Systematic review of epidemiological and toxicological evidence on health effects of fluoride in drinking water

Mohamed Kadry Taher, Franco Momoli, Jennifer Go, Shintaro Hagiwara, Siva Ramoju, Xue Feng Hu, Natalie Jensen, Rowan Terrell, Alex Hemmerich, Daniel Krewski

SUPPLEMENTARY MATERIAL

Table of Contents

Supp	plementary Material 1. Literature search for human and animal studies	9			
1.1	. Strategy	9			
1.2	2. Bibliographic database search terms and output	10			
1.3	B. Grey literature	57			
Supp	plementary Material 2. Included human studies	58			
2.1	. Included human studies, by endpoint	58			
2.2	2. Characteristics of the included human studies	64			
Ν	Mercado 2023 ⁶	64			
Т	Tang 2023 ⁷	70			
A	Ahmad 2022 ⁸				
F	Feng 2022 ⁹				
C	García-Escobar 2022 ¹⁰				
C	Goodman 2022 ¹¹				
C	Gupta 2022 ¹²	104			
I	lbarluzea 2022 ¹³	108			
k	Kaur 2022 ¹⁴	124			
Ν	Marques 2022 ¹⁵	128			
Ν	McLaren 2022 ¹⁶	131			
F	Rani 2022 ¹⁷	140			
S	Saeed 2022 ¹⁸				
Т	Tawfik 2022 ¹⁹	151			
Т	Thilakarathne 2022 ²⁰ 154				
A	Al-Omoush 2021 ²¹				
A	Ayele 2021 ²²	162			
C	Cao 2021 ²³				

Dong 2021 ²⁴	
Du 2021 ²⁵	
Farmus 2021 ²⁶	
Fernandes 2021 ²⁷	
Helte 2021 ²⁸	
James 2021 ²⁹	
Meghe 2021 ³⁰	
Meng 2021 ³¹	
Mohd Nor 2021 ³²	
Rojanaworarit 2021 ³³	
Sharma 2021 ³⁴	
Silva 2021 ³⁵	
Tkachenko 2021 ³⁶	
Wang 2021 37	
Yani 2021 ³⁸	
Yu 2021 ³⁹	
Zhao 2021 40	
Bai 2020 41	
Cui Y 2020 42	
Das 2020 43	
Fernandes 2020 ⁴⁴	
Godebo 2020 ⁴⁵	
Kim 2020 ⁴⁶	
Krishna 2020 47	
Lee 2020 ⁴⁸	

Nanayakkara 2020 49	318
Russ 2020 ⁵⁰	322
Stangvaltaite-Mouhat 2020 ⁵¹	329
Sun 2020 ⁵²	335
Till 2020 ⁵³	
Wang 2020 ⁵⁴	
An 2019 ⁵⁵	353
Crnosija 2019 ⁵⁶	359
Fernando 2019 93	365
Jimenez-Cordova 2019 58	
Jimenez-Cordova 2019a 59	
Khanoranga 2019 60	379
Liu 2019 ⁶¹	383
Malin 2019 62	389
Malin 2019a 63	393
Pei 2019 ⁶⁴	398
Riddle 2019 65	403
Shaik 2019 66	410
Soto-Barreras 2019 67	414
Zhang 2019 68	420
Zhou 2019 69	424
Zhou 2019a ⁷⁰	429
Bashash 2018 71	441
Cui 2018 ⁷²	449
Jimenez-Cordova 2018 ⁷³	455

K	umar, V 2018 ⁷⁴	462
K	umar, S 2018 ⁷⁵	467
Μ	lalin 2018 ⁷⁶	472
Μ	lohd Nor 2018 ⁷⁷	477
Μ	lustafa 2018 ⁷⁸	487
0	weis 2018 ⁷⁹	493
Q	uadri 2018 ⁸⁰	526
R	athore 2018 ⁸¹	532
S	hruthi 2018 ⁸²	537
Y	u 2018 ⁸³	
A	rulkumar 2017 ⁸⁴	553
В	ashash 2017 ⁸⁵	559
С	hauhan 2017 ⁴	569
S	tephenson 2017 ⁵	
V	erma 2017 ⁸⁶	576
С	ardenas-Gonzalez 2016 ⁸⁷	580
de	e Moura 2016 ⁸⁸	586
Н	eck 2016 ⁸⁹	591
K	ousik 2016 ⁹⁰	596
S	abokseir 2016 ⁹¹	602
Х	iang 2016 ⁹²	607
2.3.	Quality assessment of the included human studies	613
2.4.	Overview of human evidence	626
A	II-cause mortality	626
В	one health	

	Cancer, total incidence and mortality628						
	Co	ognition	629				
	Cardiovascular diseases (CVD)633						
	Diabetes mellitus						
	Ey	ve diseases and conditions	635				
	Flu	Jorosis	637				
	Ge	enotoxicity	639				
	Gr	owth and development	639				
	Kic	dney diseases	640				
	Liv	ver dysfunction	642				
	Ne	eurologic	643				
	Re	eproduction	644				
	Th	yroid dysfunction	645				
	Ot	her outcomes	646				
2.	5.	Summary of evolving human evidence on all endpoints	348				
Sup	ple	ementary Material 3. Excluded human studies6	579				
Sup	ple	ementary Material 4. Included animal studies	986				
4.	1.	List of included animal studies, by reported endpoints	986				
4.	2.	Characteristics of the included tier-1 animal studies10)00				
4.	3.	Quality assessment of the included tier-1 animal studies10)31				
4.	4.	Characteristics of the included tier-2 animal studies10)35				
4.	5.	Summary of evolving animal evidence10)67				
Sup	ple	ementary Material 5. Excluded animal studies10)75				
Sup	ple	ementary Material 6. In vitro evidence13	393				
6.	1.	Literature search for in vitro evidence13	393				

6.2	Bibliographic database search terms and output for in vitro studies					
6.3	Summary of in vitro evidence1420					
Sup	plementary Material 7. Weight of evidence using Bradford Hill consid	erations for				
caus	sality	1431				
7.′	1. Reducing IQ scores	1431				
7.2	2. Thyroid dysfunction	Thyroid dysfunction				
7.3	3. Kidney dysfunction	1464				
7.4	4. Sex hormone disruptions	1479				
Sup	plementary Material 8. Point of departure derivation	1490				
8.′	1. HBV and MAC values reported by different authoritative agencies	1490				
8.2	2. Derivation of a point of departure for moderate dental fluorosis	1493				
	Methodology	1493				
	Identification of the key study	1493				
	Dataset					
	Bayesian vs. frequentist dose-response modelling	1496				
	Benchmark-dose modelling of added and extra risks					
	Choice of benchmark response	1498				
	Adequacy of model fit	1499				
	Model selection and model averaging	1499				
	Results 1500					
	Conclusion	1509				
8.3	3. Derivation of points of departure for other candidate endpoints	1509				
	Cognition, IQ					
	Thyroid dysfunction					
	Kidney dysfunction					
	Sex hormone disruptions	1515				

8.4. Considerations for selection of most appropriate endpoint and a point of departure1515

Supplementary Material References1	520
------------------------------------	-----

Supplementary Material 1. Literature search for human and animal studies

This supplement documents the detailed search strategies across multiple bibliographic databases for human and animal studies published since Health Canada's 2010 monograph ¹ and CADTH's 2019 review ², ³, including grey literature search strategies, used in the present review. The supplement describes high-level search concepts and specific database search terms for Medline OVID, EMBASE, PubMed, CINAHL, Toxnet, PAIS Index, Human Technology Assessment, CENTRAL, Cochrane Library, and Clinical Trial Registries.

1.1. Strategy

Search	Are there any health risks to exposure to fluoride in water?				
Question					
Major	1. Fluoride/fl	uoridation			
Concepts	2. Water				
	3. Outcomes	: cancer, bone/skeletal toxicity, developme	ental/reproductive		
	toxicity, er	ndocrine toxicity (including thyroid effects),	immunotoxicity,		
	genotoxici	genotoxicity and all other potential adverse effects			
Search	Concept 1	Concept 2	Concept 3		
Terms	Fluorides,	Water, drinking water, tap water, well	Adverse events,		
	fluorine,	water, spring water, mineral water,	reactions, health		
	flurine,	carbonated water, community water,	risks, individual		
	fluride,	rivers, lakes, ponds, streams, water	outcomes		
	fluoridation	supply, water sources, water resources,			
		water quality, water treatment			

1.2. Bibliographic database search terms and output

Medline Ovid ⁱ

Concept	#	Medline query
Fluoride	1	exp Fluorides/
	2	exp Fluoridation/
	3	fluorid*.tw.
	4	fluorin*.tw.
	5	flurin*.tw.
	6	flurid*.tw.
	7	or/1-6
Water	8	Water/
	9	water.tw.
	10	Drinking Water/
	11	drinking water.tw.
	12	exp Fresh Water/
	13	fresh water*.tw.
	14	freshwater*.tw.
	15	exp Mineral Waters/
	16	mineral water*.tw.
	17	exp Carbonated Water/
	18	carbonated water*.tw.
	19	exp Water Quality/
	20	(water adj3 quality).tw.
	21	exp Water Resources/
	22	(water* adj3 resource*).tw.
	23	Water Supply/
	24	(water adj3 supply).tw.
	25	(water* adj3 course*).tw.

ⁱ MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Concept	#	Medline query
	26	watercourse*.tw.
	27	exp Rivers/
	28	river*.tw.
	29	exp Lakes/
	30	lake*.tw.
	31	exp Ponds/
	32	pond*.tw.
	33	exp Groundwater/
	34	groundwater*.tw.
	35	ground water*.tw.
	36	Water Wells/
	37	water well*.tw.
	38	(water* adj3 course*).tw.
	39	watercourse*.tw.
	40	exp Natural Springs/
	41	natural spring*.tw.
	42	exp Hot Springs/
	43	hot spring*.tw.
	44	hotspring*.tw.
	45	spring water*.tw.
	46	springwater*.tw.
	47	(water* adj3 reservoir*).tw.
	48	stream*.tw.
	49	brook*.tw.
	50	creek*.tw.
	51	rivulet*.tw.
	52	rill*.tw.
	53	runnel*.tw.
	54	community water.tw.
	55	water fluoridation.tw.

Concept	#	Medline query
	56	community water fluoridation.tw.
	57	CWF.tw.
	58	or/8-57
Outcomes	59	exp Fluoride Poisoning/
	60	(fluoride adj3 poisoning).tw.
	61	exp Bone Diseases/
	62	cancer*.tw.
	63	exp Neoplasms/
	64	neoplas*.tw.
	65	malignan*.tw.
	66	tumor*.tw.
	67	tumour*.tw.
	68	sarcoma*.tw.
	69	carcinoma*.tw.
	70	tumor*.tw.
	71	(bone* adj3 disease*).tw.
	72	exp Bone Development/
	73	(bone* adj3 develop*).tw.
	74	exp Fractures, Bone/
	75	(bone* adj3 fracture*).tw.
	76	(bone* adj3 injur*).tw.
	77	(skelet* adj3 fluorosis).tw.
	78	(skelet* adj3 toxicit*).tw.
	79	exp Bone Neoplasms/
	80	(bone* adj3 cancer*).tw.
	81	(bone* adj3 neoplasm*).tw.
	82	(bone* adj3 tumor*).tw.
	83	(bone* adj3 tumour*).tw.
	84	(skelet* adj3 cancer*).tw.
	85	(skelet* adj3 neoplasm*).tw.

Concept	#	Medline query
	86	(skelet* adj3 tumor*).tw.
	87	(skelet* adj3 tumour*).tw.
	88	exp Endocrine System Diseases/
	89	(endocrin* adj3 diseas*).tw.
	90	(endocrin* adj3 disorder*).tw.
	91	(endocrin* adj3 disturbance*).tw.
	92	(endocrin* adj3 disruption*).tw.
	93	(endocrin* adj3 dysfunction*).tw.
	94	endocrinopath*.tw.
	95	(hormon* adj3 disease*).tw.
	96	(hormon* adj3 disorder*).tw.
	97	(hormon* adj3 disruption*).tw.
	98	(hormon* adj3 dysfunction*).tw.
	99	(hormon* adj3 imbalance*).tw.
	100	exp Thyroid Diseases/
	101	(thyroid* adj3 diseas*).tw.
	102	(thyroid* adj3 disorder*).tw.
	103	(thyroid* adj3 dysfunction*).tw.
	104	(thyroid* adj3 abnormalit*).tw.
	105	(thyroid* adj3 anomal*).tw.
	106	Neurodevelopmental Disorders/
	107	(neurodevelopment* adj3 disorder*).tw.
	108	(neurodevelopment* adj3 diseas*).tw.
	109	exp Developmental Disabilities/
	110	(development* adj3 disabilit*).tw.
	111	(development* adj3 dela*).tw.
	112	(development* adj3 abnormalit*).tw.
	113	Intellectual Disability/
	114	(intellectual adj3 disabilit*).tw.
	115	(intellectual adj3 dysfunction*).tw.

Concept	#	Medline query
	116	(intellectual adj3 impairment*).tw.
	117	exp Neurocognitive Disorders/
	118	neurocognitive disorder*.tw.
	119	exp cognition disorders/
	120	(cogniti* adj3 disorder*).tw.
	121	(cogniti* adj3 disease*).tw.
	122	exp Cognitive Dysfunction/
	123	(cogniti* adj3 dysfunction*).tw.
	124	Immune System Diseases/
	125	immunotoxic*.tw.
	126	immunopath*.tw.
	127	(immun* adj3 disease*).tw.
	128	(immun* adj3 disorder*).tw.
	129	(immun* adj3 dysfunction*).tw.
	130	(immun* adj3 dysregulation*).tw.
	131	Hypersensitivity/
	132	Hypersensitivity, Delayed/
	133	Hypersensitivity, Immediate/
	134	hypersensitivit*.tw.
	135	genotoxic*.tw.
	136	exp male urogenital diseases/
	137	exp Female Urogenital Diseases/
	138	(urogen* adj3 disease*).tw.
	139	(urogen* adj3 disorder*).tw.
	140	(genitourinary adj3 disease*).tw.
	141	(genitourinary adj3 disorder*).tw.
	142	(male adj3 genit*).tw.
	143	(female adj3 genit*).tw.
	144	(health adj3 hazard*).tw.
	145	(health adi3 risk*) tw

145 (health adj3 risk*).tw.

Concept	#	Medline query
	146	or/59-145
Fluoride +	147	7 and 58
water		
Fluoride +	148	7 and 58 and 146
water +		
outcomes		
2016 -	149	limit 148 to yr="2016 -Current"
current		

EMBASE ⁱⁱ

ⁱⁱ Embase: Excerpta Medica Database Guide

Concept	#	EMBASE query
	28	exp river/
	29	river*.tw.
	30	exp lake/
	31	lake*.tw.
	32	exp pond/
	33	pond*.tw.
	34	exp ground water/
	35	ground water*.tw.
	36	groundwater*.tw.
	37	exp well water/
	38	(water adj3 well*).tw.
	39	exp mineral water/
	40	mineral water*.tw.
	41	exp carbonated water/
	42	carbonated water*.tw.
	43	exp natural spring/
	44	natural spring*.tw.
	45	exp thermal spring/
	46	hot spring*.tw.
	47	hotspring*.tw.
	48	spring water*.tw.
	49	springwater*.tw.
	50	exp "stream (river)"/
	51	stream*.tw.
	52	brook*.tw.
	53	creek*.tw.
	54	rivulet*.tw.
	55	rill*.tw.
	56	runnel*.tw.
	57	community water.tw.

Concept	#	EMBASE query
	58	water fluoridation.tw.
	59	or/8-58
Outcomes	60	exp fluorosis/
	61	fluoride intoxication.tw.
	62	fluoride poisoning.tw.
	63	fluoridosis.tw.
	64	exp neoplasm/
	65	exp malignant neoplasm/
	66	neoplas*.tw.
	67	cancer*.tw.
	68	malignan*.tw.
	69	carcinoma*.tw.
	70	sarcoma*.tw.
	71	tumor*.tw.
	72	tumour*.tw.
	73	exp bone disease/
	74	(bone* adj3 diseas*).tw.
	75	(bone* adj3 disorder*).tw.
	76	(skelet* adj3 disease*).tw.
	77	(skelet* adj3 disorder*).tw.
	78	exp bone injury/
	79	(bone* adj3 injur*).tw.
	80	(bone* adj3 damage*).tw.
	81	(bone* adj3 fracture*).tw.
	82	(bone* adj3 trauma).tw.
	83	(skelet* adj3 injur*).tw.
	84	(skelet* adj3 damage*).tw.
	85	(skelet* adj3 fracture*).tw.
	86	(skelet* adj3 trauma).tw.
	87	exp bone development/

Concept	#	EMBASE query
	88	(bone* adj3 develop*).tw.
	89	osteogenesis.tw.
	90	(skelet* adj3 develop*).tw.
	91	skeletogenesis.tw.
	92	exp bone cancer/
	93	(bone* adj3 cancer*).tw.
	94	(bone* adj3 tumor*).tw.
	95	(bone* adj3 tumour*).tw.
	96	(bone* adj3 neoplasm*).tw.
	97	osteosarcoma*.tw.
	98	(skelet* adj3 cancer*).tw.
	99	(skelet* adj3 tumor*).tw.
	100	(skelet* adj3 tumour*).tw.
	101	(skelet* adj3 neoplasm*).tw.
	102	exp endocrine disease/
	103	(endocrin* adj3 disease*).tw.
	104	(endocrin* adj3 disorder*).tw.
	105	(endocrin* adj3 disturbance*).tw.
	106	(endocrin* adj3 dysfunction*).tw.
	107	(endocrin* adj3 disruption*).tw.
	108	endocrinopath*.tw.
	109	(hormon* adj3 disorder*).tw.
	110	(hormon* adj3 disruption*).tw.
	111	(hormon* adj3 dysfunction*).tw.
	112	(hormon* adj3 imbalance*).tw.
	113	thyroid disease/
	114	(thyroid* adj3 disease*).tw.
	115	(thyroid* adj3 disorder*).tw.
	116	(thyroid* adj3 abnormalit*).tw.
	117	(thyroid* adj3 anomal*).tw.

Concept #	EMBASE query
118	(thyroid* adj3 dysfunction*).tw.
119	exp mental disease/
120	(mental adj3 disease*).tw.
121	(mental adj3 disorder*).tw.
122	(mental adj3 disturbance*).tw.
123	(mental adj3 illness*).tw.
124	(neurodevelopment* adj3 disorder*).tw.
125	(neuropsychiatric adj3 disorder*).tw.
126	(psych* adj3 disease*).tw.
127	(psych* adj3 disorder*).tw.
128	(psych* adj3 disturbance*).tw.
129	(psych* adj3 illness*).tw.
130	exp developmental disorder/
131	(development* adj3 disorder*).tw.
132	(development* adj3 disease*).tw.
133	(development* adj3 disabilit*).tw.
134	(development* adj3 dela*).tw.
135	(development* adj3 abnormalit*).tw.
136	exp intellectual impairment/
137	(intellectual adj3 impairment*).tw.
138	(intellectual adj3 disabilit*).tw.
139	(intellectual adj3 dysfunction*).tw.
140	exp cognitive defect/
141	(cogniti* adj3 defect*).tw.
142	(cogniti* adj3 disorder*).tw.
143	(cogniti* adj3 deficit*).tw.
144	(cogniti* adj3 disabilit*).tw.
145	(cogniti* adj3 impairment*).tw.
146	(cogniti* adj3 dysfunction*).tw.
147	exp immunopathology/

Concept	#	EMBASE query
	148	immunopath*.tw.
	149	(immun* adj3 disease*).tw.
	150	(immun* adj3 disorder*).tw.
	151	(immun* adj3 dysfunction*).tw.
	152	(immun* adj3 dysregulation*).tw.
	153	exp hypersensitivity/
	154	hypersensitivit*.tw.
	155	exp genotoxicity/
	156	genotoxic*.tw.
	157	exp urogenital tract disease/
	158	(urogenital adj3 disease*).tw.
	159	(urogenital adj3 disorder*).tw.
	160	(genitourinary adj3 disease*).tw.
	161	(genitourinary adj3 disorder*).tw.
	162	(male adj3 genit*).tw.
	163	(female adj3 genit*).tw.
	164	exp health hazard/
	165	(health adj3 hazard*).tw.
	166	(health adj3 risk*).tw.
	167	or/60-166
Fluoride + water	168	7 and 59
Fluoride + water +		
outcomes	169	7 and 59 and 167
2016 - current	170	limit 169 to yr="2016 -Current"

PubMed

Concept	#	Pubmed Query
Fluoride	1	fluoride[MeSH Terms]
	2	fluoridation[MeSH Terms]
	3	fluorid*[Text Word]
	4	fluorin*[Text Word]
	5	flurin*[Text Word]
	6	flurid*[Text Word]
	7	((((((fluoride[MeSH Terms]) OR fluoridation[MeSH Terms]) OR
		fluorid*[Text Word]) OR fluorin*[Text Word]) OR flurin*[Text Word])
		OR flurid*[Text Word])))
Water	8	water[MeSH Terms]
	9	water[Text Word]
	10	drinking water[MeSH Terms]
	11	drinking water[Text Word]
	12	tap water[MeSH Terms]
	13	tap water[Text Word]
	14	fresh water[MeSH Terms]
	15	fresh water*[Text Word]
	16	freshwater*[Text Word]
	17	water quality[MeSH Terms]
	18	water qualit*[Text Word]
	19	water treatment[MeSH Terms]
	20	water treatment*[Text Word]
	21	water supply[MeSH Terms]
	22	water supply[Text Word]
	23	water resource[MeSH Terms]
	24	water resource*[Text Word]
	25	water reservoir*[Text Word]
	26	water course[Text Word]

watercourse*[Text Word]
river[MeSH Terms]
river*[Text Word]
lake[MeSH Terms]
lake*[Text Word]
pond[MeSH Terms]
pond*[Text Word]
ground water[MeSH Terms]
ground water*[Text Word]
groundwater*[Text Word]
water well[MeSH Terms]
water well*[Text Word]
mineral water[MeSH Terms]
mineral water*[Text Word]
carbonated water[MeSH Terms]
carbonated water*[Text Word]
natural spring[MeSH Terms]
natural spring*[Text Word]
thermal spring*[Text Word]
hot spring[MeSH Terms]
hot spring*[Text Word]
hotspring*[Text Word]
spring water[MeSH Terms]
spring water*[Text Word]
springwater*[Text Word]
stream[MeSH Terms]
stream*[Text Word]
brook*[Text Word]
creek*[Text Word]

Concept	#	Pubmed Query
	56	rivulet*[Text Word]
	57	rill*[Text Word]
	58	runnel*[Text Word]
	59	community water[MeSH Terms]
	60	community water*[Text Word]
	61	community water fluoridation[MeSH Terms]
	62	water fluoridation*[Text Word]
	63	community water fluoridation[Text Word]

64 water[Text Word]) OR drinking water[MeSH Terms]) OR drinking water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word]) OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR water treatment*[Text Word]) OR water supply[MeSH Terms]) OR water supply[Text Word]) OR water resource[MeSH Terms]) OR water resource*[Text Word]) OR water reservoir*[Text Word]) OR water course[Text Word]) OR watercourse*[Text Word]) OR river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms]) OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text Word]) OR ground water[MeSH Terms]) OR ground water*[Text Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms]) OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot spring[MeSH Terms]) OR hot spring*[Text Word]) OR hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR

Concept	#	Pubmed Query
		creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR
		runnel*[Text Word]) OR community water[MeSH Terms]) OR
		community water*[Text Word]) OR community water
		fluoridation[MeSH Terms]) OR community water fluoridation[Text
		Word]) OR water fluoridation*[Text Word]
Outcomes	65	(((((((((((((((((((((())))
		neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR
		malignancy[MeSH Terms]) OR malignan*[Text Word]) OR
		carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR
		sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumor[MeSH
		Terms]) OR tumor*[Text Word]) OR tumour[MeSH Terms]) OR
		tumour*[Text Word])) OR ((((((((((((((((((((((((((((((((((
		disease[MeSH Terms]) OR bone disease*[Text Word]) OR bone
		disorder*[Text Word]) OR bone injur*[Text Word]) OR bone
		fracture[MeSH Terms]) OR bone* fracture*[Text Word]) OR bone*
		trauma*[Text Word]) OR bone* damage*[Text Word]) OR skelet*
		disease*[Text Word]) OR skelet* disorder*[Text Word]) OR skelet*
		injur*[Text Word]) OR skelet* fracture*[Text Word]) OR skelet*
		trauma*[Text Word]) OR skelet* damage*[Text Word]) OR bone
		neoplasm[MeSH Terms]) OR bone* neoplas*[Text Word]) OR bone
		cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone*
		tumor*[Text Word]) OR bone* tumour*[Text Word]) OR
		osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR
		skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR
		skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone
		development[MeSH Terms]) OR bone* development[Text Word]) OR
		osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR
		skelet* development[Text Word]) OR skeletogenesis[Text Word]))
		OR ((((((((((((((((((((((((((()))
		disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR

Concept	#	Pubmed Query
		endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text
		Word]) OR endocrin* dysfunction*[Text Word]) OR
		endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR
		hormon* disorder*[Text Word]) OR hormon* disturbance*[Text
		Word]) OR hormon* disruption*[Text Word]) OR hormon*
		dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR
		thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR
		thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text
		Word]) OR thyroid* disorder*[Text Word]) OR thyroid*
		abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid*
		dysfunction*[Text Word])) OR ((((((((((((((((((((((((((((((((((
		disorders[MeSH Terms]) OR mental disorder*[Text Word]) OR
		mental disease*[Text Word]) OR mental disturbance*[Text Word])
		OR mental illness*[Text Word]) OR neurodevelopment*
		disease*[Text Word]) OR neurodevelopment* disorder*[Text Word])
		OR neurodevelopment* disabilit*[Text Word]) OR
		neurodevelopment* dela*[Text Word]) OR ((developmental disorder,
		speech or language[MeSH Terms]))) OR developmental disorders of
		scholastic skills[MeSH Terms]) OR development* disorder*[Text
		Word]) OR developmental disability[MeSH Terms]) OR
		development* disabilit*[Text Word]) OR developmental delay
		disorder[MeSH Terms]) OR development* dela*[Text Word]) OR
		development* abnormalit*[Text Word]) OR development*
		impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR
		intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH
		Terms]) OR intellectual aphasia*[Text Word]) OR intellectual
		impairment*[Text Word]) OR intellectual dysfunction*[Text Word])
		OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms])
		OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text
		Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti*

Concept	#	Pubmed Query
		impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti*
		<pre>defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti*</pre>
		disabilit*[Text Word]) OR cogniti* dysfunction*[Text Word])) OR
		((((((((((((((((immunologic disease[MeSH Terms]) OR
		immunologic* disease*[Text Word]) OR immunologic* disorder*[Text
		Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic*
		dysregulat*[Text Word]) OR immediate hypersensitivity[MeSH
		Terms]) OR delayed hypersensitivity[MeSH Terms]) OR
		hypersensitivit*[Text Word]) OR immunopath*[Text Word]) OR
		genotoxic*[Text Word]) OR male urogenital disease[MeSH Terms])
		OR female urogenital disease[MeSH Terms]) OR urogenit*
		disease*[Text Word]) OR urogenit* disorder*[Text Word]) OR male
		genitourinary disease[MeSH Terms]) OR female genitourinary
		disease[MeSH Terms]) OR genitourin* disease*[Text Word]) OR
		genitourin* disorder*[Text Word]) OR health risk appraisal[MeSH
		Terms]) OR health risk*[Text Word]) OR health hazard*[Text
		Word])))
FI + water	66	((((((((fluoride[MeSH Terms]) OR fluoridation[MeSH Terms]) OR
		fluorid*[Text Word]) OR fluorin*[Text Word]) OR flurin*[Text Word])
		OR flurid*[Text Word]))))) AND
		((((((((((((((((((((((((((((((((((((((
		water[Text Word]) OR drinking water[MeSH Terms]) OR drinking
		water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text
		Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word])
		OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR
		water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR
		water treatment*[Text Word]) OR water supply[MeSH Terms]) OR
		water supply[Text Word]) OR water resource[MeSH Terms]) OR
		water resource*[Text Word]) OR water reservoir*[Text Word]) OR
		water course[Text Word]) OR watercourse*[Text Word]) OR

Concept	#	Pubmed Query
		river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms])
		OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text
		Word]) OR ground water[MeSH Terms]) OR ground water*[Text
		Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms])
		OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR
		mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR
		carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR
		natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot
		spring[MeSH Terms]) OR hot spring*[Text Word]) OR
		hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring
		water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH
		Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR
		creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR
		runnel*[Text Word]) OR community water[MeSH Terms]) OR
		community water*[Text Word]) OR community water
		fluoridation[MeSH Terms]) OR community water fluoridation[Text
		Word]) OR water fluoridation*[Text Word]))
FI + water	67	((((((((fluoride[MeSH Terms]) OR fluoridation[MeSH Terms]) OR
+		fluorid*[Text Word]) OR fluorin*[Text Word]) OR flurin*[Text Word])
outcomes		OR flurid*[Text Word]))))) AND
		((((((((((((((((((((((((((((((((((((((
		water[Text Word]) OR drinking water[MeSH Terms]) OR drinking
		water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text
		Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word])
		OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR
		water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR
		water treatment*[Text Word]) OR water supply[MeSH Terms]) OR
		water supply[Text Word]) OR water resource[MeSH Terms]) OR
		water resource*[Text Word]) OR water reservoir*[Text Word]) OR
		water course[Text Word]) OR watercourse*[Text Word]) OR

Concept	#	Pubmed Query
		river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms])
		OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text
		Word]) OR ground water[MeSH Terms]) OR ground water*[Text
		Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms])
		OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR
		mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR
		carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR
		natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot
		spring[MeSH Terms]) OR hot spring*[Text Word]) OR
		hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring
		water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH
		Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR
		creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR
		runnel*[Text Word]) OR community water[MeSH Terms]) OR
		community water*[Text Word]) OR community water
		fluoridation[MeSH Terms]) OR community water fluoridation[Text
		Word]) OR water fluoridation*[Text Word]))) AND
		((((((((((((((((((((()))) (())))))))))
		neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR
		malignancy[MeSH Terms]) OR malignan*[Text Word]) OR
		carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR
		sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumor[MeSH
		Terms]) OR tumor*[Text Word]) OR tumour[MeSH Terms]) OR
		tumour*[Text Word]))
		disease[MeSH Terms]) OR bone disease*[Text Word]) OR bone
		disorder*[Text Word]) OR bone injur*[Text Word]) OR bone
		fracture[MeSH Terms]) OR bone* fracture*[Text Word]) OR bone*
		trauma*[Text Word]) OR bone* damage*[Text Word]) OR skelet*
		disease*[Text Word]) OR skelet* disorder*[Text Word]) OR skelet*
		injur*[Text Word]) OR skelet* fracture*[Text Word]) OR skelet*

Concept	#	Pubmed Query
		trauma*[Text Word]) OR skelet* damage*[Text Word]) OR bone
		neoplasm[MeSH Terms]) OR bone* neoplas*[Text Word]) OR bone
		cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone*
		tumor*[Text Word]) OR bone* tumour*[Text Word]) OR
		osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR
		skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR
		skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone
		development[MeSH Terms]) OR bone* development[Text Word]) OR
		osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR
		skelet* development[Text Word]) OR skeletogenesis[Text Word]))
		OR (((((((((((((((((((((((((()))
		disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR
		endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text
		Word]) OR endocrin* dysfunction*[Text Word]) OR
		endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR
		hormon* disorder*[Text Word]) OR hormon* disturbance*[Text
		Word]) OR hormon* disruption*[Text Word]) OR hormon*
		dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR
		thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR
		thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text
		Word]) OR thyroid* disorder*[Text Word]) OR thyroid*
		abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid*
		dysfunction*[Text Word]))
		disorders[MeSH Terms]) OR mental disorder*[Text Word]) OR
		mental disease*[Text Word]) OR mental disturbance*[Text Word])
		OR mental illness*[Text Word]) OR neurodevelopment*
		disease*[Text Word]) OR neurodevelopment* disorder*[Text Word])
		OR neurodevelopment* disabilit*[Text Word]) OR
		neurodevelopment* dela*[Text Word]) OR ((developmental disorder,
		speech or language[MeSH Terms]))) OR developmental disorders of

Concept	#	Pubmed Query
		scholastic skills[MeSH Terms]) OR development* disorder*[Text
		Word]) OR developmental disability[MeSH Terms]) OR
		development* disabilit*[Text Word]) OR developmental delay
		disorder[MeSH Terms]) OR development* dela*[Text Word]) OR
		development* abnormalit*[Text Word]) OR development*
		impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR
		intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH
		Terms]) OR intellectual aphasia*[Text Word]) OR intellectual
		impairment*[Text Word]) OR intellectual dysfunction*[Text Word])
		OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms])
		OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text
		Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti*
		impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti*
		defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti*
		disabilit*[Text Word]) OR cogniti* dysfunction*[Text Word])) OR
		(((((((((((((((((((mmunologic disease[MeSH Terms]) OR
		immunologic* disease*[Text Word]) OR immunologic* disorder*[Text
		Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic*
		dysregulat*[Text Word]) OR immediate hypersensitivity[MeSH
		Terms]) OR delayed hypersensitivity[MeSH Terms]) OR
		hypersensitivit*[Text Word]) OR immunopath*[Text Word]) OR
		genotoxic*[Text Word]) OR male urogenital disease[MeSH Terms])
		OR female urogenital disease[MeSH Terms]) OR urogenit*
		disease*[Text Word]) OR urogenit* disorder*[Text Word]) OR male
		genitourinary disease[MeSH Terms]) OR female genitourinary
		disease[MeSH Terms]) OR genitourin* disease*[Text Word]) OR
		genitourin* disorder*[Text Word]) OR health risk appraisal[MeSH
		Terms]) OR health risk*[Text Word]) OR health hazard*[Text
		Word]))))

Concept	#	Pubmed Query
2016 -	68	Search (((((((((((fluoride[MeSH Terms]) OR fluoridation[MeSH
current		Terms]) OR fluorid*[Text Word]) OR fluorin*[Text Word]) OR
		flurin*[Text Word]) OR flurid*[Text Word]))))) AND
		((((((((((((((((((((((((((((((((((((((
		water[Text Word]) OR drinking water[MeSH Terms]) OR drinking
		water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text
		Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word])
		OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR
		water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR
		water treatment*[Text Word]) OR water supply[MeSH Terms]) OR
		water supply[Text Word]) OR water resource[MeSH Terms]) OR
		water resource*[Text Word]) OR water reservoir*[Text Word]) OR
		water course[Text Word]) OR watercourse*[Text Word]) OR
		river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms])
		OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text
		Word]) OR ground water[MeSH Terms]) OR ground water*[Text
		Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms])
		OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR
		mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR
		carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR
		natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot
		spring[MeSH Terms]) OR hot spring*[Text Word]) OR
		hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring
		water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH
		Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR
		creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR
		runnel*[Text Word]) OR community water[MeSH Terms]) OR
		community water*[Text Word]) OR community water
		fluoridation[MeSH Terms]) OR community water fluoridation[Text
		Word]) OR water fluoridation*[Text Word]))) AND

Concept	#	Pubmed Query
		((((((((((((((((((((((((((()))))))))))
		neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR
		malignancy[MeSH Terms]) OR malignan*[Text Word]) OR
		carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR
		sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumor[MeSH
		Terms]) OR tumor*[Text Word]) OR tumour[MeSH Terms]) OR
		tumour*[Text Word])) OR ((((((((((((((((((((((((((((((((((
		disease[MeSH Terms]) OR bone disease*[Text Word]) OR bone
		disorder*[Text Word]) OR bone injur*[Text Word]) OR bone
		fracture[MeSH Terms]) OR bone* fracture*[Text Word]) OR bone*
		trauma*[Text Word]) OR bone* damage*[Text Word]) OR skelet*
		disease*[Text Word]) OR skelet* disorder*[Text Word]) OR skelet*
		injur*[Text Word]) OR skelet* fracture*[Text Word]) OR skelet*
		trauma*[Text Word]) OR skelet* damage*[Text Word]) OR bone
		neoplasm[MeSH Terms]) OR bone* neoplas*[Text Word]) OR bone
		cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone*
		tumor*[Text Word]) OR bone* tumour*[Text Word]) OR
		osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR
		skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR
		skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone
		development[MeSH Terms]) OR bone* development[Text Word]) OR
		osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR
		skelet* development[Text Word]) OR skeletogenesis[Text Word]))
		OR ((((((((((((((((((((((((()))
		disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR
		endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text
		Word]) OR endocrin* dysfunction*[Text Word]) OR
		endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR
		hormon* disorder*[Text Word]) OR hormon* disturbance*[Text
		Word]) OR hormon* disruption*[Text Word]) OR hormon*

Concept	#	Pubmed Query
		dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR
		thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR
		thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text
		Word]) OR thyroid* disorder*[Text Word]) OR thyroid*
		abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid*
		dysfunction*[Text Word])) OR ((((((((((((((((((((((((((((((((((
		disorders[MeSH Terms]) OR mental disorder*[Text Word]) OR
		mental disease*[Text Word]) OR mental disturbance*[Text Word])
		OR mental illness*[Text Word]) OR neurodevelopment*
		disease*[Text Word]) OR neurodevelopment* disorder*[Text Word])
		OR neurodevelopment* disabilit*[Text Word]) OR
		neurodevelopment* dela*[Text Word]) OR ((developmental disorder,
		speech or language[MeSH Terms]))) OR developmental disorders of
		scholastic skills[MeSH Terms]) OR development* disorder*[Text
		Word]) OR developmental disability[MeSH Terms]) OR
		development* disabilit*[Text Word]) OR developmental delay
		disorder[MeSH Terms]) OR development* dela*[Text Word]) OR
		development* abnormalit*[Text Word]) OR development*
		impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR
		intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH
		Terms]) OR intellectual aphasia*[Text Word]) OR intellectual
		impairment*[Text Word]) OR intellectual dysfunction*[Text Word])
		OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms])
		OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text
		Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti*
		impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti*
		defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti*
		disabilit*[Text Word]) OR cogniti* dysfunction*[Text Word])) OR
		((((((((((((((((((((mmunologic disease[MeSH Terms]) OR
		immunologic* disease*[Text Word]) OR immunologic* disorder*[Text

Concept	#	Pubmed Query
		Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic*
		dysregulat*[Text Word]) OR immediate hypersensitivity[MeSH
		Terms]) OR delayed hypersensitivity[MeSH Terms]) OR
		hypersensitivit*[Text Word]) OR immunopath*[Text Word]) OR
		genotoxic*[Text Word]) OR male urogenital disease[MeSH Terms])
		OR female urogenital disease[MeSH Terms]) OR urogenit*
		disease*[Text Word]) OR urogenit* disorder*[Text Word]) OR male
		genitourinary disease[MeSH Terms]) OR female genitourinary
		disease[MeSH Terms]) OR genitourin* disease*[Text Word]) OR
		genitourin* disorder*[Text Word]) OR health risk appraisal[MeSH
		Terms]) OR health risk*[Text Word]) OR health hazard*[Text
		Word])))))) AND ("2016"[Date - Publication] : "2020"[Date -
		Publication])

CINAHL ⁱⁱⁱ

Concept	#	Cinahl query
Fluoride	1	fluoride
	2	fluoride in water
	3	water fluoridation or fluoridation of water or fluoride treatment or
		fluoride in water
	4	fluoridation or fluoride or fluoridated
	5	TX water fluorid* OR TX fluorid* OR TX fluorin* OR TX flurin* OR
		TX flurid*
	6	S1 OR S2 OR S3 OR S4 OR S5
Water	7	drinking water OR tap water
	8	TX drinking water OR TX tap water

iii Cumulative Index to Nursing and Allied Health Literature

Concept	#	Cinahl query
	9	drinking water quality OR drinking water treatment OR drinking
		water safety
	10	TX drinking water quality OR TX drinking water treatment OR TX
		drinking water safety
	11	ground water OR water wells OR river OR lake OR pond
	12	TX ground water OR TX water wells OR TX river OR TX lake OR
		TX pond
	13	mineral water OR carbonated water OR spring water OR hot
		springs
	14	TX mineral water OR TX carbonated water OR TX spring water OR
		TX hot springs
	15	S7 S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14
Outcomes	16	fluorosis
	17	fluoride toxicity
	18	bone disease
	19	TX bone* disease*
	20	bone disorder
	21	TX bone* disorder*
	22	skeletal disease
	23	TX skelet* disease*
	24	skeletal disorders
	25	TX skelet* disorder*
	26	bone injury
	27	TX bone* injur*
	28	bone fracture
	29	TX bone* fracture*
	30	TX bone* damage*
	31	bone trauma
	32	TX bone* trauma*
	33	TX skelet* injur*

Concept	#	Cinahl query
	34	TX skelet* damage*
	35	TX skelet* fracture*
	36	skeletal trauma
	37	TX skelet* trauma*
	38	bone development
	39	TX bone* development*
	40	osteogenesis
	41	TX osteogen*
	42	TX skelet* develop*
	43	TX skeletogen*
	44	bone cancer
	45	TX bone* cancer*
	46	bone tumor
	47	TX bone* tumor*
	48	TX bone* tumour*
	49	bone neoplasm
	50	TX bone* neoplas*
	51	osteosarcoma
	52	TX osteosarcoma*
	53	osteogenic sarcoma
	54	TX osteogenic sarcoma*
	55	TX skelet* cancer*
	56	TX skelet* tumor*
	57	TX skelet* tumour*
	58	TX skelet* neoplas*
	59	endocrine disease
	60	TX endocrin* disease*
	61	endocrine disorders
	62	TX endocrin* disorder*
	63	endocrine disruptors

Concept	#	Cinahl query
	64	endocrine disrupting chemicals
	65	TX endocrin* disrupt*
	66	TX endocrin* disturbance*
	67	TX endocrin* dysfunction*
	68	endocrine pathology
	69	TX endocrin* patholo*
	70	TX endocrinopath*
	71	TX hormon* disease*
	72	hormone disorders
	73	TX hormon* disorder*
	74	hormone disruptor
	75	TX hormon* disruptor*
	76	hormone imbalance
	77	TX hormon* imbalance*
	78	TX hormon* dysfunction*
	79	thyroid disease
	80	TX thyroid* disease*
	81	thyroid disorders
	82	TX thyroid* disorder*
	83	thyroid cancer
	84	TX thyroid* cancer*
	85	thyroid neoplasms
	86	TX thyroid* neoplas*
	87	thyroid adenoma
	88	TX thyroid* adenoma*
	89	TX thyroid* abnormalit*
	90	TX thyroid* anomal*
	91	thyroid dysfunction
	92	TX thyroid* dysfunction*
	93	water fluoridation cancer

Concept	#	Cinahl query
	94	mental disease
	95	TX mental* disease*
	96	mental disorders
	97	TX mental* disorder*
	98	mental illness
	99	TX mental* illness*
	100	mental disabilities
	101	TX mental* disabilit*
	102	mental disturbance
	103	TX mental* disturbance*
	104	psychiatric disease
	105	TX psych* disease*
	106	psychiatric disorders
	107	TX psych* disorder*
	108	psychiatric illness
	109	TX psych* illness*
	110	TX psych* disturbance*
	111	TX deveopment* disease*
	112	developmental disorders
	113	TX development* disorder*
	114	developmental disabilities
	115	TX development* disabilit*
	116	developmental delay
	117	TX development* dela*
	118	TX development* abnormalit*
	119	intellectual disability
	120	TX intellectual disabilit*
	121	intellectual impairment
	122	TX intellectual impairment*
	123	TX intellectual dysfunction*

Concept	#	Cinahl query
	124	cognitive disease
	125	TX cogniti* disease*
	126	cognitive disorders
	127	TX cogniti* disorder*
	128	TX cogniti* defect*
	129	cognitive deficits
	130	TX cogniti* deficit*
	131	cognitive disabilities
	132	TX cogniti* disabilit*
	133	cognitive impairment
	134	TX cogniti* impairment*
	135	cognitive dysfunction
	136	TX cogniti* dysfunction*
	137	TX cogniti* dysregulation*
	138	immune disease
	139	TX immun* disease*
	140	immune disorders
	141	TX immun* disorder*
	142	immune dysfunction
	143	TX immun* dysfunction*
	144	immune dysregulation
	145	TX immun* dysregulation*
	146	immunopathogenesis
	147	TX immunopath*
	148	hypersensitivity
	149	TX hypersensitiv*
	150	genotoxicity
	151	genotoxic
	152	TX genotoxic*
	153	TX urogenital disease*

Concept	#	Cinahl query
	154	urogenital disorder
	155	TX urogenital disorder*
	156	urogenital dysfunction
	157	TX urogenital dysfunction*
	158	TX genitourinary disease*
	159	TX genitourinary disorder*
	160	TX genitourinary dysfunction
	161	male genitalia
	162	TX male* genit*
	163	female genitalia
	164	TX female* genit*
	165	health hazards
	166	TX health hazard*
	167	health risks
	168	TX health risk*
	169	cancer
	170	TX cancer*
	171	neoplasm
	172	TX neoplas*
	173	malignancy
	174	malignant
	175	TX malignan*
	176	tumor
	177	TX tumor*
	178	tumour
	179	TX tumour*
	180	carcinoma
	181	TX carcino*
	182	sarcoma
	183	TX sarcoma*

