	○ $IQ - Without$ adjustment of maternal urinary fluoride levels: $\beta = -0.89$ (-2.63, 0.85)	Non-significant		

Study	Effect estimates	Statistical	Effect	on	Population
		Significance	lowering	IQ	
			scores		
	IQ – With adjustment of maternal urinary fluoride levels				
	β = - 0.77 (-2.53, 0.99)	Non-significant			
Cui 2018 ^[67]	Change (95% CI) in IQ score per log-unit increase in urinary fluoride		Positive		Children/
	among all participants and by subgroups				adolescents
	<u>Overall (N = 323)</u>				
	β = -2.47 (-4.93, - 0.01), p = 0.049	p = 0.236			
	[Bootstrapped estimate: 95%Cl = -4.97, 0.03]	p = 0.053	=		
	DRD2 SNP of CC or CT (N = 279)		_		
	β = - 1.59 (- 4.24, 1.05)	p = 0.236			
	[Bootstrapped estimate: 95%Cl= -4.14, 0.95]	p = 0.220	_		
	DRD2 SNP of TT (N = 44)		_		
	β = -12.31 (-18.69, -5.94), p=< 0.001	p=< 0.001			
	[Bootstrapped estimate: 95%Cl= -19.66, -4.96]	p = 0.001	_		
	The safety threshold of urine fluoride levels in the subgroup TT: 1.73 mg/L (1.51-1.97)				
Kousik 2016 [86]	Correlation between exposure dose and IQ: r = -0.343	p = < 0.01	Positive		Children/
					adolescents
Mustafa 2018 [72]	Correlation between average level of fluoride in drinking water (mg/L)	p = 0.007	Possible		Children/
	and average school performance score (%):		positive		adolescents
25 March 2023		213			

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	Overall score: r = -0.51 Correlation between average level of fluoride in drinking water (mg/L) and the prevalence of high school performance score (%): Overall score: r = -0.48	p = 0.012		
Till 2020 [48]	An increase of 0.5 mg/L in water fluoride concentration (almost equal to the difference between fluoridated and non-fluoridated regions) corresponded to reduction in performance IQ: • Formula-fed: 9.3-point (95% CI: -13.77, -4.76)	Significant	Positive	Children/ adolescents
	 Breastfed: 6.2-point (95% CI: -10.45, -1.94). Association remained significant upon controlling for fetal fluoride exposure 			
	 Formula-fed: (β =-7.93, 95% CI: -12.84, -3.01) Breastfed: (β =-6.30, 95% CI: -10.92, -1.68) 			
Wang 2020 [49]	Fluoride exposure was inversely related to IQ scores • Water fluoride: β =-1.59 (95% CI: -2.61, -0.57)	P=0.002	Positive	Children/ adolescents
Yu 2018 [77]	Odds (95% CI) of having excellent IQ level per 0.5 mg/L increment of fluoride in water; normal IQ is the control • Fluoride level of 0.20 – 1.40 mg/L: OR = 0.60 (0.47, 0.77) • Fluoride level of 1.40 – 3.90 mg/L: OR = 1.09 (0.88, 1.36)		Positive	Children/ adolescents

Thyroid dysfunction

Strength of association

Study	Effect estimates	Statistical Significance	Effect on Population thyroid dysfunction
Du 2021 ^[20]	Tvol (cm3)		Positive Children/
	• All: β (95% CI): 0.22 (0.14, 0.31), p-value:	< 0.001	association adolescents
	• Boys: β (95% CI): 0.34 (0.20, 0.48)	< 0.001	_
	• Girls: β (95% CI): 0.14 (0.03, 0.24)	0.011	_
	• Interaction: β (95% CI): - 0.15 (- 0.30, - 0.01)	0.038	_
	TT4 (nmol/l)		_
	• All: β (95% CI): 1.44 (- 1.28, 4.16)	0.297	
	• Boys: β (95% CI): 2.13 (- 2.89, 7.14)	0.404	-
	• Girls: β (95% CI): 0.89 (- 2.27, 4.04)	0.580	_
	• Interaction: β (95% CI): - 1.46 (- 6.17, 3.24)	0.542	_
	TT3 (nmol/l)		-
	• All: β (95% CI): - 0.05 (- 0.10, 0.01), p-value:	0.087	
	• Boys: β (95% CI): - 0.08 (- 0.17, 0.01)	0.072	_
	• Girls: β (95% CI): - 0.03 (- 0.10, 0.04)	0.381	_
	• Interaction: β (95% CI): 0.01 (- 0.08, 0.10)	0.795	_

Study	Effect estimates	Statistical Significance	Effect on thyroid dysfunction	Population
Cui 2020 [37]	Median (q1-q3) TSH in uIU/mL by urinary fluoride levels • < 1.6 mg/L: 2.81 (2.21 – 3.81) • 1.6 – 2.5 mg/L: 2.82 (2.01 – 3.82) • ≥ 2.5 mg/L: 3.29 (2.30 – 4.48)	0.287	Non- significant association	Children/ adolescents
Kumar 2018 ^[69]	Thyroid hormone (Mean) levels by study group (A: fluorosis endemic area, B: fluorosis non-endemic area) • Free T3 (pg/ml): A: 3.125; B: 2.698	p = 0.26	Positive	Children/ adolescents
	 Free T4 (ng/dL): A: 1.282; B: 1.193 TSH (μIU/m): A: 3.849; B: 2.588 Percent (%) of thyroid hormone level derangement: A: 67.5; B: 54 	p = 0.41 p = 0.02	-	
Rathore 2018 [75]	 Exposure groups:	P value: NR	Positive	Children/ adolescents