Concept	#	Cinahl query
	184	S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24
		OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR S31 OR
		S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38 OR S39
		OR S40 OR S41 OR S42 OR S43 OR S44 OR S45 OR S46 OR
		S47 OR S48 OR S49 OR S50 OR S51 OR S52 OR S53 OR S54
		OR S55 OR S56 OR S57 OR S58 OR S59 OR S60 OR S61 OR
		S62 OR S63 OR S64 OR S65 OR S66 OR S67 OR S68 OR S69
		OR S70 OR S71 OR S72 OR S73 OR S74 OR S75 OR S76 OR
		S77 OR S78 OR S79 OR S80 OR S81 OR S82 OR S83 OR S84
		OR S85 OR S86 OR S87 OR S88 OR S89 OR S90 OR S91 OR
		S92 OR S93 OR S94 OR S95 OR S96 OR S97 OR S98 OR S99
		OR S100 OR S101 OR S102 OR S103 OR S104 OR S105 OR
		S106 OR S107 OR S108 OR S109 OR S110 OR S111 OR S112
		OR S113 OR S114 OR S115 OR S116 OR S117 OR S118 OR
		S119 OR S120 OR S121 OR S122 OR S123 OR S124 OR S125
		OR S126 OR S127 OR S128 OR S129 OR S130 OR S131 OR
		S132 OR S133 OR S134 OR S135 OR S136 OR S137 OR S138
		OR S139 OR S140 OR S141 OR S142 OR S143 OR S144 OR
		S145 OR S146 OR S147 OR S148 OR S149 OR S150 OR S151
		OR S152 OR S153 OR S154 OR S155 OR S156 OR S157 OR
		S158 OR S159 OR S160 OR S161 OR S162 OR S163 OR S164
		OR S165 OR S166 OR S167 OR S168 OR S169 OR S170 OR
		S171 OR S172 OR S173 OR S174 OR S175 OR S176 OR S177
		OR S178 OR S179 OR S180 OR S181 OR S182 OR S183 OR
		S184S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR
		S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR S31
		OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38 OR
		S39 OR S40 OR S41 OR S42 OR S43 OR S44 OR S45 OR S46
		OR S47 OR S48 OR S49 OR S50 OR S51 OR S52 OR S53 OR
		S54 OR S55 OR S56 OR S57 OR S58 OR S59 OR S60 OR S61

Concept	#	Cinahl query
		OR S62 OR S63 OR S64 OR S65 OR S66 OR S67 OR S68 OR
		S69 OR S70 OR S71 OR S72 OR S73 OR S74 OR S75 OR S76
		OR S77 OR S78 OR S79 OR S80 OR S81 OR S82 OR S83 OR
		S84 OR S85 OR S86 OR S87 OR S88Show Less
	185	DT 2016 OR DT 2017 OR DT 2018 OR DT 2019 OR DT 2020
	186	S6 AND S15
	187	S6 AND S15 AND S184
	188	S6 AND S15 AND S184 AND S185

Toxnet ^{iv}

Concept	#	Query
FI	1	((((((fluoride[MeSH Terms]) OR fluoridation[MeSH Terms]) OR
		fluorid*[Text Word]) OR fluorin*[Text Word]) OR flurin*[Text Word])
		OR flurid*[Text Word])))
Water	2	(((((((((((((((((((((((((((((((((())))))
		water[Text Word]) OR drinking water[MeSH Terms]) OR drinking
		water[Text Word]) OR tap water[MeSH Terms]) OR tap water[Text
		Word]) OR fresh water[MeSH Terms]) OR fresh water*[Text Word])
		OR freshwater*[Text Word]) OR water quality[MeSH Terms]) OR
		water qualit*[Text Word]) OR water treatment[MeSH Terms]) OR

^{iv} The toxicology literature database for the National Institutes of Health, USA

Concept	#	Query
		water treatment*[Text Word]) OR water supply[MeSH Terms]) OR
		water supply[Text Word]) OR water resource[MeSH Terms]) OR
		water resource*[Text Word]) OR water reservoir*[Text Word]) OR
		water course[Text Word]) OR watercourse*[Text Word]) OR
		river[MeSH Terms]) OR river*[Text Word]) OR lake[MeSH Terms])
		OR lake*[Text Word]) OR pond[MeSH Terms]) OR pond*[Text
		Word]) OR ground water[MeSH Terms]) OR ground water*[Text
		Word]) OR groundwater*[Text Word]) OR water well[MeSH Terms])
		OR water well*[Text Word]) OR mineral water[MeSH Terms]) OR
		mineral water*[Text Word]) OR carbonated water[MeSH Terms]) OR
		carbonated water*[Text Word]) OR natural spring[MeSH Terms]) OR
		natural spring*[Text Word]) OR thermal spring*[Text Word]) OR hot
		spring[MeSH Terms]) OR hot spring*[Text Word]) OR
		hotspring*[Text Word]) OR spring water[MeSH Terms]) OR spring
		water*[Text Word]) OR springwater*[Text Word]) OR stream[MeSH
		Terms]) OR stream*[Text Word]) OR brook*[Text Word]) OR
		creek*[Text Word]) OR rivulet*[Text Word]) OR rill*[Text Word]) OR
		runnel*[Text Word]) OR community water[MeSH Terms]) OR
		community water*[Text Word]) OR community water
		fluoridation[MeSH Terms]) OR community water fluoridation[Text
		Word]) OR water fluoridation*[Text Word]
Outcomes	3	((((((((((((((((((((((())))
		neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR
		malignancy[MeSH Terms]) OR malignan*[Text Word]) OR
		carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR
		sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumor[MeSH
		Terms]) OR tumor*[Text Word]) OR tumour[MeSH Terms]) OR
		tumour*[Text Word])) OR ((((((((((((((((((((((((((((((((((
		disease[MeSH Terms]) OR bone disease*[Text Word]) OR bone
		disorder*[Text Word]) OR bone injur*[Text Word]) OR bone

Concept # Query

fracture[MeSH Terms]) OR bone* fracture*[Text Word]) OR bone* trauma*[Text Word]) OR bone* damage*[Text Word]) OR skelet* disease*[Text Word]) OR skelet* disorder*[Text Word]) OR skelet* injur*[Text Word]) OR skelet* fracture*[Text Word]) OR skelet* trauma*[Text Word]) OR skelet* damage*[Text Word]) OR bone neoplasm[MeSH Terms]) OR bone* neoplas*[Text Word]) OR bone cancer[MeSH Terms]) OR bone* cancer*[Text Word]) OR bone* tumor*[Text Word]) OR bone* tumour*[Text Word]) OR osteosarcoma[MeSH Terms]) OR osteosarcoma*[Text Word]) OR skelet* neoplas*[Text Word]) OR skelet* cancer*[Text Word]) OR skelet* tumor*[Text Word]) OR skelet* tumour*[Text Word]) OR bone development[MeSH Terms]) OR bone* development[Text Word]) OR osteogenesis[MeSH Terms]) OR osteogenesis[Text Word]) OR skelet* development[Text Word]) OR skeletogenesis[Text Word])) OR (((((((((((((((((((((((((()))) disease*[Text Word]) OR endocrin* disorder*[Text Word]) OR endocrin disturbance*[Text Word]) OR endocrin* disruption*[Text Word]) OR endocrin* dysfunction*[Text Word]) OR endocrinopath*[Text Word]) OR hormon* disease*[Text Word]) OR hormon* disorder*[Text Word]) OR hormon* disturbance*[Text Word]) OR hormon* disruption*[Text Word]) OR hormon* dysfunction*[Text Word]) OR hormon* imbalance*[Text Word]) OR thyroid disease[MeSH Terms]) OR thyroid* disease*[Text Word]) OR thyroid dysgenesis[MeSH Terms]) OR thyroid* dysgenesis[Text Word]) OR thyroid* disorder*[Text Word]) OR thyroid* abnormal*[Text Word]) OR thyroid* anomal*[Text Word]) OR thyroid* disorders[MeSH Terms]) OR mental disorder*[Text Word]) OR mental disease*[Text Word]) OR mental disturbance*[Text Word]) OR mental illness*[Text Word]) OR neurodevelopment*

Concept	#	Query
		disease*[Text Word]) OR neurodevelopment* disorder*[Text Word])
		OR neurodevelopment* disabilit*[Text Word]) OR
		neurodevelopment* dela*[Text Word]) OR ((developmental disorder,
		speech or language[MeSH Terms]))) OR developmental disorders of
		scholastic skills[MeSH Terms]) OR development* disorder*[Text
		Word]) OR developmental disability[MeSH Terms]) OR
		development* disabilit*[Text Word]) OR developmental delay
		disorder[MeSH Terms]) OR development* dela*[Text Word]) OR
		development* abnormalit*[Text Word]) OR development*
		impairment*[Text Word]) OR intellectual disability[MeSH Terms]) OR
		intellectual* disabilit*[Text Word]) OR aphasia, intellectual[MeSH
		Terms]) OR intellectual aphasia*[Text Word]) OR intellectual
		impairment*[Text Word]) OR intellectual dysfunction*[Text Word])
		OR delirium, dementia, amnestic, cognitive disorders[MeSH Terms])
		OR cognition disorders[MeSH Terms]) OR cognit* disorder*[Text
		Word]) OR mild cognitive impairment[MeSH Terms]) OR cogniti*
		impair*[Text Word]) OR cogniti* disease*[Text Word]) OR cogniti*
		defect*[Text Word]) OR cogniti* deficit*[Text Word]) OR cogniti*
		disabilit*[Text Word]) OR cogniti* dysfunction*[Text Word])) OR
		((((((((((((((((immunologic disease[MeSH Terms]) OR
		immunologic* disease*[Text Word]) OR immunologic* disorder*[Text
		Word]) OR immunologic* dysfunction*[Text Word]) OR immunologic*
		dysregulat*[Text Word]) OR immediate hypersensitivity[MeSH
		Terms]) OR delayed hypersensitivity[MeSH Terms]) OR
		hypersensitivit*[Text Word]) OR immunopath*[Text Word]) OR
		genotoxic*[Text Word]) OR male urogenital disease[MeSH Terms])
		OR female urogenital disease[MeSH Terms]) OR urogenit*
		disease*[Text Word]) OR urogenit* disorder*[Text Word]) OR male
		genitourinary disease[MeSH Terms]) OR female genitourinary
		disease[MeSH Terms]) OR genitourin* disease*[Text Word]) OR

Concept	#	Query
		genitourin* disorder*[Text Word]) OR health risk appraisal[MeSH
		Terms]) OR health risk*[Text Word]) OR health hazard*[Text
		Word])))
Toxicology	4	tox [subset]
FI + water	5	1 AND 2
FI + water	6	1 AND 2 AND 3
+		
outcomes		
FI + water	7	1 AND 2 AND 3 AND 4
+		
outcomes		
(toxicology)		
2016-		limit 7 to yr="2016 -Current"
current		

PAIS Index

Concept	#	PAIS query
Fluoride	1	su(fluoride) OR su(Fluorides) OR su(fluoridation) OR su(fluoridation
		of water) OR su(fluoridation of drinking water)
Water	2	su(Water) OR su(tap water) OR su(drinking water) OR su(tap water and drinking water) OR su(Water Quality) OR su(water safety) OR su(water treatment)
	3	su(Ground Water) OR su(water wells) OR su(Rivers) OR su(Lakes) OR su(Ponds) OR su(Water Sources)

Concept	#	PAIS query
	4	su(mineral water) OR su(carbonated water) OR su(spring water) OR su(Hot Springs)
	5	(su(Water) OR su(tap water) OR su(drinking water) OR su(tap water AND drinking water) OR su(Water Quality) OR su(water safety) OR su(water treatment)) OR (su(Ground Water) OR su(water wells) OR su(Rivers) OR su(Lakes) OR su(Ponds) OR su(Water Sources)) OR (su(mineral water) OR su(carbonated water) OR su(spring water) OR su(Hot Springs))
Fluoride	6	(su(fluoride) OR su(Fluorides) OR su(fluoridation) OR su(fluoridation
+ water		of water) OR su(fluoridation of drinking water)) AND ((su(Water) OR
		su(tap water) OR su(drinking water) OR su(tap water AND drinking
		water) OR su(Water Quality) OR su(water safety) OR su(water
		treatment)) OR (su(Ground Water) OR su(water wells) OR su(Rivers)
		OR su(Lakes) OR su(Ponds) OR su(Water Sources)) OR (su(mineral
		water) OR su(carbonated water) OR su(spring water) OR su(Hot
		Springs)))

Health Technology Assessment

Concept	#	Medline query
Fluoride	1	exp Fluorides/
	2	exp Fluoridation/
	3	fluorid*.tw.
	4	fluorin*.tw.
	5	flurin*.tw.
	6	flurid*.tw.
	7	or/1-6

Water	8	exp Water/
	9	drinking water.tw.
	10	tap water*.tw.
	11	exp water supply/
	12	(water* adj3 suppl*).tw.
	13	(water* adj3 treatment*).tw.
	14	exp Water Purification/
	15	(water* adj3 purification).tw.
	16	lake*.tw.
	17	pond*.tw.
	18	ground water*.tw.
	19	exp mineral waters/
	20	mineral water*.tw.
	21	hot spring*.tw.
	22	communit* water*.tw.
	23	or/8-22
Fluoride +	24	7 and 23
water		

Concept	#	CDSR query
Fluoride	1	fluoride.mp. [mp=title, abstract, full text, keywords, caption text]
	2	fluoridation.mp. [mp=title, abstract, full text, keywords, caption
		text]
	3	fluorin*.mp. [mp=title, abstract, full text, keywords, caption text]
	4	flurin*.mp. [mp=title, abstract, full text, keywords, caption text]
	5	flurid*.mp. [mp=title, abstract, full text, keywords, caption text]
	6	or/1-5
Water	7	water.mp. [mp=title, abstract, full text, keywords, caption text]
	8	drinking water.mp. [mp=title, abstract, full text, keywords,
		caption text]
	9	tap water.mp. [mp=title, abstract, full text, keywords, caption
		text]
	10	(water adj3 fluorid*).mp. [mp=title, abstract, full text, keywords,
		caption text]
	11	community water*.mp. [mp=title, abstract, full text, keywords,
		caption text]
	12	fresh water.mp. [mp=title, abstract, full text, keywords, caption
		text]
	13	freshwater.mp. [mp=title, abstract, full text, keywords, caption text]
	14	ground water.mp. [mp=title, abstract, full text, keywords, caption
		text]
	15	groundwater.mp. [mp=title, abstract, full text, keywords, caption
		text]
	16	(water* adj3 well*).mp. [mp=title, abstract, full text, keywords, caption text]
	17	mineral water*.mp. [mp=title, abstract, full text, keywords,
		caption text]

Cochrane Database of Systematic Reviews (CDSR)

Concept	#	CDSR query
	18	carbonated water*.mp. [mp=title, abstract, full text, keywords,
		caption text]
	19	spring water*.mp. [mp=title, abstract, full text, keywords, caption
		text]
	20	(water* adj3 resource*).mp. [mp=title, abstract, full text,
		keywords, caption text]
	21	(water* adj3 source*).mp. [mp=title, abstract, full text, keywords,
		caption text]
	22	(water* adj3 suppl*).mp. [mp=title, abstract, full text, keywords,
		caption text]
	23	river*.mp. [mp=title, abstract, full text, keywords, caption text]
	24	lake*.mp. [mp=title, abstract, full text, keywords, caption text]
	25	pond*.mp. [mp=title, abstract, full text, keywords, caption text]
	26	or/7-25
Fluoride +	27	6 and 26
water		
2016 - current	28	limit 27 to last 5 years

Concept	#	CENTRAL query
Fluoride	1	exp fluorides/
	2	exp Fluoridation/
	3	fluorid*.tw.
	4	fluorin*.tw.
	5	flurin*.tw.
	6	flurid*.tw.
	7	or/1-6
Water	8	water/
	9	exp Drinking Water/
	10	drinking water.tw.
	11	tap water.tw.
	12	tapwater.tw.
	13	exp Water Quality/
	14	(water adj3 quality).tw.
	15	community water.tw.
	16	water fluoridation.tw.
	17	exp groundwater/
	18	groundwater*.tw.
	19	ground water*.tw.
	20	exp Water Wells/
	21	(water* adj3 well*).tw.
	22	exp Natural Springs/
	23	natural spring*.tw.
	24	hot spring*.tw.
	25	springwater.tw.
	26	spring water*.tw.
	27	exp Mineral Waters/
	28	minteral water*.tw.
	29	exp Carbonated Water/
52		

Cochrane Central Register of Controlled Trials (CENTRAL)

Concept	#	CENTRAL query
	30	carbonated water*.tw.
	31	exp fresh water/
	32	fresh water*.tw.
	33	freshwater*.tw.
	34	exp Lakes/
	35	lake*.tw.
	36	exp Ponds/
	37	pond*.tw.
	38	exp Rivers/
	39	river*.tw.
	40	exp water supply/
	41	(water* adj3 suppl*).tw.
	42	or/8-41
Fluoride +	43	7 and 42
water		
2016 - current	44	limit 43 to yr="2016 -Current"

Cochrane Library (Wiley)

Concept	#	Cochrane query
Fluoride	1	MeSH descriptor: [Fluorides] in all MeSH products
	2	MeSH descriptor: [Fluoridation] explode all trees
	3	(fluorid*):ti,ab,kw
	4	#1 OR #2 OR #3
Water	5	MeSH descriptor: [Drinking Water] explode all trees
	6	MeSH descriptor: [Water Quality] explode all trees
	7	#5 OR #6
Outcomes	8	MeSH descriptor: [Bone Development] explode all trees
	9	MeSH descriptor: [Bone Diseases] explode all trees
	10	MeSH descriptor: [Fractures, Bone] explode all trees
	11	MeSH descriptor: [Bone Neoplasms] explode all trees
	12	MeSH descriptor: [Osteosarcoma] explode all trees
		MeSH descriptor: [Endocrine System Diseases] explode all
	13	trees
	14	MeSH descriptor: [Endocrine Disruptors] explode all trees
	15	MeSH descriptor: [Thyroid Diseases] explode all trees
	16	MeSH descriptor: [Thyroid Dysgenesis] explode all trees
	17	MeSH descriptor: [Thyroid Neoplasms] explode all trees
		MeSH descriptor: [Neurodevelopmental Disorders] explode all
	18	trees
	19	MeSH descriptor: [Learning Disorders] explode all trees
	20	MeSH descriptor: [Agnosia] explode all trees
	21	MeSH descriptor: [Agraphia] explode all trees
	23	MeSH descriptor: [Aphasia] explode all trees
	24	MeSH descriptor: [Intellectual Disability] explode all trees
	25	MeSH descriptor: [Neurocognitive Disorders] explode all trees
	26	MeSH descriptor: [Cognitive Dysfunction] explode all trees
	27	MeSH descriptor: [Immune System Diseases] explode all trees
	28	MeSH descriptor: [Hypersensitivity] explode all trees
	29	MeSH descriptor: [Genital Diseases, Male] explode all trees

Concept	#	Cochrane query
	30	MeSH descriptor: [Genital Neoplasms, Male] explode all trees
	31	MeSH descriptor: [Genitalia, Male] explode all trees
	32	MeSH descriptor: [Genital Diseases, Female] explode all trees
		MeSH descriptor: [Genital Neoplasms, Female] explode all
	33	trees
	34	MeSH descriptor: [Genitalia, Female] explode all trees
	35	MeSH descriptor: [Male Urogenital Diseases] explode all trees
		MeSH descriptor: [Female Urogenital Diseases] explode all
	36	trees
		#8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR
		#16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23
		OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR
	37	#31 OR #32 OR #33 OR #34 OR #35 OR #36
	38	#4 AND #7
	39	#4 AND #7 AND # 37

Clinical Trial Registries

Trial Database	Comment
World Health Organization	Completed trials, with results
European Union	Completed trials, with results
ISRCTN	Completed trials, with results
US Clinical Trials	Completed trials, with results
UK Clinical Trials gateway	
Health Canada	Ongoing trials, no results available

1.3. Grey literature

Resource	Strategy
Agency for Healthcare Research and Quality (AHRQ)	Fluoride
CAB Direct	FI, water and
	outcomes
North American Agency for Drugs and Technologies in	Fluoride
Health (CADTH)	
North American Public Documents Collection	Fluoride (title or
	abstract)
Centers for Disease Control and Prevention (CDC)	
Centre for Reviews and Dissemination (CRD)	Fluoride
Conference Board E-Library	Fluoride
Environmental Protection Agency (EPA)	
Grey Literature Publishers List - International (The New York	Fluoride (title or
Academy of Medicine)	summary)
Grey literature Report	Fluoride
Health Quality Ontario	Fluoride
Health Systems Evidence	Fluoride
National Cancer Institute	
National Institute for Health and Care Excellence (NICE)	Fluoride
National Library of Medicine (MedlinePlus)	Fluoride
National Institutes of Health	
TRIP Database	Fluoride and water
World Catalogue (Worldcat)	Fluoride and water

Supplementary Material 2. Included human studies

This supplement expands on tables of epidemiologic studies included in the present review presented in the main manuscript. Lists of all included studies are provided, according to health endpoint. For each included study, comprehensive study characteristics and results are described. A description of the OHAT risk of bias assessment for each eligible study is provided.

The 89 included original studies examined a wide range of adverse health effects due to exposure to fluoride in water, particularly dental fluorosis (33 studies) and neurocognitive (28 studies), bone and skeletal (9 studies), and endocrine and urogenital outcomes (8 studies, each). The following table provides a summary of all identified fluoride-related adverse health outcomes. Studies were arranged in a descending chronological order then alphabetically by main author's last name.

2.1. Included human studies, by endpoint

Study	Dental	Cancer	Bone / Skeletal		Development/ Reproductive	Endocrine	Urogenital	Cardio- vascular	Hepatic	Geno- toxicity	Others
Abstracts	N= 0	N= 0	N= 0	N= 1	N= 1	N= 0	N= 0	N= 0	N= 0	N= 0	N= 0
Chauhan 2017 4					✓						
Stephenson 2017 5				✓							
Original Studies	N= 33	N= 4	N= 9	N= 28	N= 5	N= 8	N= 8	N= 4	N= 2	N= 3	N= 6
Mercado 2023 6	1										
Tang 2023 ⁷	✓										
Ahmad 2022 ⁸				✓							

Study	Dental	Cancer	Bone / Skeletal	Neuro/ Cognitive	Development Reproductive	Endocrine	Urogenital	Cardio- vascular	Hepatic	Geno- toxicity	Others
Feng 2022 ^g				4							
García-Escobar 2022 10	✓										
Goodman 2022 11				✓							
Gupta 2022 12	✓										
Ibarluzea 2022 13				✓							
Kaur 2022 14				✓							
Marques 2022 15	✓										
McLaren 2022 16	✓										
Rani 2022 17	✓										
Saeed 2022 18	✓			✓							
Tawfik 2022 19	1										
Thilakarathne 2022 20	1										
Al-Omoush 2021 21	✓										
Ayele 2021 22			✓	✓				✓			GIT, fatigue
Cao 2021 23	✓										
Dong 2021 24	✓										
Du 2021 25						✓					
Farmus 2021 26	✓										
Fernandes 2021 27	✓										

Study	Dental	Cancer Bone Skeleta		Development/ Reproductive	Endocrine Urogenit	Cardio- al vascular	Hepatic	Geno- toxicity	Others
Helte 2021 28		1							
James 2021 29	✓								
Meghe 2021 30		✓							
Meng 2021 <u>³¹</u>								✓	
Mohd Nor 2021 32	✓								
Rojanaworarit 2021 33	✓								
Sharma 2021 34	¥	¥							Non-skeletal manifestations of fluoride toxicity
Silva 2021 35	✓								-
Tkachenko 2021 ³⁶						✓			
Wang 2021 37	✓		✓						
Yani 2021 38	✓		✓						
Yu 2021 ³⁹	✓								
Zhao 2021 ^{<u>40</u>}	✓								
Bai 2020 <u>41</u>				✓					
Cui 2020 <u>42</u>			✓		√				
Das 2020 <u>43</u>	✓								
Fernandes 2020 44	✓								
Godebo 2020 45		✓							

Study	Dental	Cancer	Bone / Skeletal	Neuro/ Cognitive	Development/ Reproductive	Endocrine	Urogenital	Cardio- vascular	Hepatic	Geno- toxicity	Others
Kim 2020 46		✓									
Krishna 2020 47						✓					
Lee 2020 48		✓	1								
Nanayakkara 2020 49							✓				
Russ 2020 50				✓							
Stangvaltaite-Mouhat 2020 51	✓										
Sun 2020 52			✓								
Till 2020 53				✓							
Wang 2020 54				✓		✓					
An 2019 55					✓						
Crnosija 2019 56		✓									
Fernando 2019 57							✓				
Jimenez-Cordova 2019 58							✓	✓			
Jimenez-Cordova 2019a 59											Arsenic metabolism
Khanoranga 2019 60		✓									
Liu 2019 <u>61</u>					✓						
Malin 2019 62							√		✓		
Malin 2019a 63				✓							
Pei 2019 64		✓	✓							✓	

Study	Dental	Cancer	Bone / Skeletal	Neuro/ Cognitive	Development/ Reproductive	Endocrine	Urogenital	Cardio- vascular	Hepatic	Geno- toxicity	Others
Riddell 2019 65				✓							
Shaik 2019 66						✓					
Soto-barreras 2019 67		✓									
Zhang 2019 68					✓						
Zhou 2019 69											Select eye diseases
Zhou 2019a 70	✓										
Bashash 2018 71				✓							
Cui 2018 72				✓							
Jimenez-Cordova 2018 73							✓				
Kumar, V 2018 74						✓					
Kumar, S 2018 75	✓										
Malin 2018 76						✓					
Mohd Nor 2018 77	✓										
Mustafa 2018 78				✓							
Oweis 2018 79			✓								
Quadri 2018 80							✓				
Rathore 2018 81						✓					
Shruthi 2018 82											Non-skeletal manifestations of fluoride toxicity
Yu 2018 83				✓							

Study	Dental	Cancer	Bone / Skeletal		Development/ Reproductive	Endocrine Urogenital	Cardio- vascular	Hepatic	Geno- toxicity	Others
Arulkumar 2017 ⁸⁴				✓			1	✓		
Bashash 2017 85				✓						
Verma 2017 86	✓									
Cardenas-Gonzalez 2016 87						✓				
de Moura 2016 88	✓									
Heck 2016 89				✓						General health, trouble working
Kousik 2016 90				✓	1					
Sabokseir 2016 91	✓									
Xiang 2016 92	✓									

2.2. Characteristics of the included human studies

Data abstraction and risk of bias assessment - human studies

(Studies arranged in a descending chronological order then alphabetically by author's last name)

Mercado 2023 6

Study Characteristics Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The higher
Original study	Fluoride levels in:	 Dental fluorosis 	 Descriptive analysis 	concentration of
Study design:	 Ground water 			fluoride in drinking water is directly
Cross-sectional				related to the
Country:				higher degree of fluorosis."
Peru				10010313.
Participants:	Method of		Results:	
12-15 years old students	exposure assessment:		<u>Fluoride in water/Dean's</u> fluorosis index:	
Sampling time frame:	 SPANDS method 		Panchacutes I: 0.98mg/L/2.08	
2012			Tiabaya Pampas Nuevas: 0.79	
Sample size:			mg/L/1.90	
504				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex:	Exposure level(s):	Method of outcome ascertainment:	Tiabaya El Cural: 0.73 mg/L/1.72	
Girls: 34.52% Exclusions:	• <u>Ground water</u> (<u>mg/L)</u> 0.22-0.98 mg/L	• Dean's index	La Bedoya: 0.43 mg/L/1.54 Panchacutes II: 0.32 mg/L/1.42	
• Students with an oral pathology treatment	0.22-0.30 mg/L		La Tomialla: 0.22 mg/L/1.26	
 Live in a different region of the school 			Dental fluorosis for Panchacutes I:	
Source of funding / support:			Severe: 10.71% Moderate: 23.81% Mild: 32.14%	
NR			Very Mild: 26.19%	
Author declaration of interest:			Questionable: 7.143 % Normal: 0%	
NR			<u>Tiabaya Pampas Nuevas:</u> Severe: 8.33%	
			Moderate: 21.43% Mild: 30.95%	
			Very Mild: 26.19% Questionable: 9.52 %	
			Normal: 3.57% <u>Tiabaya "El Cural":</u>	
			Severe: 5.95% Moderate: 19.05%	
			Mild: 29.76% Very Mild: 26.19%	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Questionable: 10.71 %	
			Normal: 8.33%	
			<u>La Bedoya:</u>	
			Severe: 3.57%	
			Moderate: 15.48%	
			Mild: 29.76%	
			Very Mild: 27.38%	
			Questionable: 13.10 %	
			Normal: 10.71%	
			Panchacutes II:	
			Severe: 2.38%	
			Moderate: 13.10%	
			Mild: 28.57%	
			Very Mild: 28.57%	
			Questionable: 15.48 %	
			Normal: 11.90%	
			<u>La Tomialla:</u>	
			Severe: 0%	
			Moderate: 10.71%	
			Mild: 27.38%	
			Very Mild: 30.95%	
			Questionable: 16.69%	
			Normal: 14.29 %	
			Relationship between	
			fluoridation and DF: (p<0,05	:
			χ2<0,05)	7

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Relationship between	
			"Never" Fluoridation and DF	:
			Normal: 7.5%	
			Questionable: 12.5%	
			Very Mild: 27.5%	
			Mild: 30%	
			Moderate: 17.5%	
			Severe: 5%	
			Relationship between "One'	,
			Fluoridation and DF	
			Normal: 8.26%	
			Questionable: 11.98%	
			Very Mild: 27.69%	
			Mild: 29.75%	
			Moderate: 17.36%	
			Severe: 4.96%	
			Relationship between "Two'	,
			Fluoridation and DF	
			Normal: 8.14%	
			Questionable: 12.21%	
			Very Mild: 27.33%	
			Mild: 29.65%	
			Moderate: 17.44%	
			Severe: 5.23%	

Study	Exposure	Outcome	Analysis & Results	Conclusions
			Relationship between	
			"Three" Fluoridation and D	F
			Normal: 8.0%	
			Questionable: 12.0%	
			Very Mild: 28.0%	
			Mild: 30.0%	
			Moderate: 16.0%	
			Severe: 6.0%	

Bias domain	Criterion	Response						
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable					
	Was allocation to study groups adequately concealed?	N/A	Not applicable					
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.					
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR					
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable					

Risk of bias as	sessment		
Bias domain	Criterion	Res	oonse
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (students with an oral pathology treatment, and those who live in a different region than the school's one).
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride exposure levels were obtained from water wells and the local schools, using the SPANDS method.
	Can we be confident in the outcome assessment?	++	Yes, DF was assessed by researchers who were evaluated by university professor, using Dean's fluorosis index. Blinding of exposure status may have not significantly biased the assessment.
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Tang 2023 ⁷

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 Since "stratified analysis indicated a weaker association 		
Original study	Fluoride levels in: • Ground water • Urine samples	 Dental fluorosis Descriptive analysis Mediation analysis Adjusted for age, sex, BM parental education, family 	Mediation analysis			
Study design:						
Cross-sectional			 Adjusted for age, sex, Bivil, parental education, family 	between fluoride		
Country:			income and low birth weight, in addition to urinary creatinine for urine fluoride assessments	concentration and DF prevalence in		
China				boys than in girls.", "the DF prevalence may		
Participants:	Method of		Results:	be sex-specific." • Inflammatory		
7-14 years old children residing since birth in	exposure assessment: • <u>Fluoride in Drinking</u> water <u>and Urine</u> samples:	<u>concentration</u> DF prevalence	 <u>Water fluoride</u> concentration >1mg/L and 	factors may partially mediate		
study area that is			DF prevalence:	the increased		
supplied by groundwater			Normal: 17 (5.6%) Very mild: 47 (15.5%) Mild: 210 (69.3%) Moderate:29(9.6%) • <u>Water fluoride</u> <u>concentration 1mg/L and</u> <u>DF prevalence:</u> Normal: 216 (74.5%) Very mild: 22 (15.2%) Mild: 30 (10.3%)	prevalence of mild DF in school		
Sampling time frame:	Ion-selective			aged children		
NR	potentiometry (PF- 202-CF; INESA Scientific Instrument Co., Ltd., China)			with low-to-		
Sample size:				moderate fluoride exposure.		
593				 The study demonstrates tha the risk of DF has 		

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex: N (%):	Exposure level(s):	Method of outcome	Moderate:0(0.00%)	an upward trend
Girls: 300 (50.6%)	(Chinese standard	ascertainment:	 Water fluoride and DF (PR 	when the fluoride gradually in
Exclusions:	fluoride limit in water = 1.0mg/L)	 Dean's Index 	(95% Cl), increase per 1ml/L):	increases, in
 History of chronic medical conditions or other endemic diseases, such as kidney, liver, or endocrine disorders Children living in areas with exposure to other pollutants, such as lead, arsenic, or mercury. Source of funding / support: National Natural Science Foundation of China (Grants No. 82073515, and No. 81773388) 	 Water fluoride: 0.20 to 3.90, mean 1.42 (SD 1.00), median 1.20 (IQR 0.70–2.20) mg/L Urinary fluoride: 0.01 to 5.54, mean 1.36 (SD 1.31), median 0.56 (IQR 0.16-2.29) mg/L <u>Fluoride</u> <u>concentration.: Mea</u> ± SD (>1mg/L): Higher exposure gp.: Water: 2.19 ±0.81 		Overall DF: 1.50 (1.42, 1.57)Very mild DF: 1.85 (1.64, 2.07)Moderate DF: 3.92 (3.03, 5.06) $P < 0.001$ • Urinary fluoride DF (PR (95% Cl), increase per 1ml/L): Overall DF: 1.42 (1.35, 1.50) Very mild DF: 1.67 (1.48, 1.88) Mild DF:1.72 (1.61, 1.84) moderate DF: 3.02 (2.50, 4.13) P < 0.001	water and urine.
• The State Key	Urine: 2.48 ±0.88		Association between fluoride content and DF by sex: PR (95%CI)	
Program of National Natural Science Foundation of China	<u>Lower exposure</u> gp.:		Water Fluoride Overall: 1.33 (1.29, 1.36),	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
(Grant No.	Water: 0.61 ±0.24		P-interaction=0.325			
81430076)	Urine: 0.18 ±0.12		Very Mild: 1.31 (1.23, 1.39)			
Author declaration of			P-interaction=0.485			
interest: No COI			Mild: 1.39 (1.35, 1.44)			
			P-interaction=0.431			
			Moderate: 1.33 (1.25, 1.42) P-interaction=0.852			
			P-Interaction=0.852			
			Urinary Fluoride:			
			Overall: 1.27 (1.23, 1.30)			
			P-interaction=0.013			
			Very Mild: 1.25 (1.17, 1.32)			
			P-interaction=0.025			
			Mild: 1.32 (1.28, 1.36)			
			P-interaction=0.014			
			Moderate: 1.27 (1.20, 1.36)			
			P-interaction=0.170			
			Sensitivity analysis for effect			
			of fluoride exposure on DF:			
			[PR (95%CI) for every 1mg/L			
			increment of water fluoride]			
			Adjusted for age and sex,			
			water fluoride (mg/L)			
			Overall: 1.50 (1.42, 1.57)			
			WHO Guideline: 0.78			
			(0.66, 0.89) *			
			Very Mild: 1.83 (1.62, 2.06)			
			WHO Guideline: 1.25			
			(0.98, 1.52) *	_		

Study Character	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Mild: 1.72 (1.61, 1.83)	
			WHO Guideline: 1.10	
			(0.93, 1.27) *	
			Moderate: 3.18 (2.54, 3.98)	
			WHO Guideline: 3.13	
			(2.35, 3.90) *	
			Adjusted for BMI, water	
			fluoride (mg/L)	
			Overall: 1.50 (1.42, 1.58)	
			WHO Guideline: 0.79	
			(0.67, 0.91) *	
			Very Mild: 1.82 (1.62, 2.05)	
			WHO Guideline: 1.23	
			(0.95, 1.51) *	
			Mild: 1.72 (1.61, 1.83)	
			WHO Guideline: 1.11	
			(0.94, 1.28) *	
			Moderate: 3.27 (2.73, 3.92)	
			WHO Guideline: 3.15	
			(2.40, 3.90) *	
			Adjusted for parental	
			education, and family	
			income, water fluoride (mg/L)	
			Overall: 1.50 (1.43, 1.58)	
			WHO Guideline: 0.79	
			(0.67, 0.91) *	
			Very Mild: 1.83 (1.63, 2.06)	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			WHO Guideline: 1.22	
			(0.95, 1.50) *	
			Mild: 1.73 (1.62, 1.84)	
			WHO Guideline: 1.11	
			(0.94,1.28) *	
			Moderate: 3.78 (2.93, 4.88	8)
			WHO Guideline: 3.12	
			(2.29, 3.95) *	
			Adjusted for low birth weigh	<i>t,</i>
			water fluoride (mg/L)	
			Overall: 1.50 (1.42, 1.57)	
			WHO Guideline: 0.79	
			(0.67, 0.91) *	
			Very Mild: 1.83 (1.62, 2.06	5)
			WHO Guideline: 1.21	
			(0.92, 1.50) *	
			Mild: 1.72 (1.61, 1.83)	
			WHO Guideline: 1.11	
			(0.94, 1.28) *	
			Moderate: 3.384 (2.82,	
			4.07)	
			WHO Guideline: 3.13	
			(2.37, 3.89) *	
			Adjusted for age, sex, BMI,	
			parental education, family	
			income, and low birth weigh	t,
			water fluoride (mg/L)	,
			Overall: 1.50 (1.42, 1.58)	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			WHO Guideline: 0.78	
			(0.66, 0.90) *	
			Very Mild: 1.85 (1.64, 2.0	7)
			WHO Guideline: 1.24	
			(0.95, 1.52) *	
			Mild: 1.723 (1.61, 1.84)	
			WHO Guideline: 1.10	
			(0.93,1.27) *	0)
			Moderate: 3.92 (3.03, 5.0	6)
			WHO Guideline: 3.13	
			(2.32, 3.94) * *Water fluoride ≤ 1.5 is	
			reference. P=0.001	
			Tererence. P=0.001	
			Sensitivity analysis for effect	<u>ct</u>
			of fluoride exposure on DF:	
			[PR (95%CI) for every 1mg	
			increment of urinary fluoride	<u>e</u>]
			Adjusted for age and sex,	
			urinary fluoride (mg/L)	
			Overall: 1.41 (1.34, 1.48)	_,
			Very Mild: 1.66 (1.48, 1.8	()
			Mild: 1.57 (1.48, 1.68)	0)
			Moderate: 2.68 (2.26, 3.1	9)
			Adjusted for BMI, urinary	
			fluoride (mg/L)	
			Overall: 1.41 (1.34, 1.48)	
			Very Mild: 1.63 (1.44, 1.8	5)
			Mild: 1.57 (1.47, 1.67)	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Moderate: 2.59 (2.18, 3.08	3)
			Adjusted for parental education, and family income, urinary fluoride (mg/L) Overall: 1.41 (1.34, 1.48) Very Mild: 1.65 (1.47, 1.85 Mild: 1.57 (1.47, 1.67)))
			Moderate: 2.98 (2.37, 3.75	5)
			Adjusted for low birth weigh urinary fluoride (mg/L) Overall: 1.41 (1.34, 1.48) Very Mild: 1.64 (1.45 1.86) Mild: 1.57 (1.47, 1.67) Moderate: 2.57 (2.14, 3.08)	
			Adjusted for urinary creatinine, urinary fluoride (mg/L) Overall: 1.42 (1.35, 1.50) Very Mild: 1.63 (1.43, 1.86 Mild: 1.59 (1.48, 1.71) Moderate: 2.76 (2.19, 3.48	
			Adjusted for age, urine creatinine, sex, BMI, parent education, family income an	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			low birth weight, urinary		
			fluoride (mg/L)		
			Overall: 1.42 (1.35, 1.50)		
			Very Mild: 1.67 (1.48, 1.6		
			Mild: 1.59 (1.48, 1.72)	,	
			Moderate: 3.20 (2.49, 4.	13)	

Risk of bias as	sessment		
Bias domain	Criterion	Resp	oonse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected according to the same criteria and from the same eligible population. Time frame was not reported in the study.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, the study was adjusted for major confounders (age, sex, BMI, low birth weight, parental education, family income and low birth weight). Urinary fluoride was additionally adjusted for urinary creatinine.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable

Risk of bias as	sessment		
Bias domain	Criterion	Res	oonse
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on the reasons for exclusion of study participants (history of chronic medical conditions such as kidney, liver, or endocrine disorders, children living in areas where iodine deficiency disorders were endemic, or where exposure to other potential pollutants such as lead, arsenic, or mercury was known/reported).
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride levels in water and urine were assessed suing Ion-selective potentiometry (PF-202-CF; INESA Scientific Instrument Co., Ltd., China)
	Can we be confident in the outcome assessment?	++	Yes, the outcome (DF) was assessed by two experienced dentists who were blinded to children's exposure status, using DFI.
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Ahmad 2022 ⁸

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "The significantly higher IQ,
Original study	Fluoride levels in	• IQ	 T-test and Mann- Whitney test were used 	99.95±15.50, of boys in the urban
Study design:	Drinking waterUrine	Method of outcome ascertainment:	• Statistical significance at p <0.05	area madrassas with a high drinking water
Cross-sectional	Method of exposure	 The Raven's Progressive Matrices 	Results:	fluoride level compared to the IQ, 92.30±14.97,
	assessment:	Intelligence Test	N (%) of IQ scores by	of boys in the
Country:	NR	 A teacher trained by a psychologist 	high (urban) and low	rural area madrassas with a
Pakistan		administered the test	(rural) fluoride areas	low drinking water
	Exposure level:		IQ <70 retarded (low)	fluoride level contradicts the
Participants:	Mean fluoride levels in		 High fluoride: 2 (3.33) Low fluoride: 5 (8.33) 	previous reports of higher fluoride
Students (9 – 11 years	urban madrassas		IQ 70 – 79 borderline	levels being
of age) of madrassa	(Karachi Central)		<u>(below average)</u>	associated with a lower IQ.
(Islamic religious	 Drinking water: 2.04 		• High fluoride: 4 (6.67)	However, several
school) in urban and	mg/L		• Low fluoride: 6 (10)	confounding factors were not
rural locations within	• Urine: 5.99 (±3.57)		<u>IQ 80 – 89 dull normal</u>	controlled for in
the province of Sindh	mg/L		<u>(low average)</u>	the present study,
,			 High fluoride: 10 (16.67) Low fluoride: 9 (15) 	including the level of parental

Study Exposure Outcome Analysis & Results Conclusions Sampling time frame: Mean fluoride levels in rural madrassas (Umerkot) IQ 90 – 109 normal (average) education, socio- economic status, and the levels of NR • Drinking water: 1.07 mg/L • High fluoride: 20 (33.33) arsenic, lead, and iodine." (p. 57) Sample size: • Urine: 3.53 (±1.09 mg/L) normal (high average) etcs.67) 120 • Urine: 3.53 (±1.09 mg/L) normal (high average) etcs.67) 120 • Urine: 3.53 (±1.09 mg/L) etcs.67) etcs.67) 120 • High fluoride: 16 (28.67) etcs.67) Sex N (%): • High fluoride: 7 (11.67) etcs.67) Girls: 34 (28.3%) • High fluoride: 1 (1.66) etcs.61) NR • High fluoride: 0 (0.0) IQ >129 very superior Source of funding / support: NR • No significant difference was present between the IQ distribution in the high and low fluoride areas on chi-square testing after	Study Characteristics				
Sampling time frame: rural madrassas (Umerkot) • Drinking water: 1.07 mg/L • High fluoride: 20 (33.33) • Low fluoride: 19 (31.67) IQ 110 – 119 bright arsenic, lead, and iodine." (p. 57) Sample size: • Urine: 3.53 (±1.09 mg/L) normal (high average) • High fluoride: 16 (26.67) • Low fluoride: 15 (25) IQ 120 – 129 superior • High fluoride: 16 (26.67) • Low fluoride: 15 (25) IQ 120 – 129 superior Sex N (%): • High fluoride: 7 (11.67) • Low fluoride: 6 (10) IQ > 129 very superior • High fluoride: 6 (10) IQ > 129 very superior Girls: 34 (28.3%) • High fluoride: 1 (1.66) • Low fluoride: 0 (0.0) • High fluoride: 1 (1.66) • Low fluoride: 0 (0.0) NR • No significant difference was present between the support: • No significant difference was present between the support: NR • Na • Na low fluoride areas on	Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame: Intra macrassas (average) and the levels of arsenic, lead, and iodine." (p. 57) NR • Drinking water: 1.07 mg/L • Low fluoride: 19 (31.67) iodine." (p. 57) Sample size: • Umerkot) • Orine: 3.53 (±1.09 mg/L) normal (high average) iodine." (p. 57) 120 • High fluoride: 16 (26.67) • Low fluoride: 16 (25) (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Mean fluoride levels in		<u>IQ 90 – 109 normal</u>	-
NR (Umerkot) •High fluoride: 20 (33.33) arsenic, lead, and iodine." (p. 57) •Drinking water: 1.07 mg/L •Low fluoride: 19 (31.67) iodine." (p. 57) Sample size: •Urine: 3.53 (±1.09 mg/L) normal (high average) •Low fluoride: 16 (26.67) •Low fluoride: 15 (25) iodine." (p. 57) 120 •Low fluoride: 16 (26.67) •Low fluoride: 16 (26.67) Sex N (%): (good) •Low fluoride: 7 (11.67) Girls: 34 (28.3%) •High fluoride: 7 (11.67) •Low fluoride: 6 (10) IQ >129 very superior (excellent) •Low fluoride: 0 (0.0) R •High fluoride: 0 (0.0) ·No significant difference Source of funding / was present between the support: NR IQ distribution in the high and low fluoride areas on	Sampling time frame:	rural madrassas		<u>(average)</u>	
• Drinking water: 1.07 mg/L • Low floate. (p. 61/) • Low floate. (p. 61/) Sample size: • Urine: 3.53 (±1.09 mg/L) • normal (high average) • Urine: 3.53 (±1.09 mg/L) • High fluoride: 16 (26.67) 120 • Low fluoride: 16 (26.67) 120 • Low fluoride: 7 (11.67) Girls: 34 (28.3%) • High fluoride: 7 (11.67) Girls: 34 (28.3%) • Low fluoride: 6 (10) IQ > 129 very superior Exclusions: • High fluoride: 1 (1.66) NR • Low fluoride: 0 (0.0) "No significant difference was present between the support: IQ distribution in the high NR and low fluoride areas on		<u>(Umerkot)</u>		• • • •	arsenic, lead, and
Sample size: mg/L) 120 • High fluoride: 16 (26.67) 120 • Low fluoride: 15 (25) IQ 120 – 129 superior (good) Sex N (%): • High fluoride: 7 (11.67) Girls: 34 (28.3%) • Low fluoride: 6 (10) IQ >129 very superior (excellent) Exclusions: • High fluoride: 1 (1.66) NR • Low fluoride: 0 (0.0) "No significant difference Source of funding / was present between the support: IQ distribution in the high NR and low fluoride areas on		•		()	iodine." (p. 57)
 High Ly High fluoride: 16 (26.67) Low fluoride: 15 (25) IQ 120 – 129 superior (good) Sex N (%): Girls: 34 (28.3%) Low fluoride: 7 (11.67) Low fluoride: 6 (10) IQ > 129 very superior (excellent) Exclusions: NR High fluoride: 1 (1.66) Low fluoride: 0 (0.0) "No significant difference Source of funding / was present between the support: IQ distribution in the high NR and low fluoride areas on 	Sample size:	i i		<u>normal (high average)</u>	
Sex N (%):• High fluoride: 7 (11.67) • Low fluoride: 6 (10) IQ >129 very superior (excellent)Exclusions:• High fluoride: 1 (1.66) • Low fluoride: 0 (0.0)NR• Low fluoride: 0 (0.0)Source of funding / support:was present between the IQ distribution in the high and low fluoride areas on	•	ling/∟)		• Low fluoride: 15 (25)	
Girls: 34 (28.3%) • High fluoride: 7 (11.67) Exclusions: • Low fluoride: 6 (10) IQ >129 very superior (excellent) Exclusions: • High fluoride: 1 (1.66) NR • Low fluoride: 0 (0.0) Source of funding / was present between the support: IQ distribution in the high NR and low fluoride areas on				<u>(good)</u>	
Exclusions:• High fluoride: 1 (1.66) • Low fluoride: 0 (0.0)NR• No significant differenceSource of funding /was present between thesupport:IQ distribution in the highNRand low fluoride areas on				• Low fluoride: 6 (10)	
 High Huonde: T (1.66) Low fluoride: 0 (0.0) Source of funding / was present between the support: NR IQ distribution in the high and low fluoride areas on 				(excellent)	
Source of funding /was present between thesupport:IQ distribution in the highNRand low fluoride areas on				5	
support: IQ distribution in the high NR and low fluoride areas on				"No significant difference	
NR and low fluoride areas on	Source of funding /			was present between the	
NK	support:			IQ distribution in the high	
	NR			and low fluoride areas on	
				chi-square testing after	

80

Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declara	tion of		combining the groups IQ	
interest:			<70 and IQ 70–79, and	
NR			the groups IQ 120–129	
			and IQ >129, so that the	
			cells had an n of 5 or	
			more" (p. 56)	
			IQ scores by high (urban)	
			and low (rural) fluoride	
			areas stratified by gender	-
			Boys	
			• High fluoride: 99.95 (±	
			15.50) • Low fluoride: 92.30 (± 14.97)	
			Girls	
			 High fluoride: 96.90 (± 16.31) 	
			• Low fluoride: 90.30 (± 15.49)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			"comparing IQ of high	
			fluoride boys and low	
			fluoride boys p<0.05" (p.	
			57)	

Risk of bias as	Risk of bias assessment				
Bias domain Criterion		Response			
Selection	Was administered dose or exposure level	NA	Not applicable		
	adequately randomized?				
	Was allocation to study groups adequately	NA	Not applicable		
	concealed?				
	Did selection of study participants result in	_	NR (eligibility criteria and recruitment time frame not		
	appropriate comparison groups?		reported)		
Confounding	Did the study design or analysis account for	-	t-test and Mann Whitney tests were used.		
	important confounding and modifying variables?		"several confounding factors were not controlled for		
			including the level of		
			parental education, socio-economic status, and the levels		
			of arsenic, lead, and iodine." (p. 49)		
Performance	Were experimental conditions identical across study	N/A	Not applicable		
	groups?				

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Resp	oonse			
	Were the research personnel and human subjects	N/A	Not applicable			
	blinded to the study group during the study?					
Attrition	Were outcome data complete without attrition or		Reasons for exclusion NR. "There were more than 230			
	exclusion from analysis?		students registered in madrassa in rural and urban areas			
			and the participants in this cross-sectional study			
			comprised 120 madrassa students, aged 9-11-years-old,			
			in the rural and urban areas of Sindh province, Pakistan.			
			According to the fluoride concentration in the groundwater,			
			the participants were determined using a stratified cluster			
			selection of areas based on the geological survey report of			
			the Government of Pakistan." (p. 54- 55)			
Detection	Can we be confident in the exposure		Exposure assessment methods NR			
	characterization?					
	Can we be confident in the outcome assessment?		"The Raven's Progressive Matrices Intelligence Test, with			
			a series of conceptual judgment multiple choice questions			
			in the Urdu and English languages, was employed in the			
			study" (p. 55). Unclear blinding			
Selective	Were all measured outcomes reported?	++	Outcomes discussed in methods were reported in the			
reporting			results			
Other sources	Were there no other potential threats to internal	++	None identified			
	validity (e.g., statistical methods were appropriate					
	and researchers adhered to the study protocol)?					

Feng 2022 ⁹

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "Excessive fluoride
Original study	<u>Fluoride level(s) in</u> :	Intelligence quotient	Descriptive analysis	exposure may have adverse effects on
Study design:	• Urine	(IQ).	 Generalized linear model (GLM) 	children's intelligence, and changes in
Cross-sectional			 Multinomial logistic regression 	children's intelligence may be associated with
Country:				the interaction between fluoride and MTHFD1
China				polymorphisms."Note: significant trends
Participants:	Method of		Results:	in IQ with increasing creatinine-adjusted
Children aged 8-12	exposure	Mea	Mean IQ scores	urinary fluoride were found only in high fluoride group; no significant trends were seen in the total
years	assessment:		•HFG: 122.61±11.61	
Sampling time frame:	 Fluoride ion- selective electrode 		•CG: 121.50±12.14 •P=0.290	
April-May 2017	(Shanghai Exactitude		• Total: 122.05±11.88	population.
Sample size:	Instruments, Shanghai, China)		Distribution by intelligence level in HFG and CG • Normal: (IQ 90-109):	
683	 Creatinine- adjusted urinary fluoride (UFcr) levels were calculated 		•Normal: (10 90-109): 15.25% (HFG); 17.54% (CG)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex: N (%):	Exposure level(s):	Method of outcome	• High-normal (IQ 110-119):	
Boys: 324 (47.44%)	Median UFcr	ascertainment:	25.81% (HFG); 24.85% (CG)	
Exclusions:	(mg/L): 1.33 Children were	 The second revision of the Combined Raven's 	 Superior (IQ 120-129): 30.21% (HFG); 33.04% 	
 Non-residents On calcium supplements Had disorders of 	divided into two groups, high fluoride group (HFG, UFcr>1.33 mg/L)	Test – the Rural in China (CRTRC2)Children completed the test "independently with	(CG) • Excellent (IQ≥130): 28.74% (HFG); 24.56% (CG) • P=0.539	
calcium or phosphorus	and control group (CG, UFcr≤1.33	the supervision of trained investigators".	High fluoride group (HFG)	
metabolism, digestive diseases,	mg/L). Mean urinary		Change in IQ score per 1.0 mg/L increase in UFcr	
or thyroid diseases.	fluoride [UF,		level: β=-2.502 (95% Cl: - 4.411, -0.593); p=0.010	
• Children with IQ<90 Source of funding /	unadjusted for creatinine] (mg/L):		• Change in the probability of	
support:	•HFG:1.56±0.82 •CG: 0.98±0.62		"excellent" intelligence (IQ≥130) per 1.0 mg/L	
 The National Natural Science Foundation 	• P<0.001 • Total: 1.27±0.79		increase in UFcr level: OR=0.537 (95% CI: 0.290, 0.994); p=0.048	
of China (Nos. 81972981,	Mean UFcr (mg/L)		No significant trend in IQ scores by tertile of UFcr	
82003401, and 81673116)	•HFG: 2.15±0.91 •CG: 0.83±0.30		(≤1.63, 1.64-2.14, >2.14	
 Key Projects of 	• P<0.001		mg/L); p=0.116	
Colleges and Universities of Henan Education	•Total: 1.49±0.95		Control group	

Study Characte	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Department (21A330006)			 No significant change in IQ score per 1.0 mg/L 			
Author declara	tion of		increase in UFcr level: p=0.181			
interest: no COI	91		 •No significant change in the probability of "excellent" intelligence (IQ≥130) per 1.0 mg/L increase in UFcr level: p=0.659 •No significant trend in IQ scores by tertile of UFcr (≤0.66, 0.67-1.02, >1.02 mg/L); p=0.343 			
			Total			
			 No significant change in IQ score per 1.0 mg/L increase in UFcr level: p=0.376 No significant change in the probability of "excellent" intelligence (IQ≥130) per 1.0 mg/L increase in UFcr level: p=0.396 No significant trend in IQ scores by tertile of UFcr (≤1.02, 1.03-1.63, >1.63 mg/L); p=0.426 			

Study Charact	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
			Statistically significant gen environmental interaction the IQ scores			
			[Polymorphisms in 4 loci of MTHFD1 related to neurodevelopment (rs11627387, rs1076991, rs2236224, and rs223622 were analyzed]			
			 UFcr x rs11627387 x rs1076991 x rs2236224: F=1.669; p=0.021 UFcr x rs11627387 x rs1076991 x rs2236225: F=1.764; p=0.012 UFcr x rs11627387 x rs1076991 x rs2236224 x rs2236225: F=1.614; p=0.012 			

Risk of bias as			
Bias domain	Criterion	Respo	onse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	All participants were recruited from the same four primary schools at the same time and using the same eligibility criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it was adjusted for major confounders such as children's age, sex, BMI, age at which pregnancy occurred, gestational weeks, birth weight, birth modes, and paternal and maternal education level.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on the reasons for exclusion of study participants (non-residents, on calcium

Risk of bias a	Risk of bias assessment					
Bias domain	Criterion	Respo	onse			
			supplements, had disorders of calcium or phosphorus metabolism, digestive diseases, or thyroid diseases, and children with IQ<90).			
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in urine using fluoride ion- selective electrode (Shanghai Exactitude Instruments, Shanghai, China). Creatinine-adjusted urinary fluoride levels were calculated to correct for urine dilution.			
	Can we be confident in the outcome assessment?	-	The Combined Raven's Test – the Rural in China (CRTRC2) was completed by children under supervision of "trained investigators". It is not reported whether the children and/or the "trained investigators" were aware of the exposure status.			
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcome (children intelligence, IQ) discussed in methods were presented in the results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were	++	None identified			

Risk of bias assessment					
Bias domain	Criterion	Response			
	appropriate and researchers adhered to the				
	study protocol)?				

García-Escobar 2022 10

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	 "Patients from
Original study	Fluoride levels in	Dental fluorosis	 Fisher's exact test 	rural communities of the Anantapur
Study design:	 Drinking water 		 Spearman's rank order correlation 	district showed a
Cross-sectional			Method for estimation of	high prevalence (over 90%) of
Country:			ORs not reported.	dental fluorosis.
India				Moreover, the Anantapur
Participants:	Method of		Results:	population
785 subjects aged 10-	exposure		Overall prevalence	presents a high number of
60 years	assessment:		• 94.6% (DI)	moderate and
Sampling time frame:	 Fluoride levels in 		• 94.4 (TFI)	severe cases (over 60%), while
NR	water: "ion			other populations

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size:	chromatography		Prevalence of Moderate-	showed less
785	according to the parameters for		Severe (MS) cases (DI) and	severe forms of fluorosis, despite
	potable waters for		TFI score 4–9 cases	reporting superior
	public consumption in		[DI MS group corresponds to	fluoride levels to those found in the
	Spain (R.D.		TFI 4–9]	Anantapur
Sex: N (%):	140/2003)" Exposure level(s):	Method of outcome	• 62.8% (DI MS)	drinking water.""The severity of
Men: 322 (41.3%)	Water fluoride	ascertainment:	 • 73.1% (TFI 4-9) <u>Prevalence of fluorosis</u> 	fluorosis concerning
Exclusions:	(ppm): 1.1 to 2.92 (mean 1.71,	• The Dean Index (DI)	among those consuming	fluoride
Orofacial	median 1.5)	 The Thylstrup and Fejerskov Index (TFI) 	water with water fluoride	concentration levels in drinking
malformations or pathologies that			<u>≤1.5 ppm</u>	water in
could make			• 54.3% (DI)	Anantapur suggests that
examination difficultSystemic pathology			 54.5% (TFI) Prevalence of DI MS and TFI 	other factors are
affecting fluoride			4-9 among those consuming	involved in the severity of the
metabolismAbsence of			water with water fluoride	dental fluorosis observed. A
permanent or			<u>≤1.5 ppm</u>	potential change
definitive teethDental surface wear			• 33.2% (DI MS)	in the biological susceptibility of
or stains due to			• 39.9% (TFI 4-9)	the population to
tobacco, betel, or another chewing			<u>OR (95% CI)</u>	the toxin, due to
habit				the long-term

Study	Exposure	Outcome	Analysis & Results	Conclusions
Excessive bacterial			DI MS	exposition
dental plaque or calculusPatients requiring urgent dental attention			 ≤1.5 ppm: reference >1.5 ppm: 1.81 (1.34–2.45) P=0.000 TFI 4-9 	(including several generations) could explain the phenomenon…"
 Patients with missing data Patients whose parents or grandparents came from a community outside Anantapur. 			 ≤1.5 ppm: reference >1.5 ppm: 1.79 (1.28–2.5) P=0.000 Spearman's rank order correlation between water fluoride and moderate- 	
Source of funding /			severe fluorosis	
support:			• DI MS: Rs=0.527; p=0.064 • TFI 4-9: Rs=0.610; p=0.027	
No external funding				
Author declaration of				
interest: No COI				

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	NA Not applicable			

Risk of bias as	ssessment			
Bias domain	Criterion	Response		
	Was allocation to study groups adequately concealed?	NA	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	+	Participants selected using same criteria. Sampling time frame not reported.	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR	
Performance	Were experimental conditions identical across study groups?	NA	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the study?	NA	Not applicable	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided	
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in water using ion chromatography	
	Can we be confident in the outcome assessment?	++	DF examined using the Thysltrup and Fejerskov criteria and Dean Index	
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results	

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Other	Were there no other potential threats to internal			
sources	validity (e.g., statistical methods were		None identified	
	appropriate and researchers adhered to the	++	None identified	
	study protocol)?			

Goodman 2022 11

Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• " prenatal
Original study	Fluoride level in	Children's IQ	 Generalized estimating equation (GEE) population 	exposure to fluoride is associated with
Study design:	 Maternal urine collected during one 		averaged models for panel data with an autoregressive	sustained impacts o
Cohort	or more trimesters		correlation structure	
(ELEMENT)	of pregnancy		(estimation across time).Age-stratified multiple linear	 " an increment of 0.5 mg/L in materna
Country:			regression analyses (estimation at each time point)	urinary fluoride concentration was
Mexico				associated with a 2-

Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants:	Method of exposure		Results:	point decrement in
 Women who were planning to conceive or were pregnant at <14 weeks gestation (Cohorts 2A and Cohort 3 of the ELEMENT project). Children examined at ages 4, 5, and 6–12 years Sampling time frame: Recruitment: Cohort 2A in 1997-1999; Cohort 3 in 2001-2003 Sample size: 	 A modification of the hexamethyldisiloxa ne (Sigma Chemical Co., USA) microdiffusion method with the ion-selective electrode An average of all available maternal urinary fluoride adjusted for creatinine concentrations during pregnancy (1 to 3 samples) was used as the exposure measure. 		Changes in cognitive sore per 0.5 mg/L increase in MUFcre <u>GEE population-averaged</u> <u>models</u> • FSIQ/GCI: B=-2.12 (95% CI: - 3.49, -0.75); p=0.002 • PIQ: B=-2.63 (95% CI: -3.87, - 1.40); p<0.001 • VIQ: B=-1.29 (95% CI: -2.60, 0.01); p=0.053 • No interactions were between MUFcre and time (p>0.10). • No interaction between MUFcre and child sex (p>0.10) <u>Linear regression analysis</u> Age 4 • GCI: B=-2.12 (95% CI: -3.83, - 0.41); p=0.015 • PIQ: B=-3.08 (95% CI: -4.69, - 1.47); p<0.001)	children's Full-Scale IQ scores". • "Non-verbal abilities may be more susceptible to impairment from prenatal fluoride exposure as compared to verbal abilities." • "These results were found among mother-child pairs living in a region of Mexico in which fluoride is added to salt."

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Primary sample with complete covariate, maternal urinary fluoride, and outcome data for at least two time points: 348 mother-child dyads Examined at age 4 years: 386 Examined at age 5: 308 Examined at age 6-12: 278 Sex: N (%): Boys: Primary sample: 167 (47.99%) Age 4: 183 (47.41%) Age 5: 151 (49.03%) 	Exposure level(s): • Creatinine-adjusted maternal urinary fluoride (MUFcre, μg/L): 0.14 to 3.01; mean 0.90 (SD 0.39), median 0.83; IQR 0.64-1.11	Method of outcome ascertainment: McCarthy Scales of Children's Abilities (MSCA) translated into Spanish to children aged 4 and 5 years • Verbal scale (VIQ, a measure of verbal	 VIQ: B=-0.81 (95% CI: -2.30, 0.69); p>0.05 Age 5 GCI: B=-1.97 (95% CI: -3.64, -0.30); p=0.021 PIQ: B=-2.46 (95% CI: 4.04, -0.87); p=0.003 VIQ: B=-1.24 (95% CI: -2.97, 0.49); p>0.05 Age 6-12 FSIQ: B=-2.01 (95% CI: -3.66, -0.46); p=0.012 PIQ: B=-1.80 (95% CI: -3.39, -0.21); p=0.027 VIQ: B=-1.93 (95% CI: -3.67, -0.18); p=0.031 No interaction between MUFcre and child sex Sensitivity analyses (GEE models), B (95% CI) 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
• Age 6-12: 132 (47.48%)	2	reasoning and comprehension)	FSIQ/GCI.	
Exclusions:		 Perceptual- performance scale (PIQ, a measure of nonverbal reasoning 	 Model A^v: -2.10 (-3.47, -0.73) Model A + number/timing of urine samples^{vi}: -2.12 (-3.49, - 	
Women with a		and perceptual	0.75) ●Model A – IQ score<70 ^{vii} : -	
history of		information processing)	1.67 (-2.93, -0.41)	
psychiatric		General Cognitive	 Model A – Cohort 3 Ca^{viii}: - 1.98 (-3.70, -0.27) 	
disorders,		Index (GCI), the standardized	• Model A – Maternal IQ ^{ix} : -2.40	
substance use,		composite score	(-3.79, -1.01)	
high-risk		Spanish version of	 Model A + Maternal IQ^x: -2.09 (-3.44, -0.73) 	
pregnancy, or		Wechsler Abbreviated		

 $^{\rm x}$ Subset of cases who have data on maternal IQ, adjusted for maternal IQ

^v GEE models adjusted for gestational age, weight at birth, sex, parity (being the first child), age at outcome measurement, time of testing, smoking history (ever smoked during the pregnancy vs. non-smoker), marital status (married vs. others), maternal age at delivery, maternal education, and cohort/calcium treatment.

vi Number/timing of urine samples included as a covariate

 $^{^{\}mbox{vii}}$ Excluding cases with FSIQ/GCI, PIQ, or VIQ scores less than 70

viii Subset of cases who received calcium supplementation

 $^{^{\}mbox{\scriptsize ix}}$ Subset of cases who have data on maternal IQ

Study Characteri	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
other medical conditions Source of funding / support: • The American British Cowdray Hospital provided facilities for the ELEMENT research. • U.S. National Institutes of Health (NIH;		 Scale of Intelligence (WASI) to children aged 6-12 years. Verbal IQ (VIQ, a measure of verbal reasoning and comprehension) Performance (PIQ, a measure of nonverbal reasoning and spatial processing) Full-Scale intelligence (FSIQ, a measure of global intellectual functioning) 	 Model A – HOME^{xi}: -2.33 (- 4.46, -0.20) Model A + HOME^{xii}: -2.11 (- 4.06, -0.16) Model A – Patella Lead^{xiii}: - 2.42 (-3.98, -0.86) Model A + Patella Lead^{xiv}: - 2.41 (-3.98, -0.85) Model A – Tibia Lead^{xv}: -2.75 (-4.61, -0.89) Model A + Tibia Lead^{xvi}: -2.23 (-4.09, - 0.38) Model A – Tibia and Patella Lead^{xvii}: -2.73 (-4.71, -0.76) Model A + Tibia and Patella Lead^{xviii}: -2.20 (-4.18, -0.22) 		

^{xi} Subset of cases who have data on Home Observation for the Measurement of the Environment (HOME) scores

^{xii} Subset of cases with HOME score, adjusted for HOME score

xiii Subset of cases who have data on maternal patella lead

xiv Subset of cases with data on maternal patella lead, adjusted for maternal patella lead

^{xv} Subset of cases who have data on maternal tibia lead

^{xvi} Subset of cases with data on maternal tibia lead, adjusted for maternal tibia lead

 $[\]ensuremath{^{xvii}}$ Subset of cases who have data on maternal tibia and patella lead

xviii Subset of cases with data on maternal tibia and patella lead, adjusted for maternal tibia and patella lead

Study	Exposure	Outcome	Analysis & Results	Conclusions
grants R01ES021446 and R01- ES007821) The National Institute of Environmental Health Sciences/the U.S. Environmental Protection Agency (NIEHS/EPA; grant P01ES022844, 83543601) The NIEHS	Exposure	Outcome Each child was evaluated by one of three psychologists supervised by experienced developmental psychologist. The inter-examiner reliability: r>0.90 (MSCA); not assessed for WASI	 Analysis & Results PIQ Model A: 2.61 (-3.85, -1.38) Model A + number/timing of urine samples: -2.63 (-3.86, -1.39) Model A – IQ score<70: -2.61 (-3.81, -1.42) Model A – Cohort 3 Ca: -3.13 (-4.67, -1.58) Model A – Maternal IQ: -2.78 (4.04, -1.52) Model A + Maternal IQ: -2.46 (-3.68, -1.24) Model A – HOME: -3.67 (-5.52, -1.82) Model A + HOME: -3.44 (- 	Conclusions
grant P42- S05947, 20ES018171) IIEHS Center Grant 30ES017885) lational hstitute of Public lealth/Ministry			 5.15, -1.72) Model A – Patella Lead: -2.66 (-4.05, -1.27) Model A + Patella Lead: -2.65 (-4.04, -1.27) Model A – Tibia Lead: -2.81 (-4.46, -1.16) Model A + Tibia Lead: -2.41 (-4.07, -0.76) 	

99

Study Characte	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
of Health of Mexico			 Model A – Tibia and Patella Lead: -2.75 (-4.50, -1.00) 		
Author			 Model A + Tibia and Patella Lead: -2.32 (-4.08, -0.56) 		
declaration of interest: No CO	I		VIQ		
			 Model A: -1.28 (-2.58, 0.03) Model A + number/timing of urine samples: -1.30 (-2.60, 0.01) Model A - IQ score<70: -1.08 (-2.31, 0.21) Model A - Cohort 3 Ca: -0.69 (-2.31, 0.94) Model A - Maternal IQ: -1.55 (-2.86, -0.24) Model A + Maternal IQ: -1.33 (-2.62, -0.04) Model A - HOME: -0.71 (-2.72, 1.30) Model A + HOME: -0.54 (-2.43, 1.35) Model A - Patella Lead: -1.6 (-3.12, -0.11) Model A + Patella Lead: -1.6 (-3.13, -0.11) 	2	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			 Model A – Tibia Lead: -2.0 3.88, -0.31) Model A + Tibia Lead: -1.6 3.44, 0.14) Model A – Tibia and Patell Lead: -2.09 (-3.99, -0.19) Model A + Tibia and Patell Lead: -1.63 (-3.55, 0.28) 	5 (- a	

Risk of bias assessment					
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	+	Mother-child pairs were enrolled from three hospitals in Mexico City serving low to middle income families. Eligibility criteria were slightly different between the two cohorts (2A and 3), but there is no indication that they differed in relation to		

Risk of bias as	ssessment			
Bias domain	Criterion	Response		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	fluoride exposure level. Time frame was different for the two cohorts (2A and 3). More information about study participants can be found in Perng et al. 2019 ^{xix} . Yes, it was adjusted for major confounders such as maternal education, maternal age at delivery, marital status at delivery, maternal smoking, gestational age, weight at birth, birth order, child age at each outcome measurement, and cohort.	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on the reasons for exclusion of study participants (women with a history of psychiatric disorders, substance use, high-risk	

xix https://bmjopen.bmj.com/content/9/8/e030427

Risk of bias assessment						
Bias domain	Criterion	Respo	Response			
			pregnancy, or other medical conditions). Although it is not reported, there is no indication that losses to follow-up were related to intelligence level.			
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in maternal urine using a modification of the hexamethyldisiloxane (Sigma Chemical Co., USA) microdiffusion method with the ion- selective electrode			
	Can we be confident in the outcome assessment?	++	Yes, IQ was consistently assessed by one of three psychologists who was unaware to the child's prenatal fluoride exposure and supervised by an experienced developmental psychologist. The age- appropriate assessment tools included the McCarthy Scales of Children's Abilities, MSCA, translated into Spanish (administered at ages 4 and 5 years), and the Spanish version of Wechsler Abbreviated Scale of Intelligence, WASI (administered at age 6-12 years).			

Bias domain	Criterion	Response		
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcome (children intelligence, IQ) discussed in methods were presented in the results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Gupta 2022 12

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "Besides high		
Original study	Fluoride levels in:	 Dental fluorosis 	 Descriptive analysis 	concentrations of fluoride in potable		
Study design:	 Drinking water 	 Skeletal fluorosis 	 Analysis of variance 	water, poor socio-		
Case-Control Study	 Serum 			economic status		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Country: India Participants:	Method of		Results:	and nutritional deficiency also contribute to fluorosis in exposed	
Subjects: from endemic villages, controls: from non- endemic villages Sampling time frame: 2014-2015 Sample size: 180 Sex: N (%): NR Exclusions: Neonates, children, pregnant women and patients with other severe & chronic	 exposure assessment: Drinking water: Thermo scientific orion 9609 BNWP ion selective fluoride electrode Serum: Semi auto analyzer (Model CHEM 400), Electronics India. Exposure level(s): Mean drinking water fluoride levels 1.16-7.56 ppm 	Method of outcome ascertainment: • Dental Fluorosis: NR • Skeletal Fluorosis: NR	 Water fluoride concentration associated with: Dental fluorosis: 0.67-0.83 ppm Skeletal fluorosis: 0.43-0.83 ppm 	 individuals from endemic regions." For the individuals residing in an endemic area and consuming the same high fluoride containing drinking water which doesn' have visible symptoms of denta or skeletal fluorosis individuals might be considered in a preclinical stage of fluorosis and may develop symptoms of fluorosis in subsequent years. The finding of this 	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Source of fundi support:	ing /			preliminary screening for those		
 UGC, New Dell Chhattisgarh C of Science and Technology 	Council			individuals. However, urine and blood fluoride analyses of the subjects are also		
Author declarat interest: No CO				needed for further confirmation."		

Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	

Risk of bias assessment					
Bias domain	Criterion	Response			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (Neonates, children, pregnant women and patients with other severe & chronic diseases)		
Detection	Can we be confident in the exposure characterization?	the exposure +++ Yes, fluoride exposure levels Drinking water sa the study areas were collected and estimated f fluoride content with the help of Thermo-scient 9609 BNWP ion selective fluoride electrode. Fl concentrations in serum was measured by the analyzer (Model CHEM 400), Electronics India		d estimated for the hermo-scientific Orion electrode. Fluoride sured by the Semi auto	
	Can we be confident in the outcome assessment?	-	NR	-	NR
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of de for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Ibarluzea 2022 13

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Routes of	Outcome(s):	Statistical analysis ^{xx} :	• "We observed no	
Original study	exposures:	• Children's	 Student's t tests 	negative effects on children's	
Study design:	Fluoride level in	cognition/intelligence	 One-way analysis of variance Pearson correlations Multiple linear regression 	cognition and even found positive associations for	
Cohort	 Maternal urine 				
Country:	 collected in the first and third 				
Spain	trimesters of pregnancy			verbal, performance,	
Participants:	Method of	-	Results:	 numeric, memory scores and GCI, in 	
Pregnant women	exposure		Changes in cognitive	boys at the age of	
Children examined at	assessment:		score per unit (mg/g)	4 years, although when Hg levels	
ages 1 and 4 years	 Potentiometry 		increase in maternal	were included in	
Sampling time frame:	 using an ion- selective electrode 		creatinine-adjusted	the model only verbal and GCI at	
Recruitment of	(DX219-F, Mettler		urinary fluoride (MUFcr), β	week 32 and	
pregnant women	Toledo) ● Urinary fluoride		(95% CI) ^{xxi}	whole pregnancy remained	
between 1997 and	levels were		Bayley Mental Development	significant or	
2008 in different study			Index (MDI)	marginally significant."	

^{xx} Student's t-test, one-way ANOVA and Pearson correlation were used to select variables for multiple linear regression (with p<0.2)

xxi Adjusted for child's age at testing (only for McCarthy), order of the child (between siblings), nursery at 14 months, breastfeeding, maternal social class, IQ and smoking

108

areas (Guxen et al.	adjusted for		Both trimesters MUFcr	 "The positive
2012) ^{xxii} Sample size: • Assessed at age 1	creatinine		 All: 1.48 (-4.2, 7.16) Boys: 3.84 (-5.04, 12.72) Girls: 0.75 (-6.92, 8.43) Week 12 MUFcr 	associations between MUFcr and cognitive functions seemed
 year: 316 mother- child pairs Assessed at ages 1 and 4 years: 248 mother-child pairs 			 All: 0.55 (- 4.64, 5.74) Boys: 2.96 (-5.09, 11.01) Girls: -1 (-8.07, 6.07) Week 32 MUFcr 	to be more evident in children of mothers who lived their pregnancy in the nonfluoridated zones."
Sex: N (%):	Exposure level(s):	Method of outcome	• All: 1.52 (-2.92, 5.97)	 "The associations
Boys:	Fluoride levels in	ascertainment:	• Boys: 2.50 (-4.46, 9.46)	have been seen
Assessed at age 1	drinking water	Bayley Scales of Infant	• Girls: 1.7 (-4.30, 7.71) <u>McCarthy, verbal</u>	with MUFcr of the third trimester and
year: 146 (46.2%) • Assessed at age 4	 Community fluoridated drinking 	Development (BSID) at age 1 year	Both trimesters MUFcr	not with those of the first one."
years: 125 (50.4%) Exclusions:	- water systems: mean 0.81 (SD	 McCarthy Scales of Children's Abilities (MSCA)^{xxiv} 	 All: 13.86 (3.91, 23.82) Boys: 13.38 (2.81, 23.95) Girls: -1.31 (-9.35, 6.74) 	 "As there is not information of MUFcr of the
<u>At recruitment</u> ● Maternal age <16	 0.15) mg/L Community non- fluoridated drinking 		• P<0.05 Week 12 MUFcr	second trimester of pregnancy, it is
 years Multiple pregnancy Pregnancy achieved with assisted reproduction techniques 	water systems: <0.1 mg/L Mean (95% CI) maternal		 All: 1.11 (-4.86, 7.07) Boys: 3.78 (-6.16, 13.71) Girls: -0.91 (-8.78, 6.96) Week 32 MUFcr 	difficult to identify a window of exposure related to the effect, but the lack of

xxii Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, Olea N, Rebagliato M, Tardón A, Torrent M, Vioque J, Vrijheid M, Sunyer

J; INMA Project. Cohort Profile: the INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J Epidemiol. 2012 Aug;41(4):930-40.

doi: 10.1093/ije/dyr054. Epub 2011 Apr 5. PMID: 21471022

^{xxiv} The motor scale of the MSCA was not included in this study.

109

 Not planning birth in the referral hospital Communication problems in Spanish or Basque Analytical sample Incomplete data [To be included, participants had to have 1) data on neuropsychological assessment at 1 year of age; 2) data on neuropsychological assessment at 4 years of age provided they also had assessment data at 1 year; 3) maternal urinary creatinine adjusted fluoride levels at the first and third trimesters of pregnancy.] Source of funding / support^{xxv}: 	creatinine- adjusted urinary fluoride levels (mg/g creatinine) ^{xxiii} <u>Assessed at age 1</u> <u>Vear</u> • Both trimesters: 0.66 (0.61; 0.70) • Week 12 of pregnancy: 0.57 (0.52; 0.62) • Week 32 of pregnancy: 0.74 (0.69; 0.79) • P<0.001 [1 st vs. 3 rd trimester] <u>Assessed at age 4</u> <u>Vears</u> • Both trimesters: 0.64 (0.59; 0.68)	 All: 12.01 (4.82, 19.19) Boys: 11.79 (4.22, 19.36) Girls: -0.93 (-7.01, 5.15) P<0.01 McCarthy, performance Both trimesters MUFcr All: 5.86 (0.32, 11.39) Boys: 12.24 (2.87, 21.61) Girls: 2.03 (-4.77, 8.83) P<0.05 Week 12 MUFcr All: 4.63 (-0.57, 9.82) Boys: 9.11 (0.47, 17.75) Girls: 1.10 (-5.53, 7.73) Week 32 MUFcr All: 3.68 (-0.49, 7.85) Boys: 7.17 (0.24, 14.09) Girls: 1.69 (-3.44, 6.83) P<0.05 McCarthy, numeric Both trimesters MUFcr All: 6.22 (0.65, 11.79) Boys: 11.09 (1.79, 20.4) 	associations in the first trimester indicate that the effects are associated with later periods in pregnancy." • "A positive association between MUF and GCI scores and other measures of cognitive functions at 4 years of age is observed among boys in a prospective birth cohort in Spain. The current findings contradict, with a few exceptions, results obtained previously in cross-sectional and prospective studies."
---	--	--	---

110

xxiii Detailed data on maternal creatinine-adjusted urinary fluoride levels by maternal and children's characteristics are reported in Supplementary tables

S2, S3 and S5

^{xxv} Information from Guxen et al. 2012.

- The Instituto de Salud Carlos III, Red de Centros de investigación en Epidemiología y Salud Pública (RCESP)
- CIBER Epidemiología y Salud Pública (CIBERESP)
- The Fondo de Investigación Sanitaria
- The European Union's 6th and 7th Framework Programmes (Hiwate, Escape, Hitea and Contamed projects)
- The Ministerio de Educación y Ciencia, the Generalitat de Catalunya
- The Centre for Research in Environmental Epidemiology (CREAL) of Barcelona
- pregnancy: 0.55 (0.50; 0.60)• Week 32 of pregnancy: 0.73 (0.67; 0.79)• P<0.001 [1st vs. 3rd trimesterl Whole pregnancy mean (SD) maternal urinary fluoride (mg/L) Assessed at age 1 year Non-fluoridated zone: 0.36 (0.21) • Fluoridated zone: 0.65 (0.29) • P<0.001 Assessed at age 4 years

• Week 12 of

- Non-fluoridated zone: 0.35 (0.20)
- Fluoridated zone: 0.62 (0.26)
- P<0.001

- Girls: 3.03 (-3.96, 10.03) • P<0.05 Week 12 MUFcr • All: 4.47 (-0.79, 9.73) • Boys: 5.03 (-3.65, 13.7) • Girls: 2.92 (-3.95, 9.78) Week 32 MUFcr • All: 4.13 (-0.07, 8.32) • Boys: 8.56 (1.81, 15.31) • Girls: 1.55 (-3.74, 6.85) • P<0.05 McCarthy, memory Both trimesters MUFcr • All: 11.63 (2.62, 20.63) • Boys: 11.3 (1.90, 20.7) • Girls: -2.12 (-9.32, 5.09) • P<0.05 Week 12 MUFcr • All: 1.71 (-3.66, 7.09) • Boys: 4.28 (-4.51, 13.06) • Girls: -1.40 (-8.46, 5.67) Week 32 MUFcr
 - All: 9.2 (2.67, 15.73)
 - Boys: 9.26 (2.47, 16.05)
 - Girls: -1.72 (-7.17, 3.72)
 - P<0.01

- The Fundació La Caixa, the Fundació Roger Torné
- The Consejería de Salud de Andalucía
- The Junta the Andalucía
- The Conselleria de Sanitat de la Generalitat Valenciana
- The CAJASTUR— Caja Asturias
- The Spanish Association against the Cancer (AECC) (Delegación Provincial Asturias)
- The Departamento de Sanidad-Gobierno Vasco
- The Diputación Floral de Gipuzkoa
- The University of Oviedo, the KUTXA – Caja Gipuzkoa San Sebastián
- The city councils of Zumarraga, Urretxu, Legazpi, Azpeitia, Beasain and Azkoitia in Gipuzkoa

Both trimesters mean (SD)

creatinine-

adjusted maternal

urinary fluoride

(mg/g creatinine)

Assessed at age 1

<u>year</u>

- Non-fluoridated zone: 0.46 (0.25)
- Fluoridated zone: 0.84 (0.40)
- •P<0.001

Assessed at age 4

<u>years</u>

- Non-fluoridated
- zone: 0.45 (0.26) • Fluoridated zone:
- 0.82 (0.39)

•P<0.001

McCarthy, general cognitive

Both trimesters MUFcr

- All: 15.4 (6.32, 24.48)
- Boys: 15.03 (5.3, 24.75)
- Girls: -0.02 (-7.16, 7.12)
- P<0.01

Week 12 MUFcr

- All: 3.37 (-2.09, 8.83)
- Boys: 7.14 (-2.06, 16.33)
- Girls: 0.21 (-6.77, 7.19)

Week 32 MUFcr

- All: 11.48 (4.88, 18.08)
- Boys: 11.39 (4.33, 18.44)
- Girls: -0.16 (-5.55, 5.23)
- P<0.01
- Changes in cognitive
- score per unit (mg/g)

increase in MUFcr, β (95%

- CI) additionally adjusted
- for cord blood Hg levels.
- **Bayley Mental Development**

Index (MDI)

Both trimesters MUFcr

• All: 2.67 (-3.46, 8.81)

Author declaration of

interest: no COI

٠

- No significant interaction by sex
 Week 12 MUFcr
- All: 0.89 (-4.55, 6.32)
- No significant interaction by sex

Week 32 MUFcr

- All: 2.65 (-2.14, 7.45)
- No significant interaction by sex
 McCarthy, verbal

Both trimesters MUFcr

- All: 9.4 (-1.78, 20.57)
- Boys: --
- Girls: -2.07 (-10, 5.87)
- P<0.1

Week 12 MUFcr

- All: -1.5 (-7.53, 4.54)
- No significant interaction by sex
- Week 32 MUFcr
- All: 9.74 (1.75, 17.74)
- Boys: --
- Girls: -0.74 (-6.72, 5.25)
- P<0.05
- McCarthy, performance

Both trimesters MUFcr

• All: 4.41 (-1.59, 10.41)

- No significant interaction by sex
 Week 12 MUFcr
- All: 3.85 (-1.62, 9.33)
- No significant interaction by sex

Week 32 MUFcr

- All: 2.33 (-2.15, 6.82)
- No significant interaction by sex McCarthy, numeric

Both trimesters MUFcr

- All: 5.28 (-0.54, 11.1)
- No significant interaction by sex

Week 12 MUFcr

- All: 3.38 (-1.96, 8.71)
- No significant interaction by sex

Week 32 MUFcr

- All: 3.47 (-0.88, 7.82)
- No significant interaction by sex <u>McCarthy, memory</u>

Both trimesters MUFcr

- All: 0.8 (-5.3, 6.9)
- No significant interaction
- by sex

Week 12 MUFcr

- All: -0.52 (-6.06, 5.02)
- No significant interaction by sex

Week 32 MUFcr

- All: 1.15 (-3.4, 5.69)
- No significant interaction by sex
- McCarthy, general cognitive

Both trimesters MUFcr

- All: 10.54 (0.19, 20.89)
- Boys: --
- Girls: -0.83 (-8.18, 6.52)
- P<0.05

Week 12 MUFcr

- All: 1 (-4.61, 6.61)
- No significant interaction by sex:

Week 32 MUFcr

- All: 8.15 (0.69, 15.61)
- Boys: --
- Girls: -0.46 (-6.04, 5.12)
- P<0.05

Changes in cognitive

score per unit (mg/g)

- increase in MUFcr, β (95%)
- CI), stratified by

fluoridated and non-
fluoridated zone
Bayley Mental Development
Index (MDI)
Both trimesters MUFcr
 Both zones/non-fluoridated: -0.52 (-7, 5.95) No significant interaction by zone Week 12 MUFcr
 Both zones/non-fluoridated: -1 (-6.66, 4.65) No significant interaction by zone Week 32 MUFcr
 Both zones/non-fluoridated: 0.33 (-4.52, 5.19) No significant interaction by zone <u>McCarthy, verbal</u>
Both trimesters MUFcr
 Both zones/non-fluoridated: 15.58 (3.71, 27.45) Fluoridated zone: -2.4 (-11.17, 6.37) P<0.01

Week 12 MUFcr

- Both zones/nonfluoridated: 0.27 (-6.12, 6.65)
- No significant interaction by zone
- Week 32 MUFcr
- Both zones/nonfluoridated: 16.11 (7.4, 24.81)
- Fluoridated zone: -2.3 (-8.6 , 3.99)
- P<0.01
- McCarthy, performance

Both trimesters MUFcr

- Both zones/nonfluoridated: 7.82 (1.58, 14.07)
- Fluoridated zone: not reported
- P<0.05
- Week 12 MUFcr
- Both zones/nonfluoridated: 5.5 (-0.07, 11.07)
- No significant interaction by zone
 Week 32 MUFcr

- Both zones/nonfluoridated: 4.67 (0.08,
- 9.26)
- Fluoridated zone: not reported
- P<0.05
- McCarthy, numeric

Both trimesters MUFcr

- Both zones/nonfluoridated: 4.08 (-2.21, 10.36)
- No significant interaction by zone
 Week 12 MUFcr
- Both zones/nonfluoridated: 2.63 (-2.96, 8.23)
- No significant interaction by zone
 Week 32 MUFcr
- Both zones/nonfluoridated: 2.53 (-2.06, 7.13)
- No significant interaction by zone <u>McCarthy, memory</u>

Both trimesters MUFcr

• Both zones/nonfluoridated: 2.71 (-3.77, 9.18)

- No significant interaction by zone
 Week 12 MUFcr
- Both zones/nonfluoridated: 1.01 (-4.74, 6.77)
- No significant interaction by zone
 Week 32 MUFcr
- Both zones/nonfluoridated: 2.17 (-2.56, 6.9)
- No significant interaction by zone: <u>McCarthy, general cognitive</u>

Both trimesters MUFcr

- Both zones/nonfluoridated: 15.46 (4.55, 26.36)
- Fluoridated zone: 1.96 (-6.09, 10.02)
- P<0.01

Week 12 MUFcr

- Both zones/nonfluoridated: 3.5 (-2.36, 9.36)
- No significant interaction by zone
 Week 32 MUFcr

- Both zones/nonfluoridated: 12.88 (4.82, 20.94)
- Fluoridated zone: 0.11 (-5.73, 5.95)
- •P<0.01
- Analyses stratified by

fluoridated and non-

fluoridated zone, boys

<u>only</u>

 Significant associations only in non-fluoridated zones [see supplementary table S21 for details.]
 Analyses stratified by

maternal social class

• "more positive and significant associations were observed in children of mothers with a better social position" [see supplementary table S22] Analyses stratified by

quality of the family

context; boys only

 Statistically significant associations only in families with a lower

quality of the family context (supplementary table S23) Other analyses	
 Inclusion of other variables, such as other neurotoxicants (As, Mn, Pb, As x Pb), iodine, quality child's family context (HES), deprivation index did not substantially change the results. Analyses including women with only one sample of urine available (first or third trimester), adjustment for zone (fluoridated vs non- fluoridated), or excluding extreme low scores of cognitive functions (less than 2 SD) did not substantially change the results 	

Risk of bias assessment				
Bias domain Criterion Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable		
	Was allocation to study groups adequately concealed?	N/A Not applicable		

Risk of bias as	sessment		
Bias domain	Criterion		ponse
	Did selection of study participants result in appropriate comparison groups?	++	Mother-child pairs were enrolled from Gipuzkoa, Spain. Pregnant women were recruited between 1997- 2008. Their children were assessed at the age of 1 and 4 years. More information about study participants can be found in Guxen et al. 2012.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, study accounted for major confounders such as maternal characteristics (sociodemographic, behavioral and reproductive), maternal habits (smoking, type of water consumed) and child characteristics (sex, age, order of the child among siblings, breastfeeding, small for gestational age, and prematurity) and child habits (nursery attendance at 14 months). Adjustments also included creatinine, and Hg in umbilical cord blood, urinary iodine and urinary creatinine and specific gravity.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Mother-child pairs were enrolled from Gipuzkoa, Spain. Pregnant women were recruited between 1997- 2008. Their children were assessed at the age of 1 and 4 years. More information about study participants can be found in Guxen et al. 2012.
Detection	Can we be confident in the exposure characterization?	++	Study reported on source and intake of drinking water (tap or bottled) including food and drink, during the first and third trimesters. Bottled water intake was calculated based on the information provided by the mothers. Maternal urinary

Bias domain	Criterion		ponse
			fluoride was measured by potentiometry using an ion- selective electrode (DX219-F, Mettler Toledo).
	Can we be confident in the outcome assessment?	++	Yes, children's neuropsychological development was consistently assessed using the Bayley Scales of Infant Development (BSID) (Bayley, 1977) and a standardized version of the McCarthy Scales of Children's Abilities (MSCA) adapted to the Spanish population (McCarthy, 2009) respectively. Assessments were conducted by specially trained neuropsychologists who were blinded to the child's fluoride's exposure status.
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detai for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Kaur 2022 14

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "No statistically significant
Original study	Fluoride levels in	●IQ	 One-way ANOVA test and paired t-test were 	correlation (p> 0.05) existed
Study design:	• Water • Urine	Method of outcome	used • Statistical significance	between fluoride excretion and IQ
Cross-sectional	Method of exposure	ascertainment:Raven's Colored	at p < 0.05	in Group A children. But there was a
Country:	assessment:	Progressive Matrices intelligence test	Results:	statistically significant
• India	Water fluoride:	-	Correlation between IQ	correlation between fluoride
	Acquired from the Public Health		and urinary fluoride level	excretion and IQ
Participants:	Engineering Department		• Group A: r = -0.161 p = > 0.05	level in Group B (p<0.01) and
 School children (12- 13 years of age) 	• Urine fluoride: Selective Ion Electrode		• Group B: r = -0.485 p = < 0.01	Group C (p< 0.05). As the level of fluoride ion
residing in Dhand of Amer Tehsil,	Technique		• Group C: r = -0.334 p = < 0.05	concentration in urine increased,
Mohanpura, or Muhana of Sanganer	Exposure level:			there was a significant
Tehsil.	Water fluoride			decrease in IQ level" (p. 3)
Sampling time frame:	concentration by group			• "The results
	• Group A: 2 ppm			indicated that there was a

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
September 2011 – October 2011	• Group B: 5 ppm • Group C: 2 – 5 ppm			positive correlation between excess
Sample size:	Urinary fluoride			fluoride in drinking water and IQ." (p. 1)
• N = 90	• Group A: 1.60ppm			and iQ. (p. i)
Sex N (%):	• Group B: 6.82 ppm • Group C: 2.69 ppm			
•NR				
Exclusions:				
 Those with history of head trauma or injury Those with congenital or acquired neurological disorders Those with psychological disorders 				
Source of funding / support:				

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
• None				
Author declaration of				
interest:				
• No COI				

Risk of bias assessment					
Bias domain Criterion		Response			
Selection	Was administered dose or exposure level	N/A	Not applicable		
	adequately randomized?				
	Was allocation to study groups adequately	NA	Not applicable		
	concealed?				
	Did selection of study participants result in	++	Participants recruited using same eligibility criteria and		
	appropriate comparison groups?		recruited within same time frame		
Confounding	Did the study design or analysis account for	-	ANOVA test and t-tests were conducted for statistical		
	important confounding and modifying variables?		analysis.		
Performance	Were experimental conditions identical across study	NA	Not applicable		
	groups?				