Study	Effect estimates	Statistical	Effect	on	Population
		Significance	thyroid		
			dysfund	tion	
	<u>Gp 1:</u> 0.98 ng/dL ±0.21, [0.79 − 1.79]				
	<u>Gp 2:</u> 1.02 ng/dL ±0.26, [0.78 – 1.89]				
	<u>Gp 3:</u> 1.11 ng/dL ±0.28, [0.76 – 1.98]				
	<u>Gp 4:</u> 1.22 ng/dL ± 0.33, [0.75 – 1.89]				
	 TSH: Mean ± SD, [range] (μIU/mL) 				
	<u>Gp 1:</u> 1.33 μIU/mL ±0.78, [0.4 – 2.99]				
	<u>Gp 2:</u> 1.64 μIU/mL ±0.88), [0.29 – 3.76]				
	<u>Gp 3:</u> 1.86 μIU/mL ±0.77, [0.76 – 3.74]				
	<u>Gp 4:</u> 1.91 uIU/mL ±1.10, [0.75 – 4.99]				
Wang 2020 [49]	Every 1 mg/L increment of water fluoride was associated with	P=0.028	Positive		Children/
	• 0.006 ng/mL increase in TT3	(significant only			adolescents
	• 0.013 pg/mL increase in FT3	before			
	• 0.083 ng/mL decrease in TT4	correction for			
	• 0.01 ng/mL decrease in FT4	multiple testing)			
	• 0.13 μIU/mL increase in TSH				
	Every 1 mg/L increment of urinary fluoride was associated with	0.013			
	• 0.007 ng/mL increase in TT3	(Remained			
	• 0.02 pg/mL increase in FT3	significant after			
	• 0.09 ng/mL decrease in TT4	corrections for			
	• 0.009 ng/mL decrease in FT4	multiple testing)			
	• 0.11 μIU/mL increase in TSH				

Study	Effect estimates	Statistical Significance	Effect on thyroid dysfunction	Population
Malin 2018 [71]	Every 1mg/L increment of urinary fluoride (in iodine-deficient adults) was associated with a 0.35 mIU/L increase in TSH [95% CI: 0.06, 0.64].	p = 0.01 (one- tailed)	Possible positive	Children/ adolescents and adults

Consistency

Study	Design	Country	Population	Time period
Du 2021 [20]	Cross-sectional	China	Children/ adolescents	2017
Cui 2020 [37]	Cross-sectional	China	Children/ adolescents	2014 - 2018
Kumar 2018 ^[69]	Cross-sectional	India	Children/ adolescents	NR
Rathore 2018 [75]	Cross-sectional	India	Children/ adolescents	NR
Wang 2020 [49]	Cross-sectional	China	Children/ adolescents	2015
Malin 2018 [71]	Cross-sectional	Canada	Children/ adolescents and adults	2012 – 2013

Biological gradient (exposure-response)

Study	Effect estimates	Statistical Significance	Effect on thyroid dysfunction	Population
Kumar 2018 ^[69]	Thyroid hormone (Mean) levels by study group (A: fluorosis endemic area, B: fluorosis non-endemic area)	p = 0.26		
	• Free T3 (pg/ml): A: 3.125; B: 2.698			
	• Free T4 (ng/dL): A: 1.282; B: 1.193	p = 0.41		
	• TSH (µIU/m): A: 3.849; B: 2.588	p = 0.02		
	• Percent (%) of thyroid hormone level derangement: A: 67.5; B:			
	54			
Rathore 2018 [75]	Exposure groups:	P value: NR	Positive	Children/
	Gp 1: <1ppm			adolescents
	Gp 2: 1-1.9 ppm			
	Gp 3: 2-3.9 ppm			
	Gp 4: ≥ 4ppm			
	Free T3: mean, ±SD, [range] (pg/mL)			
	<u>Gp 1:</u> 2.66 pg/mL ±0.46, [2.11 – 3.89]			
	<u>Gp 2:</u> 2.73 pg/mL ±0.36, [2.13 − 3.56]			
	<u>Gp 3:</u> 2.84 pg/mL ±0.46, [2.02 – 4.26]			
	<u>Gp 4:</u> 3.06 pg/mL ±0.78, [1.91 – 4.42]			
	• Free T4: mean ±SD, [range] (ng/dL)			
	<u>Gp 1:</u> 0.98 ng/dL ±0.21, [0.79 − 1.79]			
	<u>Gp 2:</u> 1.02 ng/dL ±0.26, [0.78 − 1.89]			

Study	Effect estimates	Statistical Significance	Effect on thyroid dysfunction	Population
	<u>Gp 3:</u> 1.11 ng/dL ±0.28, [0.76 − 1.98] <u>Gp 4:</u> 1.22 ng/dL ± 0.33, [0.75 − 1.89] • TSH: Mean ± SD, [range] (μIU/mL) <u>Gp 1:</u> 1.33 μIU/mL ±0.78, [0.4 − 2.99] <u>Gp 2:</u> 1.64 μIU/mL ±0.88), [0.29 − 3.76]			
	<u>Gp 3:</u> 1.86 μIU/mL ±0.77, [0.76 – 3.74] <u>Gp 4:</u> 1.91 uIU/mL ±1.10, [0.75 – 4.99]			
Wang 2020 ^[49]	Every 1 mg/L increment of water fluoride was associated with • 0.006 ng/mL increase in TT3 • 0.013 pg/mL increase in FT3 • 0.083 ng/mL decrease in TT4 • 0.01 ng/mL decrease in FT4 • 0.13 µIU/mL increase in TSH	P=0.028 (significant only before correction for multiple testing)	Positive	Children/ adolescents
	 Every 1 mg/L increment of urinary fluoride was associated with 0.007 ng/mL increase in TT3 0.02 pg/mL increase in FT3 0.09 ng/mL decrease in TT4 0.009 ng/mL decrease in FT4 0.11 μIU/mL increase in TSH 	0.013 (Remained significant after corrections for multiple testing)		
Malin 2018 [71]	Change (95%CI) in serum TSH (µIU/L) per unit increase in UFsg (mg/L)	p = 0.43	Possible positive	Children/ adolescents and