Risk of bias as	ssessment				
Bias domain	Criterion		Response		
	Were the research personnel and human subjects	NA	Not applicable		
	blinded to the study group during the study?				
Attrition	Were outcome data complete without attrition or	++	"The total number of school children aged 12-13 years at		
	exclusion from analysis?		Dhand, Mohanpura, and Muhana was 35, 42, and 39,		
			respectively. Children with a history of trauma or injury to		
			the head and those affected by any congenital or		
			acquired neurological disorders or psychological		
			disorders were excluded from the study. Thirty children		
			were randomly allocated from each school into their		
			respective groups. The children were divided into three		
			groups: Group A (Fluoride concentration of 2 ppm),		
			Group B (Fluoride concentration of 5 ppm), and Group C		
			(Fluoride concentration of 2-5 ppm)."		
Detection	Can we be confident in the exposure	++	Water fluoride data was acquired from the Public Health		
	characterization?		Engineering Department. Urinary fluoride measured		
			using Selective Ion Electrode Technique		
	Can we be confident in the outcome assessment?	+	"The IQ of the children was measured using Raven's		
			Coloured Progressive Matrices™ intelligence test [8],		
			which consists of a series of multiple-choice questions.		
			Before administering the test, a friendly explanation of		
			the important instructions was given by a single examiner		
			to avoid mental stress for those taking the test. Children		

Risk of bias assessment				
Bias domain	Criterion	terion Response		
			were made to sit in a manner to ensure that they couldn't	
			talk with each other." (p. 2). Unclear blinding.	
Selective	Were all measured outcomes reported?	++	Outcomes discussed in methods were reported in the	
reporting			results	
Other sources	Were there no other potential threats to internal	++	None identified	
	validity (e.g., statistical methods were appropriate			
	and researchers adhered to the study protocol)?			

Marques 2022 15

Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "The prevalence
Original study	Fluoride levels in	Dental fluorosis	 Chi-square test 	of dental fluorosis at all levels was
Study design:	 Drinking water 		Student's t testsLogistic regression	higher in
Cross-sectional				
Country:				groups, there
Brazil				were few cases with esthetic
Participants:			Results:	implications."

Study	Exposure	Outcome	Analysis & Results	Conclusions
High school students	Method of		Fluorosis prevalence and	
aged 17–20 years	exposure		<u>severity (n, %)</u>	
Sampling time frame:	assessment:		Fluorosis absent	
January to September 2017	 Fluoride in water by a specific ion electrode (Orion 		 Exposed: 195 (58.9%) Unexposed: 260 (79.0%) Very mild or mild fluorosis: 	
Sample size: 660 (331 exposed and 329 unexposed to	Model 96–09) coupled to the ion analyzer (Orion Star A211, S~ao		• Exposed: 96 (29.0%) • Unexposed: 55 (16.7%) Moderate fluorosis:	
fluoridated water) Sex: N (%):	Paulo, Brazil).	Method of outcome	• Exposed: 40 (12.1%) • Unexposed: 14 (4.3%) P<0.001	
Boys: 275 (41.7%)	Fluoride levels in:	ascertainment:	Multivariate logistic	
 Exclusions: Students who had lived in the study area <70% of their 	 Fluoridated water: 0.50 to 0.90 ppm Non-fluoridated water: <0.05 ppm 	Thylstrup and Fejerskov (TF) index The intra and inter-	 regression Very mild or mild fluorosis Exposed: AOR [adjusted odds ratio] =2.26 (95% CI: 	
lives. • Students with a fixed orthodontic appliance or those with amelogenesis imperfecta		examiner kappa indexes were 0.87 and 0.85 for dental fluorosis.	 1.54–3.32) Unexposed: reference P<0.001 Moderate fluorosis Exposed: AOR=3.66 (95%) 	
Source of funding / support			CI: 1.93–6.95) • Unexposed: reference	

129

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
NR			• P<0.001			
Author declaration of						
interest:						
NR						

Risk of bias as	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	NA	Not applicable
	Was allocation to study groups adequately concealed?	NA	Not applicable
	Did selection of study participants result in	++	Participants selected using same criteria. Sampling time
	appropriate comparison groups?	++	frame reported.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Confounders were adjusted for.
Performance	Were experimental conditions identical across study groups?	NA	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	NA	Not applicable

Risk of bias as	ssessment			
Bias domain	Criterion	Response		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided	
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in water using a specific ion electrode and ion analyzer	
	Can we be confident in the outcome assessment?	++	DF examined using the Thysltrup and Fejerskov criteria	
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

McLaren 2022 16

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Routes of	Outcome(s):	Statistical analysis:	• "Although
Original study	exposures:	Dental fluorosis		estimates of

Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design:	Water fluoridation		 Poisson, Zero-inflated 	fluorosis were
Cross-sectional ["pre-	Fluoride levels in		Poisson, or logistic regression (as appropriate)	higher in Edmonton than ir
post cross-sectional	 Fingernails 		for comparison between	Calgary, it is
design with	• Water (in water		Calgary and Edmonton Difference-in-differences 	important to note that nearly all
comparison group"]	treatment plants)		approach to compare	cases (>99%) in
Country:			trends over time between	both cities were mild, which is in
Canada			Calgary and Edmonton	line with national
Participants:	Method of		Results:	estimates."
Children aged ~7	exposure		Prevalence (95% CI), %	
years (grade 2	assessment:		Note: crude - weighted	
schoolchildren)	Water fluoridation		estimate for the full samples;	
Sampling time frame:	<u>status</u>		adjusted - weighted estimate	
•2018-2019 school	 Never exposed to 		adjusted for covariates;	
 year Pre-cessation data 	water fluoridation (Calgary)		subset - crude weighted	
(2004/2005 and	• Always exposed to		estimate for lifelong	
2009/2010 [Calgary only]), early post-	water fluoridation (Edmonton)		residents of Calgary or	
cessation data	Fluoride levels in		Edmonton who reported	
(2013/2014) from	 Fingernails: Method of analysis 		usually drinking tap water).	
previous studies Sample size:			Years 2018-2019	
<u>2018-2019</u>	not reported; reference to Whitford et al.		 Calgary (water fluoridation ceased in 2011): 8.3 (6.6- 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
• Calgary: 1620 • Edmonton: 1402 2004-2005	1999 (Caries Res. 33(6):462-7) who determined fluorides "with the		10.3 crude; 7.7 (5.9-9.6) adjusted; 6.2 (4.3-8.9) subset.	
 Calgary: 380 Edmonton: 41,749497 2009-2010 	 Hubrides with the electrode following HMDS-facilitated diffusion". Water collected in 		 Edmonton (water fluoridation continues): 19.4 (16.3-22.9) crude; 18.3 (14.9-21.6) adjusted; 18.8 (14.4-24.2) subset. 	
• Calgary: 365 • Edmonton: <u>2013-2014</u>	water treatment plants: data from annual water quality reports		P<0.05 <u>Changes over time (crude</u> <u>estimates for 2004-05; 2009-</u>	
•Calgary: 2084 •Edmonton: 1749 Fingernail clippings			<u>10; 2013-14; and 2018-19, respectively)</u>	
(2018/2019)			Calgary (water fluoridation	
• Calgary: 34 • Edmonton: 31 Sex: N (%):	Exposure level(s):	Method of outcome	ceased in 2011): 22.6 (18.8, 26.9); 29.1 (24.6, 34.1); 19.9 (17.8, 22.2); 8.3 (6.6-10.3)	
NR	Total fluoride in	ascertainment:	 Edmonton (water fluoridation continues): 39.8 	
Exclusions:	fingernails	Tooth Surface Index of	(37.0, 42.7); no data; 14.1	
NR	Mean (95% CI),	Fluorosis [TSIF] criteria.	(11.4, 17.4); 19.4 (16.3- 22.9)	
Source of funding /	µg∕g	Dental fluorosis	• Coefficient (95% CI) for	
support:	• Calgary: 1.1 (0.9 to	expressed as prevalence: % with	difference of changes: −0.1 [−0.2 to −0.1], P<0.001).	
 Research grant from the North American 	1.2)	TSIF score ≥1 based	ן־ט.ע נט −ט. ון, אַ<ט.טעד).	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Institutes of Health Research (CIHR) (PJT-156258) • Dr McLaren was supported by an Applied Public Health Chair research award funded by CIHR (Institute of Population & Public Health and Institute of Musculoskeletal Health & Arthritis), the Public Health Agency of Canada, and Alberta Innovates—Health Solutions (CIHR ID CPP-137907) • Dr Weijs was supported by a CIHR Health System Impact Fellowship, 2017-2020 (Award # 403867). Author declaration of interest: No COI	 Edmonton: 1.6 (1.3 to 1.8) Median (inter- quartile range), μg/g Calgary: 1.0 (0.7 to 1.2) Edmonton: 1.3 (1.3 to 1.5) P<0.0001 Fluoride in water: range (average, if available), μg/L^{xxvi} Calgary Bearspaw plant: 2005: 0.6-0.8 2006: 0.7-0.7 2007: 0.6-0.7 2008: 0.7-0.7 2009: 0.7-0.7 2010: 0.7-0.7 2010: 0.7-0.7 2011: 0.1-0.7 	on the most severe level of fluorosis detected on the central maxillary incisor teeth (permanent teeth only, and only if at least half erupted) • Intra-rater agreement kappa: 0.87 • Inter-rater agreement kappa: 0.77		
	<u>2011: 0.1-0.7</u>			

xxvi Fluoridation of drinking water in Calgary ceased on May 19, 2011. Water fluoride values for year 2011 in Calgary are underlined.

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	2012: 0.1-0.1			
	2013: 0.1-0.2			
	2014: 0.1-0.3			
	2015: 0.1-0.1 (0.1)			
	2016: 0.1-0.1 (0.1)			
	2017: 0.1-0.2 (0.1)			
	2018: 0.1-0.2 (0.1)			
	2019: 0.1-0.3 (0.2)			
	• Glenmore plant: 2005: 0.7-0.8			
	2006: 0.6-0.8			
	2007: 0.7-0.7			
	2008: 0.6-0.7			
	2009: 0.6-0.8			
	2010: 0.6-0.9			
	<u>2011: 0.1-0.7</u>			
	2012: 0.2-0.3			
	2013: 0.1-0.3			
	2014: 0.1-0.3			
	2015: 0.2-0.3 (0.3)			

Study Characte	eristics			
Study	Exposure O	utcome	Analysis & Results	Conclusions
	2016: 0.2-0.3 (0.2)			
	2017: <0.1-0.3 (0.2)			
	2018: 0.2-0.3 (0.2)			
	2019: 0.1-0.3 (0.2)			
	Edmonton			
	• Rossdale plant: 2005: 0.7-1.0 (0.8)			
	2006: 0.8-0.9 (0.8)			
	2007: 0.5-0.9 (0.7)			
	2008: 0.1-0.9 (0.8)			
	2009: 0.7-0.9 (0.8)			
	2010: 0.6-0.8 (0.7)			
	2011: 0.6-0.8 (0.7)			
	2012: 0.0-0.8 (0.5)			
	2013: 0.6-0.8 (0.7)			
	2014: 0.6-0.9 (0.7)			
	2015: 0.6-0.8 (0.7)			
	2016: 0.6-0.8 (0.7)			
	2017: 0.6-0.8 (0.7)			
	2018: 0.6-0.8 (0.7)			

Study Charact	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
	2019: 0.6-0.8 (0.7)				
	• EL Smith plant: 2005: 0.7-0.9 (0.8)				
	2006: 0.7-0.9 (0.8)				
	2007: 0.1-0.9 (0.8)				
	2008: 0.0-0.8 (0.4)				
	2009: 0.7-0.8 (0.7)				
	2010: 0.7-0.8 (0.7)				
	2011: 0.1-0.8 (0.6)				
	2012: 0.6-0.8 (0.7)				
	2013: 0.6-0.8 (0.7)				
	2014: 0.5-0.9 (0.7)				
	2015: 0.6-0.8 (0.7)				
	2016: 0.6-0.8 (0.7)				
	2017: 0.6-0.8 (0.7)				
	2018: 0.5-0.8 (0.7)				
	•2019: <0.1-0.8 (0.5)					

Risk of bias as	ssessment				
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level	NA	Netersiechte		
	adequately randomized?	INA	Not applicable		
	Was allocation to study groups adequately	NA	Not applicable		
	concealed?	INA			
	Did selection of study participants result in	++	Participants selected using same criteria. Sampling time		
	appropriate comparison groups?		frame reported.		
Confounding	Did the study design or analysis account for	++	Confounders were adjusted for.		
	important confounding and modifying variables?	TT			
Performance	Were experimental conditions identical across	NA	Not applicable		
	study groups?				
	Were the research personnel and human				
	subjects blinded to the study group during the	NA	Not applicable		
	study?				
Attrition	Were outcome data complete without attrition or		"We developed sampling weights that accounted for the		
	exclusion from analysis?		probability of selection (as per the sampling frame) and		
			the probability of non-response, thus increasing the		
		++	extent to which our samples resembled the underlying		
			target populations. This approach enabled us to handle		
			missing observations within the framework of our survey		
			sampling approach rather than, for example, having to		

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion		Response		
Detection	Can we be confident in the exposure		estimate differences between our samples and the target populations" Water fluoridation status: Calgary (fluoridation		
	characterization?	+	cessation); Edmonton (still fluoridated). Source of information unclear.		
	Can we be confident in the outcome assessment?	++	DF examined using Tooth Surface Index of Fluorosis		
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Rani 2022 17

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "The risk of dental	
Original study	Fluoride levels in	Dental fluorosis	 Descriptive analysis 	fluorosis was significantly	
Study design:	 Groundwater 			higher in the	
Cross-sectional				areas showing more fluoride	
Country:				content in	
India				drinking water." ● "There is an	
Participants:	Method of		Results:	urgent need to	
Children aged 6-12	exposure		Dean's fluorosis index	improve the quality of water	
years	assessment:		(mean) by level of	and institute	
Sampling time frame:	Fluoride in water:		groundwater fluoride:	de-fluoridation of drinking water in	
NR	Ion Selective		• Low (<0.7 ppm): 0.62 [1	affected areas to	
Sample size:	Electrode Method		village] • Optimum (0.7–1.5 ppm):	lower the burden of dental fluorosis	
1262	using ION check 45		0.72 to 1.33 [5 villages]	in the community	
	m.		 High (1.5-4 ppm): 1.32 to 2.31 [19 villages] Very high (>4 ppm): 2.62 to 	either by making alternative sources available	
Sex: N (%):	Exposure level(s):	Method of outcome	3.34 [5 villages] Correlation between	or providing water with an optimal	
Boys: 615 (48.7%)	Fluoride in	ascertainment:	groundwater fluoride and	concentration of	
Exclusions:	groundwater (ppm):	Dean's Fluorosis Index	Dean's fluorosis index	fluoride."	
 Children who were not continuous 	0.532–8.802		• r=0.922; p<0.01		

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
residents of th area since birt						
Source of fund	ling /					
support:						
• None						
Author declara	ation of					
interest: No CC	וכ					

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?		Not applicable		
	Was allocation to study groups adequately concealed?	NA	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	+	Participants selected using same criteria. Sampling time frame not reported.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	_	Correlation analyses, t-tests, and Chi-square tests were conducted		

Risk of bias as	Risk of bias assessment					
Bias domain Criterion			Response			
Performance	Were experimental conditions identical across study groups?	NA	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	NA	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR			
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in water using Ion Selective Electrode Method			
	Can we be confident in the outcome assessment?	++	DF examined using Dean's Fluorosis Index			
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results			
Other	Were there no other potential threats to internal					
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Saeed 2022 18

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures	Outcome(s):	Statistical analysis:	 "Mean urinary concentrations of 	
Original study	Fluoride levels in	Dental fluorosis	Chi-square test	As and F	
Study design:	• Urine	Non-verbal intelligence	 Independent samples t-test Spearman's rank 	as well as the frequency of	
Cross-sectional	 Groundwater used for drinking 	quotient (IQ)	correlation (according to the Methods section);	dental fluorosis were found	
Country:			Pearson correlation (according to the title of table 2)	elevated among the exposed group."	
Pakistan			 Linear regression (Backward stepwise) 	 "The cases of children with 	
Participants:	Method of		Results:	lower IQ were	
Children aged 5-16	exposure		Dental fluorosis	observed high in the exposed	
years	assessment:		Frequency and severity of	group." ●"… it was	
Sampling time frame:	 Urinary fluoride by fluoride ion- 		dental fluorosis, n (%)	revealed that variations in	
NR	selective electrode (Hanna, Model HI-		Control group	dental fluorosis and IQ levels	
Sample size:	522). • Water fluoride: NR		 Normal: 28 (94.0) Questionable: 2 (6.0) 	were more significantly	
148 (118 exposed; 30			Exposed group	associated with F-exposure	
controls)				compared to As."	

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sex: N (%): Boys: 112 Exclusions: • Non-permanent residents in the study area • Drinking water source other than groundwater Source of funding / support: None Author declaration of interest: No COI	Exposure level(s): <u>Water fluoride</u> (mg/L) • Control group: 0– 0.5, mean 0.15 (SD 0.13) • Exposed group: 0.10-15.80, mean 5.64 (SD 3.52) • P=0.000 <u>Urinary fluoride</u> (mg/L) • Control group: 0.40-0.75, mean 0.24 (SD 0.15) • Exposed group: 0.47-14.56, mean 3.27 (SD 2.60) • P=0.000	Method of outcome ascertainment: • Dental fluorosis: Dean's index • Non-verbal IQ: Wechsler scale of intelligence (WISC-IV)	• Normal: 0 • Questionable: 16 (13.55) • Very mild: 22 (18.65) • Mild: 21 (17.80) • Moderate: 25 (21.19) • Severe: 34 (28.81) <u>Correlation analysis</u> Water fluoride and urinary fluoride: r=0.224; p=0.006 Water fluoride and dental fluorosis: r=0.380; p=0.000 Urinary fluoride and dental fluorosis: r=0.721; p=0.000 <u>Linear regression analysis</u> Fluoride in urine as an independent variable: • β =0.38 (SE 0.03) [unstandardized] • β =0.66 [standardized];		

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Other independent variabl	es
			in the model: gender, fami	ly
			economic status, arsenic i	n
			urine.	
			Model summary: F = 49.0);
			adjusted R ² =0.57; p=0.000)
			Non-verbal intelligence	
			quotient (IQ)	
			IQ score	
			Control group: 80.25–	
			127.75; mean 100.93 (SD	
			13.1)	
			Exposed group: 63.97–	
			127.31; mean 97.26 (SD	
			15.39)	

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			P=0.233		
			Correlation analysis		
			Water fluoride and urinary		
			fluoride: r=0.224; p=0.006		
			Water fluoride and IQ sco	re:	
			r=-0.034; p=0.683		
			Urinary fluoride and IQ		
			score: r=-0.655; p=0.000		
			Dental fluorosis and IQ		
			score: r=-0.552; p=0.000		
			Note: Levels of fluoride		
			significantly correlated wit	h	
			arsenic levels.		
			Linear regression analysis	<u>i</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Fluoride in urine as an	
			independent variable:	
			 β=-3.45 (SE 0.50) [unstandardized] β=-0.60 [standardized] P=0.00 	
			Other independent variable	es
			in the model: age, gender,	
			parental education, dental	
			fluorosis.	
			Model summary: F = 29.64	;
			adjusted R ² =0.49; p=0.000	1
			Intelligence level vs mean	
			(SD) water fluoride (WF),	
			urinary fluoride (UF), wate	
			arsenic (WA) and urinary	
			arsenic (UA)	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Superior (IQ score ≥130):	no
			participants with this level	
			Above average (IQ score	
			120-129)	
			• WF: 1.96±2.77 mg/L	
			 UF: 0.54±0.59 mg/L WA: 0.02±0.05 mg/L 	
			• UA: 0.68±1.54 mg/L	
			High Average (IQ score 1	11-
			119)	
			•WF: 4.60±4.40 mg/L	
			• UF: 1.20±0.80 mg/L	
			• WA: 0.12±0.15 mg/L • UA: 2.71±1.78 mg/L	
			Average (QI score 90-100)
			• WF: 4.3±3.99 mg/L	
			•UF: 1.99±1.28 mg/L	
			 WA: 0.16±0.22 mg/L UA: 3.13±2.29 mg/L 	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Low average (IQ score 80	-
			89)	
			• WF: 3.84±3.63 mg/L	
			• UF: 3.61±2.84 mg/L	
			• WA: 0.14±0.16 mg/L	
			• UA: 2.65±1.80 mg/L	
			Borderline (IQ score 70-79	9)
			• WF: 6.19±4.59 mg/L	
			• UF: 7.13±2.62 mg/L	
			• WA: 0.15±0.09 mg/L	
			• UA: 3.75±1.26 mg/L	
			Retarded (IQ score <70)	
			• WF: 4.92±3.46 mg/L	
			• UF: 8.10±5.84 mg/L	
			•WA: 0.17±0.28 mg/L	
			• UA: 3.50±0.81 mg/L	

Bias domain	Criterion	Resp	oonse
Selection	Was administered dose or exposure level	N/A	Not applicable
	adequately randomized?		
	Was allocation to study groups adequately	N/A	Not applicable
	concealed?		
	Did selection of study participants result in	+	Participants selected using same criteria. Time frame not
	appropriate comparison groups?		reported.
Confounding	Did the study design or analysis account for	++	"Multiple linear (Backward stepwise) regression
	important confounding and modifying variables?		models were used to examine the associations between
			(a) IQ level, MDA, SOD, CAT, GR, and dental fluorosis
			with independent variables including age, gender,
			economic status, parent education, As and F- in the urine."
			(p. 3936)
Performance	Were experimental conditions identical across study	N/A	Not applicable
	groups?		
	Were the research personnel and human subjects	N/A	Not applicable
	blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or	-	NR
	exclusion from analysis?		
Detection	Can we be confident in the exposure	++	Fluoride was measured in urine using fluoride ion-
	characterization?		selective electrode

Risk of bias as	sessment				
Bias domain	Criterion	Resp	oonse		
_	Can we be confident in the outcome assessment?	+	IQ measured using the	++	Dental fluorosis
			Wechsler scale of		assessed using Dean's
			intelligence (WISC-IV).		Index.
			Unclear blinding		
Selective	Were all measured outcomes reported?	++	Outcomes discussed in th	e met	hods were reported in the
reporting			results		
Other sources	Were there no other potential threats to internal	++	None identified		
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Tawfik 2022 19

Study Characteristi	CS			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "Correlation
Original study	Fluoride levels in:	 Dental fluorosis 	 Pearson's correlation 	between fluorosis
Study design:	 Groundwater 			status and
				fluoride level in drinking water
Cross-sectional				was performed
Country:				by using
Egypt				Pearson`s
151				I

Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants: 7-14 years old children with no tooth fillings or braces, who live in the same region since birth Sampling time frame: December 2020- March 2021 Sample size: 202	Methodofexposureassessment:• Water analysiswas conducted inthe NationalResearch Centre(methodunreported).		Results: • Dental Fluorosis – Modified Dean's Index: Mean ± SD: 2.31 ±0.94 • Dental Fluorosis (%) Normal: 0% Questionable: 0% Very Mild: 19.8% Mild: 40% Moderate: 30% Severe:9.9%	 correlation coefficient and revealed strong, positive, significant correlation." "Nubian children recorded moderate and severe fluorosis status score because on analysis of their
Sex: N (%): NR Exclusions: • Teeth covered with filling or braces • Parents or children who refused to join the study. • Ethical Consideration Source of funding / support:	Exposure level(s): • <u>Fluoride Levels in</u> <u>drinking water:</u> 7.5-9.5, mean 8mg/L	Method of outcome ascertainment: • Modified Dean's Index		drinking water, their result showed that mean fluoride level was 8 mg/L."
Self-funded 52				

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declaratio interest: No COI	n of			

Risk of bias as	sessment			
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria and during the same timeframe	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study reported on reasons for exclusion of study participants (teeth covered with fillings or braces, parents or children who refused to join the study, and other "undeclared" ethical considerations)	
Detection	Can we be confident in the exposure characterization?	+	Water analysis was conducted in the National Research Centre (method unreported).	

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion	Response			
	Can we be confident in the outcome assessment?	++ Yes, all participants were "clinically" examined outcome (DF), using Modified Dean's Index. L blinding of outcome assessors would not appr results.	ack of		
Selective reporting	Were all measured outcomes reported?	++ Yes, primary outcomes discussed in methods presented in results section with adequate leve data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++ None identified			

Thilakarathne 2022 20

Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "The prevalence
Original study	Fluoride level in	Dental fluorosis	 Chi square test for trends 	of dental fluorosis was high and it increased with
Study design:	 Drinking water 			
Cross-sectional				the increase in the fluoride
Country:				content in the
Sri Lanka				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Participants:	Method of		Results:	drinking water	
Children aged 15	exposure		Prevalence of dental	source."	
years	assessment:		<u>fluorosis</u>		
Sampling time frame: NR Sample size:	 Fluoride content in water by spectrophotometry 	metry el(s): Method of outcome s in ascertainment:	•TF score > 0: 51.7% •TF score > 1: 41.5% •TF score > 2: 20.5% <u>Prevalence of dental</u>		
1040 [total]			fluorosis by TF score		
989 [analytical] Sex: N (%): Boys: 45.2% of the total sample Exclusions:	Exposure level(s): • Fluoride levels in water: 0.0-1.9 mg/L		 TF0 [normal]: 48.3% TF1: 10.2% TF2: 20.9% TF3: 11.8% TF4: 5.9% TF5: 2.3% TF6: 0.5% 		
 Children who had not resided in the study area since birth Children with learning difficulties, wearing fixed orthodontic appliances and those who were absent on the day of the oral examination 			Association between fluoride level in drinking water and prevalence of dental fluorosis (TF score>0) • Water fluoride <0.3 mg/L: 42.3% • Water fluoride 0.31-0.6 mg/L: 62.8%		

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Source of funding / support: Research Grant			Water fluoride 0.61-0.9 mg/L: 70.1%			
			 Water fluoride >0.9 mg/L: 88.9 			
(RG/2016/84/D) fr	rom		p (Chi sq for trend) <0.001			
the University of						
Peradeniya						
Author declaration	on of					
interest:						
NR						

Risk of bias as	Risk of bias assessment					
Bias domain			Response			
Selection			Not applicable			
	Was allocation to study groups adequately concealed?	NA	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	+	Participants selected using same criteria. Sampling time frame not reported.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	Chi-square test for trends was conducted			

Risk of bias assessment						
Bias domain	Criterion	Res	ponse			
Performance	Were experimental conditions identical across study groups?	NA	Not applicable			
	Were the research personnel and human subjects blinded to the study group during the study?	NA	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided			
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in water using spectrometry			
	Can we be confident in the outcome assessment?	++	DF examined using the Thysltrup and Fejerskov criteria			
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Al-Omoush 2021 21

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"This study	
Original study	<u>Fluoride level in</u> Drinking water samples	Dental fluorosis prevalence and severity	Statistical significance at p = 0.05	concluded that higher fluorosis incidence and	
Study design:	from wells			severity were	
Cross-sectional study	Method of exposure	Method of outcome ascertainment:	Results: Frequency (%)	present in the higher-altitude	
Country: Jordan	assessment: Fluoride-ion selective	Dean's index used to determine dental fluorosis severity	distribution of dental fluorosis by Dean's Fluorosis Index in	location (Ruwaished). Moreover, this	
	electrode coupled with ionalyzer	nuorosis seventy	Kuraymah	study also indicated that	
 Participants: School children residing in Puweisbod (ago 15.2) 	Exposure level:		• N = 10 / 141 (7.1%) <u>Very mild</u>	the preventive management of dental fluorosis	
Ruwaished (age 15.3 +/- 1.4 years) and Kuraymah (age 16.1 +/- 1.3 years)	Average fluoride level in water (ppm) <u>Ruwaished</u>		• N = 13 / 141 (9.2%) <u>Mild</u>	should be directed to de-fluoridation of drinking water in	
	•1.38		• N = 21 / 141 (14.9%)	g	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame:	Kuraymah		<u>Moderate</u>	endemic areas." (p.
NR	•1.10		• N = 51 / 141 (36.2)	707 – 708)
			Severe	
Sample size:			• N = 46 / 141 (32.6)	
• Ruwaished: 100			_	
•Kuraymah: 141			Frequency (%)	
			distribution of dental	
Sex: N (%):			fluorosis by Dean's	
• Ruwaished: Men: 60			Fluorosis Index in	
• Ruwaished. Men. 60 (60%)			Ruwaished	
• Kuraymah: Men: 85 (39.7%)			<u>Normal</u>	
			• N = 0 / 100 (0%)	
Exclusions:			Very Mild	
NR			• N = 9 / 100 (9%)	
			Mild	
.			• N = 19 / 100 (19%)	
Source of funding /			<u>Moderate</u>	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
			• N = 22/100 (22%)			
Author declara	ation of		Severe			
interest: No CO	OI		• N = 50 / 100 (50%)			

Risk of bias assessment						
Bias domain	Criterion		Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected using the same criteria. However, the sampling timeframe was not reported			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			

Risk of bias as	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water wells using a combination of F-selective electrode (Orion model 960900), coupled with an ionalyzer (Orion mode 1901, Cambridge, U.S.A.)
	Can we be confident in the outcome assessment?	++	Yes, outcome (dental fluorosis) was done by trained and calibrated examiners (no professional information reported), using Dean's fluorosis index. Lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction

Risk of bias assessment						
Other	Were there no other potential threats to internal	++	None identified			
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?					

Ayele 2021 22

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The study	
Original study	Fluoride levels in	Joint painNeurological	 Descriptive analysis 	demonstrates high	
			Univariate analysis	prevalence of	
	Ground water		 Multivariable regression 	neuro-medical	
Study design:	(community wells)	manifestations (headache,		manifestations of	
Cross-sectional (part		paresthesia, loss of appetite, constipation,	Results:	fluorosis in	
of an ongoing cohort	Method of exposure	and fatigue)	 At least one clinical sign 	population living in	
study in the Ethiopian	assessment:		of skeletal fluorosis was observed in 54.4% of	the Main Ethiopian	
Rift Valley)			the study participants.	Rift valley. Fluoride	
······			 For every 1 mg/L increment of fluoride in 	concentration in	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	The ion-selective	Method of outcome	drinking water, the odds	drinking water and
Country:	electrode (ISE)	ascertainment:	of skeletal fluorosis increased by 1.15 upon	joint pain were
Ethiopia		A comprehensive	adjustment for age and selected clinical	independent
	Exposure level:	physical examination	variables [Adjusted OR	predictors of
	-	with emphasis on	1.15, 95%Cl (1.04– 1.27); p = 0.006].	fluorosis."
Participants:	 Mean concentration: 6.8 ± 4.3 mg/L 	neurological	• Signs of crippling	
Persons aged 10–70	• Range: 0.3–15.5 mg/L	examination, conducted	fluorosis were observed in small proportion	
years old, selected at		by two certified	(1.6%) of participants.	
random from those		neurologists	 Fluoride concentration in drinking water and 	
who lived and used			joint pain were found to	
water wells from 23			be independent predictors of skeletal	
rural villages			fluorosis.	
			 Headache and joint pain reported by 67.1% and 	
			56.3% of participants as	
Sampling time frame:			the most common neurological	
Two sampling periods			manifestation, and	
(between 2018 and			skeletal fluorosis symptom, respectively.	
2019)			 The mean fluoride level was higher for those individuals who reported 	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size:			paresthesia compared to those with no- paresthesia. • Loss of appetite,	
316			constipation, and fatigue were reported by 48.0%, 45.6%, and	
Sex (N):	//)		56.6% of the participants, respectively.	
Men: 176 (55.7%	%)		 Individuals who reported headache are most likely exposed to higher 	
Exclusions: NR			fluoride concentrations in drinking water compared to those	
INITA			reported no-headache (p<0.001).	
Source of fund	ing /			
support:				
NIEHS's career				
development				
grant				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Author declara	tion of				
interest:					
No COI					

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable			
	Was allocation to study groups adequately concealed?	N/A Not applicable			
	Did selection of study participants result in appropriate comparison groups?	++ Yes, participants were identified using the same method of ascertainment, recruited within the same time frame, and using the same criteria.			

Risk of bias a	ssessment				
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Yes, it accounted for age covariates. The population homogenous with similar nutritional status.	ons w	ere reported as fairly
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons to (participation in the pilot questionnaire)		
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was meas selective electrode methe		in water using the ion
	Can we be confident in the outcome assessment?	++	Yes, the outcome (skeletal fluorosis) was assessed using comprehensive physical examination	_	The outcome (multiple neurological symptoms) was assessed using face- to-face interviews by

Risk of bias assessment				
		by two certified		trained field
		neurologists. Outcome		enumerators (graduate
		assessment methods		students and nurses /
		and lack of blinding of		medical doctors).
		outcome assessors		Comprehensive
		would not appreciably		physical examination
		bias results.		with a focus on
				neurological signs was
				conducted by two
				certified neurologists.
				Lack of blinding of
				outcome might have
				appreciably biased the
				results.
Selective Were all measured outcomes reported?		Yes, primary outcome		Yes, the primary
reporting		(skeletal fluorosis)		outcome (medical
	++	discussed in the	++	conditions grouped as
		methods was		neurological) were
		presented in results		discussed in methods
		section with adequate		was presented in

Risk of bias assessment					
			level of detail for data		results section with
			extraction		adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Cao 2021 23

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "The prevalence
Original study	Fluoride levels in:	 Dental fluorosis 	 Rate or composition ratio 	rate of dental
Study design:	 Drinking water 		 Chi-square test 	fluorosis among children in each
Cross-sectional	• Urine			

Study	Exposure	Outcome	Analysis & Results	Conclusions
Country:				diseased area is
China				<30%."
Participants <u>:</u>	Method of		Results: CHI SQURE tests	 "Results indicate reduction of
Dental fluorosis:	exposure		add	fluoride in Fuzhou
Children aged 8-<13	assessment:		Detection rates for dental	county, concluded
years	• The fluorine		<u>fluorosis: (</u> P:0.357)	in reduction of
<u>Urinary fluoride:</u> Age	content in water		2017: 1.75% (7/401)	endemic dental
25 and over	was determined by "Standard Test		2018: 1.40% (7/500)	fluorosis (with very mild and mild
Sampling time frame:	Method for		2019: 0.67% (3/445)	cases)."
June 2017- June 2019	Drinking Water"		.062, P=0.357	• "There is no
Sample size:	(GB/T5750.5-		Overall, 2017-2019: 1.26%	statistically
Dental fluorosis: 1346	2006).		(17/1 346)	significant difference in the
	 Determination of Urinary Fluorine 		Total DF Index: 0.03	detection rate of
<u>Urinary fluoride:</u> 450	Content Fluoride			dental fluorosis
	Determination Ion		 <u>Dental fluorosis cases:</u> Suspicious: 35(2.60%) 	among children in
	Selective		Very Mild: 12 (0.89%)	each year and
	Electrode		Mild: 5 (0.37%)	among children of
	Method»(WS/T89 -2015)		Moderate: 0	different age. groups"
Sex:	Exposure level(s):	Method of outcome	Severe:0	9.0000
		ascertainment:	 Highest DF in Minhou 	
Boys: 50%	 <u>Drinking water</u> <u>Fluoride range:</u> 		County	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Demolition victims of Yinpu Natural Village Source of funding /	0.05-0.76 mg/L • <u>Urinary Fluoride</u> 0.04 - 3.76 mg/L	Dean's index [by Dental fluorosis index (fluorosis community	Detection rates/years: 2017: 21.21% (7/33) 2018: 17.95% (7/39)	
support: NR	(Geometric Mean: 0.8 mg/L)	index, FCI)]The grading of dental fluorosis was carried	2019: 13.04% (3/23) P=0.7	
Author declaration of interest: No COI	Upper limit of normal value is ≤1.60 mg/L.	out according to "Diagnosis of Dental Fluorosis" (WS/T208- 2011).		

Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	

Risk of bias as	sessment				
Bias domain	Criterion		Response		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR		
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride exposure levels were obtained from drinking water samples that were collected from the local source of water supply in each village. Fluoride concentrations were determined using the Ion Selective Electrode Method (WS/T89-2015)		
	Can we be confident in the outcome assessment?	++	The diagnosis of DF was assessed by trained investigators using Dean's fluorosis index. Blinding of exposure status may have not significantly biased the assessment		
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Dong 2021 24

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Even low level of
Original study	Fluoride levels in	Dental fluorosis	 Binary logistic 	water or plasma
	- Drinking water		regression analyses	fluoride exposure
Study design: Cross	Drinking waterSerum		were used to determine the association	was associated
sectional		Method of outcome	between fluoride	with increased risk
Sectional	Method of exposure	ascertainment:	exposure and dental fluorosis,	of dental fluorosis."
	assessment:	Assessment of dental	• Controlled for age, sex,	
Country: United	Water fluoride:	fluorosis conducted by	race/ethnicity, BMI categories, the ratio of	
States		certified dentists,	family income to	
	Measured	according to the Dean's	poverty and six-month time period when	
Participants:	electrometrically using	Fluorosis Index (DFI)	surveyed.	
•	the ion-specific	and assigned one of the		
US children and	electrode (CDC,	DFI disease severity	Results:	
adolescents 6–19	2017a).	categories, based on	• The rate of fluoride	
years old (NHANES		the area of the tooth	concentration in water above the	
survey)	Serum fluoride:	surface with visible	recommended level of	
	Measured in duplicate	fluorosis and presence	0.7 mg/L was 25%, but the prevalence of	
Sampling time frame:	using the same sample	of pitting (NHANES	dental fluorosis was 70%.	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
2015-2016	and the average of two results was employed	Dental Examiners Procedures Manual,	Binary logistic regression adjusted for covariates showed that	
Sample size:	(Centers for Disease Control and Prevention,	2016).	higher water fluoride concentrations $(0.31 - 0.50, 0.51 - 0.70, > 0.70$	
2098 children and adolescents	2017b).		compared 0.00–0.30) were associated with higher odds of dental fluorosis	
Sex: Men: 1,054	Exposure level: Water fluoride (mg/L):		 0.31-0.50: OR=1.48 (1.13-1.96), p = 0.005 	
(50.24%)	<u>Mean (SD)</u> All: 0.46 (0.40)		 ○ <u>0.51-0.70</u>: OR=1.92, (1.44-2.58, p < 0.001) ○ <u>> 0.70</u>: OR=2.30 (1.75-3.07), p < 	
Exclusions:	Men: 0.48 (0.41)		(1.75-3.07), p < 0.001 The pattern of regression	
Survey respondents with missing any of the	Women: 0.47 (0.38)		between plasma fluoride	
fluoride measurements, dental fluorosis	Children: 0.52 (0.44) Adolescents 0.43 (0.35)		and dental fluorosis was similar.	
assessment or complete data for all				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
covariates and	Plasma fluoride				
outcomes.	<u>(µmol/L): Mean (SD)</u>				
	All: 0.35 (0.22)				
Source of funding /	Men: 0.36 (0.19)				
support:	Women: 0.34 (0.25)				
 Fundamental Research Funds for 	Children: 0.38 (0.24)				
the Central Universities (No. 3332019030) • Youth Program of Peking Union Medical College Hospital Foundation (No. PUMCH 201910847), • National Natural Science Foundation of China (81703198).	Adolescents: 0.32 (0.20)				
Author declaration of					
interest: No COI					

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	

Risk of bias assessment					
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria and during the same timeframe		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, sex, race, BMI, family income to poverty, and six month time period when surveyed		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		

Risk of bias	assessment		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization? Can we be confident in the outcome	++	Yes, exposure was measured in water (the ion- specific electrode test) and serum (the ion-specific electrode and hexamethyldisiloxane [HMDS] test). Yes, outcome (dental fluorosis) was consistently
	assessment?	**	measured by two dentists using Dean's Fluorosis Index, in accordance with the NHANES Dental Examiners Procedures Manual, 2016. Lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were	++	None identified

Risk of bias assessment

appropriate and researchers adhered to the

study protocol)?

Du 2021 25

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "Fluoride exposure can 	
Original study	Fluoride levels in	Thyroid hormone	 Linear regression 	elevate the Tvols	
	• Urine	dysfunction:		of school-age children,	
Study design:		 Total triiodothyronine (TT3) 	Results:	especially in boys, and high	
Cross-sectional	Method of exposure	• Total thyroxine (TT4)	Tvol (cm3)	levels of iodine	
	assessment:	 Thyroid-stimulating hormone (TSH) 	• All	may alleviate this effect to some extent"	
	 Urinary fluoride (UF): the ion-selective 			CACONE	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country:	electrode method	• Tvols (thyroid	β (95% Cl): 0.22 (0.14,	No significant
China	(Shanghai Exactitude Instrument, Shanghai,	volumes)	0.31), p-value: < 0.001	difference between boys
	China).		• Boys β (95% CI): 0.34 (0.20,	and girls in age, maternal
		Method of outcome	0.48), p-value: < 0.001	education, UCr,
Participants:	Exposure level:	ascertainment:	, · · ·	UF, UI, Tvol, TT4,
Children aged 7–12	Urinary fluoride (mg/l)	Clinical examination	• Girls β (95% CI): 0.14 (0.03,	and TT3. ●BMI in boys was
years old	All: 1.45 ± 0.88	conducted by skilled medical professionals	0.24), p-value: 0.011	significantly higher than that in
	Boys: 1.43 ± 0.89	• Serum TT3, TT4, TSH: radiation	Interaction	girls (P < 0.05),
Sampling time frame:	Girls: 1.48 ± 0.87	immunoassay using	β (95% Cl): – 0.15 (–	 TSH concentration
2017	t/x ² : 0.490	the auto biochemical analyzer (Cobas C501,	0.30, - 0.01), p-value:	was significantly
2017	P-value: 0.624	Roche Diagnostics,	0.038	lower in boys than girls (P <
		Basel, Switzerland)		0.001)
Sample size:		 The B-mode ultrasound was 	TT4 (nmol/l)	 Tvols increased by 0.22 (95% CI:
446		performed to assess thyroid volumes	• All	0.14, 0.31) cm ³
		(Tvols).	• All β (95% CI): 1.44 (−	with each standard
			1.28, 4.16), p-value:	deviation increment of UF.
Sex (N):			0.297	• Tvols in boys
Boys: 237 (53.1%)			• Boys:	were more susceptible to

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β (95% CI): 2.13 (-	fluoride exposure	
Exclusions:			2.89, 7.14), p-value:	than those in girls Tvols of children 	
			0.404	with high urinary	
 Children with a history of the thyro related diseases 	pid-		• Girls β (95% CI): 0.89 (−	iodine are less susceptible to fluoride exposure	
(such as			2.27, 4.04), p-value:	(P for interaction	
hyperthyroidism, hypothyroidism,			0.580	< 0.05). • TT3 levels were	
thyroid nodules, thyroid goiters, and		 Interaction β (95% CI): - 1.46 (- 	negatively related		
Hashimoto's thyroiditis)			6.17, 3.24), p-value:	concentrations at moderate urinary	
 Children with urina iodine < 100 µg/l) 	ary		0.542	iodine levels (≤ 300 μg/l).	
Source of funding	1		TT3 (nmol/l)		
support:			• All β (95% Cl): – 0.05 (–		
National Natural Science Foundation of China		0.10, 0.01), p-value:			
		0.087			
The Henan Department of Science and Technology, China			•Boys		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
• Zhengzhou			β (95% CI): – 0.08 (–		
University			0.17, 0.01), p-value:		
			0.072		
Author declara interest: No CC			• Girls β (95% CI): – 0.03 (–		
			0.10, 0.04), p-value:		
			0.381		
			 Interaction β (95% CI): 0.01 (- 		
			0.08, 0.10), p-value:		
			0.795		
			TSH (μIU/mI)		
			 All-β (95% Cl): - 0.07 (0.20, 0.07) p-value: 0.316 Boys-β (95% Cl): 0.06 (- 0.04, 0.17) p-value: 0.229 Girls-β (95% Cl): - 0.18 (- 0.38, 0.08) p-value: 0.202 		

Study Charact	teristics				
Study	Exposure	Outcome		Analysis & Results	Conclusions
				 Interaction-β (95% CI): – 0.11 (– 0.33, 0.12) p-value: 0.363 	
Risk of bias as	ssessment				
Bias domain	Criterion	R	lesp	onse	
Selection	Was administered dose or exposur adequately randomized?	e level N/	/A	Not applicable	
	Was allocation to study groups ade concealed?	equately N/	/A	Not applicable	
	Did selection of study participants appropriate comparison groups?	result in +	+	Yes, participants were selected or criteria and during the same time	C C
Confounding	Did the study design or analysis ac important confounding and modifyi		•+	Yes, it accounted for major confo gender, BMI, maternal education urinary iodine and urinary fluorid	, urinary creatinine,
Performance	Were experimental conditions iden study groups?	tical across N/	/A	Not applicable	

Risk of bias	assessment		
	Were the research personnel and human subjects blinded to the study group during the	N/A	Not applicable
	study?		
Attrition	Were outcome data complete without attrition or	-	NR
	exclusion from analysis?		
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water (the ion-
	characterization?		specific electrode test) and serum (the ion-specific
			electrode and hexamethyldisiloxane [HMDS] test).
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was consistently
	assessment?		measured by two dentists using Dean's Fluorosis
			Index, in accordance with the NHANES Dental
			Examiners Procedures Manual, 2016. Lack of
			blinding of outcome assessors would not appreciably
			bias results.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		

Risk of bias assessment

appropriate and researchers adhered to the

study protocol)?

Farmus 2021 26

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Our results	
Original study	Fluoride levels in	 Intelligence at 3 to 4 	 Generalized estimating 	suggest the	
, , , , , , , , , , , , , , , , , , ,		years of age	equations (GEE) used	associations of	
	 Maternal urine (MUF): prenatal exposure 		to assess association of interest	prenatal and	
Study design:	Children urine (CUF):	Method of outcome	Statistical significance	postnatal fluoride	
Cohort study	Childhood exposure	ascertainment:	at α = 0.05 for two-tailed test	exposure with	
		 Assessed by trained 	 Pint: interaction 	cognitive	
Country:	Method of exposure	research assistants using the Wechsler	between exposure	development may	
Canada	assessment:	Preschool and Primary	timing and fluoride level was assessed	be modified by sex,	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants: Mother-child pairs in	 Specific gravity used to adjust for urinary dilution Prenatal exposure acquired by taking the 	Scale of Intelligence-III (WPPSI-III) • Specific outcome measures include: Performance IQ (PIQ),	 Adjusted covariates: maternal education, maternal race, total HOME score, age at urine sampling, and 	though further replication of this finding is needed. These results
the Maternal-Infant Research on Environmental	 mean trimester- specific fluoride level Childhood exposure acquired by measuring 	Verbal IQ (VIQ), and Full-Scale IQ (FSIQ)	prenatal second-hand smoke	indicate that it is important to
Chemicals (MIREC) study Sampling time frame:	fluoride levels between 1.9 and 4.4 years of age Infant fluoride intake (IFI) estimated over first year of life using		Results: Change (95% CI) in age- normed in FSIQ scores per unit increase in	balance the risks of fluoride exposure during early brain development with
2008 - 2011	water fluoride level and formula-feeding duration		standardized fluoride exposure <u>Males</u>	its potential to prevent caries, especially for pregnant women
Sample size: 596	Exposure level: Median (range) fluoride levels		 MUF: -1.86 (-3.22, - 0.49) IFI: -0.01 (-1.67, 1.65) CUF: 0.07 (-1.66, 1.80) Pint: .012 	and infants." (p. 7)
Sex N (%): Female: 305 (51.2%)	<u>MUF T1 (mg/L)</u> ●0.31 (0.01 – 4.29) <u>MUF T2 (mg/L)</u>		<u>Females</u> • MUF: -0.23 (-2.06, 1.60) • IFI: -0.72 (-2.34, 0.89) • CUF: -0.41 (-2.07, 1.24)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
,	•			
	●0.37 (0.03 – 5.28) MUF T3 (mg/L)		• Pint: 0.77 Overall	
Exclusions:	•0.49 (0.08 – 5.56)		• MUF: -1.28 (-2.37, -	
 Fetal abnormalities 	<u>IFI (mg F)</u>		0.18)	
 Medical complications 	• 0.09 (0.00 – 0.61)		 IFI: -0.38 (-1.53, 0.78) CUF: -0.18 (-1.38, 1.02) 	
• Gestational illicit drug	CUF (mg/L)		• Pint: -0.23	
use	•0.39 (0.05, 2.89)			
			Change (95% CI) in age-	
Source of funding /			normed in PIQ scores per	
support:			unit increase in	
 National Institute of 			standardized fluoride	
Environmental			exposure	
Sciences (NIEHS) • Chemicals			Males	
Management Plan at			• MUF: -3.01	
Health Canada, the Ontario Ministry of			 IFI: -1.45 (-3.40, 0.49) CUF: -1.49 (-3.50, 0.53) 	
the Environment, and			• Pint: 0.01	
the North American Institutes for Health			<u>Females</u>	
Research			• MUF: -1.18 (-3.32, 0.96) • IFI: -2.71 (-4.59, -0.83)	
			• CUF: -1.53 (-3.45, 0.39)	
			• Pint: 0.01	
			Overall	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declara	tion of		• MUF: -2.36 (-3.63, - 1.08)	
interest:			• IFI: -2.11 (-3.45, -0.76)	
No COI			• CUF: -1.51 (-2.90, -	
			0.12) ● Pint: <0.001	
		Change (95% CI) in age-		
		normed in VIQ scores per		
		unit increase in		
			standardized fluoride	
			exposure	
			Males	
			• MUF: -0.25 (-1.57, 1.07)	
			• IFI: 1.22 (-0.39, 2.83)	
			• CUF: 1.61 (-0.06, 3.29)	
			 Pint: 0.12 Females 	
			• MUF: 0.87 (-0.91, 2.64)	
			• IFI: 1.31 (-0.25, 2.87)	
			• CUF: 0.63 (-0.98, 2.23)	
			• Pint: 0.30	
			<u>Overall</u>	
			• MUF: 0.15 (-0.91, 1.20)	
			• IFI: 1.27 (0.15, 2.39)	

Study Charact	Study Characteristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• CUF: 1.10 (-0.06, 2.26) • Pint: 0.04	
			Change (95% CI) in FSIC	Q
			scores per unit increase	
			(0.5 mg/L MUF; 0.1	
			mg/day IFI; 0.5 mg/L	
			CUF) in fluoride exposure	e
			<u>Males</u>	
			 MUF: -2.48 (-4.30, - 0.66) IFI: -0.01 (-1.25, 1.24) CUF: 0.09 (-2.10, 2.28) Pint: 0.12 <u>Females</u> 	
			 MUF: -0.31 (-2.76, 2.14 IFI: -0.54 (-1.75, 0.66) CUF: -0.52 (-2.62, 1.58) Pint: 0.77 Overall 	
			 MUF: -1.71 (-3.17, - 0.24) IFI: -0.28 (-1.15, 0.58) CUF: -0.23 (-1.75, 1.29) Pint: 0.23)

Study Charact	Study Characteristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Change (95% CI) in PIQ	
			scores per unit increase	
			(0.5 mg/L MUF; 0.1	
			mg/day IFI; 0.5 mg/L	
			CUF) in fluoride exposur	e
			<u>Males</u>	
			 MUF: -4.02 (-6.15, - 1.89) IFI: -1.09 (-2.54, 0.37) CUF: -1.89 (-4.44, 0.67) Pint: 0.01 Females)
			 MUF: -1.58 (-4.43, 1.28 IFI: -2.03 (-3.43, -0.63) CUF: -1.94 (-4.37, 0.50 Pint: 0.01 Overall 	
			 MUF: -3.15 (-4.85, - 1.44) IFI: -1.58 (-2.59, -0.57) CUF: -1.91 (-3.68, - 0.15) Pint: <0.001 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Change (95% CI) in VIQ	
			scores per unit increase	
			(0.5 mg/L MUF; 0.1	
			mg/day IFI; 0.5 mg/L	
			CUF) in fluoride exposur	e
			Males	•
			 MUF: -0.34 (-2.10, 1.43) IFI: 0.92 (-0.29, 2.12) CUF: 2.05 (-0.08, 4.16) Pint: 0.12 Females 	
			 MUF: 1.16 (-1.22, 3.53) IFI: 0.98 (-0.19, 2.15) CUF: 0.79 (-1.24, 2.82) Pint: 0.30 Overall 	
			 MUF: 0.20 (-1.22, 1.61) IFI: 0.95 (0.11, 1.79) CUF: 1.39 (-0.08, 2.86) Pint: 0.04 	

Study	Exposure	Outcome	Analysis & Results	Conclusions
,				
			Sensitivity analysis where	9
			influential mother-child	
			dyads were removed was	6
			conducted	
			 Association of MUF and FSIQ in boys became weaker and not statistically significant No change in status of statistical significance for other associations tested 	

Risk of bias as	sessment		
Bias domain	Criterion	Resp	onse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	"We used data from the Maternal-Infant Research on Environmental Chemical (MIREC) longitudinal cohort, which recruited 2001 pregnant women between 2008 and 2011. Women were recruited from prenatal clinics if they were at

Risk of bias as	sessment		
Bias domain	Criterion	Resp	oonse
			least 18 years old, less than 14 weeks gestation, and spoke
			English or French. Exclusion criteria included fetal
			abnormalities, medical complications, and illicit drug use during
			pregnancy; further details have been previously described" (p.
			2)
Confounding	Did the study design or analysis account for	++	"Covariates include maternal education, maternal
	important confounding and modifying variables?		race, total HOME score, age at urine sampling, and prenatal
			second-hand smoke" (p. 5)
Performance	Were experimental conditions identical across study	N/A	NA
	groups?		
	Were the research personnel and human subjects	N/A	NA
	blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or	++	Reasons for exclusion were provided.
	exclusion from analysis?		"Our sample included 601 mother-child dyads who completed
			the follow-up phase of the study (MIREC-Child Development
			Plus) when children's neurodevelopmental
			testing was conducted at 3–4 years of age. Data from five
			mother-child dyads were excluded due to the mothers'
			declining prenatal and birth data collection (i.e., trimester
			fluoride exposures, demographic information, covariates, and
			offspring date of birth), leaving N = 596 mother-child dyads for
			our full analytic sample (Fig. 1). Other mother-child pairs

191

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Resp	oonse			
			missing some data on fluoride exposure, outcomes, or			
			covariates were retained due to the flexibility of GEE to			
			incorporate missing data. On outcomes and covariates, no			
			more than 4.6% of data was missing (M = 1.08, range 0-4.6)."			
			(p. 2)			
Detection	Can we be confident in the exposure	++	"Urinary fluoride concentrations were analyzed using a			
	characterization?		modification of the hexamethydisiloxane"			
	Can we be confident in the outcome assessment?	++	"Trained research assistants assessed children's intellectual			
			abilities at the age of 3-4 years using the Wechsler Preschool			
			and Primary Scale of Intelligence-III (WPPSI-III; North			
			American norms; Wechsler, 2002). Outcomes included			
			Performance IQ (PIQ), a measure of nonverbal reasoning,			
			Verbal IQ (VIQ), a measure of verbal reasoning and			
			comprehension, and Full-Scale IQ (FSIQ), a measure of			
			overall intellectual ability. Examiners administered the WPPSI			
			between 2012 and 2015, prior to proposing our fluoride			
			research; examiners are therefore considered blinded to			
			exposure status."			
Selective	Were all measured outcomes reported?	++	Outcomes discussed in methods were reported in the results			
reporting						

Risk of bias assessment					
Bias domain	nain Criterion Response				
Other sources	Were there no other potential threats to internal	++	None identified		
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Fernandes 2021 ²⁷

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	 The authors
Original study	Fluoride levels in	Dental fluorosis	 Chi-square test 	pointed to the high prevalence
Study design:	 Water collected 		 Fisher's exact test 	of dental fluorosis
Cross-sectional	from school water fountains			among children exposed to water
Country:	Tournains			fluoride ≤0.7 ppm,
Brazil				which may be "an indication of other
Participants:	Method of		Results:	sources of
Children aged 6-12	exposure		Group I (water fluoride ≤0.7	fluoride (F- toothpaste 1500
years	assessment:		ppm):	ppm) in this
Sampling time frame:	 Water fluoride: 		 Fluorosis absent: 306 	region, which was previously
April-September 2019	combined ion- specific fluoride		(63.1%) children. • Fluorosis present: 179	observed in other
Sample size:	electrode (ORION—		(36.9%) children	studies".

Study	Exposure	Outcome	Analysis & Results	Conclusions			
610	9409BN) and a		Group II (water fluoride >0.7				
	reference electrode (900200)		ppm):				
Sex: N (%):	connected to an ion analyser 710 A (ORION) Exposure level(s):	Method of outcome	Method of outcome	Method of outcome	Method of outcome	 Fluorosis absent: 69 (55.2%) children. Fluorosis present: 56 (44.8%) children 	
Boys: 329 (53.9%)	Water fluoride	ascertainment:	P=0.10				
Exclusions:	(ppm): 0.06-1.98	Thysltrup and Fejerskov	Fluorosis absent: OR=1.02				
• Children who used a fixed orthodontic	Group I (≤0.7): 485	criteria	(95% CI: 0.983-1.168)				
	children		Fluorosis present: 0.77				
appliance or had reading difficulties,	Group II (>0.7): 125		(0.565-1.055)				
tooth malformation (such as	children, including:						
amelogenesis imperfecta, dentinogenesis imperfecta, or dentinal dysplasia) Source of funding /	 0.7-1.0: 111 children >1.0-1.98: 14 children 						
support:							
• NR Author declaration of							
interest: No COI							

Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level	NA	Not applicable	
	adequately randomized?			
	Was allocation to study groups adequately concealed?	NA	Not applicable	
	Did selection of study participants result in		Derticipante colocted using come criteria. Sampling time frome	
	appropriate comparison groups?	++	Participants selected using same criteria. Sampling time frame reported.	
Confounding				
Confounding	Did the study design or analysis account for	-	NR	
	important confounding and modifying variables?			
	Were experimental conditions identical across	NA	Not applicable	
	study groups?			
	Were the research personnel and human			
	subjects blinded to the study group during the	NA	Not applicable	
	study?			
Attrition	Were outcome data complete without attrition or			
	exclusion from analysis?	++	Reasons for exclusion were provided	
Detection	Can we be confident in the exposure		"a fluoride concentration mapping of the school water supplies	
	characterization?		was prepared, and water	
		++	fountains were sampled and analysed using a combined	
		ŦŦ	ionspecific fluoride electrode (ORION—9409BN) and a	
			reference electrode (900200) connected to an ion analyser 710	
			A (ORION)." (p. 476)	

Risk of bias a	Risk of bias assessment				
Bias domain Criterion		Response			
	Can we be confident in the outcome assessment?	++	DF examined using the Thysltrup and Fejerskov criteria		
Selective reporting	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in the results		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Helte 2021 28

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"In this cohort of
Original study	Fluoride levels in	Bone mineral density	 Spearman's rank 	postmenopausal
		and fracture incidence	correlational (rho).	women, the risk of
	• Water • Diet		 Multivariable linear regression. 	fractures was

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Study design:	• Urine	in postmenopausal		increased in
Cohort study [clinical		women	Results:	association with
sub-cohort of The	Method of exposure		• At baseline:	two separate
Swedish	assessment:	Method of outcome	 Mean urinary 	indicators of
Mammography Cohort	• Tap water: Geological	ascertainment:	fluoride: 1.2 mg/g creatinine (± 1.9)	fluoride exposure.
(SMC)]	Survey of Sweden,		 mean dietary intake 	Our findings are
	and the Swedish Water and Wastewater	• BMD: measured at the lumbar spine and	was 2:2 mg/d (\pm 0.9)	consistent with
	Association),	femoral neck using	 During follow-up: 850, 529, and 187 	RCTs and suggest
Country:	Food: Swedish	dual energy X-ray absorptiometry (DXA;	cases of any	that high
Sweden	National Food Agency, U.S. Department of	Lunar Prodigy; Lunar	fractures, osteoporotic	consumption of
	Agriculture's National	Corp.)	fractures, and hip	drinking water with
	Fluoride Database of Selected Beverages	 Bone fractures: National Patient 	fractures, respectively, were	a fluoride
Participants:	and Foods	Register (NPR)	ascertained.	concentration of
All SMC participants	 Tea: scientific literature), 		 Baseline BMD was slightly higher among 	~1 mg=L may
who were <85 years of	• Urine: ion-selective		women in the highest	increase both BMD
age and residing in the	electrode (Combined ISE F 800 DIN; WTW;		vs. lowest tertiles of exposure.	and skeletal
city of Uppsala or	Xylem Analytics		 Fluoride exposures 	fragility in older
nearby surrounding	Germany GmbH)).		were positively associated with incident	women"
areas			hip fractures, with multivariable-adjusted	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	Exposure level:		hazard ratios of 1.50	
Sampling time frame:	∙Water: ≤1 mg/L		(95% CI: 1.04, 2.17) and 1.59 (95% CI: 1.10,	
Camping time name.	Mean urinary fluoride		2.30, for the highest vs.	
Baseline: 2004-2009	at baseline: 1.2 mg/g		lowest tertiles of urine	
	creatinine (0.1–7.3		fluoride and dietary	
Follow-up: 2017	mg/g creatinine)		fluoride, respectively.	
	Mean estimated		 Associations with other 	
	dietary fluoride intake:		fractures were less	
Comula ciza:	2.2 mg/d (0.3–8.4		pronounced for urine	
Sample size:	mg/d).		fluoride, and null for	
4,306			dietary fluoride.	
4,000			 Restricting the analyses 	
			to women with	
			consistent long-term	
Sex (N):			drinking water	
			exposures prior to baseline strengthened	
Women only (100%)			associations between	
			fractures and urinary	
			fluoride.	
Exclusions:				
Women who				
completed a short				
version of the FFQ				
• With incomplete FFQ				
data				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
With implausible				
energy intakes (>3S				
Dab over or below				
the log-transformed mean)				
Without data on				
dietary fluoride, urine				
for element analysis,				
urinary creatinine, or				
DXA scans on either side				
• With urine creatinine				
concentrations <0.3				
or >3.0 mg/L				
Not constantly				
drinking water				
fluoride from 1982 to baseline				
Daseillite				
Source of funding /				
support:				
• Formas, the Swedish				
Research Council for				
Environment				
Agricultural Sciences				
and Spatial Planning				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Swedish Resea Council	arch				
Author declarat	tion of				
interest: No CO					

Risk of bias assessment					
Bias domain	Criterion	Resp	oonse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified using the same method of ascertainment, recruited within the same time frame, and using the same criteria.		

Risk of bias as	Risk of bias assessment						
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, education, height, total fat mass, lean body mass, parity, smoking, physical activity, alcohol intake, prevalent diabetes at baseline, eGFR, urinary calcium or dietary calcium intake, use of calcium supplements, use of vitamin D supplements, ever use of postmenopausal hormones, ever use of corticosteroids.				
Performance	Were experimental conditions identical across study groups? Were the research personnel and human subjects blinded to the study group during the study?	N/A N/A	Not applicable Not applicable				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (women who completed a short version of the FFQ, with incomplete FFQ data, with implausible energy intakes (>3S Dab over or below the log-transformed mean), without data on dietary fluoride, urine for element analysis, urinary creatinine, or DXA scans on either side, with urine creatinine concentrations <0.3				

Risk of bias a	assessment		
			or >3.0 mg/L, or not constantly drinking water fluoride from 1982 to baseline)
Detection	Can we be confident in the exposure characterization?	++	"Yes, fluoride exposure levels were obtained for fluoride in food (Swedish National Food Agency, U.S. Department of Agriculture's National Fluoride Database of Selected Beverages and Foods), in tea (scientific literature), in tap water (Geological Survey of Sweden, and the Swedish Water and Wastewater Association), and urine (ion-selective electrode (Combined ISE F 800 DIN; WTW; Xylem Analytics Germany GmbH)).
	Can we be confident in the outcome assessment?	++	"Yes, the outcome was assessed for BMD (measured at the lumbar spine and femoral neck using dual energy X-ray absorptiometry [DXA; Lunar Prodigy; Lunar Corp.]) and bone fractures (using records from the National Patient Register [(NPR]). Outcome assessment methods and lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome (bone mineral density and bone fractures) discussed in the methods was

Risk of bias assessment					
			presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

James 2021 29

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"In 2017, fluorosis
Original study	Community water Dental fluorosis		 Association of interest 	prevalence was
- <u></u>	fluoridation (CWF)		was assessed using	18% in Dublin (full
Study design:	Method of outcome		multivariate logistic regression	CWF) and 12% in
otady doolgin			 Model adjusted for the following covariates: 	Cork-Kerry (full
Before-and-after study	Method of exposure	thod of exposure ascertainment:		CWF). Fluorosis
	assessment:	 Examinations were completed at school by dental examiners and 	age, gender, ownership of medical card, and	was predominantly

203

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country:	Exposure group	nurses; this was	age of first toothpaste	"very mild" with no
Ireland	<u>categories:</u>	performed from Jan to Jun 2002 and from Nov 2016 to May 2017 • Same methods of	use	statistically
	• Full CWF: lifetime		Results:	significant
Participants:	exposure • No CWF: no exposure	assessment were		difference between
Children (7 to 0 years	 Part CWF: sporadic 	applied in 2007 as 2002	Odds (95% CI) of	2017 and 2002." (p. 507)
Children (7 to 9 years	exposure • Unknown: unknown	 Permanent teeth were assessed, and fluorosis was 	fluorosis prevalence in	
of age) from Dublin	CWF exposure		the year 2017 compared	
and Cork-Kerry in the year 2002 and 2017		determined using	to 2002	
	Exposure level:	Dean's index scores of "very mild" or higher	Dublin Full CWF	
	CWF before and after		•OR = 16 (-13, 56); p = 0.312	
Sampling time frame:	ne: introduction of policy			
2002 and 2014	measures		Cork-Kerry Full CWF	
	Before in 2002:		•OR = -7 (-41, 48);	
Sample size (N):	•0.8 to 1.0 ppm		p = 0.771	
<u>Year 2000</u>	<u>After in 2007:</u>		Cork-Kerry No CWF	
• Dublin = 679 • Cork-Kerry = 565 <u>Year 2017</u>	•0.6 to 0.8 ppm		• OR = 97 (-18, 373); p = 0.129	
• Dublin = 707				

204

Analysis & Results Conclusions "Among children with full CWF in Dublin, fluorosis prevalence was 18% in 2017 and 15% in 2002, and in Cork-Kerry, it was 12% in 2017 and 13% in 2002 Fluorosis prevalence among children with no CWF in
CWF in Dublin, fluorosis prevalence was 18% in 2017 and 15% in 2002, and in Cork-Kerry, it was 12% in 2017 and 13% in 2002 Fluorosis prevalence among children with no CWF in
prevalence was 18% in 2017 and 15% in 2002, and in Cork-Kerry, it was 12% in 2017 and 13% in 2002 Fluorosis prevalence among children with no CWF in
2017 and 15% in 2002, and in Cork-Kerry, it was 12% in 2017 and 13% in 2002 Fluorosis prevalence among children with no CWF in
and in Cork-Kerry, it was 12% in 2017 and 13% in 2002 Fluorosis prevalence among children with no CWF in
was 12% in 2017 and 13% in 2002 Fluorosis prevalence among children with no CWF in
13% in 2002 Fluorosis prevalence among children with no CWF in
prevalence among children with no CWF in
children with no CWF in
O a da 16 a m
Cork-Kerry was 5% in
2017 and 3% in 2002.
None of the differences
were statistically
Significant"

Study Characteristics	Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions			
NR							
Source of funding / support: • Health Research Board • Department of Health and the National Oral Health Office of the Health Services Executive							
Author declaration of interest:							
• No COI							

Risk of bias asse	essment	
Bias domain Cr	riterion	Response

Risk of bias as	ssessment		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in	++	Yes, participants were selected during the same
	appropriate comparison groups?		timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, gender, medical card ownership, and age first used toothpaste
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (no consent to follow up, no clinical data, School refused, child moved away, fluoride status unknown, fluoride tablets/drops)

Risk of bias	assessment		
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from
	characterization?		public water supply records
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by
	assessment?		dental examiners assisted by dental nurses, and
			using Dean's Fluorosis Index. Lack of blinding of
			outcome assessors would not appreciably bias
			results.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Meghe 2021 30

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	• "Out of the total 3268	
Original study	Fluoride levels in	Skeletal fluorosis Descriptive analysis	subjects 2445 subjects included in the		
	Ground water			'normal' grade, which does not show	
Study design:		Method of outcome	Results:	indications of skeletal fluorosis."	
Cross-sectional	Method of	ascertainment:	Relation of skeletal fluorosis	• " as the concentration of fluoride increases the cases of 'normal' grade decreases."	
Country:	exposure	Using physical tests	with F- level in drinking		
	assessment:	a from the assessing joint pain.	water		
	Data from the		• Normal (74.8%):Classification of $\circ \leq 1 \text{ ppm: } 29.73\%$ • keletal fluorosis was $\circ 1.01-2.00: 28.14\%$ • based on the clinical $\circ >4.00: 17.92\%$ • Mild (13.2%):		
India	Groundwater	Classification of			
	Survey and	skeletal fluorosis was			
Participants:	Development	based on the clinical			
•	Agency	and radiological			
	esidents with no examinations given by \circ 1.0	 ○ 1.01–2.00: 16.47% 			
evidence of		Teotia, M. and Singh,	 2.01–4.00: 22.7% >4.00: 46.87% 		
skeietai tiuorosis	skeletal fluorosis K.P.	K.P.	• Moderate (6.0%):		
	Exposure level:		o ≤1 ppm: – o 1.01–2.00: 18.46%		
	∙≤1mg/L		 ○ 2.01-4.00: 25.13% ○ >4.00: 56.41% 		

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Sampling time frame:	•1.01-2.0 mg/L •2.01-4.0 mg/L •>4.0 mg/L		• Severe (4.1%): ○ ≤1 ppm: – ○ 1.01–2.00: 15.55%			
NR	e z no mg/L		 2.01-4.00: 31.11% >4.00: 53.34% Very severe (1.9%): ≤1 ppm: - 			
Sample size:			 1.01–2.00: 17.74% 2.01–4.00: 25.81% > 4.00: 56.45% 			
3,268			0 > 4.00. 30.43%			
Sex (N): Men:						
1,760 (53.86%)						
Exclusions:						
Radiological evidence of skeletal fluorosis						
 Social reasons Lack of availability of time 						

Study Charac	udy Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Source of					
funding /					
support:					
Datta Meghe					
Institute of					
Medical Scien	nces				
Author					
declaration o	of				
interest:					
No COI					

Risk of bias assessment	
Bias domain Criterion	Response

Selection	Was administered dose or exposure level	N/A	Not applicable
	adequately randomized?		
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in	+	Yes, participants were selected using the same
	appropriate comparison groups?		criteria. However, the sampling timeframe was not
			reported
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	+	Study provided some reasons for exclusion of
	exclusion from analysis?		participants (social reasons, lack of availability of
			time)

Risk of bias	assessment		
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from the
	characterization?		Groundwater Survey and Development Agency
			(GSDA).
	Can we be confident in the outcome		Yes, the outcome was assessed using physical tests
	assessment?		designed for assessing joint pain. Classification of
			skeletal fluorosis based on the clinical and
			radiological examinations given by Teotia, M. and
			Singh, K.P. (only for 360 out of 3268).
Selective	Were all measured outcomes reported?	++	Yes, primary outcome (skeletal fluorosis) discussed
reporting			in the methods was presented in results section with
			adequate level of detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Meng 2021 31

Study Characterist	ics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"fluoride could
Original study	Fluoride levels in	Genotoxicity (5-	 Statistical significance at p 	impact 5-mC level in
	 Drinking water 	methylcytosine (5-mC) level)	= 0.05</td <td>human and rat. The U-</td>	human and rat. The U-
	• Urine	level)		shaped relationship
Study design:			Results:	was found between
Cross-sectional	Method of	Method of outcome	Mean (SD) of 5-mC by water	fluoride and 5-mC in
study	exposure	ascertainment:	quartile groups in mg/L	the population and in
	assessment:	 Extraction and 		the rats with 3 months
Country		purification of genome DNA from blood:	• Q1: 0.15 (0.09) • Q2: 0.11 (0.08)	fluoride treatments.
Country:	 F-ion selective electrode 	Universal cylindrical	•Q3: 0.11 (0.08)	These results clued
China	electiode	genomic DNA extraction kit	• Q4: 0.14 (0.07)	that the disruption of
		Measured 5-mC level:	• p = 0.001	DNA methylation in
Participants:	Exposure level:	Methyl Flash TM Global DNA	Association between fluoride	mammals may has a
-	Fluoride quartiles in	Methylation ELISA Kit	and 5-mC with cubic curve	certain association
Adults (> 18 years	drinking water:		fitted	with fluoride in natural
of age) born in one	•Q1 (≤ P25):		III.eu	exposures." (p. 5 – 6)
of five villages	1.4559 mg/L		• $R^2 = 0.061$	
(Hongguang,	• Q2 (P25 ~ P50): 1.4559 ~ 2.2434 mg/L		• F = 6.045 • p = 0.001	

Study Characterist	ics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Xiaoshan, Fushan,	•Q3 (P50 ~ P75):			
Wanfa, and Leye)	2.2434 ~ 3.2342 mg/L • Q4 (>P75): 3.2342 mg/L			
Sampling time	C C			
frame:	Median levels of			
April – September	fluoride in drinking			
2016	water			
	•2.2434 mg/L			
Sample size:				
281	P50 (P25, P75)			
	levels of fluoride in			
	water by quartile			
Sex (N):	(mg/L)			
Men: 90 (32%)	<u>Q1 (N = 70)</u>			
	• 1.100 (0.767,			
Exclusions:	1.414)			
NR	<u>Q2 (N = 71)</u>			

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	• 1.853 (1.629, 2.069)			
Source of funding	/ <u>Q3 (N = 70)</u>			
support:				
 National Natural 	•2.691 (2.400, 2.949)			
Science Foundation of	<u>Q4 (N = 70)</u>			
China • The Wu Liande Science Foundation of	• 4.123 (3.600, 5.200)			
Harbin Medical University	P50 (P25, P75)			
Post-doctoral	levels of fluoride in			
Scientific Research	urine by quartile			
Developmental Fund of	(mg/L)			
Heilongjiang Province	<u>Q1 (N = 70)</u>			
	•2.040 (1.612, 3.331)			
Author	Q2 (N = 71)			
declaration of				
interest:	• 2.432 (1.981, 3.083)			

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
No COI	<u>Q3 (N = 70)</u>					
	•2.432 (1.788, 3.169)					
	<u>Q4 (N = 70)</u>					
	•3.780 (2.940, 5.692)					

Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified from the same population and recruited within the same time frame.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		

Risk of bias a	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water and serum using the fluoride ion-selective electrode method
	Can we be confident in the outcome assessment?	++	Yes, the outcome (CKDu) was assessed using biopsy proven renal tubulointerstitial disease, uncontrolled hypertension or diabetes at the time of initial diagnosis, negative immunofluorescence for IgG, IgM, IgA, and C3, serum creatinine >1.2 mg/dL and/or A1M > 15.5 mg/L, HbA1C<6.5%
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction

Risk of bias assessment				
Other	Were there no other potential threats to internal	++	None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the			
	study protocol)?			

Mohd Nor 2021 32

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "Fluorosis was lower among
Original study	Fluoride levels in public drinking	Dental fluorosis	 Chi-squared analyses Logistic regression 	children born after the adjustment of
Study design: Cross sectional	water supply	Method of outcome ascertainment:	Results:	fluoride concentration in the water."
study	Method of exposure assessment:	 Assessment of dental fluorosis was conducted by trained clinical and calibrated examiners (NAMN). 	• "Fluorosis prevalence was lower (31.9 percent) among the younger children born after the reduction of fluoride concentration in the water, compared to a prevalence of	 "Fluoridated water remained as a strong risk factor for fluorosis after downward adjustment of its

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country:	Water fluoride:	Assessment of fluorosis	(38.4 percent) in the older	fluoride
Malaysia	State and national	was conducted by examining the maxillary	cohort."	concentration." • "Early tooth
	water quality	central incisors using	Simple logistic regression	brushing
Participants:	reports	Dean's Fluorosis Index.Consensus on outcome	of fluorosis and infant	practices and fluoridated
•		assessment must be	feeding (n=830)	toothpaste were not statistically
Lifelong	Exposure level:	achieved by agreement of two additional examiners,		associated with
residents aged 9-		who did not participate in	Fluorosis (Deans ≥ 2),	fluorosis status."
and 12-year-olds	 Original: 0.7 ppm 	children's examination, with the initial examiner.	Type of water used to prepare	"However, the prevalence of
	• Reduced: 0.5		formula	fluorosis was
Sampling time	ppm		Bottled water	significantly
frame:			• Fluorosis: 3 (9.4%)	associated with
2015 (calculated			• No fluorosis: 29 (90.6%)	parents' education
using the			Reference <u>Tap water</u>	level, parents'
following				income,
information			 Fluorosis: 162 (25.7) No fluorosis: 469 (74.3) 	fluoridated water,
reported by the			•OR (95% CI): 3.34 (1.0–	type of infant
authors)			11.11) ●P-value: 0.049*	feeding method,
●9-year-old			Filtered tap water	age breast feeding
children (born			• Fluorosis: 47 (28.1%)	ceased, use of

Study	Exposure	Outcome	Analysis & Results	Conclusions
between 1			• No fluorosis: 120 (71.9%)	formula milk,
January and 31 December			• OR (95% CI): 3.79 (1.1– 13.03)	duration of formula
2006			• P-value: 0.035*	milk intake, and
 12-year-old children (born 				type of water used
between 1			Simple logistic regression	to reconstitute
January and 31 December			of fluorosis and water	formula milk"
2003)			fluoride (n=1,143)	
			Fluorosis (Deans ≥ 2),	
Sample size:			<u>0 lifetime</u>	
1143 children				
aged 9-12 years			 Fluorosis: 30 (12.30%) No fluorosis: 517 (57.4%) 	
old			Reference	
			0.5 ppm lifetime	
Sex: Boys: 491			• Fluorosis: 100 (41.2%)	
•			 No fluorosis: 204 (22.7%) OR (95% CI): 8.45 (5.45– 	
(43%)			• OK (95% Cl): 8.45 (5.45– 13.10)	
			• P-value: 0.001	
Exclusions:			0.7 ppm for first 2 years and	
			<u>then 0.5 ppm</u>	
			• Fluorosis: 113 (46.5%)	

Study Charact	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Children who missed clinica examination. 			 No fluorosis: 179 (19.9%) OR (95% CI): 10.88 (7.03 16.84) 	
 Children with unerupted, partially 			• P-value: 0.001	
unerupted or			Multiple logistic regression	on
fractured incisor(s), or			of fluorosis (n=830)	
have a fixed orthodontic			Fluorosis (Deans \geq 2),	
appliance.			Type of water used to prep	are
			formula	
Source of			Pottlad water	
funding /			Bottled water	
support:			Reference	
			<u>Tap water</u>	
Ministry of High	ier		•OR (95% CI): 9.90 (1.28-	-
Education,			76.38)	
Malaysia			• P-value: 0.028	
			Filtered tap water	
			• OR (95% CI): 8.78 (1.11-	-
			69.71) 0.040	
			• P-value: 0.040	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author			Multiple logistic regression	on
declaration o	of		of fluorosis and water	
interest:			fluoride (n=1,143)	
No COI			<u>0 lifetime</u>	
			Reference	
			0.5 ppm lifetime	
			• Adjusted OR (95% CI): 5.	97
			(3.32–10.72) ● P-value: <0.001	
			0.7 ppm for first 2 years and	<u>t</u>
			then 0.5 ppm	
			 Adjusted OR (95% CI): 9. 	12
			(5.15–16.14)	
			• P-value: <0.001	

Risk of bias asses	Shich	
Bias domain Crit	terion	Response

Risk of bias as	ssessment		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected at random, during the same timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as fluoridated toothpaste, age started toothbrushing, formula use, feeding method, parents education, and family incomes
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (children who missed clinical examination, those with unerupted, partially unerupted or fractured incisor(s), or have a fixed orthodontic appliance.)

Risk of bias	assessment		
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from
	characterization?		state and national water quality reports
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by
	assessment?		digital images of the maxillary incisors were taken to
			enable blind scoring of dental fluorosis. Images were
			uniquely coded to enable blind scoring. Examiners
			were trained on fluorosis scoring, and were blinded
			from the status of child's area of residence.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Rojanaworarit 202133

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s):	Statistical analysis:	• "In fluoride
Original study	Fluoride levels in	Dental fluorosis	 A Wilcoxon-type test for 	endemic areas, groundwater
Study design:	Groundwater used	ed ir p le	trend to examine the trend in dental fluorosis	containing natura
Cross-sectional	for household water supply.		prevalence across ordered	fluoride utilized for household
Country:	_ water eappry.		levels of water fluoride concentration.	consumption
Thailand			 Poisson regression with robust standard errors to estimate dental fluorosis prevalence ratios (PR). 	resulted in high dental fluorosis prevalence, particularly in the
Participants:	Method of	-	Results:	 groundwater with fluoride
Children aged 6-10	exposure		Prevalence of dental	concentrations of
years	assessment:		fluorosis (%) by subdistrict	≥ 1.5 ppm." ● "The finding of
Sampling time frame:			● Sai Ngam: 50.77	23.3% prevalence
2015	fluoride concentrations in		• Bang Sai Pa: 42.50 • Hin Mun: 64.18	with only the very mild dental
Sample size:	the groundwater		• Bang Luang: 59.43	fluorosis among
289	used for the household water supply		Nin Phet: 9.09 Prevalence of dental	children with time-averaged fluoride
	corresponding to		fluorosis (%) by water	concentrations of
	the residence of each child from		fluoride level	< 0.7 ppm (the referent category)
	2008 to 2015 were		•<0.7 ppm: 23.3%	was evidence that
	obtained from the database at		•0.7–1.49 ppm: 37.7% •≥1.5 ppm: 64.1%	reassured the safety of this

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sex: N (%): Boys: 153 (52.9%)	Nakhon Pathom Provincial Public Health Office Exposure level(s): Time-averaged	Method of outcome ascertainment:	• Exact probability test; P < 0.001 <u>Severity of dental fluorosis</u> <u>by water fluoride level</u> (number of cases;	recommended optimal fluoride level" • "When the fluoride concentrations	
Exclusions:	fluoride	"authorized dentist".	• Children were examined by an		increased to the
Children who had not	concentration (ppm)			range of 0.7–1.49 ppm, the	
resided within the	by dental fluorosis		questionable; 7 (23.3%)	prevalence	
study area since birth	status			very mild	among children in this group also
Source of funding /	Normal (no		 0.7-1.49 ppm: 5 (8.2%) questionable; 14 (23.0%) 	increased to	
support:	<u>fluorosis)</u>		very mild; 6 (9.8%) mild; 3 (4.9%) moderate	37.7%, with the additional higher	
Fogarty International Center of the National Institutes of Health under Award Number U2RTW010088. Author declaration of interest: No COI	 Mean (SD): 2.0±1.6 Median (IQR): 1.6 (1.1) Range: 0.4-9.4 <u>Questionable</u> <u>fluorosis</u> Mean (SD): 1.7±0.6 Median (IQR): 1.7 (0.6) Range: 0.6-3.0 <u>Very mild fluorosis</u> 		 ≥1.5 ppm: 8 (4.1%) questionable; 96 (48.4%) very mild; 21 (10.6%) mild; 10 (5.1%) moderate <u>PR (95% CI) by time-</u> <u>averaged water fluoride</u> <u>concentrations</u> Univariable analysis <0.7 ppm: reference 0.7–1.49 ppm: 1.62 (0.78; 3.34); p=0.195 ≥1.5 ppm: 2.75 (1.42; 5.31); p=0.003 	levels of mild and moderate severity. Although the fluoride concentrations in this range did not surpass the WHO's recommended limit of 1.5 ppm , the results of this study were concerning as the prevalence exceeded one-	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	• Mean (SD): 2.8 \pm 2.2 • Median (IQR): 2. (1.4) • Range: 0.4-9.4 <u>Mild fluorosis</u> • Mean (SD): 2.8 \pm 2.3 • Median (IQR): 2. (1.4) • Range: 1.1-9.4 <u>Moderate fluorosis</u> • Mean (SD): 4.1 \pm 3.5 • Median (IQR): 2. (7.1) • Range: 1.2-9.4 <u>All</u> • Mean (SD): 2.4 \pm 2.1 • Median (IQR): 1. (0.9) • Range: 0.4-9.4 Time-averaged fluoride	1 2 0	Multivariable analysis; adjusted for child's demographic factors <0.7 ppm: reference 0.7-1.49 ppm: 1.62 (0.79; 3.32); p=0.190 $> \ge 1.5 \text{ ppm: 2.78 (1.45; 5.32);}$ p=0.002 Multivariable analysis; adjusted for caregiver factors <0.7 ppm: reference 0.7-1.49 ppm: 1.61 (0.28; 9.21); p=0.592 $> \ge 1.5 \text{ ppm: 2.81 (0.51;}$ 15.51); p=0.235 Multivariable analysis; adjusted for breastfeeding <0.7 ppm: reference 0.7-1.49 ppm: 3.08 (0.47; 20.04); p=0.238 $> \ge 1.5 \text{ ppm: 5.30 (0.84;}$ 33.45); p=0.076 Multivariable analysis; adjusted for oral health behaviors	third of the children and 14.7% of the severity was beyond the very mild level." • "In the extreme group with the fluoride ≥ 1.5 ppm … the prevalence further rose to 64.1% or approximately 2.8 times the prevalence of those in the reference group. The severity beyond the very mild level also grew to 15.7%."