S	Study Effect estimates		Effect on thyroid dysfunction	Population
	No iodine deficiency: $\beta = -0.02 (-0.19, 0.15)$			adults
	lodine deficiency: ß = 0.36 (-0.03, 0.75)	p = 0.03		

Experimental evidence

Selected animal studies (tier-1; medium to high quality) investigating thyroid dysfunction

Animal model	F in DW ³² (mg/L)	Significantly altered outcomes	D-R trend
Rat (chronic) (943)	0, 5, 10, 20	Serum T4, FT4 and TSH levels	Inconsistent change across time
		(no change in serum T3, FT3)	points and only occurred at
		(no change in scrain 13, 1 13)	higher doses
Rat (chronic) ³³	0, 10, 20	None	None
		(serum T3, T4 and TSH levels were assessed)

³² "[t]he fluoride concentration in drinking water for rats must be about 4–5 times greater in order to achieve serum fluoride levels comparable to those in humans (Angmar-Mansson and Whitford, 1984)" (as cited in Cardenas-Gonzalez et al., 2013) (NRC, 2006; McPherson et al., 2018)

³³ McPherson CA, Zhang G, Gilliam R, Brar SS, Wilson R, Brix A, Picut C, Harry GJ. 2018. An evaluation of neurotoxicity following fluoride exposure from gestational through adult ages in Long-Evans hooded rats. Neurotoxicol Res: 1-18.

Kidney dysfunction

Strength of association

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
Nanayakkara 2020 [44]	Mean serum fluoride level (±SD) by CKDu stage	* p<0.05	Possible	Adult non-
	• Stage 0: 35.5 μg/L (±16.3)	compared to controls		dialysis CKDu cases
	• Stage 1: 38.1 μg/L (±18.1)	-		
	• Stage 2: 53.9 μg/L (±34.2) *	-		
	• Stage 3: 82.8 μg/L (±41.9) *	_		
	• Stage 4: 123.4 µg/L (±59.9) *	_		
	• Stage 5: 123.9 µg/L (±52.6) *	-		
Fernando 2019 [52]	Serum fluoride: Mean ±SD [range] mg/L	p = 0.000	Possible	Adult non-
	CKDu patients: 1.43 ±1.2 [0.47 – 9.58]			dialysis
	Controls: 1.07 ±0.3 mg/L [0.51 – 1.92]			CKDu cases
	p = 0.000 (showed a significant difference based on CKDu stage but			
	not with sex or age)			
	Urinary fluoride: Mean ±SD [range] mg/L	p = 0.004	<u>—</u>	
	CKDu patients: 1.53 ±0.8 [0.45 – 6.92]			
	Controls: 1.26 ±0.63 [0.36 – 3.80]			
Malin 2019 [57]	1 mg/L increase in water fluoride was associated with:	p=0.007	Possible	Children/
	0.93 mg/dL lower blood urea nitrogen concentration (95% CI:			adolescents
05.14	40			

Study	Effect estimates	Statistical	Effect on	Population
		Significance	kidney	
			dysfunction	
	−1.44 , −0.42).			
	• eGFR: -1.03 mL/min/m2 (95% CI: -2.93, 0.87)	p > 0.99		
	Water fluoride was log2 transformed in this model.			
	• SUA: 0.05 mg/dL (95% CI: -0.07, 0.18)	p > 0.99		
	• ACR: -0.01 mg/g (95% CI: -0.07, 0.06)	p > 0.99	<u> </u>	
	Water fluoride and outcome variables were log2 transformed.			
	1 μmol/L increase in plasma fluoride was associated with:		<u> </u>	
	 10.36 mL/min/1.73m2 lower estimated glomerular filtration rate 	p=0.05		
	(95% CI: −17.50, −3.22)			
	 0.29 mg/dL higher serum uric acid concentration (95% CI: 0.09, 	p=0.05	_	
	0.50)			
	 1.29 mg/dL lower blood urea nitrogen concentration (95%CI: 	p < 0.001	_	
	-1.87, -0.70)			
Jimenez-Cordova 2018 [68]	Change in outcome (p-value) per unit increase of fluoride in water		Possible	Adults
	(mg/L) and urine (µg/mL)			
	• ALB (µg/mL)	p= <0.001		
	Water: β= 1.20	ρ= <0.001		
	Urine: β = 0.56	p= <0.001	_	
	• Cys-C (mg/mL)		<u> </u>	
	Water: β= 0.03	p= 0.005		
	<i>Urine:</i> β = 0.022	p= 0.001		
	OPN (mg/mL)		<u> </u>	
	-			

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
	Water: β= 0.10	p= 0.028		
	<i>Urine:</i> β = 0.038	p= 0.041	<u> </u>	
	• CLU (μg/mL)		<u> </u>	
	Water: β= 0.09	p= 0.118		
	Urine: β = 0.07	p= 0.100	_	
	• KIM-1 (ng/mL)		<u> </u>	
	Water: b= 0.045	p= 0.162		
	Urine: b= 0.048	p= 0.008	_	
	• TFF-3 (ng/mL)		<u> </u>	
	Water: β= 2.88	p= 0.010		
	Urine: β = 1.14	p= 0.115		
	• eGFR (mL/min/1.73 m2)		<u> </u>	
	Water: β= 0.19	p= 0.675		
	Urine: β = 0.49	p= 0.030	<u>—</u>	

Consistency

Study	Design	Country	Association	Population	Time period
Nanayakkara 2020 [44]	Cross-sectional	Sri Lanka	Possible	Adult CKDu cases	NR
Fernando 2019 [52]	Case-control	Sri Lanka	Possible	Adult non-dialysis CKDu cases	NR
Jimenez-Cordova 2019 [53]	Cross-sectional	Mexico	Inconclusive	Children/ adolescents	2015
Malin 2019 [57]	Cross-sectional	United States	Possible	Children/ adolescents	2013–2016
Jimenez-Cordova 2018 [68]	Cross-sectional	Mexico	Possible	Adults	2013
Cardenas-Gonzalez 2016	Cross-sectional	Mexico	None	Children/ adolescents	2014