Study Charact	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	concentration (ppm)		•<0.7 ppm: reference	
	by subdistrict		 •0.7–1.49 ppm: 3.44 (0.48; 24.62); p=0.218 •≥1.5 ppm: 6.46 (0.94; 44.48); p=0.058 Multivariable analysis; adjusted for all covariates •<0.7 ppm: reference •0.7–1.49 ppm: 1.64 (0.24; 11.24); p=0.615 	
	<u>Sai Ngam</u>			
	 Mean (SD): 3.72 (3.71) 			
	• Median (IQR): 1.40)		
	(8.20) ∙ Range: 0.39-9.38 <u>Bang Sai Pa</u>			
	 Mean (SD): 3.06 (1.00) Median (IQR): 3.35 (0.95) Range: 1.07-3.94 <u>Hin Mun</u> 	5	•≥1.5 ppm: 2.85 (0.44; 18.52); p=0.273	
	 Mean (SD): 2.31 (1.20) Median (IQR): 1.97 (0.58) Range: 1.13-5.94 <u>Bang Luang</u> 	7		
	 Mean (SD): 1.76 (0.36) Median (IQR): 1.82 (0.51) Range: 0.84-2.20 	2		

Study	Exposure	Outcome	Analysis & Results	Conclusions
	Nin Phet			
	 Mean (SD): 0.4 (0.05) Median (IQR): (0.10) Range: 0.37-0. 	0.46		

Risk of bias as	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	NA	Not applicable
	Was allocation to study groups adequately concealed?	NA	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Participants selected using same criteria. Sampling time frame reported.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Confounders were adjusted for.
Performance	Were experimental conditions identical across study groups?	NA	Not applicable

Risk of bias a	ssessment			
Bias domain	Criterion	Response		
	Were the research personnel and human			
	subjects blinded to the study group during the	NA	Not applicable	
	study?			
Attrition	Were outcome data complete without attrition or		None of the students declined to pariticants	
	exclusion from analysis?	++	None of the students declined to pariticpate	
Detection	Can we be confident in the exposure		"annual records of fluoride concentrations in the	
	characterization?		groundwater used for the household water supply	
		++	corresponding to the residence of each child from 2008	
			to 2015 were retrieved from the database at Nakhon	
			Pathom Provincial Public Health Office."	
	Can we be confident in the outcome	++	DF examined using Dean's Fluorosis Index	
	assessment?	TT	Di examined using Dean's Fluorosis index	
Selective	Were all measured outcomes reported?	++	Outcomes discussed in the methods were reported in	
reporting		++	the results	
Other	Were there no other potential threats to internal			
sources	validity (e.g., statistical methods were		None identified	
	appropriate and researchers adhered to the	++		
	study protocol)?			

Sharma 2021 34

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"This study	
Original study	Fluoride levels in • Ground water samples	Dental fluorosis	 Disease prevalence is presented as percentages by group 	confirms the positive association	
Study design: Cross-sectional study	Method of exposure	Method of outcome ascertainment:	Results:	between the presence of	
Country: India	 assessment: Samples from 3 water sources were randomly acquired per village Ion-selective electrode 	 Determined using Deans Fluorosis Index 	Positive association between drinking water fluoride levels and dental fluorosis prevalence	fluoride-rich rocks around the water source and the prevalence of	
Participants: Children (age 6 - 19 years) residing in 12 villages from the Rudraprayag District	Exposure level: Low-risk area • <0.6ppm Intermediate risk area • 0.6 – 1.5 ppm High-risk area		Percent of children with dental fluorosis by drinking water fluoride levels •<0.7mg/L: 1% •> 1mg/L: 92% •p-value: <0.001	fluorosis in the population of the area." (p. 126)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time fra	me: >1.5ppm			
NR			Prevalence of dental	
			fluorosis by geological	
			categories (fluoride level)	
Sample size:			Low-risk area (< 0.6ppm)	
558				
			 No fluorosis Intermediate risk area 	
Com			<u>(0.6 – 1.5ppm)</u>	
Sex:			<u>(0.0 1.0ppm)</u>	
NR			• Dental fluorosis: 59.9%	
			 Severe grade: 3.2% Community fluorosis 	
			index: 1.05	
Exclusions:			<u>High-risk area (>1.5ppm)</u>	
Not "residents of			Dental fluorosis: 93%	
selected villages			 Severe grade: 25.9% 	
their first 8 years (p. 124)	of life"		Community fluorosis	
• Not "eldest child .			index: 2.59	
[from] each house				
124)				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding /				
support:				
Self				
Author declaration of				
interest:				
No COI				

Bias domain	Criterion	Response
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable
	Was allocation to study groups adequately concealed?	N/A Not applicable

Risk of bias a	ssessment		
	Did selection of study participants result in	+	Yes, participants were selected using the same
	appropriate comparison groups?		criteria. However, the sampling timeframe was not
			reported
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	-	NR
	exclusion from analysis?		
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the ion-
	characterization?		selective electrode (Orion company A324pH
			benchtop model) using the EPA-approved ISE test
			procedures.
	Can we be confident in the outcome	-	NR (no info on the type and/or training status of the
	assessment?		assessors)

Risk of bias assessment					
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Silva 2021 35

Analysis & Results Statistical analysis: • Descriptive analysis • Logistic Regression	Conclusions Adolescents consuming fluoridated water
 Descriptive analysis 	consuming
	0
 Logistic Regression 	nuonualeu walei
	were 5 to 11 times more likely than
	those of consuming non-
	fluoridated water to
Results:	develop very mild/
Data for 12-year-old children	mild and moderate fluorosis.
[No dental fluorosis was	
	Results: Data for 12-year-old children

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
NR Sample size:	<u>Fluoride</u> <u>levels in drinking</u>		observed in 5-year-old children in either group]		
692 5 years old: 330 (47.6%) 12 years old: 362 (52.4%) Sex: N (%):	water: Ion Electrode Orion model No. 96-09, Orion Research Inc. coupled to Orion Star A214 Analyzer Exposure level(s):	Method of outcome	• <u>Dental Fluorosis in FW</u> <u>n(%)/NW n(%):</u> Absent: 72 (40.4)/150(81.5) Very Mild/Mild: 74(41.6)/28(15.2) Moderate: 32(18.0)/6(3.3) P<0.001		
Girls: 342 (49.4%)	<u>Fluoridated Water</u> (FW)	ascertainment:Thylstrup-Fejerskov	Kappa index: 0.90		
 Exclusions: Use of fixed orthodontic appliance Teeth with amelogenesis imperfecta Not being born or raised in subjected area (Teresina) or not having access to public water supply. 	Conc:<0.05 μg/mL <u>Non- Fluoridated</u> <u>Water (NFW)</u> Conc: 0.5-0.6 μg/mL	index (TF)	 Logistic regression <u>Very mild/mild DF vs. FW</u> (Desviance Test: p=0,088): OR:5.45 CI 95%: 3.23-9.19 P: <0.001 Moderate DF vs. FW (Desviance Test: p=0,088): OR:11.11 CI 95%: 4.43-27.87 		

Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of fundi	ng /		P: <0.001	
support:Coordination of			Reference: NFW for both Mild and moderate	1
Improvement of			fluorosis	
Higher Education Personnel (Cap Author declaration interest: No COI	es) on of		Multiple analysis controll by socioeconomic and demographics.	ed

Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected according to the same criteria and from the same eligible population. Time frame was not reported in the study.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for important confounders such as sex, socioeconomic and other demographic characteristics including mother's education, and family income.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study provided reasons for exclusion of participants (use of fixed orthodontic appliance, teeth with amelogenesis imperfecta, those who were not born or raised in the target area, Teresina, and those with no access to public water supply)			
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water wells using a combination of ion electrode Orion (model 96-09), coupled with Orion Star analyzer (model A214)			
	Can we be confident in the outcome assessment?	++	Yes, outcome (dental fluorosis) was done by examiners (no professional information reported), using Thylstrup-Fejerskov index (TF). Lack of blinding of outcome assessors would not appreciably bias results.			
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Tkachenko 2021 36

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "The children had higher 		
Original study	Fluoride levels in	Blood level of the lipid	 Kolmogorov-Smirnov 	blood TBARS		
	 Drinking water 	peroxidation biomarkers (lipid acyl	test • Kruskal-Wallis test • Spearman's correlation	levels, while the acyl hydroperoxide		
Study design:	Mathead of owners	hydroperoxides, 2-	analysis	levels were		
Cross-sectional	Method of exposure assessment:	thiobarbituric acid reactive substances	Results:	non- significantly increased in comparison		
Country:	NR	(TBARS)) in the blood of children with chronic	 Children with chronic fluorosis had by 25% higher blood TBARS 	with healthy children living in the non-		
Ukraine	Exposure level: Drinking water: >1.5	fluorosis	levels ($p < 0.05$) than the healthy subjects living in the non-	fluorosis area."		
Participants:	ppm	Method of outcome	fluorosis areas			
Children aged 7–10	F	ascertainment:	 There was a non- significant 17.5% increase (p > 0.05) in 			
years old with clinically		 Dental fluorosis: Dean's Fluorosis Index 	the primary products of lipid peroxidation (acyl hydroperoxides) in the blood of children from			
diagnosed fluorosis from		Blood levels: X-ray				
endemic fluorosis areas		fluorescence method				
(exposed to drinking			the endemic fluorosis areas, compared with the values obtained in			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
water fluoride (> 1.5			the blood of the health	/	
ppm) for >5 years.)			children from the non- fluorosis area		
Sampling time frame:					
2014 (date of the					
project's ethics approval))				
Sample size:					
31					
Sex (N):					
Boys: 15 (48.4%)					
Exclusions:					
Known cardiac, lung, liver, kidney diseases					
or diabetes mellitus					

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
 Use of cardiac dru Consumption of a vitamin or mineral supplements for a least 2 weeks before blood samples withdrawn 	ny t				
Source of funding	1				
support: NR					
Author declaration interest: No COI	n of				

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A Not Applicable				

Risk of bias as	ssessment		
	Was allocation to study groups adequately concealed?	N/A	Not Applicable
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were identified using the same criteria and the same method of outcome ascertainment. Time frame was implied based on the approval of the respective ethics committee.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (known cardiac, lung, liver, kidney diseases or diabetes mellitus, use of cardiac drugs, or consumption of any vitamin or mineral supplements for at least 2 weeks before blood samples withdrawn)

Risk of bias	assessment		
Detection	Can we be confident in the exposure characterization?	+	Study used Dean's Fluorosis Index as a tool for diagnosis of dental fluorosis, which RSI considered a proxy for fluoride level exposure
	Can we be confident in the outcome assessment?	++	Yes, the blood levels of the selected elements and lipid biomarkers were measured using the X-ray fluorescence method. Dental fluorosis was assessed using Dean's Fluorosis Index. Outcome assessment methods and lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome [blood levels of lipid peroxidation biomarkers (lipid acyl hydroperoxides, 2- thiobarbituric acid reactive substances (TBARS))] discussed in the methods was presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Wang 2021 37

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcome(s):	Statistical analysis:	 "low-to-moderate fluoride exposure
Original study	 Drinking water fluoride: 0.20–3.90 	IQDental fluorosis	 Descriptive analysis Multiple linear regression models 	was associated with the alteration
Study design:	mg/L	(DF)	Multiple logistic regression model	of cholinergic
Cross-sectional	 Urinary fluoride: 0.02–5.41 mg/L 		 Adjustment for: age, gender, BMI, low birth weight, paternal education, 	system, DF and IQ"
Country:	 Urine creatinine: 0.30–2.99 mg/L 		maternal education, family incomes, urine creatinine (for urinary fluoride).	 "AChE partly mediated the
China				elevated prevalence of DF
Participants:	Method of exposure	Method of	Results:	and the lower probability of
6.7–13 years old	assessment:	outcome	IQ, Linear regression	developing superior and
school children	• Fluoride	ascertainment:	• Water fluoride (mg/L): IQ scores, β	above intelligence
from Tianjin,	concentrations in water and urine were	 Combined 	(95% CI)	caused by fluoride."
China	measured by ion	Raven's Test- The Rural in	 ○ Q1 (≤ 0.30): Reference ○ Q2 (0.30-1.00) 	
Sampling time	analyzer with a fluoride selective	China (CRT-	Àll: 1.77 (−0.73, 4.27)	
frame:	electrode (INESA,	RC2), which is widely for	Boys: 1.40 (-2.29, 5.08)	
2015	Shanghai, China). • Creatinine in urine	cognitive ability	Girls: 2.51 (-1.42, 6.45)	
Sample size:	(for urinary fluoride) using early morning urine samples:	verification test, because of less influenced by	∘ Q3 (1.00−1.60) All: −2.77 (−5.44, −0.10)	
	Creatinine	language,	Boys: -4.45 (-8.41, -0.50)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
709	determination kit	culture, ethnic,	Girls: -1.72 (-5.91, 2.47)	
Sex: N (%):	China) differences •Enzyme-linked •Dean's	differences. • Dean's	○ Q4 (> 1.60) All: −4.10 (−6.71, −1.48)	
Girls: 328	immunosorbent	classification	Boys: -5.74 (-9.57, -1.91)	
(46.26%)	assays (Shanghai Enzyme-linked	system for dental fluorosis	Girls: -5.27 (-9.32, -1.22)	
Exclusions:	Biotechnology, Shanghai, China) were used to detect the expression of		 Urinary fluoride (mg/L): IQ scores, β (95% Cl) Q1 (≤ 0.20): Reference Q2 (0.20−0.48) 	
0	cholinergic system.		All: -1.99 (-4.64, 0.66)	
Source of			Boys: -1.62 (-5.65, 2.42)	
funding /			Girls: -3.29 (-7.34, 0.77)	
• National Natural			○ Q3 (0.48−0.90) All: −3.02 (−5.71, −0.33)	
Science			Boys: -3.54 (-7.60, 0.52)	
Foundation of			Girls: -1.86 (-6.01, 2.29)	
China (Grants No. 82073515 and No.			○ Q4 (> 0.90) All: −4.49 (−7.21, −1.77)	
81773388)			Boys: -6.09 (-10.29, -1.90)	
The State Key Program of National Natural Science of China (Grant No. 81430076)			Girls: −5.98 (−9.99, −1.96)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author	Exposure level(s):		IQ, Logistic regression	
Author declaration of interest: No COI	 Exposure level(s): Normal fluoride- exposure group: water fluoride ≤1.0 mg/L High-fluoride- exposure group: water fluoride >1.0 mg/L 		IQ, Logistic regression • Water fluoride (mg/L) and IQ scores [OR (95% CI)] • Superior and above (≥120): 0.69 (0.54, 0.90) • High normal (110-119): 0.86 (0.70, 1.06) • Normal (90-109): 1 (control) • Dull normal and below (≤89): 1.42 (1.08, 1.88) • Urinary fluoride (mg/L) and IQ scores [OR (95% CI)] • Superior and above (≥120): 0.67 (0.46, 0.97) • High normal (110-119): 0.90 (0.68, 1.18) • Normal (90-109): 1 (control) • Dull normal and below (≤89): 1.39 (0.97, 2.00) • AChE (nmol/L) and IQ scores [OR (95% CI)] • Q1 (≤0.30): Reference • Q2 (0.30-1.00) Superior and above (≥ 120):	
			1.67 (0.92, 3.02) High normal (110-119): 1.22	
			(0.73, 2.04)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
			Normal (90-109): 1 (control)	
			Dull normal and below (≤ 89):	
			0.96 (0.40, 2.27)	
			o Q3 (1.00−1.60) Superior and above (≥ 120):	
			0.47 (0.24, 0.94)	
			High normal (110-119): 0.78	
			(0.47, 1.30)	
			Normal (90-109): 1 (control)	
			Dull normal and below (≤ 89):	
			0.63 (0.27, 1.47)	
			○ Q4 (>1.60) Superior and above (≥ 120):	
			0.54 (0.29, 1.00)	
			High normal (110-119): 0.92	
			(0.53, 1.57)	
			Normal (90-109): 1 (control)	
			Dull normal and below (≤ 89):	
			1.68 (0.77, 3.64)	

Study Chara	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			DF, Prevalence		
			 Water fluoride (mg/L): dental fluorosis, PR (95% Cl) Q1 (≤ 0.30): Reference Q2 (0.30−1.00) Crude: 1.21 (0.86, 1.70) 		
			Adjusted: 1.20 (0.85, 1.69)		
			∘ Q3 (1.00−1.60) Crude: 3.78 (2.90, 4.94)		
			Adjusted: 3.79 (2.90, 4.95)		
			○ Q4 (>1.60) Crude: 3.90 (3.00, 5.08)		
			Adjusted: 3.97 (3.04, 5.17)		
			 Urinary fluoride (mg/L): dental fluorosis, PR (95% Cl) Q1 (≤0.20): Reference Q2 (0.20-0.48) Crude: 1.42 (1.09, 1.86) 		
			Adjusted: 1.66 (1.28, 2.14)		
			∘ Q3 (0.48−0.90) Crude: 2.18 (1.72, 2.75)		
			Adjusted: 2.73 (2.17, 3.44)		
			○Q4 (>0.90)		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Crude: 2.56 (2.04, 3.21)	
			Adjusted: 3.24 (2.58, 4.07)	
			Cholinergic system AChE (nmc and DF/IQ [PR (95% CI)] Either DF or IQ <120	ol/L)
			 ○ Q1 (≤ 133.66): Reference ○ Q2 (133.66–157.97) Crude: 1.09 (0.94,1.26) 	
			Adjusted: 1.06 (0.92,1.22)	
			○Q3 (157.97–184.03): Crude: 1.14 (1.00,1.31)	
			Adjusted: 1.12 (0.97,1.28)	
			○Q4 (>184.03) Crude: 1.21 (1.06,1.38)	
			Adjusted: 1.22 (1.07,1.38)	
			DF and IQ <120	
			 ○ Q1 (≤ 133.66): Reference ○ Q2 (133.66–157.97) Crude: 1.29 (1.08,1.54) 	

Study Chara	cteristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Adjusted: 1.27 (1.07,1.50))
			○ Q3 (157.97–184.03): Crude: 1.37 (1.16,1.62)	
			Adjusted: 1.37 (1.17,1.62))
			○ Q4 (>184.03) Crude: 1.46 (1.25,1.72)	
			Adjusted: 1.44 (1.23,1.68))
			 "Sensitivity analyses were conducted for the association between fluoride exposure, Df and cholinergic system by adju for the covariates among demographics, development, socioeconomics, and delivery conditions. We obtained similar results to what we found in the present analyses." 	usting

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level	N/A Not applicable		
	adequately randomized?			

Bias domain	Criterion		Response		
	Was allocation to study groups adequately	N/A	Not applicable		
	concealed?				
	Did selection of study participants result in	++	Yes, participants were selected during the same timeframe,		
	appropriate comparison groups?		according to the same criteria and from the same eligible		
			population.		
Confounding	Did the study design or analysis account for	++	Yes, it was adjusted for major confounders such as age, sex,		
	important confounding and modifying variables?		BMI, low birth weight, paternal education, maternal education,		
			family incomes, and urine creatinine (for urinary fluoride).		
Performance	Were experimental conditions identical across study	N/A	Not applicable		
	groups?				
	Were the research personnel and human subjects	N/A	Not applicable		
	blinded to the study group during the study?				
Attrition	Were outcome data complete without attrition or	++	Reported data was complete with no attrition or exclusion from		
	exclusion from analysis?		analysis.		
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from drinking		
	characterization?		water samples that were collected from the local source of		
			water supply in each village. Fluoride concentrations in water		
			and urine were measured by ion analyzer with a fluoride		
			selective electrode (INESA, Shanghai, China).		

Risk of bias as	sessment				
Bias domain	Criterion	Response			
	Can we be confident in the outcome assessment?	++	Yes, IQ was consistently	++	DF was independently
			assessed by trained		assessed by two trained
			teachers who were		dentists who were blinded
			blinded to the children's		to the children's exposure
			exposure status using the		status independently The
			Combined Raven's Test-		diagnosis of DF was
			The Rural in China (CRT-		estimated by Dean's
			RC2), which is widely for		fluorosis index.
			cognitive ability		
			verification test, because		
			of less influenced by		
			language, culture, ethnic,		
			and religion differences.		
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes	discuss	sed in methods were
reporting			presented in the results sec	tion wit	h adequate level of detail for
			data extraction		
Other sources	Were there no other potential threats to internal	++	None identified		
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Yani 2021 38

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposure:	Outcome(s):	Statistical analysis:	• "There is a	
Original study	 Ground water 	●IQ	 Univariate analysis 	relationship between Fluoride	
Study design:		 Dental fluorosis 	 Bivariate analysis 	level in well water and the incidence	
Cross-sectional				of fluorosis in	
Cross-sectional				students, where the incidence of	
Country:				fluorosis was	
Indonesia				higher in the high fluorine area than	
Participants:	Method of		Results:	in the low fluorine	
•	exposure			area." ● "The intelligence	
6–12 years old	assessment:		Dental fluorosis	of children who	
students from two	uccocomona		 High-fluoride area: 	suffered from fluorosis is lower	
different areas with	•NR		• Total: 37 (61.7%)	than the	
different levels of			 Questionable (score 1): 1 (0%) 	intelligence of	
drinking water fluoride			\circ Very mild (score 2): 10	children who do not suffer from	
in Palu City, with no			(0%) ⊙ Mild (score 3): 11 (11%)	fluorosis."	
history of head			 Moderate (score 4): 8 	 "The level of intelligence of 	
trauma, chronic			(8%) ○ Severe (score 5): 7 (7%)	students who live	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
disease, or were not				in the high-
undergoing treatment.			 Low-fluoride area: Total: 3 (7.5%) 	fluorine area is lower than
Sampling time frame:			\circ Questionable (score 1): 2	students who live in low fluorine
NR			(%) ○ Very mild (score 2): 1	area."
Sample size:			(1%) ○ Mild (score 3): 0 (0%)	
100			 Moderate (score 4): 0 (0%) 	
Sex: N (%):	Exposure level(s):	Method of outcome	○ Severe (score 5): 0 (0%)	
Females: 64 (64.0%)	• High fluoride area:	ascertainment:	IQ	
Exclusions:	1.6 ppm	Dental fluorosis was	 High-fluoride area: 	
- ND	 Low fluoride area: 0.10 ppm 	assessed using Dean's fluorosis index	 ► High-huonde area. ○ Low: 17 (28.3%) 	
• NR Source of funding /	or o ppm	• IQ was assessed using	o High: 43 (71.7%)	
support:		Raven's Color	 Low-fluoride area: Low: 0 (0%) 	
Support		Progressive Matrix component.	o High: 40 (100%)	
•NR		oomponona	C X <i>Y</i>	
Author declaration of			IQ and Dental fluorosis	
interest:			Na and Dental Illuorosis	
• No COI			Dental fluorosis:	
			○ Low: 15 (37.5%)	
			○ High: 25 (62.5%)● No dental fluorosis:	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			o Low: 2 (3.3%) ⊙ High: 28 (96.6%)	

Risk of bias as	sessment			
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level	N/A	Not applicable	
	adequately randomized?			
	Was allocation to study groups adequately	N/A	Not applicable	
	concealed?			
	Did selection of study participants result in	+	Yes, participants were selected according to the same criteria	
	appropriate comparison groups?		and from the same eligible population. However, the timeframe	
			was not reported.	
Confounding	Did the study design or analysis account for	-	NR	
	important confounding and modifying variables?			
Performance	Were experimental conditions identical across study	N/A	Not applicable	
	groups?			
	Were the research personnel and human subjects	N/A	Not applicable	
	blinded to the study group during the study?			
Attrition	Were outcome data complete without attrition or	++	Reported data was complete with no attrition or exclusion from	
	exclusion from analysis?		analysis.	
Detection	Can we be confident in the exposure	-	NR	
	characterization?			

Risk of bias as	sessment				
Bias domain	Criterion	Response			
	Can we be confident in the outcome assessment?	+	Yes, IQ was consistently	+	Yes, DF was consistently
			assessed by a trained		assessed by a trained
			philology using the		dentist using Dean's
			Raven's Coloured		fluorosis index. No
			Progressive Matrices. No		information reported on
			information reported on		assessor blindness
			assessor blindness		
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes	discuss	sed in methods were
reporting			presented in the results sec	tion wit	h adequate level of detail for
			data extraction		
Other sources	Were there no other potential threats to internal	++	None identified		
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Yu 2021 39

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	• Exposure: Fluoride content in	Outcome(s):	Statistical analysis:	• "Our study
Original study	Fluonde content in	• IQ	 LASSO Binomial 	suggests that fluoride is
Study design:	 Drinking water Urine 		regression Linear regression model 	inversely associated with
Cross-sectional	• Hair and nail		 The Adaptive Rank Truncated Product (ARTP) 	intelligence." • "The interactions
Country:			for investigating the associations of intelligence	of fluoride with mitochondrial
China			with genetic variations at the gene or pathway level.	function-related SNP-set, genes
Participants:	Method of		Results:	and pathways may also be
School children aged	exposure		Water fluoride (mg/L)	involved in high
7 to 13 years old	assessment:		 o High (IQ ≥ 120): 0.70 (0.40–1.00) 	intelligence loss."
Sampling time	 Water samples were collected from 		 Non-high (70 ≤ IQ<120): 1.00 (0.50–1.90) 	
frame:	each public supply		. ,	
2015	in the villages. Fluoride 		 Urinary fluoride (mg/L) 	
Sample size:	concentration was assessed using the		 High (IQ ≥ 120): 0.33 (0.13–0.81) 	
952	national standardized ion-		o Non-high (70 ≤ IQ <120): 0.60 (0.16–2.22)	
Sex: N (%):	selective electrode method in China			
			∙Hair fluoride (μg/g)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Girls: 481 (50.5%)	 An early-morning spot urine sample 		o High (IQ ≥ 120): 8.26 (5.72–10.48)	
Exclusions:	was collected from each subject.		o Non-high (70 ≤ IQ <120): 14.39 (10.25–20.56)	
 Non-respondents Congenital or acquired diseases affecting intelligence. Neurologic disorders Refused to provide blood, hair or nail 	Hair samples were collected from the occipital zone of the scalp.		 Nail fluoride (µg/g) ○ High (IQ ≥ 120): 11.71 (8.53–14.64) ○ Non-high (70 ≤ IQ <120): 19.76 (14.16–27.32) 	
samples			Fluoride exposure and	
 Low genotypic detection rate 			high intelligence: OR	
 Hair permed or dyed, or with hair 			<u>(95% CI)</u>	
samples less than 0.2 g (n = 250). Nails dyed or with			 Water fluoride (mg/L) ○ Tertile 1 (≤0.60) Reference 	
nails samples less			o Tertile 2 (0.61–1.40)	
than 0.2 g (n = 340).				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding /	Exposure level(s):	Method of outcome	Crude: 0.95 (0.65,	
support:	Water fluoride	ascertainment:	1.38)	
The State Key	(mg/L)	 IQ scores were 	Adjusted: 0.94 (0.64,	
Program of National	o Tertile 1 (≤0.60) o Tertile 2 (0.61–	measured by the	1.37)	
Natural Science 0 Tertile Foundation of China 1.40)		second edition of Combined Raven's Test – The Rural in	 ○ Tertile 3 (>1.40) Crude: 0.38 (0.24, 	
81430076).		China (CRT-RC2) for	0.59)	
The National Program for Support	Urinary fluoride	children aged 7 to 13 years.	Adjusted: 0.39 (0.25,	
of Top-notch Young	(mg/L) ⊙Tertile 1 (≤0.22)		0.61)	
Professionals and Health commission of Hubei Province Author declaration	 ○ Tertile 2 (0.23– 1.80) ○ Tertile 3 (>1.80) 		• Urinary fluoride (mg/L) ⊙ Tertile 1 (≤0.22) Reference	
of interest:	∙Hair fluoride (µg/g)		o Tertile 2 (0.23–1.80) Crude: 1.26 (0.87,	
No COI	o Tertile 1 (≤10.40)		1.83)	
	 ○ Tertile 2 (10.41– 17.02) 		Adjusted: 1.26 (0.87,	
	o Tertile 3 (>17.02)		1.84)	
 Nail fluoride (µg/g) Tertile 1 (≤14.64) Tertile 2 (14.65–23.41) Tertile 3 (>23.41) 		 ○ Tertile 3 (>1.80) Crude: 0.41 (0.26, 		
		0.65)		

Study Charact	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Adjusted: 0.41 (0.26	,
			0.66)	
			∙ Hair fluoride (μg/g) ⊙ Tertile 1 (≤10.40) Reference	
			○ Tertile 2 (10.41–17.02) Crude: 0.16 (0.10,	
			0.29)	
			Adjusted: 0.16 (0.09	,
			0.29)	
			 ○ Tertile 3 (>17.02) Crude: 0.08 (0.04, 	
			0.16)	
			Adjusted: 0.08 (0.04	,
			0.16)	
			∙ Nail fluoride (μg/g) ⊙ Tertile 1 (≤14.64) Reference	
			○ Tertile 2 (14.65–23.41) Crude: 0.15 (0.08,	
			0.29)	

Study	Exposure	Outcome	Analysis & Results	Conclusions
			Adjusted: 0.15 (0.08,	
			0.29)	
			 ○ Tertile 3 (>23.41) Crude: 0.09 (0.04, 	
			0.18)	
			Adjusted: 0.09 (0.04,	
			0.19)	
			Does-response	
			Does-response	
			relationships of IQ score	<u>es</u>
			with fluoride exposures	
		 β and 95% CI for every 0.50 mg/L increment of water fluoride or urinary fluoride β and 95% CI for every 1.00 μg/g increment of hair fluoride or nail fluoride. 		
			 Adjustment: age, sex, maternal education and paternal education. 	
			 Water fluoride (mg/L) 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			0.20-3.40 ○ 0.20-3.40 Crude: -1.24 (-1.48,	-
			0.99)	
			Adjusted: -1.16 (-1.4	1,
			-0.91)	
			∘ 3.40-3.90 Crude: -5.36 (-8.54,	-
			2.18)	
			Adjusted: -4.21 (-7.5	4,
			-0.87)	
			Urinary fluoride (mg/L)	
			1.63)	
			Adjusted: 1.01 (0.34	3
			1.68)	
			∘ 1.60-2.50 Crude: -5.08 (-6.94,	-
			3.22)	

Study Charact	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Adjusted: -5.23 (-7.0	7,
			-3.39)	
			∘ 2.50-5.54 Crude: -0.50 (-1.13,	
			0.14)	
			Adjusted: -0.34 (-0.9	8,
			0.30)	
			● Hair fluoride (μg/g) ○ 3.23-10.50 Crude: -2.34 (-2.69,	-
			1.99)	
			Adjusted: -2.34 (-2.6	9,
			-1.99)	
			∘ 10.50-45.04 Crude: -0.41 (-0.49,	-
			0.34)	
			Adjusted: -0.42 (-0.5	0,
			-0.34)	
			 Nail fluoride (μg/g) 2.08-14.50 	

Study Charact	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Crude: -1.11 (-1.41,	-
			0.81)	
			Adjusted: -1.10 (-1.4	1,
			-0.80)	
			○ 14.50-99.60 Crude: -0.50 (-0.56, -	-
			0.44)	
			Adjusted: -0.49 (-0.5	5,
			-0.43)	
			Interaction of SNP-set	
			score with fluoride	
			exposure on high	
			intelligence OR (95% C	<u>21).</u>
			 The P-value for interaction (p-inter) was adjusted for age, sex, maternal education and paternal education. High SNP: -set score group (-1.59 to 0.00): Low SNP-set score group 2.90 to -1.59): 	up

Study Charact	teristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			 Water fluoride (binary variable based on the limit of 1.00 mg/L) Sample size: 952 High SNP: 0.33 (0.20, 0.55) Low SNP: 0.27 (0.14, 0.54) p-inter: 0.030 	it
			 Urinary fluoride (binary variable based on the limit of 1.60 mg/L) Sample size: 952 High SNP: 0.37 (0.22, 0.62) Low SNP: 0.32 (0.16, 0.63) p-inter: 0.040 	it
			 Hair fluoride (binary variable based on the median level of 14.00 μg/ Sample size: 719 High SNP: 0.17 (0.08, 0.34) 	g)

01	F	Orterre		Ormaliana
Study	Exposure	Outcome	Analysis & Results	Conclusions
			○ Low SNP: 0.12 (0.04,	
			0.35)	
			○ p-inter: 0.010	
			Nail fluoride (binary	
			variable based on the	
			median level of 19.60 μg/	g)
			 Sample size: 638 	
			○ High SNP: 0.13 (0.06,	
			0.31)	
			○ Low SNP: 0.12 (0.04,	
			0.37)	
			○ p-inter: 0.242	

Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it was adjusted for major confounders such as age, sex, maternal education and paternal education

Bias domain	Criterion	Resp	ponse
Performance	Were experimental conditions identical across study	N/A	Not applicable
	groups?		
	Were the research personnel and human subjects	N/A	Not applicable
	blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants (non-
	exclusion from analysis?		respondents, congenital or acquired diseases affecting
			intelligence, neurologic disorders, those who refused to
			provide blood, hair or nail samples, low genotypic detection
			rate, permed or dyed hair, or with hair samples less than 0.2
			g (n = 250), and dyed nails or with nails samples less than
			0.2 g (n = 340).). There were no significant differences
			between those included compared to those excluded in both
			"high" and "non-high" intelligence groups in most
			characteristics, except for parental education and family
			income, where the numbers excluded were appreciably
			higher than those included. Similarly those excluded were
			more likely to have experienced maternal drinking, smoking
			or anemia during pregnancy, or encountered a problematic
			delivery.
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from drinking
	characterization?		water samples that were collected from the local source of
			water supply in each village. Fluoride concentration in wate

Risk of bias as	sessment		
Bias domain	Criterion	Res	oonse
			was assessed using the national standardized ion-selective electrode method in China.
	Can we be confident in the outcome assessment?	+	Yes, IQ was consistently assessed by professionals (no credentials reported) who supervised the children during the assessment. IQ scores were measured using the second edition of Combined Raven's Test – The Rural in China (CRT-RC2) for children aged 7 to 13 years. No information reported on assessor blindness
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in the results section with adequate level of detail for data extraction.
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.

Zhao 2021 40

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcome(s):	Statistical analysis:	"Dopamine rolative genes
Original study	Fluoride	●IQ	Multivariable linear	relative genes may modify the
Study design:	concentration in		regression models (associations between	association between fluoride
Cross-sectional	Drinking waterUrine		fluoride and IQ scores)Multiplicative and additive models (appraising single	and intelligence, and a potential interaction among
Country:	Method of		gene-environment interaction) • Generalized multifactor	fluoride exposure and DA relative genes on IQ."
China	exposure		dimensionality reduction, GMDR (evaluating high-	 "fluoride exposure is inversely
Participants:	assessment:		dimensional interactions of gene-gene and gene-	related to children's IQ; DA
children, aged 6–11	 Urinary fluoride: The national 		environment).	related genes polymorphism
years old, from	standardized			(ANKK1 Taq1A,
endemic and non-	method ion			COMT rs4680, DAT1 40 bp
endemic fluorosis	analyzer EA940			VNTR and MAOA
areas in Tianjin,	with F-ion selective			uVNTR) have modifying effects
China.	electrode (Shanghai			of fluoride
Sampling time frame:				exposure on IQ; UF, ANKK1

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
2018	electronic			Taq1A, COMT
Sample size:	technology Co, Ltd,			Val 158 Met and MAOA uVNTR
567	China)			have a high- dimensional
Sex: N (%):	Exposure level(s):		Results:	interaction on IQ."
Girls: 283 (49.9%)	Fluoride in drinking		Associations between UF	
Exclusions:	water:		and IQ scores	
 Negative long-term 	 High fluoride areas: 1.53–2.84 	Method of outcome	• Overall: Log_UF were	
residence Mental retardation in	mg/L	ascertainment:	inversely linear associated with IQ score (P < 0.05) in	
an immediate family	 Non-endemic fluorosis area (WF: 	The Combined Raven's	both crude model and adjusted model	
memberMissing IQ test,	0.15–0.37 mg/L	Test (modified in China)	• β (95% CI):	
questionnaire or			 Crude: - 5.159 (- 8.996, - 1.321) 	
physical examinationNo results of	Fluoride in urine:		 Adjusted: - 5.957 (- 	
genotyping	 Urinary fluoride 		9.712, - 2.202)Bootstrapped estimation	
measurement Source of funding /	concentration was		of the variance: (95% CI:	
support:	not normally distributed, with a modion (quantile 1		- 10.356, - 1.834; p=0.006)	
The National Natural	median (quantile 1, quantile 3) of 1.03			
Science Foundation of	(0.72, 1.47) mg/L			

Study	Exposure	Outcome	Analysis & Results	Conclusions
China (Grant No.	• After log			
81573107, 81372934).	transformation, the mean (±SD)			
Author declaration of	Log_UF was 0.015 (±0.252)			
interest:	(±0.202)			

Risk of bias as	sessment		
Bias domain	Criterion	Resp	oonse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe, according to the same criteria and from the same eligible population.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it was adjusted for major confounders such age, gender, BMI, paternal education level, maternal education level, household income, abnormal birth and maternal age at delivery.

Risk of bias as	sessment		
Bias domain	Criterion	Resp	oonse
Performance	Were experimental conditions identical across study	N/A	Not applicable
	groups?		
	Were the research personnel and human subjects	N/A	Not applicable
	blinded to the study group during the study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants (negative
	exclusion from analysis?		long-term residence, mental retardation in an immediate family
			member, missing IQ test, questionnaire or physical
			examination, or no results of genotyping measurement).
Detection	Can we be confident in the exposure	++	Yes, fluoride concentration in water was assessed using the
	characterization?		national standardized method ion analyzer EA940 with F-ion
			selective electrode (Shanghai constant magnetic electronic
			technology Co, Ltd, China) .
	Can we be confident in the outcome assessment?	++	Outcome was consistently assessed using The Combined
			Raven's Test (modified in China). Test administrators were
			blinded to participants' drinking water fluoride exposure levels.
			All participant assessments were conducted by trained
			professionals and under the supervision of qualified teachers,
			and public health and medical doctors.
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were
reporting			presented in the results section with adequate level of detail for
			data extraction.

Risk of bias assessment					
Bias domain Criterion Response					
Other sources	Were there no other potential threats to internal	++	None identified		
	validity (e.g., statistical methods were appropriate				
	and researchers adhered to the study protocol)?				

Bai 2020 41

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The data		
Original study	Fluoride levels in	Sex steroid hormones	 Analysis of variance and 	indicated gender-		
	• Drinking water	[testosterone, estradiol	Chi-square test for	and age-specific		
	 Drinking water Serum 	and sex hormone-	continuous and categorical variables,	inverse		
Study design:		binding globulin	respectively.	associations of		
Cross-sectional	Mathed of experience	(SHBG)]	 Adjusted linear regression (age, 	fluoride in plasma		
	Method of exposure		gender, race, family	and water with		
	assessment:		PIR, serum cotinine,	sex steroid		
Country:	Levels of fluoride in	Method of outcome	BMI category, seasonal period when surveyed	hormones of total		
USA	water and serum were	ascertainment:	and session of blood	testosterone,		
	tested using the ion-		sample collection)	estradiol and		

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
	specific electrode	Total testosterone and	Results:	SHBG in U.S.		
Participants:	method	estradiol: isotope dilution liquid	 Compared with subjects 	children and		
US children and		chromatography tandem mass	at the first tertile of plasma fluoride, percent	adolescents."		
adolescents 6-19 years	Exposure level:	spectrometry (ID-LC- MS/MS)	changes (95% CI) in testosterone were:			
old (NHANES survey)	• Water fluoride (mg/L) o Total: 0.36 (0.30, 0.42)	 SHBG: reaction of SHBG with immuno- antibodies and chemo- 	 Second tertile: – 8.08% (–17.36%, 2.25%) 			
Sampling time frame:	 Male children: 0.40 (0.32, 0.47) 	luminescence measurements of the	 Third tertile: – 21.65% (–30.44%, – 			
2013 – 2016	 Male adolescents: 0.34 (0.28, 0.40) Female children: 0.37 (0.29, 0.44) 	reaction products	 11.75%) ○ P trend <0.001 • Male adolescents at the third tertile of plasma 			
Sample size: 3,392	 Female adolescents: 0.35 (0.28, 0.41) 		fluoride had decreased levels of testosterone: – 21.09% (–36.61% to – 1.77%).			
	○ p-value: 0.143		 Similar inverse associations were also 			
Sex (N): Males	 Plasma fluoride (umol/L) 		found when investigating the			
Total: 780 (50.6%)	 Total: 0.35 (0.33, 0.37) 		relationships between plasma fluoride and			
Children: 936 (50.6%)	 Male children: 0.38 (0.36, 0.41) Male adolescents: 0.34 (0.32, 0.36) 		 Decreased levels of SHBG associated with 			

275

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Adolescents: 1,716	• Female children:		water and plasma		
(50.6%)	0.36 (0.34, 0.37) • Female adolescents: 0.33 (0.31, 0.35)		fluoride • Male adolescents (third tertile): -9.39% (-17.25% to -		
Exclusions:	 o p-value: <0.001 		0.78%) • Female children (second tertile): –		
Participants missing			10.78% (–17.55% to		
information on fluoride			-3.45%)		
levels in plasma or			Percent change in		
water, sex steroid			testosterone (95% CI) at		
hormones of			tertiles T2 and T3,		
testosterone, estradiol,			compared to T1:		
SHBG, or the examined			Total		
covariates.			•T2: -7.95 (-20.47, 6.56) •T3: -8.11 (-15.84, 0.33) •p trend = 0.069		
Source of funding /			Male Children		
support:					
National Natural			• T2: 10.90 (-8.11, 33.85) • T3: -7.56 (-21.80, 9.27) • p trend = 0.458		
			Male Adolescents		

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Science Foundation of China			•T2: -2.35 (-19.83, 18.94 •T3: -7.43 (-24.79, 13.94 •p trend = 0.461	,
			Female Children	
Author declarati interest: No COI			• T2: -1.07 (-14.11, 13.96 • T3: -3.97 (-15.95, 9.72) • p trend = 0.549)
			Female Adolescents	
			• T2: -2.08 (-11.75, 8.66) • T3: -3.58 (-14.75, 9.06) • p = trend 0.540	
			Percent change in	
			Estradiol (95% CI) at	
			tertiles T2 and T3, compared to T1:	
			<u>Total</u>	
			• T2: -4.55 (-16.08, 8.56) • T3: 1.48 (-6.97, 10.70) • p trend = 0.896	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Male Children	
			•T2: 2.08 (-2.97, 7.39) •T3: 0.72 (-4.07, 5.75) •p trend = 0.705	
			Male Adolescents	
			•T2: -4.56 (-19.04, 12.52) •T3: -1.25 (-14.54, 14.10) •p trend = 0.823	
			Female Children	
			• T2: -15.59 (-32.04, 4.84) • T3: -7.25 (-22.74, 11.35) • p trend = 0.337	
			Female Adolescents	
			•T2: 3.50 (-21.43, 36.33) •T3: 9.49 (-13.47, 38.53) •p trend = 0.457	
			Percent change in	
			SHBG (95% CI) at	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			tertiles T2 and T3,		
			compared to T1:		
			Total		
			•T2: 2.71 (-4.84, 10.86) •T3: -2.75 (-9.69, 4.74) •p = trend 0.557		
			Male Children		
			•T2: 5.38 (-2.14, 13.48) •T3: -4.14 (-10.65, 2.85) •p trend = 0.322		
			Male Adolescents		
			• T2: 0.38 (-7.95, 9.47) • T3: -9.39 (-17.25, -0.78) • p trend = 0.038		
			Female Children		
			• T2: -1.74 (-11.50, 9.10) • T3: 0.12 (-7.47, 8.34) • p trend = 0.984		
			Female Adolescents		
			• T2: 2.09 (-13.3, 19.98) • T3: -0.37 (-12.06, 12.88)		

Study Characteri	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• p trend = 0.996	

Risk of bias assessment				
Criterion	Res	oonse		
Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
Was allocation to study groups adequately concealed?	N/A	Not applicable		
Did selection of study participants result in	++	Yes, participants were identified using the same method		
appropriate comparison groups?		of ascertainment, recruited within the same time frame, and using the same criteria.		
Did the study design or analysis account for	++	Yes, it accounted for major confounders such as age,		
important confounding and modifying variables?		gender, race, family PIR, serum cotinine, BMI category,		
		seasonal period when surveyed and session of blood		
		sample collection		
Were experimental conditions identical across study groups?	N/A	Not applicable		
	Criterion Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately concealed? Did selection of study participants result in appropriate comparison groups? Did the study design or analysis account for important confounding and modifying variables? Were experimental conditions identical across	CriterionRespWas administered dose or exposure level adequately randomized?N/AWas allocation to study groups adequately concealed?N/ADid selection of study participants result in appropriate comparison groups?++Did the study design or analysis account for 		

Risk of bias	assessment		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(participants missing information on fluoride levels in
			plasma or water, sex steroid hormones of testosterone,
			estradiol, SHBG, or the examined covariates.)
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels in water and serum were
	characterization?		measured using the ion-specific electrode method
	Can we be confident in the outcome	++	Yes, the outcome was assessed for Total testosterone
	assessment?		and estradiol using the isotope dilution liquid
			chromatography tandem mass spectrometry (ID-LC-
			MS/MS); and for SHBG using the reaction of SHBG with
			immuno-antibodies and chemo-luminescence
			measurements of the reaction products. Outcome
			assessment methods and lack of blinding of outcome
			assessors would not appreciably bias results.

Risk of bias assessment					
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome (steroid sex hormones) discussed in the methods was presented in results		
0.1			section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Cui Y 2020 42

Study Characteristic	CS			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	Although fluoride
Original study	Fluoride levels in	IQ scoresThyroid Stimulating	 Descriptive statistics 	was not the main focus ^{xxvii} , the study
Study design:	• Urine	Hormone (TSH) • Dopamine (DA)	Results:	reported non- significant

xxvii RSI conclusion provided as the author's reported conclusion did not include information on effects caused by exposure to fluoride

Study	Exposure	Outcome	Analysis & Results	Conclusions	
Cross-sectional study	Method of exposure	Method of outcome	Mean (±SD) IQ by urinary	frequency	
	assessment:	ascertainment:	fluoride levels	differences	
Country:	 Fluoride ion selective electrode method 	 IQ: Combined Raven's Test (CRT) 	<u>< 1.6 mg/L</u>	between urinary fluoride levels and	
China		•TSH: measured in	•112.16 (±11.50)	IQ scores, and TSH	
		serum using electrochemical	<u>1.6 – 2.5 mg/L</u>	and DA levels	
	Exposure level:	luminescence method	•112.05 (±12.01)		
Participants:	Distribution by urinary	 DA: measured in plasma using ELISA and DA kit 	<u>≥ 2.5 mg/L</u>		
School aged children (7	fluoride levels (N; %)				
 – 12 years) from Tianjin 	<u>< 1.6 mg/L</u>		•110.00 (±14.92)		
	• N = 396 (79.52)		<u>p-value</u>		
	1.6 - 2.5 mg/L		•0.578		
Sampling time frame:	<u>1.0 2.0 mg/L</u>				
2014 - 2018	• N = 66 (13.25)		Median (q1-q3) TSH in		
	<u>≥ 2.5 mg/L</u>		ulU/mL by urinary fluoride		
Sample size:	• N = 36 (7.23)		levels		
•			<u>< 1.6 mg/L</u>		
498					
			•2.81 (2.21 – 3.81) <u>1.6 – 2.5 mg/L</u>		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sex:			•2.82 (2.01 – 3.82)		
Boys: 248 (49.8%)			<u>≥ 2.5 mg/L</u>		
			•3.29 (2.30 – 4.48)		
Exclusions:			<u>p-value</u>		
			•0.287		
 Had incomplete information 					
 Insufficient samples blood 	of		Median (q1-q3) DA in		
biood			ng/L by urinary fluoride		
Source of funding (levels		
Source of funding / support:			<u>< 1.6 mg/L</u>		
National Nature			•5.62 (3.08 – 12.15)		
Science Foundation	of		<u>1.6 – 2.5 mg/L</u>		
China ●Tianjin Health			•5.77 (3.01 – 12.59)		
Inspection Fund			<u>≥ 2.5 mg/L</u>		
			•7.24 (2.16 – 15.23)		
Author declaration o	of		<u>p-value</u>		
interest:			0.925		

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
No COI				

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified from the same population and recruited within the same time frame.			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR			
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable			

Risk of bias	assessment						
	Were the research personnel and human	N/A	Not applicable				
	subjects blinded to the study group during the						
	study?						
Attrition	Were outcome data complete without attrition	++	Study provided	d reas	sons for exclusion	of pa	irticipants such
	or exclusion from analysis?		as insufficient	blooc	I samples or incor	nplete	e data
Detection	Can we be confident in the exposure	++	Exposure was measured in urine using fluoride ion			oride ion	
	characterization?		selective electrode method (Chinese standard WS/T 89-			lard WS/T 89-	
			2015).				
	Can we be confident in the outcome	+	IQ measured	++	TSH measured	++	DA measured
	assessment?		using		in serum using		in plasma using
			Combined		electrochemical		ELISA and DA
			Raven's Test		luminescence		kit
			(CRT).		method		
			Unclear				
			blinding				
Selective	Were all measured outcomes reported?	++	Yes, all primary outcomes (IQ, thyroid hormones and				
reporting			dopamine) dis	cusse	ed in methods wer	e pre	sented in results
			section with a	dequa	ate level of detail f	or dat	a extraction

Risk of bias assessment				
Other	Were there no other potential threats to	++	None identified	
sources	internal validity (e.g., statistical methods were			
	appropriate and researchers adhered to the			
	study protocol)?			

Das 2020 43

Study Characteristics									
Study	Exposure	Outcome	Analysis & Results	Conclusions					
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The results					
Original study	Fluoride levels in	Dental Fluorosis	NR	revealed that					
onginarotady				fluoride levels					
	Water wellsFiltration plants			varied between					
Study design:	Commercial brand	Method of outcome	Results:	0.03 and 3.8 ppm.					
Cross-sectional study	water bottles	ascertainment:		People who drank					
		 Assessments were completed by two 		well water					

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Country:	Method of exposure	dentists and two dental	Association between	displayed			
Saudi Arabia	assessment:	assistants Severity was 	dental fluorosis and	increased fluoride			
	 Collected samples (N= 	determined using	sources of drinking water	levels (>0.81 ppm).			
	63) from 12	Dean's index	Well Water	The prevalence of			
Participants:	regions/cities and 9 water bottle brands			dental fluorosis			
Dental college patients			None: 163 Questionable: 141	was established to			
(aged 9 to 50 years)			• Very Mild: 105	be 20.43% among			
	Exposure level:		Mild: 71Moderate: 12	the total number of			
	Mean (SD) Fluoride		• Severe: 3 • Total: 495	examined patients.			
Sampling time frame:	levels in ppm by water			The findings of this			
July – December 2019	source type		Filtered Water	study show very			
	Well Water		•None: 414	mild to moderate			
0	1.97 (0.20)		Questionable: 197	dental fluorosis			
Sample size:	Filtered Water		 Very Mild: 36 Mild: 5 	prevail among the			
1,150	1.05 (0.69)		• Moderate: 3	patients who			
Cov Nr			Severe: 0Total: 665	consume well			
	Bottled Water		Total	water in the Asir			
Sex N:	1.09 (0.10)			region."			
Men: 609 (53%)			None: 577 Questionable: 338				
			• Very Mild: 141				

288

Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions: Patients without print or permanent teeth erupted	-		• Mild: 76 • Moderate: 15 • Severe: 3 • Total: 1150 <u>p-value</u> • <0.002	
Source of funding support: Deanship of Scienti Research				
Author declaration interest: No COI	n of			

Risk of bias as	ssessment				
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR		

Risk of bias	Risk of bias assessment				
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the ion		
	characterization?		chromatography system (ExStik® FL700 Fluoride		
			Meter, USA).		
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was done by 2		
	assessment?		dentists and 2 dental assistants, using Dean's		
			fluorosis index. Lack of blinding of outcome		
			assessors would not appreciably bias results.		
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were		
reporting			presented in results section with adequate level of		
			detail for data extraction		
Other	Were there no other potential threats to internal	++	None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the				
	study protocol)?				

Fernandes 2020 44

Study Characteristics						
sure	Outcome	Analysis & Results	Conclusions			
sures:	Outcome(s):	Statistical analysis:	"The			
<u>de level in</u> er samples	Dental fluorosis	NR	prevalence of dental fluorosis in group II			
	Method of outcome	Results:	[>0.7 ppm F]			
d of exposure sment:	 ascertainment: Single examiner with notetaker determined 	N (%) dental fluorosis absent	was higher (44.8%), but it			
oined ion-specific e electrode reference ode connected	dental fluorosis using the Thysltrup and Fejerskov criteria	• <u>≤0.7 ppm F:</u> 306 (63.1) • <u>>0.7 ppm F:</u> 69 (55.2)	was not significantly different from group I [<0.7			
on analyser 710 476) sure level: of residual fluoride		N (%) dental fluorosis present • <u>≤0.7 ppm F:</u> 179 (36.9%) •>0.7 ppm F:	ppm F] (36.9%)." (p. 477)			
b		residual fluoride	Ire level: • ≤0.7 ppm F: 179 (36.9%) f residual fluoride • >0.7 ppm F: 50 (44.9%)			

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
de Moura, Marizópolis,	Range: 0.06 – 1.98					
and Uiraúna						
Sampling time frame:						
NR						
Sample size:						
610						
Sex N (%):						
Men: 329 (53.9%)						
Exclusions:						
 Use fixed orthodontic 						
appliance						
 Have reading difficulties 						

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Have tooth malformations						
Source of funding	1					
support:						
NR						
Author declaration	n of					
interest: No COI						

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable				
	Was allocation to study groups adequately concealed?	N/A Not applicable				

Risk of bias as	ssessment		
	Did selection of study participants result in	+	Yes, participants were selected using the same
	appropriate comparison groups?		criteria. However, the sampling timeframe was not reported
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(using fixed orthodontic appliance, have reading
			difficulties, or have tooth malformations)
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the
	characterization?		combined ion specific fluoride electrode (ORION-
			9409BN) and a reference electrode (900200)
			connected to an ion analyser 710 A (ORION).
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by a
	assessment?		single examiner with notetaker using the Thysltrup and

Risk of bias assessment						
Selective reporting	Were all measured outcomes reported?	++	Fejerskov criteria. Lack of blinding of outcome assessors would not appreciably bias results. Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Godebo 2020 45

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Reference type:	Exposures	Outcome: Skeletal	Statistical analysis:	Negative associations			
Original study	Fluoride levels in	fluorosis	 Bivariate and multivariable 	between F- exposure and bone quality at all three			
Study design:	Drinking waterUrine		 linear regression analyses adjusted for age, sex, BMI, smoking, current tooth paste use 	 Fluoride-induced deterioration of bone 			

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Cross-sectional	Exposure	Method of outcome		quality in humans, likely		
	assessment:	ascertainment:	Results:	reflecting a combination of factors related to SOS: net		
Country:	24-hour urinary F-	Bone scan in multiple	 1 mg/L increase in F- in 	bone loss, abnormal		
Ethiopia	content was	skeletal sites, using a novel mobile non-	drinking water was related to reduction of 15.8 m/s	mineralization and collagen formation, or altered		
	determined using	ionizing ultrasound	(95% CI: -21.3 to -10.3) of	microarchitecture.		
Participants:	the ion selective	device. Results were examined using the	adult tibial SOS. • 1 mg/L increase in 24-h			
Adolescents and	electrode and the	same assessment	urinary F- (range: 0.04–39.5 mg/L) was linked to a reduction of 8.4 m/s (95%			
adult farmers living	hexamethyldisiloxan	criteriaX-ray validation for a				
in the MER rural	e (HMDS)-facilitated	subset of	Cl: −12.7, −4.12) of adult			
area	diffusion method	participation, where radiographs were	tibial SOS.			
	(Rango et al. 2017).	analyzed by a	non-significant inverse			
Sampling time		radiologist/co-author with a specialization	associations between F- exposure and SOS			
frame: 2018-2019	Water F-	in skeletal fluorosis	Age, gender, and BMI were			
	concentrations:		more significant predictors			
Study population:	<u>Mean (SD)</u>		than in adults			
341						
Sex: (men): 55.1%	 Water intake (liter/day): 1.3 ± 0.63 FI in groundwater (mg/L): 6.8 ±4.30 					

Study Characteristic	Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions				
Exclusions: individuals who were judged as incapable of	 Fl intake (mg/day): 9.13 ± 7.30 							
undergoing detailed health examinations.	<u>Urinary F-</u> <u>concentrations:</u> <u>Mean (SD)</u> <i>F- in 24-h urine</i>							
Source of funding/ support:	(<i>mg/L</i>): 8.2 ± 7.6							
National Institute of Environmental Health Sciences	<i>F- excretion (mg):</i> 5.01 ± 4.5							
Author declaration of interest: Not reported								

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Participants were enrolled during 2 sampling periods (between 2018 and 2019), from 25 rural communities in the Main Ethiopian Rift (MER), each of which were primarily dependent on a single groundwater well.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes (age, sex, BMI, smoking, current toothpaste use)		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Not considered a risk of bias as there were few eligible participants who got excluded based on a judgment		

Risk of bias	assessment		
			that they would be incapable of undergoing detailed health examinations.
Detection	Can we be confident in the exposure characterization?	++	Yes, 24-hour urinary F- content was determined for all groups, within the same time-frame, and using the same tool: ion selective electrode and the hexamethyldisiloxane (HMDS)-facilitated diffusion method
	Can we be confident in the outcome assessment?	++	Yes, all participants underwent the same bone scan on the same 3 skeletal sites for adults, and 2 sites for children, using a standard "novel" mobile non-ionizing ultrasound device. Results were examined using the same. Validation using X-ray radiographs was completed for a subset of participants by a radiologist/co-author with a specialization in skeletal fluorosis
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction

Other Were there no other potential threats to internal None identified sources validity (e.g., statistical methods were ++ appropriate and researchers adhered to the ++	Risk of bias assessment					
study protocol)?		validity (e.g., statistical methods were appropriate and researchers adhered to the	++	None identified		

Kim 2020 46

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Findings from			
Original study	Fluoride levels in	Osteosarcoma (bone	 Conditional logistic 	this study			
0 ,		cancer)	regression to assess the	demonstrated			
	• Water		association of community water	that community			
Study design:			fluoridation with	water fluoridation			
Case-control	Method of exposure	Method of outcome	osteosarcoma.	is not associated			
	assessment:	ascertainment:		with an increased			
	NR	Phase 1: histological		risk for			
Country:		confirmation of diagnosis followed by phone interviews	Results:	osteosarcoma."			

Study	Exposure	Outcome	Analysis & Results	Conclusions
USA	Exposure level: Lived in a fluoridated	Phase 2: pathology reports	 A modestly significant interaction existed between fluoridation 	
Participants:	area (0.7 ppm)		living status and bottled water use ($P = 0.047$).	
 Phase 1 Cases: all patients younger than 40 years old, who were diagnosed with 	• No ○ Cases: 58 (24.6%)		 Risk of osteosarcoma (adjusted): 	
	 Controls: 81 (19.8%) <i>Reference</i> Yes 		 For ever having lived in a fluoridated area for nonbottled water drinkers: [OR= 0.51 (95% CI: 0.31 - 0.84) 	
 osteosarcoma Controls: patients with other bone tumors or non-neoplastic 	 Cases: 178 (75.4%) Controls: 328 (80.2%) 		 P = 0.008)]. For bottled water drinkers: [OR=1.86 	
conditions, identified	OR: 0.76, 95% CI: (0.52		(95% CI: 0.54 - 6.41; P = 0.326).	
during the same periods, and from the same orthopedic surgery department as cases. • Controls were matched	to 1.11), p-value: 0.156			
to cases on sex, age ±5 years, and distance from the hospital				

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
 Phase 1: 1989–1993 Phase 2: 1994–2000 						
Sample size:						
 Phase 1: cases (209), controls (440) Phase 2: cases (108), controls (296) 						
Sex (N):						
Phase 1 & 2 combined:						
 Cases: men: 142 (60.2%) Controls: men 248 (60.6%) 						
Exclusions:						
Phase 1						

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
 Patients older than 40 years of age at diagnosis Prior radiotherapy Renal dialysis 						
Phase 2						
 Radiotherapy Renal dialysis Foreign nationals who were in the United States solely for treatment 						
Source of funding /						
support:						
 Statistical analysis: CDI Research, Inc. Phase 1: the National Institute of Environmental Health Sciences (NIH). Data collection: the New England Research Institute. 						

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
 Phase 2 was fur the National Car Institute (NIH) ar National Institute Dental and Cran Research (NIH). 	ncer nd the e of iofacial					
Author declaration	on of					
Declaration of inte	erest					
provided						

Risk of bias assessment						
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable				

Risk of bias a	ssessment		
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Cases and controls were recruited from the same population, within the same time frame timeframe, and with the same eligibility criteria other than by outcome of interest
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, race, ethnicity, income, ever lived in urban residence, distance from hospital, and ever drank bottled water (included only when bottled water * fluoridation exposure interaction was not significant), family income (via zip code and Census data)
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable

Risk of bias	assessment		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(age >40, radiotherapy, renal dialysis, missing
			residential history, non matching cases or controls)
Detection	Can we be confident in the exposure	+	Yes, fluoride exposure levels were obtained from
	characterization?		state dental directors, state level administrators and
			from the 1992 CDC Fluoridation Census if needed.
	Can we be confident in the outcome	++	Yes, the outcome was assessed in cases and
	assessment?		controls using medical records and histopathology
			reports. Outcome assessment methods and lack of
			blinding of outcome assessors would not appreciably
			bias results.
Selective	Were all measured outcomes reported?	++	Yes, primary outcome discussed in methods was
reporting			presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Krishna 2020 47

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "Our results showed that
Original study	Fluoride levels in	Diabetes Mellitus and	Analysis conducted	Fasting, post
	• Serum	Diabetic nephropathy	using one way Analysis of Variance test	prandial blood glucose values
Study design:		using serum renal	Statistical significance	and serum
Case-control study	Method of exposure	parameters	at p<0.05	Fluoride were significantly higher in T2DM
	assessment:		Results:	without CKD
Country:	ISE Thermo Scientific Orion-5 Instrument	Method of outcome ascertainment:	Pearson correlation between serum fluoride	group as compared to the controls and
India		"Vitros 5.1 FS dry chemistry auto analyzer	and parameters (N = 30).	T2DM with CKD." (p. 571) • "This study also
Participants:	Exposure level:	from Ortho Clinical	Fasting Blood Sugar	supports the hypothesis of
•	Mean (SD) levels of	Diagnostics (OCD)	•0.28	increase serum
Patients (45 – 75 years	fluoride in ppm by study	United States, based on	Postprandial Blood Sugar	Fluoride increases DM
of age) from RL Jalappa	groups	the principle of	•0.44*	and DN which is evident from the
Hospital and Research	<u>Controls</u>	"reflectance	<u>Urea</u>	results." (p. 575)
Center	● 0.0949 (0.12) <u>T2DM without CKD</u>	photometry".	• 0.107 Serum Creatinine	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame:	• 0.6318 (0.59)		• 0.08	
July 2019 – September	T2DM with CKD		<u>Albumin</u>	
2019	•0.5128 (0.30)		•0.102	
	<u>p-value</u>		<u>Sodium</u>	
Sample size:	0.001		• 0.005	
90			Potassium	
			•0.101	
Carr				
Sex:				
NR				
Exclusions:				
 Non Kolar resident, with diabetes mellitus (DM), and no fluoride exposure 				
Use of drugs				
• Use of other factors that can result in diabetes or diabetic				
nephropathy				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Going through dialysis Has acute kidney injury Has hepatobiliary disorder that result in proteinuria or albuminuria Has gestational DM, type 1 DM, or monogenic diabetic syndrome 				
Source of funding /				
support:				
NR				
Author declaration of				
interest:				
NR				

Risk of bias as	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified from the same population and recruited within the same time frame.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Yes, it accounted for some confounders as age and sex
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, the study provided reasons for exclusion of participants (non-residents, with diabetes mellitus (DM), and no fluoride exposure, use of drugs, use of other factors that can result in diabetes or diabetic nephropathy, dialysis, acute kidney injury,

Risk of bias	assessment		
			hepatobiliary disorder resulting in proteinuria or
			albuminuria, gestational DM, DM type I, or
			monogenic diabetic syndrome)
Detection	Can we be confident in the exposure	++	Yes, fluoride in serum was measured in serum using
	characterization?		the ISE Thermo Scientific Orion-5 Instrument
	Can we be confident in the outcome	++	Yes, the outcome (DM serum/renal parameters) was
	assessment?		measured using Vitros 5.1 FS dry chemistry auto
			analyzer from Ortho Clinical Diagnostics (OCD)
			United States, based on the principle of reflectance
			photometry
Selective	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods
reporting			were presented in results section with adequate level
			of detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Lee 2020 48

Study Characteristics	3			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"These
Original study	Fluoride levels in • Water	Hip fractureOsteoporosisBone cancer	 Standardized incidence ratios to estimate the disease risk. 	findings suggest that CWF is not
Study design: Ecological study	Method of exposure assessment:	Method of outcome ascertainment:	 Hierarchical Bayesian Poisson spatio-temporal regression model to investigate the association between 	associated with adverse health risks
Country: South Korea	Data from the Korean Microdata Integrated Service (MIDS) of	Data from the National Health Insurance Service (NHIS) for	select bone diseases and CWF considering space and time interaction	related to bone diseases."
Participants:	Statistics Korea.	select ICD-10 codes.	Results:	
All residents in the Cheongju region	Exposure level: NR		 The posterior relative risks (RR): <u>Hip fracture:</u> RR: 0.95, 95% CI: 	
			0.87- 1.05 ○ <u>Os≥≥teoporosis</u>	

Study Characteristics	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sampling time frame:			RR: 0.94, 95% CI:		
1 January 2004 - 31			0.87-1.02		
December 2013			 <u>Bone cancer</u> RR: 1.20, 95% CI: 		
			0.89-1.61 (a little		
Sample size:			high due to smaller		
-			sample size		
Fluoridated areas:			compared to the		
4,406,021			other bone diseases	5)	
Non-fluoridated areas	:		The RR of the selected		
2,270,959			bone diseases increased	1	
			over time but did not		
Sex (N):			increase in the CWF are	а	
			compared to non-CWF		
Fluoridated areas: Men: 2,200,104			areas.		
(49.9%)					
Non-fluoridated areas Men: 1,126,495	:				
(49.6%)					

Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions:				
Reported no exclusion	ons			
due to use of custom	nized			
data from the NHIS				
Source of funding /	1			
support:				
Division of Oral Heal	lth			
Policy, Ministry of He	ealth			
and Welfare, Republ	lic of			
Korea				
Author declaration	of			
interest:				
No COI				

Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in	++	Yes, participants were identified using the same		
	appropriate comparison groups?		method of ascertainment, recruited within the same time frame, and using the same criteria.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Study accounted only for age and sex		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		

Risk of bias	assessment		
Attrition	Were outcome data complete without attrition or	++	Study reported no missing information on any of the
	exclusion from analysis?		study participants due to extraction of customized
			data from the Korean NHIS.
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from the
	characterization?		Microdata Integrated Service (MIDS) of Statistics
			Korea.
	Can we be confident in the outcome	++	Yes, the outcome was assessed using the respective
	assessment?		ICD-10 codes from the National Health Insurance
			Service (NHIS) records. Outcome assessment
			methods and lack of blinding of outcome assessors
			would not appreciably bias results.
Selective	Were all measured outcomes reported?	++	Yes, primary outcome discussed in methods was
reporting			presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Nanayakkara 2020 49

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "CKDu patients showed
Original study	Fluoride levels in	CKDu	Analysis conducted	significantly
	• Serum		using the analysis of variance (ANOVA) test	higher serum fluoride
Study design:	• Water	Method of outcome	 Statistical significance at p ≤ 0.05 	concentrations than the healthy
Cross-sectional		ascertainment:		controls." • "The estimated
	Method of exposure	Diagnosed CKDu	Results:	glomerular
	assessment:	("biopsy proven renal	Results.	filtration level was
Country:	 Drinking water 	tubulointerstitial	Mean serum fluoride level	inversely
Sri Lanka	samples from	disease, uncontrolled hypertension or	(SD) by CKDu stage	proportional to the serum fluoride
	Girandurukotte and Medawachchiya	diabetes at the time of initial diagnosis,	<u>Stage 0 (N = 276)</u>	concentration, indicating the
Participants:	Blood samples from males with CKDu and	negative immunofluorescence	•35.5 µg/L (16.3)	accumulation of fluoride in the
- •	healthy controlsSamples analyzed	for IgG, IgM, IgA, and	<u>Stage 1 (N = 10)</u>	body with the progression of
Men with chronic kidney	using fluoride ion-	C3, serum creatinine >1.2 mg/dL and/or	●38.1 µg/L (18.1)	CKDu, which can
disease of uncertain	selective electrode	A1M > 15.5 mg/L,	<u>Stage 2 (N = 60)</u>	further aggravate
aetiology (CKDu) and		HbA1C<6.5%")	$\frac{O(aye 2 (11 - 00)}{2}$	renal tissue
healthy controls	Exposure level:	 Healthy controls ("no history of hypertension, diabetes 	•53.9 µg/L (34.2)*	damage." (p. 4)

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	Mean (SD) levels of	or renal impairment,	<u>Stage 3 (N = 160)</u>	
Sampling time frame:	ampling time frame: fluoride in drinking water more than 14	blood pressure not more than 140/90	●82.8 µg/L (41.9)*	
NR	•0.68 mg/L (0.48)	mmHg, no proteinuria or glycosuria based on the dipatiek urine test	<u>Stage 4 (N = 72)</u>	
		the dipstick urine test, HbA1C<6.5%, serum	•123.4 µg/L (59.9)*	
Sample size (N):	Mean (SD) levels of	creatinine <1.2 mg/dL	<u>Stage 5 (N = 9)</u>	
	fluoride in serum by	and/ or A1M < 15.5 mg/L")	• 123.9 µg/L (52.6)*	
Men with CKDu = 311Healthy Controls = 276	stages of CKD			
	<u>Stage 0 (N = 276)</u>		* p<0.05 compared to	
Sex:	• 35.5 µg/L (16.3)		controls	
NR	<u>Stage 1 (N = 10)</u>			
	•38.1 (18.1)			
	<u>Stage 2 (N = 60)</u>			
Exclusions:	• 53.9 (34.2)			
NR				
Source of funding /				
support:				

Study Characteris	tics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Special Coordination	วท			
Funds for Promotin	g			
Science and				
Technology from th	e			
Ministry of Education	on,			
Culture, Sports, Sci	ience			
and Technology				
Author declaration	n of			
interest:				
No COI				

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level	N/A Not applicable		
	adequately randomized?			

Risk of bias as	ssessment		
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected using the same criteria. However, the sampling timeframe was not reported
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	-	NR
Detection	Can we be confident in the exposure characterization?	++	Exposure measured in water and serum using the fluoride ion-selective electrode method
	Can we be confident in the outcome assessment?	++	Yes, the outcome (CKDu) was assessed using biopsy proven renal tubulointerstitial disease, uncontrolled hypertension or diabetes at the time of initial

Risk of bias assessment					
			diagnosis, negative immunofluorescence for IgG, IgM, IgA, and C3, serum creatinine >1.2 mg/dL and/or A1M > 15.5 mg/L, HbA1C<6.5%		
Selective reporting	Were all measured outcomes reported?	++	Yes, the primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Russ 2020 50

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome: Dementia	Statistical analysis:	 "Higher levels of aluminium and 	
Original study	Aluminum and fluoride		 Cox proportional 	fluoride were	
	levels in drinking water	Method of outcome	hazards models for the association between	related to dementia risk in a	
Study design:		ascertainment:	aluminium and fluoride levels in drinking water	population of men and women who	

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Cohort study Country: Scotland Participants: all people born in 1921 and at school in Scotland in June 1932 who took part in a comprehensive national intelligence test at a mean age of 11 years (Scottish Mental Survey 1932) Sampling time frame: 2005-2014	Method of exposure assessment: Data from the Drinking Water Quality Regulator for Scotland (DWQR) Fluoride in drinking water: • Mean: 53.4 μg/L ±16.0 • Range: 23.8–181.1	Any mention of <u>ICD-9</u> <u>codes</u> 290.0–290.4, 290.8, 290.9, 291.1, 291.2, 294.1, 294.2, 294.8, 294.9, and 331.0–331.912 and <u>ICD-10 codes:</u> F00- F05.1, F09, G30, and G3113 recorded on electronic medical records or death certificates after 2004, or from primary care records, specifically the Greater Glasgow & Clyde Nursing Homes Medical Practice, which exclusively treated	 with dementia in men and women separately Age in years over the age of 84 years was the timescale All models were additionally adjusted for IQ at age 11 years Sensitivity analysis was conducted, adjusting for SIMD rank. Additional model for the interaction between aluminium and fluoride. Results: Out of an analytic sample of 2728 men and 4262 women alive in 2005: 	consumed relatively low drinking-water levels of both." • No statistical interaction between aluminium and fluoride levels in relation to dementia. • A dose-response pattern was observed between mean fluoride levels and dementia in women [HR: 1.34 (95% CI: 1.28– 1.41, P <0.001)] and men [HR: 1.30 (95% CI: 1.22–1.39), P <0.001], with dementia risk more than		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
		residents of nursing	• 622 men and 1350	highest quartile	
Sample size (N):		homes	women developed dementia.	compared with the lowest.	
Initial: 37,597			 All participants were approximately 84 years 		
Analysis: 6,980			old at start of the exposure period		
			 Follow-up duration: 		
Sex: N (%)			o Mean: 2.7 years		
Men: Initial: 19,272			\circ SD: 2.1 years		
(51%)			\circ Range: 0–7 years		
			• Fluoride		
Analysis: 2,728 (39%)			ο Mean: 53.4 μg/L		
			∘ SD: 16.0		
Exclusions:			 Range: 23.8–181.1 		
Participants missing					
residential location,					
died before the					
monitoring period					
began in 2005, or					

Study	Exposure	Outcome	Analysis & Results	Conclusions
missing childhood	d IQ			
test results				
Source of fundi	ng/			
support:				
Alzheimer Scotla	nd			
through the Marjo	orie			
MacBeath beque	st			
Author declarati	ion of			
interest: None				

Risk of bias as	ssessment	
Bias domain	Criterion	Response

Selection	Was administered dose or exposure level adequately randomized?	N/A	
	Was allocation to study groups adequately concealed?	N/A	
	Did selection of study participants result in appropriate comparison groups?	++	Yes, using the same inclusion/exclusion criteria, and using the same methods for ascertainment of exposure and outcome, identified participants included all people born in 1921 and at school in Scotland in June 1932 who took part in a comprehensive national intelligence test at a mean age of 11 years (Scottish Mental Survey 1932).
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Yes, Cox proportional hazards models was used to assess the association between fluoride (and aluminum) levels in drinking water with dementia in men and women separately, adjusting for childhood IQ and SIMD. Given the narrow age cohort (all born in 1921) reflected a homogenous sample with no major factors to confound the findings.

Risk of bias a	ssessment		
			No information could be identified regarding
			participants' exposure to drinking water before
			2005, i.e., for the first 84 years of their lives.
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or		Study provided reasons for exclusion of
	exclusion from analysis?		participants (missing residential location, died
		++	before the monitoring period began in 2005, or
			missing childhood IQ test results), which were
			not related to the outcome
Detection	Can we be confident in the exposure		Yes, data on levels of fluoride exposure were
	characterization?		consistently drawn within the same timeframe,
		++	from the same source: Drinking Water Quality
		TT	Regulator for Scotland (DWQR).
			Sampling sites were identified by longitude and
			latitude and were widely distributed across

Risk of bias	Risk of bias assessment				
			Scotland, particularly where the population is		
			more concentrated		
	Can we be confident in the outcome		Yes, outcome was determined using relevant		
	assessment?		ICD9/10 codes for dementia, as recorded in on		
			electronic medical records or death certificates		
		++	after 2004, or from primary care records,		
			specifically the Greater Glasgow & Clyde		
			Nursing Homes Medical Practice, which		
			exclusively treated residents of nursing homes		
Selective	Were all measured outcomes reported?		Yes, primary outcome (dementia) discussed in		
reporting		++	methods were presented in results section with		
			adequate level of detail		
Other	Were there no other potential threats to internal		None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the	++			
	study protocol)?				

Stangvaltaite-Mouhat 2020 51

Study Characteristics					
Exposure	Outcome	Analysis & Results	Conclusions		
Exposures:	Outcome(s):	Statistical analysis:	"Signs of fluorosis		
Fluoride levels in	Dental fluorosis	 Prevalence for each age 	were detected in		
drinking water		group was calculated	2% of participants		
Method of exposure		statistics (chi-square	(N=21) and the		
•	Method of outcome		presence of		
assessmem.	ascertainment:	the independent-sample t-test).	fluorosis did not		
Fluoride levels in	 Assessments were 	 Analytical methods for 	associate		
drinking water were	conducted by one trained and calibrated examiner, assisted by a dental assistant.	DF were not reported Results:	significantly with		
provided by the water			higher levels of		
suppliers.			fluoride in the		
		Dental fluorosis	drinking water		
Exposure level:	[World Health	prevalence by age	(data not shown)."		
	Organization, 2013	group and gender			
		25 11 years			
•> i ppili		<u>33–44 years</u>			
		Males			
		●Yes: 5 (4%) ●No: 125 (96%)			
	Exposures: Fluoride levels in drinking water Method of exposure assessment: Fluoride levels in drinking water were provided by the water	Exposures:Outcome(s):Fluoride levels in drinking waterDental fluorosisMethod of exposure assessment:Method of outcome ascertainment:Fluoride levels in drinking water were provided by the water suppliers.Assessments were conducted by one trained and calibrated examiner, assisted by a dental assistant. • DF was assessed using the WHO index [World Health Organization, 2013]• ≤ 1 ppm•	Exposures:Outcome(s):Statistical analysis:Fluoride levels in drinking waterDental fluorosis• Prevalence for each age group was calculated using descriptive statistics (chi-square test, likelihood ratio, and the independent-sample t-test).Fluoride levels in drinking water were provided by the water suppliers.• Assessments were conducted by one trained and calibrated examiner, assisted by a dental assistant. • DF was assessed using the WHO index [World Health Organization, 2013]• Analytical methods for DF were not reportedExposure level:• Statistical analysis:• Analytical methods for DF were not reported• ≤ 1 ppm • > 1 ppm• Statistical analysis:• Analytical methods for DF was assessed using the WHO index [World Health Organization, 2013]Dental fluorosis prevalence by age group and gender• ≤ 1 ppm • > 1 ppm• Statistical analysis:• Yes: 5 (4%)		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Females	
Sample size: 1,3	97		• Yes: 8 (4%) • No: 215 (96%)	
			<u>45–54 years</u>	
Sex: Men 462 (33	3.1%)		Males	
Exclusions: NR			• Yes: 2 (2%) • No: 102 (98%) <i>Females</i>	
Source of fundir	ng /		• Yes: 3 (1%) • No: 204 (99%)	
support:			55-64 years	
The Borrow			Males	
Foundation			• Yes: 1 (1%) • No: 111 (99%)	
Author declarati	on of		Females	
interest: No COI			Yes: 0 (0%)No: 248 (100%)	
			65-74 years	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Males	
			• Yes: 2 (2%) • No: 114 (98%)	
			Females	
			• Yes: 0 (0%) • No: 253 (100%)	
			Dental fluorosis	
			prevalence by water	
			fluoride level	
			≤ 1 ppm	
			<u>35–44 years</u>	
			Males: 121 (93%)Females: 198 (88%)	
			<u>45–54 years</u>	
			Males: 95 (91%)Females: 181 (87%)	
			<u>55–64 years</u>	
			• Males: 100 (89%)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			• Females: 201 (80%)	
			65-74 years	
			• Males: 96 (83%) • Females: 204 (80%)	
			>1ppm	
			<u>35–44 years</u>	
			Males: 9 (7%)Females: 26 (12%)	
			<u>45–54 years</u>	
			• Males: 9 (9%) • Females: 26 (13%)	
			<u>55–64 years</u>	
			Males: 12 (11%)Females: 49 (20%)	
			<u>65-74 years</u>	
			• Males: 20 (17%) • Females: 50 (20%)	

Bias domain	Criterion	Response		
Dias uomam	Citterion	Res	ponse	
Selection	Was administered dose or exposure level	N/A	Not applicable	
	adequately randomized?			
	Was allocation to study groups adequately	N/A	Not applicable	
	concealed?			
	Did selection of study participants result in	+	Yes, participants were selected using the same	
	appropriate comparison groups?		criteria. However, the sampling timeframe was not	
			reported	
Confounding	Did the study design or analysis account for	-	NR	
	important confounding and modifying variables?			
Performance	Were experimental conditions identical across	N/A	Not applicable	
	study groups?			
	Were the research personnel and human	N/A	Not applicable	
	subjects blinded to the study group during the			
	study?			
Attrition	Were outcome data complete without attrition or	-	NR	
	exclusion from analysis?			

Risk of bias	Risk of bias assessment					
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from			
	characterization?		public water suppliers			
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was done by one			
	assessment?		trained and calibrated examiner, and a dental			
			assistant, using the WHO index. Lack of blinding of			
			outcome assessors would not appreciably bias			
			results.			
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were			
reporting			presented in results section with adequate level of			
			detail for data extraction			
Other	Were there no other potential threats to internal	++	None identified			
sources	validity (e.g., statistical methods were					
	appropriate and researchers adhered to the					
	study protocol)?					

Sun 2020 52

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"decreased BMD
Original study	<u>Fluoride levels in</u> ∙Urine	 Reduction of bone mineral density (BMD) via CALCA gene 	 Statistical significance at p<0.05 Associations of fluoride 	in women may be associated with exposure to
Study design:		methylation	with CALCA exon 1 methylation levels and	excessive fluoride
Cross-sectional	Method of exposure		T-scores stratified by	in an age-specific
	assessment:	Method of outcome	age groups were adjusted for age,	manner, which
	Fluoride ion-selective	ascertainment:	menopause, BMI, high- density lipoprotein-	may be modified
Country:	electrode	 BMD: Standalone ultrasound bone 	cholesterol (HDL-C) and alkaline phosphatase	by methylation of
China		densitometer	(ALP)	CALCA exon 1."
	Exposure level:	 CALCA methylation: Quantitative 		
Participants:	NR	methylation-specific polymerases chain	Results:	
Female farmers (20 –		reaction	Adjusted association of	
60 years of age) from 6			fluoride with CALCA exon	
villages (3 endemic			1 methylation levels	
fluorosis villages with			• r = 0.022	
fluoride levels > 1.0			• p = 0.576	
mg/L; 3 control villages				

Study Characteris	tics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
with fluoride levels	< 1.0		Adjusted association (β;	
mg/L) in Tongxu Co	punty		95% CI) of fluoride (mg/L	.)
			with CALCA exon 1	
			methylation levels by age	9
Sampling time fram	me:		groups	
NR			<u>20 – 60 yrs</u> (N = 722)	
			•0.270 (-0.621, 1.162)	
Sample size:			<u>20 – 39 yrs</u> (N = 135)	
722			•1.656 (-1.464, 4.776)	
			40 - 44 yrs (N = 70)	
Sex (%):			•4.953 (1.162, 8.743)	
Women: 100%			<u>45 – 49 yrs</u> (N = 139)	
			•-0.152 (-2.673, 2.369)	
			<u>50 – 54 yrs</u> (N = 220)	
Exclusions:			•0.405 (-0.797, 1.607)	
• Had "history of chr			55 - 60 yrs (N = 158)	
bone disease, bon fracture, cognitive impairment, chron kidney disease"			•-1.643 (-3.657, 0.370)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Were using bisphosphonates				
Had incomplete data			Correlation between	
			fluoride and T-score	
Source of funding / support:			• r = 0.019 • p = 0.611	
 National Natural Science Foundation of China Scientific and Technological Project of Henan Province 			Adjusted association (β; 95% CI) of fluoride (mg/l with T-score by age groups	_)
Author declaration of			20 - 60 yrs (N = 722)	
interest:			•0.010 (-0.032, 0.051)	
No COI			<u>20 – 39 yrs</u> (N = 135)	
			•0.001 (-0.139, 0.139)	
			40 - 44 yrs (N = 70)	
			•0.106 (-0.021, 0.233)	
			<u>45 – 49 yrs</u> (N = 139)	
			•0.095 (-0.022, 0.212)	

Study	Expectite	Analysia & Desulta Consi		
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>50 – 54 yrs</u> (N = 220)	
			•-0.063 (-0.129, -0.002)	
			<u>55 – 60 yrs</u> (N = 158)	
			•0.035 (-0.044, 0.114)	
			Interaction between	
			fluoride and CALCA exon	
			1 methylation on BMD	
			was assessed	
			• "found evidence of a significant association, as manifested by increased BMD in women aged 45-49 years induced by the interactive effect of the highest methylation of CALCA exon 1 (tertile 3) and fluoride exposure (β = 5.338, P = 0.016)"	

Study Character	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected using the same criteria. However, the sampling timeframe was not reported	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, menopause, BMI, high-density lipoprotein-cholesterol (HDL-C) and alkaline phosphatase (ALP)	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	

Risk of bias	assessment		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (history of chronic bone disease, bone fracture, cognitive impairment, chronic kidney disease, use of bisphosphonates, or incomplete data)
Detection	Can we be confident in the exposure characterization? Can we be confident in the outcome assessment?	++	Yes, the urinary levels of fluoride was measured by a fluoride ion-selective Yes, the outcome BMD was assessed using a standalone ultrasound bone densitometer. CALCA methylation was assessed using quantitative methylation-specific polymerases chain reaction method.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome (BMD reduction) discussed in methods were presented in results section with adequate level of detail
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were	++	None identified

Risk of bias assessment

appropriate and researchers adhered to the

study protocol)?

Till 2020 53

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes: Intellectual	Statistical analysis:	"Exposure to
Original study	Fluoride levels in	function	 Linear regression for 	increasing levels of
	 Drinking water 		the association between fluoride and IQ scores	fluoride in tap water
Study design:	 Urine samples (maternal) 	Method of outcome	 Impact of feeding status 	was associated with
Cohort study	(matemai)	ascertainment:	(breast-fed versus formula-fed) and fetal	diminished non-
	Method of exposure	• IQ scores were	fluoride exposure on the	verbal intellectual
Country: Canada	assessment:	measured by the Wechsler Primary and	associationAdjusted for child's sex	abilities; the effect
	Water fluoride	Preschool Scale of	and age at testing,	was more
Participants:	concentrations recorded in municipal	Intelligence-III at 3–4 years using United	maternal education, maternal race, second-	pronounced among
English-/French-	water reports.	States population-	hand smoke in the	formula-fed
speaking women,	 Maternal urinary fluoride (MUF) 	based normative data (mean=100, SD=15).	home, and quality of the child's home	children.
>17 years old, and less	adjusted for specific	(eun=100, 00=10).	environment	
than 14 weeks	gravity as a proxy of fetal fluoride exposure.	 Outcomes included 		
gestation were recruited		Full Scale IQ, Verbal	Results:	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
from prenatal clinics in		IQ, and Performance	 Thirty-eight percent of 		
10 North American	Water Fluoride	IQ (PIQ)	mother-child dyads lived in fluoridated		
cities (Maternal-Infant	concentration (mg/L)		communities.		
Research on	<u>Breastfed≥6 mo.</u>				
Environmental	 Fluoridated: 		 An increase of 0.5 mg/L in water fluoride 		
Chemicals program)	0.58 (0.08)		in water fluoride concentration <i>(almost</i>		
Sampling time frame:	• Non- Fluoridated: 0.13 (0.06)		equal to the difference between fluoridated and non-fluoridated regions)		
2008-2011	<u>Formula-fed</u>	corresponded to reduction in performance IQ:			
Sample size (N):	• Fluoridated: 0.59 (0.07)		 ○ <u>Formula-fed:</u> 9.3-point (95% CI: -13.77, -4.76) 		
398 mother-child pairs	Non- Fluoridated:				
(67.3% of those who	0.13 (0.05)				
completed testing) reported drinking tap	P-value: 0.18		 <u>Breastfed:</u> 6.2-point (95% CI: 		
water, had water			-10.45, -1.94).		
fluoride data and	Infant fluoride intake				
complete covariate data	(mg/day)		 Association remained 		
(BF: n=200; FF: n=198)	<u>Breastfed≥6 mo.</u>	CC	significant upon controlling for fetal		
	• Fluoridated:		fluoride exposure		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex:	0.12 (0.07)		 <u>Formula-fed:</u> (B=−7.93, 95% CI: 	
Children: girls Breastfed, fl: 51%	 Non- Fluoridated: 0.02 (0.02) 		-12.84, −3.01)	
Breastfed, non-fl: 53% Formula, fl: 54% Formula, non-fl: 47%	Formula-fed ●Non- Fluoridated: 0.34 (0.12)		 <u>Breastfed:</u> (B=−6.30, 95% CI: −10.92, −1.68) 	
Exclusions:	 Non- Fluoridated: 0.08 (0.04) 			
Participants with known				
fetal abnormality, had any medical	P-value: <.001			
complications, or known illicit drug use during				
pregnancy.				
Source of funding/				
support:				
 National Institute of Environmental Health Science (NIEHS) Health Canada 				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
 Ontario Ministry of the Environment, CIHR 					
Author declaration of					
interest:					
No COI					

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A		
	Was allocation to study groups adequately concealed?	N/A		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, mothers were selected using the same criteria, during the same timeframe, from the same cities, with similar race, mean age at delivery, and employment.	