Biological gradient (exposure-response)

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
Nanayakkara 2020 [44]	Mean serum fluoride level (±SD) by CKDu stage • Stage 0: 35.5 μg/L (±16.3) • Stage 1: 38.1 μg/L (±18.1) • Stage 2: 53.9 μg/L (±34.2) * • Stage 3: 82.8 μg/L (±41.9) *	* p<0.05 compared to controls	Possible	Adult non- dialysis CKDu cases
	 Stage 4: 123.4 μg/L (±59.9) * Stage 5: 123.9 μg/L (±52.6) * 	-		
Fernando 2019 [52]	 Serum fluoride: Mean ±SD [range] mg/L CKDu patients: 1.43 ±1.2 [0.47 – 9.58] Controls: 1.07 ±0.3 mg/L [0.51 – 1.92] p = 0.000 (showed a significant difference based on CKDu stage but not with sex or age) 	p = 0.000	Possible	Adult non- dialysis CKDu cases
	• Urinary fluoride: Mean ±SD [range] mg/L CKDu patients: 1.53 ±0.8 [0.45 – 6.92] Controls: 1.26 ±0.63 [0.36 – 3.80]	p = 0.004	_	
Malin 2019 [57]	 1 mg/L increase in water fluoride was associated with: 0.93 mg/dL lower blood urea nitrogen concentration (95% CI: -1.44, -0.42). 	p=0.007	Possible	Children/ adolescents
	eGFR: -1.03 mL/min/m2 (95% CI: -2.93, 0.87) Water fluoride was log2 transformed in this model.	p > 0.99	_	

Study	Effect estimates	Statistical	Effect on	Population
		Significance	kidney	
			dysfunction	
	• SUA: 0.05 mg/dL (95% CI: -0.07, 0.18)	p > 0.99		
	ACR: -0.01 mg/g (95% CI: -0.07, 0.06)	p > 0.99		
	Water fluoride and outcome variables were log2 transformed.			
	1 μmol/L increase in plasma fluoride was associated with:			
	• 10.36 mL/min/1.73m2 lower estimated glomerular filtration rate	p=0.05		
	(95% CI: −17.50, −3.22)			
	• 0.29 mg/dL higher serum uric acid concentration (95% CI: 0.09,	p=0.05		
	0.50)			
	• 1.29 mg/dL lower blood urea nitrogen concentration (95%CI:	p < 0.001		
	-1.87, -0.70)			
Jimenez-Cordova 2018 68	Change in outcome (p-value) per unit increase of fluoride in water		Possible	Adults
	(mg/L) and urine (µg/mL)			
	• ALB (µg/mL)			
	Water: β= 1.20	p= <0.001		
	<i>Urine:</i> β = 0.56	p= <0.001	_	
	• Cys-C (mg/mL)		_	
	Water: β= 0.03	p= 0.005		
	<i>Urine:</i> β = 0.022	p= 0.001		
	OPN (mg/mL)			
	Water: β= 0.10	p= 0.028		
	<i>Urine: β= 0.038</i>	p= 0.041	<u> </u>	

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
	• CLU (μg/mL)			
	Water: β = 0.09	p= 0.118		
	Urine: β = 0.07	p= 0.100	_	
	• KIM-1 (ng/mL)			
	Water: b= 0.045	p= 0.162		
	<i>Urine: b= 0.048</i>	p= 0.008		
	• TFF-3 (ng/mL)		_	
	<i>Water: β</i> = 2.88	p= 0.010		
	<i>Urine: β</i> = 1.14	p= 0.115	_	
	• eGFR (mL/min/1.73 m2)		_	
	Water: β= 0.19	p= 0.675		
	<i>Urine:</i> β = 0.49	p= 0.030	_	

Experimental evidence

Selected animal studies (tier-1; medium to high quality) investigating kidney effects

Animal model	F in DW (mg/L)	Significantly altered outcomes	D-R trend
Rat (subchronic) (219)	0, 15, 50	Histology (proximal tubule injury)	Altered at all doses tested
Rat (subchronic) (820)	0, 2.3, 23	Histology	Altered at highest dose tested
Rat (subchronic) (1260)	0, 0.5, 5, 20	Kidney function (CRE levels)	Altered at highest dose tested
Mice (subchronic) (252)	0, 6.8, 68	Histology	Altered at all doses tested
Mice (chronic) (1751)	0, 0.05, 1.5, 10	None (histology and kidney function ³⁴ were assessed)	None
Mice (subchronic) (631)	0, 150,	None (kidney function was assessed)	None
Rat (subchronic) (1215)	0, 15	Histology	Single dose (tier-2 study)

³⁴ Blood urea nitrogen and creatinine levels

Sex hormones

Strength of association

Study	Effect estimates	Statistical Significance	Effect on male reproduction	Population
Bai 2020 [36]	 Compared with subjects at the first tertile of plasma fluoride, percent changes (95% CI) in testosterone were: Second tertile: -8.08% (-17.36%, 2.25%) Third tertile: -21.65% (-30.44%, -11.75%) Male adolescents at the third tertile of plasma fluoride had decreased levels of testosterone: -21.09% (-36.61% to -1.77%). Similar inverse associations were also found when investigating the relationships between plasma fluoride and estradiol. Decreased levels of SHBG associated with water and plasma fluoride 	P trend <0.001	Inverse	Children/ adolescents
	 Male adolescents (third tertile): -9.39% (-17.25% to -0.78%) Female children (second tertile): -10.78% (-17.55% to -3.45%) 			
	• Testosterone (ng/dL) ○ Total: 28.74 (26.11, 31.37) ○ Male children: 4.48 (4.01, 4.95) ○ Male adolescents: 281.91 (258.56, 305.26) ○ Female children: 5.32 (4.96, 5.68) ○ Female adolescents: 23.80 (22.71, 24.89)	<0.001		

Study	Effect estimates	Statistical Significance	Effect on male reproduction	Population
	• Estradiol (pg/mL)	<0.001		
	o Total: 12.22 (11.35, 13.08)			
	o Male children: 2.30 (2.23, 2.37)			
	 Male adolescents: 15.02 (13.93, 16.11) 			
	o Female children: 4.89 (4.33, 5.45)			
	o Female adolescents: 49.32 (45.15, 53.48)			
	• SHBG (nmol/L)	<0.001	_	
	o Total: 55.27 (52.90, 57.63)			
	 Male children: 89.91 (84.42, 95.40) 			
	 Male adolescents: 34.69 (32.62, 36.77) 			
	o Female children: 77.09 (71.35, 82.82)			
	o Female adolescents: 54.01 (50.78, 57.25)			
An 2019 ^[50]	Water fluoride (Mean ± SD)		Inverse	Adults
	• Group of villages with high exposure (HEG): 2.44±1.88 mg/L			
	 Group of villages with low exposure (LEG): 0.37± 0.15 mg/L 			
	Urinary fluoride (Mean ± SD), mg/L	P = <0.001	_	
	• HEG: 2.66 ± 1.03			
	• LEG: 0.95 ± 0.31			
	Reproductive hormones (Mean ± SD), nmol/L		_	
	ABP	P = 0.144		
	• HEG: 19.86 ± 22.46			

Study	Effect estimates	Statistical	Effect on	Population
		Significance	male	
			reproduction	
	• LEG: 24.04 ± 26.94			
	SHBG	P = 0.012	-	
	• HEG 30.07 ± 28.32			
	• LEG 35.90 ± 28.58			

Consistency

Study	Design	Country	Population	Time period
An 2019 ^[50]	Cross-sectional	China	Adults (males)	2011-2012

Experimental evidence

Selected animal studies (tier-1; medium to high quality) investigating male fertility

Animal model	F in DW (mg/L)	Significantly altered outcomes	D-R trend
Rat (subchronic) (237)	0, 10, 50, 100	Sperm quality ³⁵ , testicular 3β-HSDH, serum testosterone	Altered at all doses tested
		levels, histology of testis and counts of germ cells	
Rat (subchronic) (238)	0, 5, 110	Sperm quality ³⁶ , serum testosterone and histology of testis	Altered at all doses tested
Mice (subchronic) (211)	0, 11, 22, 45	Sperm quality ³⁷ , serum testosterone and histology of testis	Altered at all doses tested
Mice (subchronic) (924)	0, 11, 22, 45	Ultra-structure of testicular tissues ³⁸ and mitophagy in Leydig	Altered at all doses tested
		cells	
Mice (subchronic) (925)	0, 11, 22, 45	Testicular morphology and ultrastructure of sperm	Altered at higher doses
Mice (subchronic) (1595)	0, 13, 32, 68	Sperm quality ³⁹ , hyperactivation and [Ca ²⁺] levels	Altered at higher doses
Mice (subchronic) (1596)	0, 13, 32, 68	Sperm abnormalities and DNA integrity	Altered at higher doses
Mice (subchronic) (1718)	0, 22, 45, 68	Gonad weights, sperm quality ⁴⁰	Altered at higher doses
Mice (chronic) (1759)	0, 11, 22, 45	Sperm quality and histology of testis	Altered at all doses tested
Mice (chronic) (1799)	0, 11, 22, 45	Sperm quality ⁴¹ and histology of testis	Altered at higher doses

 $^{^{35}}$ Total Sperm Count, Motility, and Abnormality

³⁶ Sperm motility and abnormality

 $^{^{\}rm 37}$ The sperm count, the abnormal ratio of sperm and sperm head

³⁸ Mitochondrial structural impairment in germ cells, Sertoli cells and Leydig cells

³⁹ Sperm motility, count and survival

⁴⁰ Sperm count, viability and morphology

⁴¹ Sperm count, motility and viability

References

- 1. Mercado, S., et al., Relationship between Fluoride Concentration in Drinking Water Wells and the Degree of Dental Fluorosis in Students Aged 12-15 Years. Journal of Pharmaceutical Negative Results, 2023. **14**: p. 531-538.
- 2. Tang, H., et al., Association between dental fluorosis prevalence and inflammation levels in school-aged children with low-to-moderate fluoride exposure. Environmental Pollution, 2023. **320**: p. 120995.
- 3. Ahmad, M.S., et al., DOES HIGH FLUORIDE INTAKE CAUSE LOW IQ? A CASE OF ISLAMIC RELIGIOUS SCHOOLS (MADRASSAS) IN RURAL AND URBAN AREAS OF SINDH, PAKISTAN. Fluoride, 2022. **55**(1): p. 49-62.
- 4. Feng, Z., et al., Do methylenetetrahydrofolate dehydrogenase, cyclohydrolase, and formyltetrahydrofolate synthetase 1 polymorphisms modify changes in intelligence of school-age children in areas of endemic fluorosis? Chin Med J (Engl), 2022. **135**(15): p. 1846-1854.
- 5. García-Escobar, T.M., et al., *Moderate and Severe Dental Fluorosis in the Rural Population of Anantapur, India: Change in Their Biological Susceptibility?* Int J Environ Res Public Health, 2022. **19**(18).
- 6. Goodman, C.V., et al., *Domain-specific effects of prenatal fluoride exposure on child IQ* at 4, 5, and 6-12 years in the ELEMENT cohort. Environ Res, 2022. **211**: p. 112993.
- 7. Gupta, S., et al., RECEIVER OPERATING CURVE (ROC) ANALYSIS FOR FLUOROSIS USING SIMPLE BLOOD PARAMETER NEUTROPHIL LYMPHOCYTE RATIO. Biochemical and Cellular Archives, 2022. **22**(2): p. 3969-3974.

- 8. Ibarluzea, J., et al., *Prenatal exposure to fluoride and neuropsychological development in early childhood: 1-to 4 years old children.* Environ Res, 2022. **207**: p. 112181.
- 9. Kaur, D., et al., Assessment of Fluoride Content in Water and Its Impact on the Intelligence Quotient of School Children Aged 12-13 Years. Cureus, 2022. **14**(10): p. e30157.
- Marques, R.B., et al., Fluoridated water impact on tooth decay and fluorosis in 17-20year-olds exposed to fluoride toothpaste. J Public Health Dent, 2022. 82(4): p. 385-394.
- McLaren, L., et al., Fluoridation cessation and children's dental caries: A 7-year follow-up evaluation of Grade 2 schoolchildren in Calgary and Edmonton, Canada.
 Community dentistry and oral epidemiology, 2022. 50(5): p. 391-403.
- 12. Rani, R., et al., *Prevalence of dental fluorosis and dental caries in fluoride endemic areas of Rohtak district, Haryana.* Journal of the Indian Society of Pedodontics and Preventive Dentistry, 2022. **40**(2): p. 140-145.
- Saeed, M., et al., Arsenic and fluoride co-exposure through drinking water and their impacts on intelligence and oxidative stress among rural school-aged children of Lahore and Kasur districts, Pakistan. Environmental geochemistry and health, 2022.
 44(11): p. 3929-3951.
- 14. Tawfik, G., et al., *Impact of dental Fluorosis on quality of life of a group of Children in a Rural area in Nubia Region.* Indian Journal of Public Health Research and Development, 2022. **13**(3): p. 127-133.
- 15. Thilakarathne, B.K.G. and L. Ekanayake, *Dental fluorosis among 15- year- old school children in an endemic district in Sri Lanka.* Community dental health, 2022. **39**(1): p. 54-58.

- 16. Al-Omoush, S.A., et al., Comparison of oral health indicators between two places of endemic dental fluorosis in Jordan. Saudi Dental Journal, 2021.
- 17. Ayele, B.A., et al., *Neuro-medical manifestations of fluorosis in populations living in the Main Ethiopian Rift Valley.* Environmental geochemistry and health, 2021.
- 18. Cao, X.Y., Y.Q. Xu, and D.D. Liao, *Monitoring results of drinking water-borne endemic fluorosis in fuzhou from 2017 to 2019.* Chinese Journal of Disease Control and Prevention, 2021. **25**(9): p. 1097-1101.
- 19. Dong, H., et al., Associations of low level of fluoride exposure with dental fluorosis among U.S. children and adolescents, NHANES 2015-2016. Ecotoxicology and environmental safety, 2021. **221**: p. 112439.
- 20. Du, Y., et al., *Iodine Modifies the Susceptibility of Thyroid to Fluoride Exposure in School-age Children: a Cross-sectional Study in Yellow River Basin, Henan, China.*Biological Trace Element Research, 2021.
- 21. Farmus, L., et al., *Critical Windows of Fluoride Neurotoxicity in Canadian Children.* Environmental research, 2021: p. 111315.
- 22. Fernandes, I.C., F.D.S. Forte, and F.C. Sampaio, *Molar-incisor hypomineralization* (MIH), dental fluorosis, and caries in rural areas with different fluoride levels in the drinking water. International journal of paediatric dentistry, 2021. **31**(4): p. 475-482.
- 23. Helte, E., et al., Fluoride in Drinking Water, Diet, and Urine in Relation to Bone Mineral Density and Fracture Incidence in Postmenopausal Women. Environ Health Perspect, 2021. **129**(4): p. 47005.
- 24. James, P., et al., *Impact of Reducing Water Fluoride on Dental Caries and Fluorosis.*Journal of dental research, 2021. **100**(5): p. 507-514.

- 25. Meghe, A.D., D.B. Malpe, and D.C. Meshram, *Effect of fluoride contaminated groundwater on human health in fluorosis endemic areas.* Indian Journal of Forensic Medicine and Toxicology, 2021. **15**(1): p. 529-534.
- 26. Meng, X., et al., Effect of fluoride in drinking water on the level of 5-methylcytosine in human and rat blood. Environmental toxicology and pharmacology, 2021. **81**: p. 103511.
- 27. Mohd Nor, N.A., et al., Factors associated with dental fluorosis among Malaysian children exposed to different fluoride concentrations in the public water supply. Journal of public health dentistry, 2021.
- 28. Rojanaworarit, C., et al., *Hydrogeogenic fluoride in groundwater and dental fluorosis in Thai agrarian communities: a prevalence survey and case-control study.* BMC oral health, 2021. **21**(1): p. 545.
- 29. Sharma, N., et al., Geomedical assessment of areas having varying groundwater fluoride levels in rudraprayag district, uttarakhand. Indian Journal of Public Health Research and Development, 2021. **12**(3): p. 122-127.
- 30. Silva, M.C.C., et al., Effect of fluoridated water on dental caries and fluorosis in schoolchildren who use fluoridated dentifrice. Brazilian dental journal, 2021. **32**(3): p. 75-83.
- 31. Tkachenko, H., et al., *Elemental Status and Lipid Peroxidation in the Blood of Children with Endemic Fluorosis.* Biological Trace Element Research, 2021. **199**(4): p. 1237-1245.
- 32. Wang, S., et al., *The cholinergic system, intelligence, and dental fluorosis in schoolaged children with low-to-moderate fluoride exposure.* Ecotoxicology and Environmental Safety, 2021. **228**: p. 112959.

- 33. Yani, S.I., et al., The influence of fluoride in drinking water on the incidence of fluorosis and intelligence of elementary school students in Palu City. Gaceta sanitaria, 2021. **35 Suppl 2**: p. S159-S163.
- 34. Yu, X., et al., Fluoride exposure and children's intelligence: Gene-environment interaction based on SNP-set, gene and pathway analysis, using a case-control design based on a cross-sectional study. Environment international, 2021. **155**: p. 106681.
- 35. Zhao, L., et al., Fluoride exposure, dopamine relative gene polymorphism and intelligence: A cross-sectional study in China. Ecotoxicology and environmental safety, 2021. **209**: p. 111826.
- 36. Bai, R., et al., Associations of fluoride exposure with sex steroid hormones among U.S. children and adolescents, NHANES 2013-2016. Environ Pollut, 2020. **260**: p. 114003.
- 37. Cui, Y., et al., *The relationships between thyroid-stimulating hormone and/or dopamine levels in peripheral blood and IQ in children with different urinary iodine concentrations.*Neuroscience Letters, 2020. **729**: p. 134981.
- 38. Das, G., et al., Effect of fluoride concentration in drinking water on dental fluorosis in southwest saudi arabia. International Journal of Environmental Research and Public Health, 2020. **17**(11): p. 3914.
- 39. Fernandes, I.C., F.D.S. Forte, and F.C. Sampaio, *Molar-incisor hypomineralization* (MIH), dental fluorosis, and caries in rural areas with different fluoride levels in the drinking water. International journal of paediatric dentistry, 2020. **31**(4): p. 475-482.
- 40. Godebo, T.R., et al., *Bone quality in fluoride-exposed populations: A novel application of the ultrasonic method.* Bone Reports, 2020. **12 (no pagination)**(100235).
- 41. Kim, F.M., et al., *A Case-Control Study of Fluoridation and Osteosarcoma.* Journal of dental research, 2020. **99**(10): p. 1157-1164.

- 42. Krishna, M., et al., Estimation of serum fluoride and renal parameters in diabetic nephropathy- A facility based observational case control study. Biomedical and Pharmacology Journal, 2020. **13**(2): p. 571-576.
- 43. Lee, N., et al., *The Association between Community Water Fluoridation and Bone Diseases: A Natural Experiment in Cheongju, Korea.* Int J Environ Res Public Health, 2020. **17**(24).
- 44. Nanayakkara, S., et al., *The Influence of fluoride on chronic kidney disease of uncertain aetiology (CKDu) in Sri Lanka.* Chemosphere, 2020. **257**: p. 127186.
- 45. Russ, T.C., et al., *Aluminium and fluoride in drinking water in relation to later dementia risk.* British Journal of Psychiatry, 2020. **216**(1): p. 29-34.
- 46. Stangvaltaite-Mouhat, L., et al., *Erosive Tooth Wear among Adults in Lithuania: A Cross-Sectional National Oral Health Study.* Caries Res, 2020. **54**(3): p. 283-291.
- 47. Sun, R., et al., Fluoride exposure and CALCA methylation is associated with the bone mineral density of Chinese women. Chemosphere, 2020. **253**: p. 126616.
- 48. Till, C., et al., *Fluoride exposure from infant formula and child IQ in a Canadian birth cohort.* Environ Int, 2020. **134**: p. 105315.
- 49. Wang, M., et al., *Thyroid function, intelligence, and low-moderate fluoride exposure among Chinese school-age children.* Environ Int, 2020. **134**: p. 105229.
- 50. An, N., et al., *Trends of SHBG and ABP levels in male farmers: Influences of environmental fluoride exposure and ESR alpha gene polymorphisms.* Ecotoxicology & Environmental Safety, 2019. **172**: p. 40-44.
- 51. Crnosija, N., M. Choi, and J.R. Meliker, *Fluoridation and county-level secondary bone cancer among cancer patients 18 years or older in New York State.* Environ Geochem Health, 2019. **41**(2): p. 761-768.

- 52. Fernando, W., et al., Serum and urine fluoride levels in populations of high environmental fluoride exposure with endemic CKDu: a case-control study from Sri Lanka. Environmental geochemistry and health., 2019. **42**(5): p. 1497-1504.
- 53. Jimenez-Cordova, M.I., et al., Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride. Environmental Research, 2019. **169**: p. 220-228.
- 54. Jiménez-Córdova, M.I., et al., *Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population.* Science of the Total Environment, 2019. **684**: p. 621-628.
- 55. Khanoranga and S. Khalid, *Using urinary fluoride and dental fluorosis as biomarkers of fluoride exposure in brick kiln workers in Balochistan, Pakistan.* Fluoride, 2019. **52**(3): p. 415-425.
- 56. Liu, L., et al., *Low-to-moderate fluoride exposure in relation to overweight and obesity among school-age children in China.* Ecotoxicol Environ Saf, 2019. **183**: p. 109558.
- 57. Malin, A.J., et al., *Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013-2016.* Environment International, 2019. **132** (105012): p. 1-9.
- 58. Malin, A.J., et al., Fluoride exposure and sleep patterns among older adolescents in the United States: a cross-sectional study of NHANES 2015-2016. Environ Health, 2019. **18**(1): p. 106.
- 59. Pei, J., et al., *Identification of pathogenesis-related microRNA profiles in skeletal fluorosis. Fluoride.* Fluoride, 2019. **52**(1): p. 29-41.
- 60. Riddell, J.K., et al., Association of water fluoride and urinary fluoride concentrations with attention deficit hyperactivity disorder in Canadian youth. Environment international, 2019. **133**: p. 105190.

- 61. Shaik, N., et al., Fluoride ingestion and thyroid function in children resident of naturally fluoridated areas An observational study. Journal of Clinical & Experimental Dentistry, 2019. **11**(10): p. e883-e889.
- 62. Soto-Barreras, U., et al., *Effect of fluoride in drinking water on dental caries and IQ in children.* Fluoride, 2019. **52**(3): p. 474-482.
- 63. Zhang, X., et al., *Dental Cleaning, Community Water Fluoridation and Preterm Birth, Massachusetts: 2009-2016.* Matern Child Health J, 2019. **23**(4): p. 451-458.
- 64. Zhou, G., et al., *The prevalence of eye diseases among residents in areas in Northeast China with high and acceptable drinking-water fluoride levels.* Fluoride, 2019. **52**(2): p. 169-183.
- 65. Zhou, G., et al., Low-to-moderate fluoride exposure, relative mitochondrial DNA levels, and dental fluorosis in Chinese children. Environment International, 2019. 127: p. 70-77.
- 66. Bashash, M., et al., *Prenatal fluoride exposure and attention deficit hyperactivity disorder (ADHD) symptoms in children at 6–12 years of age in Mexico City.* Environment international, 2018. **121**: p. 658-666.
- 67. Cui, Y., et al., Dopamine receptor D2 gene polymorphism, urine fluoride, and intelligence impairment of children in China: A school-based cross-sectional study. Ecotoxicology and Environmental Safety, 2018. **165**: p. 270-277.
- 68. Jimenez-Cordova, M.I., et al., Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels.

 Toxicology and Applied Pharmacology, 2018. **352**: p. 97-106.
- 69. Kumar, V., et al., Fluoride, Thyroid Hormone Derangements and its Correlation with Tooth Eruption Pattern Among the Pediatric Population from Endemic and Non-endemic Fluorosis Areas. J Contemp Dent Pract, 2018. **19**(12): p. 1,513 1,517.

- 70. Kumar, S., et al., *Dental fluorosis and associated risk factors in early adolescents in India.* International Journal of Adolescent Medicine and Health, 2018. **32**(4): p. 20170200.
- 71. Malin, A.J., et al., Fluoride exposure and thyroid function among adults living in Canada: Effect modification by iodine status. Environment international, 2018. **121**: p. 667-674.
- 72. Mustafa, D.E., U.M. Younis, and S.A.A. Elhag, *The relationship between the fluoride levels in drinking water and the schooling performance of children in rural areas of Khartoum state, Sudan.* Fluoride, 2018. **51**(2): p. 102-113.
- 73. Oweis, R.R., et al., Fluoride intake and cortical and trabecular bone characteristics in adolescents at age 17: A prospective cohort study. Community Dent Oral Epidemiol, 2018. **46**(6): p. 527-534.
- 74. Quadri, J.A., et al., Fluoride-associated ultrastructural changes and apoptosis in human renal tubule: a pilot study. Human & experimental toxicology, 2018. **37**(11): p. 1199-1206.
- 75. Rathore, S., et al., Study of excess fluoride ingestion and thyroid hormone derangement in relation with different fluoride levels in drinking water among children of Jodhpur District, Rajasthan, India. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 2018. **20**(1): p. 327-331.
- 76. Shruthi, M.N. and N.S. Anil, A comparative study of dental fluorosis and non-skeletal manifestations of fluorosis in areas with different water fluoride concentrations in rural Kolar. Journal of Family Medicine and Primary Care, 2018. **7**(6): p. 1222-1228.
- 77. Yu, X., et al., Threshold effects of moderately excessive fluoride exposure on children's health: A potential association between dental fluorosis and loss of excellent intelligence. Environment International, 2018. **118**: p. 116-124.

- 78. Arulkumar, M., et al., *Alteration of paraoxonase, arylesterase and lactonase activities in people around fluoride endemic area of Tamil Nadu, India.* Clinica Chimica Acta, 2017. **471**: p. 206-215.
- 79. Bashash, M., et al., *Prenatal fluoride exposure and cognitive outcomes in children at 4 and 6–12 years of age in Mexico.* Environmental health perspectives, 2017. **125**(9): p. 097017.
- 80. Chauhan, D.S., S. Mishra, and S. Tripathi, *Fluoride induced alteration in hypothalamic testicular axis hormones and deterioration in antioxidants status in fluorotic patients.*Indian Journal of Clinical Biochemistry, 2017. **32 (1 Supplement 1)**: p. S236.
- 81. Stephenson, J., et al., *Halides in drinking water are inversely correlated with suicide rates.* Biological Psychiatry, 2017. **81 (10 Supplement 1)**: p. S332.
- 82. Verma, A., et al., *High prevalence of dental fluorosis among adolescents is a growing concern: a school based cross-sectional study from Southern India.* Environmental health and preventive medicine, 2017. **22**(1): p. 17.
- 83. Cardenas-Gonzalez, M., et al., *Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.* Toxicology Letters, 2016. **259** (Supplement 1): p. S158.
- 84. de Moura, M.S., et al., Epidemiological surveillance of dental fluorosis in a city with a tropical climate with a fluoridated public drinking water supply. Ciencia & saude coletiva, 2016. **21**(4): p. 1247-1254.
- 85. Heck, B., Essays on health, education, and consumer information. 2016, University of California Santa Cruz.
- 86. Kousik, D. and N.K. Mondal, Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of

Laxmisagar, Simlapal Block of Bankura District, W.B., India. Environmental Monitoring and Assessment, 2016. **188**(4): p. 218.

- 87. Sabokseir, A., A. Golkari, and A. Sheiham, *Distinguishing between enamel fluorosis* and other enamel defects in permanent teeth of children. PeerJ, 2016. **4**: p. e1745.
- 88. Xiang, J., et al., The effects of ten years of defluoridation on urinary fluoride, dental fluorosis, defect dental fluorosis, and dental caries, in Jiangsu province, PR China. Fluoride, 2016. **49**(1): p. 23-35.