Risk of bias as	Risk of bias assessment				
Confounding Performance	Did the study design or analysis account for important confounding and modifying variables? Were experimental conditions identical across study groups? Were the research personnel and human	++ N/A	Yes, analysis was adjusted for child's sex and age at testing, maternal education, maternal race, second-hand smoke in the home, and quality of the child's home environment		
	subjects blinded to the study group during the study?				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Of all children who completed IQ testing, 398 pairs (67.3%) reported drinking tap water, had water fluoride data and complete covariate data (breastfed=200; formula-fed: n=198) Characteristics of women included in the analysis (398) were not substantially different from the original cohort (N=1945) or the subset without complete water fluoride and covariate data (n=203)		

Risk of bias	assessment		
Detection	Can we be confident in the exposure characterization?	+	Yes, data on levels of fluoride exposure were consistently drawn within the same timeframe, from the same source: municipal water reports. Maternal urinary fluoride (MUF) adjusted for specific gravity (non-validated) was used as a proxy of fetal fluoride exposure
	Can we be confident in the outcome assessment?	++	Yes, IQ scores were measured by the Wechsler Primary and Preschool Scale of Intelligence-III at 3–4 years using United States population-based normative data (mean=100, SD=15).
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcome discussed in methods was presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	+	Possibility of recall or response bias of mothers completing the questionnaire

Wang 2020 54

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcomes:	Statistical analysis:	"low-moderate		
Original study	Fluoride levels in	 Thyroid hormone 	Multi-variable linear and	fluoride exposure is		
Study design:	Drinking waterUrine samples	dysfunction (TT3, TT4, FT3, FT4 and TSH levels in serum)	logistical regression models for the associations among	associated with alterations in		
Cross-sectional	Method of exposure	Intelligence (IQ)	fluoride exposure, thyroid function and IQ	childhood thyroid		
Country:	assessment:		scoresSensitivity analyses	function that may modify the		
China	Water samples were	Method of outcome	were conducted by	association		
China	collected randomly from the public water	ascertainment:	modifying covariates adjusted in multivariable	between fluoride		
Participants:	supplies in each villageUrine samples for	 Chemiluminescent microparticle 	models: age, sex, BMI, maternal education,	and intelligence"		
Resident children, aged	every child were	immunoassay on the ARCHITECT i4000SR	paternal education, household income, low			
7–13 years, randomly	collected in the early morning before	was employed to	birth weight			
selected from endemic and non-endemic	 breakfast. Fluoride levels in water and urine were 	quantify thyroid hormone levels in serum.	Results:			
	measured using an ion		(Mean ± SD)			

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
fluorosis areas in	analyzer EA940 with a fluoride ion selective	 A Combined Raven's Test for Rural China 	E I			
Tianjin, China.	electrode (Wu et al., 2015).	(CRT-RC2) was taken to evaluate the IQ of	<u>Fluoride</u> ●Water fluoride (mg/L)			
Sampling time frame:		each child	• Urinary fluoride (mg/L)			
2015	Water fluoride level: Mean (mg/L): 1.39		○ 1.28 ± 1.30			
Sample size (N):	±1.01		Thyroid hormones:			
571			 TT3 (ng/mL): 1.32 ± 0.19 FT3 (pg/mL): 			
Sex:			ο 3.28 ± 0.32 ● TT4 (μg/dL):			
Boys: 292 (51.1%)			 • FT4 (µg/dL): ○ 6.86 ± 1.16 • FT4 (ng/dL): 			
Exclusions:			 ○ 1.13 ± 0.12 •TSH (uIU/mL): 			
 Not long- term residents of the area 			○ 2.57 ± 1.29			
 Had congenital or acquired diseases affecting intelligence, History of cerebral trauma and 			 Every 1 mg/L increment of water fluoride was associated with 0.006 ng/mL 			
trauma and neurological disorders • Positive screening test (e.g. hepatitis B,			increase in TT3 o 0.013 pg/mL increase in FT3			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
 Treponema palladium, Down's syndrome) Exposure to smoking and drinking during maternal pregnancy 			 0.083 ng/mL decrease in TT4 0.01 ng/mL decrease in FT4 0.13 µIU/mL increase in TSH 		
Source of funding/					
 support: State Key Program of National Natural Science of China National Natural Science Foundation of China Fundamental Research Funds for the Central Universities 			 Every 1 mg/L increment of urinary fluoride was associated with 0.007 ng/mL increase in TT3 0.02 pg/mL increase in FT3 0.09 ng/mL decrease in TT4 0.009 ng/mL decrease in FT4 0.11 µIU/mL increase in TSH 		
Author declaration of					
interest:			 Fluoride exposure was inversely related to IQ 		
No COI			scores ○ Water fluoride: B=-1.59 (95% CI:		
			-2.61, -0.57)		
			 Urinary fluoride: 		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			B=-1.21 (95% Cl:		
			-1.99, -0.44).		
			 Higher TT3, FT3 were related to the increase odds of children having high normal intelligenc o TT3 OR=3.41 (95% Cl 	e e	
			1.04, 11.12)		
			○	DI:	
			1.62, 6.62)		
			 A significant modification effect by TSH on the association between urinary fluorid and IQ scores, without mediation by thyroid hormones 	e	

Bias domain	Criterion	Outo	come 1: Thyroid	Outcome 2: IQ
		dysf	unction	
Selection	Was administered dose or exposure level adequately randomized?	N/A		
	Was allocation to study groups adequately concealed?	N/A		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, children were selected using the same criteria, the same timeframe, from villages that were similar i population and general demographics, and assessed exposure and outcome using the same methods	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	•	sted for age, sex, BMI, maternal on, household income, low birth
Performance	Were experimental conditions identical across study groups?	N/A		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A		

Risk of bias	assessment				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	There was no loss of pa	articipan	ts due to attrition
Detection	Can we be confident in the exposure characterization?	++	timeframe and using the with a fluoride ion select magnetic electronic tect accordance with the na (Wu et al., 2015).	e same tive elec hnology	andardized method in China
	Can we be confident in the outcome assessment?	++	Yes, thyroid hormone levels in serum were assessed for all children using the same method: Chemiluminescent microparticle immunoassay on the ARCHITECT i4000SR	++	Yes, a Combined Raven's Test for Rural China (CRT- RC2) was taken to evaluate the IQ of each child
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes presented in results see data extraction		ed in methods were h adequate level of detail for

Risk of bias	assessment		
Other	Were there no other potential threats to		None identified
sources	internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	

An 2019 55

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcomes:	Statistical analysis:	chronic fluoride		
Original study	Fluoride levels in	Levels of reproductive	 Independent sample t- 	exposure from		
	Community	hormones (SHBG and	tests, one-way ANOVA	drinking water is		
	Community	ABP) in serum	and multivariate linear regression analyses	associated with		
Study design:	• Urine		 A generalized linear 	alterations of serum		
Cross-sectional			model was used to calculate gene-	SHBG and ABP		
		Method of outcome	environment and gene-	concentrations in		
	Method of exposure	ascertainment:	gene effects.	local male farmers		
Country:	assessment:	An enzyme-linked	 The genotypic distribution of ESRα 	and that the effect of		
China (Henan Pr)		immunosorbent assay	among control subjects accorded with the	fluoride exposure on		

Participants:electro• 18-55 male farmers who were born orChina)	ride ion-selective ode (Shanghai tude, Shanghai,) assay was used asure urine fluoride	Outcome (R&D systems, Minneapolis, USA) was used to measure serum concentrations of SHBG and ABP.	Analysis & Results Hardy-Weinberg equilibrium (P=0.193, Pvull; P=0.050, Xbal; P=0.410, rs3798577). • Analysis adjusted for age, diet, exercise habits, tobacco use, alcohol and tea consumption Results:	Conclusions ABP levels vary depending on ESR gene polymorphisms
Participants:electro• 18-55 male farmers who were born or lived for at least 5 years before marriage in one of the 7 villages (Henan Province)to meat levels.• Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to theelectro	ode (Shanghai tude, Shanghai,) assay was used asure urine fluoride	Minneapolis, USA) was used to measure serum concentrations of SHBG	equilibrium (P=0.193, Pvull; P=0.050, Xbal; P=0.410, rs3798577). • Analysis adjusted for age, diet, exercise habits, tobacco use, alcohol and tea consumption Results:	depending on ESRo gene
 Farticipants. Exactit 18-55 male farmers who were born or lived for at least 5 years before marriage in one of the 7 villages (Henan Province) Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the 	tude, Shanghai,) assay was used asure urine fluoride	used to measure serum concentrations of SHBG	 Pvull; P=0.050, Xbal; P=0.410, rs3798577). Analysis adjusted for age, diet, exercise habits, tobacco use, alcohol and tea consumption Results: 	gene
 18-55 male farmers who were born or lived for at least 5 years before marriage in one of the 7 villages (Henan Province) Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the) assay was used asure urine fluoride	concentrations of SHBG	 P=0.410, rs3798577). Analysis adjusted for age, diet, exercise habits, tobacco use, alcohol and tea consumption Results: 	-
 who were born or lived for at least 5 years before marriage in one of the 7 villages (Henan Province) Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the 	asure urine fluoride		age, diet, exercise habits, tobacco use, alcohol and tea consumption Results:	polymorphisms
 lived for at least 5 years before marriage in one of the 7 villages (Henan Province) Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the 		and ABP.	habits, tobacco use, alcohol and tea consumption Results:	
in one of the 7 villages (Henan Province) • Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the			consumption Results:	
villages (Henan Province) • Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the			Results:	
• Four villages with endemic fluorosis and three control villages, based on water fluoride concentration in relation to the				
endemic fluorosis and three control villages, based on water fluoride concentration in relation to the				
based on water fluoride concentration in relation to the				
fluoride concentration in relation to the			<u>Water fluoride (Mean ±</u>	
in relation to the			<u>SD)</u>	
standard of national			 Group of villages with 	
drinking water quality			high exposure (HEG):	
(1.0 mg L−1 GB5749-			2.44±1.88 mg/L	
2006).				
			 Group of villages with 	
Sampling time frame:			low exposure (LEG):	
2011-2012			0.37± 0.15 mg/L	

Sample size (N):		Analysis & Results	Conclusions	
		<u>Urinary fluoride (Mean ±</u>		
348		<u>SD)</u>		
		• Fluoride (mg/L)		
		○ HEG 2.66 ± 1.03		
Sex:		○ LEG 0.95 ± 0.31		
Males (100%)		P-value: <0.001		
Exclusions:		Reproductive hormones		
Participants who		<u>(Mean ± SD)</u>		
esided in other places		• ABP (nmol/L)		
or at least 1 year, had		○ HEG 19.86 ± 22.46		
a history of chronic		○ LEG 24.04 ± 26.94		
oone disease,		P-value= 0.144		
underwent				
pisphosphonate,				
normonal or calcitonin		• SHBG (nmol/L)		
herapy, or suffered		• HEG 30.07 ± 28.32		
rom colds over the two		 ○ LEG 35.90 ± 28.58 P-value= 0.012 		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
weeks prior to study				
initiation				
Source of funding/				
support:				
 National Natural Science Foundation of China 				
Henan Department of Science and Technology, China				
Author declaration of				
interest:				
No COI				

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A		
	Was allocation to study groups adequately concealed?	N/A		
	Did selection of study participants result in appropriate comparison groups?	++	 Yes, farmers were selected using the same inclusion/exclusion criteria, cluster sampling method, ascertainment methods, within the same timeframe from 7 villages in Henan Province, China. Participants were comparable between the high exposure group (4 villages with endemic fluorosis), and low exposure group (3 control villages), based on water fluoride concentration in relation to the standard of national drinking water quality (1.0 mg L-1 GB5749-2006). Overall participation rate was 96.94%. 	
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	 Analyses were adjusted for age, urinary fluoride level, diet, exercise habits, tobacco use, alcohol and tea consumption 	

Risk of bias a	ssessment		
			• Other indicators reflective of male reproductive function, including sexual life quality or adverse newborn birth outcomes were not accounted for due to small sample size.
Performance	Were experimental conditions identical across study groups?	N/A	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Overall non-participation rate was less than 4% and is unlikely to have biased the results of the analyses.
Detection	Can we be confident in the exposure characterization?	++	Yes, fluoride levels in urine were measured for all participants using the same fluoride ion-selective electrode (Shanghai Exactitude, Shanghai, China)
	Can we be confident in the outcome assessment?	++	Yes, levels of reproductive hormones (SHBG and ABP) in serum were measured for all participants using an enzyme-linked immunosorbent assay (R&D systems, Minneapolis, USA)

Risk of bias assessment				
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Crnosija 2019 <u>56</u>

Study Characteristics					
Exposure	Outcome	Analysis & Results	Conclusions		
Exposures:	Outcomes:	Statistical analysis:	We found no		
Fluoride levels in	Secondary bone	 Ordinary least squares 	evidence of an		
drinking water	cancer	regression and	association		
5		0	between		
		of a spatial regression	community water		
Method of exposure	Method of outcome	•	fluoridation		
assessment:	ascertainment:	and queen instolder	category and		
	Exposure Exposures: Fluoride levels in drinking water Method of exposure	ExposureOutcomeExposures:Outcomes:Fluoride levels in drinking waterSecondary bone cancerMethod of exposureMethod of outcome	ExposureOutcomeAnalysis & ResultsExposures:Outcomes:Statistical analysis:Fluoride levels in drinking waterSecondary bone cancer• Ordinary least squares regression and diagnostic tests to determine the necessity of a spatial regression 		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country: USA (NY State) Participants: +18 years old inpatients with metastatic bone cancer who were admitted to a New York State hospital for receiving care Sampling time frame: January 1, 2008 – December 31, 2010	Data from the water quality reports from individual providers in the different NY State counties	Data on inpatient cancer patients admitted with an ICD9 code for secondary bone cancer (198.5) to a New York State hospital for relevant care, which was extracted from the Statewide Planning and Research Cooperative System (SPARCS) database; an inpatient/outpatient record of all hospital admissions collected and curated by New York State's	contiguity for generating spatial weights. • Series of regression models with county-level percentage of secondary bone cancer as the dependent variable Results: Fluoride in drinking water: • 0.7 mg/L (45 counties) • 0.8 mg/L (2 counties) • 0.5 mg/L (1 county) • 0.4 mg/L (1 county) • 0.4 mg/L (1 county) Percentage of population in county with fluoridation • <25% • No. counties: 27 • 2 ^{ry} bone cancer: 12.9%	secondary bone cancer from 2008 to 2010 at the county level in New York State

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size (N):		Department of Health	o p-value: -	
24,661		(NYSDOH)		
			•25%-75%	
-			o No. counties: 16	
Sex:			 2^{ry} bone cancer: 12.9% 	
			o Coefficient: 0.02	
			○ p-value: 0.96	
Exclusions:				
Patients with			•>75%	
incomplete zip code,			 No. counties: 19 	
patient identification			\circ 2 ^{ry} bone cancer: 12.9)
code, patient's New			%	
York State residency			• Coefficient: 0.02	
status or less than 18			○ p-value: 0.97	
years old				
Source of funding/				
support:				

Study Charact	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Not reported				
Author declara	ation of			
Not reported				

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately concealed?	N/A N/A		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were identified using the same method of ascertainment, recruited within the same time frame, and using the same inclusion and exclusion criteria	

Risk of bias as	ssessment		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	No accounting for confounders or appropriate standardization reported
Performance	Were experimental conditions identical across study groups?	N/A	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	There was no loss of participants due to attrition
Detection	Can we be confident in the exposure characterization?	++	 No information on whether individuals worked or went to school in a different county with a different water source, when they may have changed residences in their past or the degree to which the community fluoridation levels changed over time, or fluoride supplementation in counties without access to water fluoridation. Study only assessed counties' municipal water fluoride content, excluding private wells and assuming their fluoride level to be zero.

Risk of bias a	issessment		
	Can we be confident in the outcome		Yes, outcome was assessed based on data on
	assessment?		inpatient cancer patients admitted with an ICD9 code
			for secondary bone cancer (198.5) to a New York
			State hospital for relevant care, which was extracted
		++	from the Statewide Planning and Research
			Cooperative System (SPARCS) database; an
			inpatient/outpatient record of all hospital admissions
			collected and curated by New York State's
			Department of Health (NYSDOH)
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Fernando 2019 93

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Higher fluoride
Original study	Fluoride level in serum	Chronic kidney disease	 Descriptive statistics 	exposure via
		of unknown origin		drinking water is
		(CKDu), using fluoride	Results:	possibly the reason
Study design:	Method of exposure	level in urine	Water fluoride	for higher fluoride in
Case-control	assessment:		• Fluoride in ground	serum, while
	ion-selective electrode		water: 1.33 - 5.30 mg/L	excessive urinary
	(94-09 BNWP) with	Method of outcome	 Fluoride MAC in 	excretion would be
Country:	Orion Star A329	ascertainment:	drinking water: 0.60 mg/L	due to deterioration
Sri Lanka	Ionalizer (Thermo Orion	One hundred milliliters	Serum fluoride: Mean	of the kidney,
	MA, USA) after dilution	of a random urine	±SD [range] mg/L	suggesting a
Participants:	with an equal volume of	sample from each		possible
	commercially available	subject was collected	 CKDu patients: 1.43 ± 1.2 [0.47 – 9.58] 	•
Cases: 19-76 years	TISAB III buffer (Thermo	into sterile, screw-	\pm 1.2 [0.47 – 9.58] \circ Controls: 1.07 ± 0.3	nephrotoxic role of
old, non-dialysis,	Orion 940911).	capped containers, and	mg/L [0.51 – 1.92]	environmental
biopsy-proven definite		the supernatant was	 p = 0.000 (showed a significant difference based on CKDu 	fluoride exposure.

Study Characterist	lics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
CKDu cases, recruit	ted	removed by	stage but not with set	x
from Girandurukotte	9	centrifugation.	or age)	
and Wilgamuwa ren	al			
clinics.			Urinary fluoride: Mean	
Controls (matched):			±SD [range] mg/L	
Healthy volunteers			 CKDu patients: 1.53 ± 0.8 [0.45 - 6.92] Controls: 1.26 ± 0.63 [0.36 - 3.80] p = 0.004 	
Sampling time fram	ne:			
Nor reported			 Patients in the age group 19–29 years 	
Sample size (N):			showed lower serum fluoride levels than other age groups	
193 (116 cases and	77			
controls)				
Sex:				
Cases: Men (81.1%)			

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Controls: Men (70	0.1%)			
Exclusions:				
Not reported				
Source of fundir support:	ng/			
National Researc	ch			
Council (NRC) Ta	arget			
Orient research G	Grant			
Author declarati	ion of			
interest:				
No COI				

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A			
	Was allocation to study groups adequately concealed?	N/A			
	Did selection of study participants result in appropriate comparison groups?	+	Cases and controls were recruited from the same population, but with difference in age (cases older). No info on timeframe, ethnicity or eligibility criteria other than by outcome of interest		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	No accounting for confounding reported		
Performance	Were experimental conditions identical across study groups?	N/A			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Yes, only one case was not included in the analysis		

Risk of bias	assessment		
Detection	Can we be confident in the exposure characterization?	++	Serum and urine fluoride levels for all cases and controls were measured during the same timeframe and by the same ion-selective electrode method.
	Can we be confident in the outcome assessment?	+	Yes, the outcome was assessed in cases and controls using a confirmed biopsy and dialysis status. Outcome assessment methods and lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	Descriptive analysis with no adjustment to potential confounders

Jimenez-Cordova 2019 58

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 Fluoride exposure is related to early
Original study	Fluoride levels in Drinking water 	 Vascular alterations using the carotid intima media 	 Multiple linear regression Adjusted for urinary 	vascular alterations, which may increase the
	Urine samples	thickness (cIMT) and	specific gravity, BMI,	susceptibility of
Study design:		serum concentrations	age and sex	cardiovascular
Cross-sectional	Method of exposure	of vascular adhesion molecule 1 (VCAM-1), intracellular adhesion	Results:	diseases in adult life. • Inconclusive
	assessment:	molecule 1 (ICAM-1),		results regarding
Country:	 Water samples were provided by each 	endothelin 1(ET-1) and cystatin-C (sCys- C)	Water fluoride: Mean (IQR):	fluoride exposure and kidney injury
Mexico (Chihuahua)	Participant.F concentrations in	 Kidney dysfunction, using Kidney injury 	 0.3 mg/mL (0.01– 1.9) 	
	water and urine	biomarkers	Maximum permissible	
Participants:	samples were assessed by a	[glomerular filtration rate (eGFR), and the	limit:	
5-12 years old Mexican	potentiometric method using an ion selective	urinary concentrations of kidney injury	o 1.5	
school children, who	electrode (Orion	molecule 1 (KIM-1)		
commonly drink tap	9609BNWP, Thermo Fisher Scientific Inc.,	and cystatin-C (uCys- C)]	Liripony fluorido	
water with a minimum	USA); Del Razo et al.,	0)]	Urinary fluoride	
of 2 years of residence	1993.		showed	
in Hidalgo del Parral (fl:	 F concentration in urine was measured by 			

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
0.18 mg/L) or Aldama (fl: 2 mg/L), where	reference material (U- F-0907 and U-F1510),	Method of outcome ascertainment:	Positive association with	
there is no concurrent exposure to arsenic	Centre de Toxicologie du Quebec) and controls were used for	• eGFR was determined by the Creatinine-	 eGFR (β=1.3, p=0.015), 	
	quality control.	Cystatin C-Based CKiD Equation (Schwartz et al., 2012)	 VCAM-1 (β=111.1, p=0.019) ICAM-1 (β=57, 	
Sampling time frame:	Blood analysis	• Urine and serum biomarkers are	p=0.032) o cIMT (β=0.01,	
November 2015	 Biochemical analysis (glucose, lipid profile, uric acid and creatine) 	measured using a custom human Magnetic Luminex	 <i>p=0.032</i>) Inverse association with 	
Sample size (N):	was performed by an automatic analyser (Prestige 24i, Tokyo	Screening Assay (R&D Systems, Inc.,	 uCys-C (β=-8.5, p=0.043) 	
374	Boeki Medical System Ltd., Tokyo, Japan).	Minneapolis MN, USA) that was read on a Luminex xMAP®	 sCys-C (β=-9.6, p=0.021) 	
Sex:		Instrument (MAGPIX®, Luminex	 No significant association with 	
Boys: 46.8%	Urine analysisFirst morning void urine	Corp., Austin TX, USA).	 ET-1 (β=0.069, p=0.074) 	
Exclusions:	was used • Specific gravity was measured immediately using a refractometer (PAL-10S, ATAGO®, Tokyo, Japan)		 KIM-1 (β=29.1, p=0.212) 	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Children with a previous diagnosis of chronic diseases	• Urine analysis was performed with a urine analyser (U-66, Mindray Co., Shenzhen, China).				
Source of funding/ support:					
 Children's Environmental Health Network National Council of Science and Technology, Mexico 					
Author declaration of interest: No COI					

Risk of bias assessment					
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A			
	Was allocation to study groups adequately concealed?	N/A			
	Did selection of study participants result in appropriate comparison groups?	++	Yes, children were selected using the same criteria, and within the same timeframe		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, the analysis was adjusted for urinary specific gravity, BMI, age and sex		
Performance	Were experimental conditions identical across study groups?	N/A			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A			
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Not considered a risk of bias as it listed the exclusion was due to incomplete data or unavailability of samples		

Risk of bias	assessment		
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was consistently assessed during the same timeframe and using the same tools for assessing fluoride levels in water and urine
	Can we be confident in the outcome assessment?	++	Yes, outcome was consistently measured in serum and urine. Lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	**	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified

Jimenez-Cordova 2019a 59

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Fluoride exposure	
Original study	Fluoride levels in	Urinary concentrations	Multiple linear	decreases Arsenic	
	drinking water	of inorganic arsenic	regressionAdjusted for urinary	methylation	
			 Adjusted for unnary specific gravity, age, 	capacity, and	
Study design:			sex, BMI and smoking	increases its toxicity	
Cross-sectional	Method of exposure	Method of outcome			
	assessment:	ascertainment:	Results:		
Country	The Fluoride	Concentrations were	Water fluoride:		
Country:	concentration in water	measured by hydride			
Mexico	and urine was assessed	generation-	1.6 mg/L ±1.6		
	by a potentiometric	cryotrapping-atomic	Urinary fluoride:		
Participants:	method using an ion	absorption	2.8 µg/L <i>±</i> 2.8		
	selective electrode	spectrometry using a	2.0 μg/L <u>-</u> 2.0		
Adult participants	(Orion 9609BNWP,	Perkin Elmer Analyst			
residing in Chihuahua	Thermo Fisher Scientific	400 spectrometer	A statistically significant		
for 1 or more years,	Inc., USA).	(Perkin Elmer, Norwalk,	interaction of F and As		
were directly recruited		CT) equipped with a	exposure on the following		
from information		multiatomizer as	was observed:		
sessions		previously described			

Study Characteris	tics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time fran 2013	me:	(Hernández-Zavala et al., 2008).	 Increase in MAs% (β = 0.16, p = 0.018) Decrease in DMAs% (β = -0.3, p = 0.034), Decrease in PMI (β=-0.07, p=0.052) Decrease in SMI (β=-0.13, p=0.097) 	
Sample size (N): 236			(1 / 1)	
Sex: Men: 29%				
Exclusions:				
Non-residents of				
Chihuahua province	÷			
Source of funding support:	Ι			

Study Characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
National Council	of			
Science and				
Technology, Mex	xico			
Author declarat	tion of			
interest:				
No COI				

Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized? Was allocation to study groups adequately concealed?	N/A N/A	
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria, during the same timeframe, and assessed for exposure and outcome using the same methods

Risk of bias a	ssessment		
Confounding	Did the study design or analysis account for	++	Yes, the analysis was adjusted for urinary specific
	important confounding and modifying variables?		gravity, age, sex, BMI and smoking
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or		Not considered a risk of bias as it listed the reason for
	exclusion from analysis?	++	exclusion: non-residents of target location or
			unavailability of samples
Detection	Can we be confident in the exposure		Yes, exposure was consistently assessed during the
	characterization?	++	same timeframe and using the same tools for
			assessing fluoride levels in water and urine
	Can we be confident in the outcome		Yes, outcome was consistently measured in urine.
	assessment?	++	Lack of blinding of outcome assessors would not
			appreciably bias results.
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were	++	

Risk of bias assessment			
	appropriate and researchers adhered to the study protocol)?		

Khanoranga 2019 60

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The relationship	
Original study	Fluoride levels in	Dental fluorosis	 Relationship between 	among the	
5 ,			fluoride level and DF	groundwater	
	 Ground water samples Urinary samples 		was conducted using Pearson's correlation	fluoride	
Study design:	o onnary sumples	Method of outcome		concentration,	
Cross-sectional study		ascertainment:		urinary F, and	
	Method of exposure	- Single dentiat	Results:	dental fluorosis	
	assessment:	 Single dentist conducted DF 	 Correlation between 	was assessed	
Country:	Ion selective electrode	examination using the WHO Dean's Index	groundwater fluoride levels and CFI	through Pearson's	
Pakistan	method	• CFI was calculated as:	r = 0.90	correlations. A	
		∑ (Number of people x Dean numerical		strong positive	
				relationship was	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants:	Exposure level:	weight) / Total number of people examined	Correlation between urinary fluoride levels	determined by the aforementioned
Male brick kiln workers	Fluoride levels (mg/L)		and CFI	
and controls (17 to 45	found in groundwater		r = 0.96	parameters
years of age) from three	samples of the three			(groundwater F,
districts of Balochistan.	districts (Quetta Pishin,			urinary F, and
Controls were office and	and Mastung)			dental fluorosis)"
university workers	• Range: 0.87 – 1.59			(p. 419)
residing in locations with				
no fluoride exposure	Mean (SD) Fluoride			
	levels (mg/L) found in			
Sampling time frame:	urinary samples of			
August – September	participants from the			
2017	three districts and			
2011	controls			
Sample size:	<u>Quetta (n = 25)</u>			
Brick kiln workers	• Mean: 0.17 (0.15) • Range: 0.013 – 0.54			
100	<u>Pishin (n = 50)</u>			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
<u>Controls</u> 20	• Mean: 0.19 (0.21) • Range: 0.002 – 0.842 <u>Mastung (n = 25)</u>				
Sex: Men: 100% Exclusions: NR	 Mean: 0.30 (0.19) Range: 0.092 - 0.811 Control (n = 20) Mean: 0.003 (0.002) Range: 0.0003 - 0.007 				
Source of funding / support: NR					
Author declaration of interest: NR	of				

Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level	N/A	Not applicable
	adequately randomized?		
	Was allocation to study groups adequately	N/A	Not applicable
	concealed?		
	Did selection of study participants result in	++	Yes, participants were selected during the same
	appropriate comparison groups?		timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	-	NR
	exclusion from analysis?		
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the US-
	characterization?		EPA ion selective electrode (CRISON, GLP 22+).

Risk of bias assessment				
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by a	
	assessment?		single dentist using the WHO Dean's Index. Lack of	
			blinding of outcome assessors would not appreciably	
			bias results.	
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were	
reporting			presented in results section with adequate level of	
			detail for data extraction	
Other	Were there no other potential threats to internal	++	None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the			
	study protocol)?			

Liu 2019 <u>⁶¹</u>

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 low-to-moderate fluoride exposure is associated with

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Original study	Fluoride levels in ground	age- and sex-	Multivariable linear and	overweight and
	water and urine	standardized height,	logistic regression analyses	obesity in children.Gender and
Study design:		weight and BMI z-	 Adjusted for maternal 	paternal education
Study design.	Method of exposure	scores, and childhood	age at delivery, second hand tobacco smoke,	level may modify the relationship
Cross-sectional	•	overweight/obesity	maternal education,	
	assessment:	(BMI z-score > 1)	paternal education, household income, child	
Country:	concentrations of		age, gender and low	
Country.	Fluoride in water		birth weight	
China	samples and morning	Method of outcome	 Sensitivity analysis conducted after 	
	urine samples were	ascertainment:	excluding children born	
Participants:	measured by ion	 Study entry 	to women with smoking, drinking, diabetes,	
·	selective electrode (PF-	standardized anthropometric survey	under-nourishment and	
Randomly selected 7–	202-CF, INESA,	by a trained	anaemia at pregnancy, and children with	
13 years old residents	Shanghai) using the	investigator without knowledge of the	dystocia, hypoxia,	
from low to-moderate	national standardized	children's fluoride	premature birth and post-term birth	
fluorosis, ground water-	method in China (WS/T	levels.	F	
supplied areas of Baodi	89-2006) (Wu et al.,	using a stadiometer,	Desertion	
District, Tianjin, China	2015; Yu et al., 2018)	and weight was	Results:	
	· · · · · · · · · · · · · · · · · · ·	measured using a standard dual reading	Water fluoride:	
		scale.	 0.83 mg/L (95%CI: 0.81, 0.86) 	

	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time fram	ie:	Standardized specific	o <i>p-value: 0.414</i>	
May - October 2015		z-scores were calculated using WHO's Child Growth standards, and for weight using CDC's	 Urinary fluoride 0.43 mg/L (95%CI: 0.41, 0.46) p-value: 0.003 	
Sample size (N):		reference standards		
2,430		(WHO standards are unavailable for this age group)	 linear dose-dependent positive association between water fluoride levels and height z- 	
Sex:			score, as indicated by the trend across fluoride	
Boys: 51.1%			quartiles (Ptrend=0.022). • Each log unit (roughly	
Exclusions:			10-fold) increase in urinary fluoride concentration was	
 History of chronic 			associated with a	
medical illness (e.g renal, hepatic, and endocrine disorders			 0.136 unit increase in weight z-score (95% Cl: 0.039, 0.233) 	
 Long-term medication 			o 0.186 unit increase in	
related to overweig			BMI z-score (95% CI:	
and obesity were n	ot		0.058, 0.314)	
included			 1.304-fold increased 	
			odds of overweight/obesity	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of fundin support: • National Natural Science of China • National Natural Science Founda of China • Fundamental Research Funds the Central Universities	a tion		 (95% CI: 1.062, 1.602) These associations were stronger in girls than in boys (P interaction= 0.016) Children of fathers with lower education levels were more vulnerable to fluoride (P interaction=0.056) 	
Author declaration interest: No COI	on of		• Each log unit (roughly 10-fold) increase in water fluoride concentration was associated with a 0.129 unit increase in height z-score (95% CI: 0.005, 0.254), but not with other anthropometric measures.	

Risk of bias a	1	T	
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level	N/A	
	adequately randomized?		
	Was allocation to study groups adequately concealed?	N/A	
	Did selection of study participants result in		Yes, participants were selected at random from the
	appropriate comparison groups?	++	same areas, using the same criteria and during the
			same timeframe
Confounding	Did the study design or analysis account for		Yes, it accounted for major confounders such as
	important confounding and modifying variables?	++	maternal age at delivery, second hand tobacco smoke,
			maternal education, paternal education, household
			income, child age, gender and low birth weight
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Not considered a risk of bias as it listed the exclusion
	exclusion from analysis?		was due to those with extremes of BMI scores

Risk of bias a	Risk of bias assessment				
Detection	Can we be confident in the exposure	++	Yes, exposure was consistently assessed during the		
	characterization?		same timeframe and using the same tools for assessing		
			fluoride levels in water and urine		
	Can we be confident in the outcome	++	Yes, outcome was consistently assessed by a trained		
	assessment?		investigator without knowledge of the children's fluoride		
			levels, in accordance with WHO and CDC standards		
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were		
reporting			presented in results section with adequate level of detail		
			for data extraction		
Other	Were there no other potential threats to internal	++	None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the				
	study protocol)?				

Malin 2019 <u>62</u>

Study Characteristics	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Fluoride exposure		
Original study Study design: Cross-sectional Country:	Fluoride in drinking water and serum Method of exposure assessment: • Water samples were measured via an ion-	 Estimated glomerular filtration rate Serum uric acid Albumin to creatinine ratio Blood urea nitrogen AST/ALT ALP Gamma-glutamyl transferase 	 Multiple linear regression Adjusted for age, sex, race, BMI, family income, daily protein intake and serum cotinine (biomarker of tobacco smoke exposure) 	may contribute to complex changes in kidney and liver related parameters among US adolescents		
United States	specific electrode	 Serum albumin 	Results:			
Participants: US adolescents: 12–19	 Plasma fluoride was measured via an ion- specific electrode and hexamethyldisiloxane (HMDS) method 	Method of outcome ascertainment: • Serum was analyzed	 Tap water fluoride 0.48 mg/L ± 0.03 Plasma fluoride 0.40 μmol/L ± 0.01 			
years old (NHANES survey) Sampling time frame:	 Tap water and blood collection times were not standardized 	for markers of kidney and liver function as part of a standard biochemistry profile. From 2013 to 2016 a Beckman Coulter UniCel DxC 800 Synchron chemistry	 A 1 mg/L increase in water fluoride was associated with: 0.93 mg/dL lower blood urea nitrogen concentration (95%) 			

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
2013–2016		analyzer was utilized; while from 2015 to 2016 a Beckman Coulter UniCel DxC	CI: −1.44, −0.42; p=0.007). ∘ eGFR: -1.03 mL/min/m2 (95% CI:	
Sample size (N):		660i Synchron Access chemistry analyzer	-2.93, 0.87); p > 0.99; water fluoride	
4,470		was utilized as well. • Urine samples were analyzed for albumin	 was log2 transformed in this model. SUA: 0.05 mg/dL 	
Sex:		and creatinine using a Turner Digital	(95% Cl: -0.07, 0.18); p > 0.99	
Men: 52.7%		Fluorometer, Model 450 and Roche Cobas 6000 Analyzer respectively. Urine	 ACR: -0.01 mg/g (95% Cl: -0.07, 0.06); p = > 0.99; water fluoride and outcome 	
Exclusions:		sample collection time was not standardized.	variables were log2 transformed.	
 Institutionalized persons Suggestive kidne 			 1 µmol/L increase in plasma fluoride was associated with: 	
 Suggestive kland diseases Not drinking tap 			 10.36 mL/min/1.73m2 lower 	
 insufficient or excessive protein intake 			estimated glomerular filtration rate (95% CI: −17.50, −3.22; p=0.05)	
			 0.29 mg/dL higher serum uric acid concentration (95%) 	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Source of fundin support: • Mount Sinai Children's Cente Foundation • NIH/NIEHS			CI: 0.09, 0.50; p=0.05) ○ 1.29 mg/dL lower blood urea nitrogen concentration (95%CI: −1.87, −0.70; p < 0.001)		
Author declarat	ion of				
interest:					
No COI					

Risk of bias a	Risk of bias assessment			
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A		
	Was allocation to study groups adequately concealed?	N/A		

Risk of bias assessment					
	Did selection of study participants result in	++	Yes, participants were selected using the same criteria,		
	appropriate comparison groups?	TT	during the same timeframe		
Confounding	Did the study design or analysis account for		Yes, it accounted for r	najor	confounders such as age,
	important confounding and modifying	++	sex, race, BMI, family income, daily protein intake and		
	variables?		serum cotinine (bioma	arker o	of tobacco smoke exposure)
Performance	Were experimental conditions identical across				
	study groups?	IN/A			
	Were the research personnel and human				
	subjects blinded to the study group during the	N/A			
	study?				
Attrition	Were outcome data complete without attrition		Study provided reasor	ns for	exclusion of participants
	or exclusion from analysis?	++	(institutionalized persons, kidney diseases, not drinking		
		++	tap water and insufficient or excessive protein intake),		
			which were not related to the outcome		
Detection	Can we be confident in the exposure	++	Yes, exposure was consistently measured in serum		
	characterization?	++	and urine using gold standard tests.		
	Can we be confident in the outcome		Yes, outcome		Outcome (liver
	assessment?		(kidney dysfunction)		dysfunction) was
		++	was consistently	+	consistently assessed with
			measured in serum		results showing no
			and urine. Lack of		correlation (human

Risk of bias assessment					
			blinding of outcome		evidence) but reported as
			assessors would not		having correlation with
			appreciably bias		exposure (based on
			results.		animal evidence)
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were		
reporting		++	presented in results se	ection	with adequate level of
			detail for data extraction	on	
Other	Were there no other potential threats to internal		None identified		
sources	validity (e.g., statistical methods were				
	appropriate and researchers adhered to the	++			
	study protocol)?				

Malin 2019a 63

Study Characteristic	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Fluoride exposure
Original study	Fluoride level in drinking water and serum	Self-reported sleep	 Survey-weighted linear and multinomial logistic regression analyses 	may contribute to changes in sleep

Cross-sectional as	ethod of exposure sessment: Fluoride concentrations vere measured in	outcome measures Method of outcome	 Adjusted for age, sex, body mass index (BMI), race/ethnicity, and the ratio of family income to poverty 	cycle regulation and sleep behaviors among older
Cross-sectional as	Sessment:		race/ethnicity, and the ratio of family income to	·
Cross-sectional • F V Country:	Fluoride concentrations		ratio of family income to	among older
• F v Countrv:			novertv	
v Countrv:			poverty	adolescents in the
		ascertainment:		US.
ŕ	blood plasma and household tap water.	 Sleep habits and sleep disorders were 	Results:	
US •(k	 Collection times of blood and tap water were not standardized Plasma fluoride 	ascertained through questionnaires in participants' homes by trained staff using the	• Tap water fluoride mean (SE): 0.39 mg/L (0.05)	
	concentrations were neasured using an ion-	Computer-Assisted Personal Interview	• Plasma fluoride mean	
	specific electrode and	(CAPI) system.	(SE):	
	nexamethyl-disiloxane nethod	 The questions included in the sleep 	0.35 µmol/L (0.02)	
fluoride biomonitoring	ap water samples	questionnaire were		
Dala and sell-reported	vere measured electrometrically with	not validated	Median (IQR) for:	
sleep outcome	an ion-specific		Water fluoride:	
measures (NHANES	electrode		0.27 (0.52) mg/L	
2015–2016)			 Plasma fluoride 0.29 (0.19) μmol/L 	

Study	Exposure	Outcome	Analysis & Results	Conclusions	
2015–2016			An IQR increase in water fluoride was associated with		
Sample size (N):			 1.97 times higher odds of reporting symptoms 		
419			suggestive of sleep apnea (95% CI: 1.27, 3.05; p = 0.02)		
Sex: Men: 49.08			 24 min later bedtime (B = 0.40, 95% Cl: 0.10, 0.70; p = 0.05) 		
111:43.00			 26 min later morning wake time (B = 0.43, 95% CI: 0.13, 0.73; p 		
Exclusions:		=0.04) o Among males, a 38% reduction in the odds			
Not consuming water Consuming alog			of reporting snoring (95% CI: 0.45, 0.87,		
 Consuming sleep medications No fluoride samples 			p =0.03).		
Source of funding					
support:	··· <i>ə</i> ·				
NIH/NIEHS					

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Author declara	ation of				
interest:					
No COI					

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A				
	Was allocation to study groups adequately concealed?	N/A				
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria, during the same timeframe			
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, sex, body mass index (BMI), race/ethnicity, and the ratio of family income to poverty			
Performance	Were experimental conditions identical across study groups?	N/A				

Risk of bias	assessment		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or		Not considered a risk of bias as study documented the
	exclusion from analysis?		reasons for exclusion of participants (not drinking tap
		++	water, consuming sleep medications, and lack of
			plasma or water samples)
Detection	Can we be confident in the exposure		Yes, exposure was consistently measured in serum and
	characterization?	+	urine. However, the questions included in the sleep
			questionnaire were not validated.
	Can we be confident in the outcome		Yes, outcome was consistently measured in serum and
	assessment?	++	urine. Lack of blinding of outcome assessors would not
			appreciably bias results.
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of detail
			for data extraction
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Pei 2019 64

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 Multiple signaling pathways were
Original study	 Fluoride levels in 	Genetic biomarkers of	 Descriptive statistics 	found to be
	drinking water Skeletal fluorosis 	skeletal fluorosis		regulated by the differentially
Study design:			Results:	expressed miRNAs
Cross-sectional	Method of exposure	Method of outcome	Water fluoride groups:	 Dysregulation of molecular
	assessment:	ascertainment:	 0 1.2 mg/L 0 >1.2 mg/L - ≤2 mg/L 	signaling pathways are involved in the
Country:	 Fluoride levels in drinking water, blood, and urine samples 	 Serum miRNAs were extracted with miRNeasy Mini Kit 	 >2 mg/L - ≤4 mg/L >4 mg/L 	process of fluoride-induced damage of
China	 Fluoride in drinking water was detected by a F-ion selective 	(Qiagen, Valencia, CA, USA). ● After assessing the	 31 miRNAs were significantly and 	osteoblasts and osteoclasts.
Participants:	electrode (Yingke Crystal Materials	RNA's quality and quantity, the miRNA	differentially expressed between cases and	However, the regulatory mechanism of
Residents aged 16 or	Company) using a China national	microarray analysis (Affymetrix microRNA	controls. Of these, 21 miRNAs were up-	fluoride on molecular
older who lived in one	standard (GB 5750.5-	4.0 Array, Santa	regulated and 10	pathways is still
of five villages that are	2006, China).	Clara, CA, USA) was performed according	miRNAs were down- regulated	not very clear
endemic in skeletal	 Urinary fluoride was also assessed by using 	to the manufacturer's instructions.	• 3 additional miRNAs (miR-200c-3p, miR-	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
fluorosis, (Zhao Dong County, Heilongjiang Province) Sampling time frame:	the standard (WS/T 89–2015, China). • Skeletal fluorosis was diagnosed using the national diagnostic standard for endemic skeletal fluorosis (WS192-2008)	• Quantitative PCR was performed using a TaqMan miRNA PCR kit (Haigene, Harbin, China) on an ABI7500 Fast Realtime PCR system (ABI, USA).	1231 and miR-3185) were significantly up- regulated in the cases	
NR Sample size (N):	• Subjects were investigated using a questionnaire, and were face-to-face interviewed by well- trained staff.			
302	 Every subject received a clinical examination, including X-ray investigation 			
Sex:				
Men: 30%				
Exclusions:				
Bone diseasesHypertensionAtherosclerosis				

Study	Exposure	Outcome	Analysis & Results	Conclusions
Heart diseaseDiabetes				
Source of funding/				
support:				
 National Natural Science Foundation of China Translational Medicine Special Foundation of China- Russia Medical Research Center Harbin Medical University, China Science Foundation for Distinguished Young Scholars of Heilongjiang Province, China 				
Author declaration of				
interest:				

Study Characteristics	5			
Study	Exposure	Outcome	Analysis & Results	Conclusions
No COI				

Risk of bias as	Risk of bias assessment					
Bias domain	Criterion	Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A				
	Was allocation to study groups adequately concealed?	N/A				
	Did selection of study participants result in appropriate comparison groups?	+	Whereas participants were selected using the same criteria, recruitment time frame was not reported			
Confounding	Did the study design or analysis account for important confounding and modifying variables?		Not reported			
Performance	Were experimental conditions identical across study groups?	N/A				
	Were the research personnel and human subjects blinded to the study group during the study?	N/A				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	There was no attrition of exclusion of participants from the analysis in this study			

Risk of bias	assessment		
Detection	Can we be confident in the exposure		Yes, exposure was consistently measured in drinking
	characterization?	++	water, blood, and urine samples using national standard
			tests
	Can we be confident in the outcome		Yes, outcome was assessed using national standards.
	assessment?	++	Lack of blinding of assessors of skeletal fluorosis does
			not seem to appreciably bias results
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of detail
			for data extraction
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Riddle 2019 65

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures	Outcome	Statistical analysis:	Higher tap water	
Original study	Fluoride levels in	Attention-related	 Logistic regression to 	fluoride levels were associated with a	
Study design Cross-sectional study	Community sourceTap waterUrine	outcomes Method of outcome	examine the associations between fluoride exposure measure (UFsg, CWF, tap water) and ADHD	higher risk of ADHD and increased symptoms of	
	Method of exposure	ascertainment	 Linear regression 	hyperactivity and inattention,	
Country	ascertainment	 Attention deficit 	used, with the same covariates to examine	especially among	
Canada	Community water	hyperactivity disorder (ADHD) diagnosed	the associations	adolescents.	
	fluoridation status	by physician	between the (UF _{SG} , CWF, tap water) and	 Tap water fluoride 	
Participants	<u>(CWF)</u>	 Hyperactivity/inattenti on subscale score 	SDQ	concentration was	
Persons Youth 6-17	Acquired from city	acquired using	hyperactivity/inattentio n subscale score.	significantly associated with	
years old from the North	website reports or water	Strengths and Difficulties	Adjusted covariates:	ADHD, adjusting	
American Health	treatment plant	Questionnaire (SDQ)	sex, age, ethnicity, BMI, highest parental	for covariates	
Measures Survey		 Information on both outcomes were 	education, household		
(Cycles 2 and 3).	<u>Urinary fluoride (UF_{SG}):</u>	acquired from	income, cigarette smoke exposure at		
	non-fasting spot	parents/guardians for participants 6 to 11	home, and log ₁₀ -		
Study name	samples	 Among those 12 to 17 years of age, 	transformed lead level in blood)		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
 North American Health Measures Survey (CHMS) 	<u>Tap water fluoride</u> Samples from participants' home	outcome information was acquired from the participants themselves	Results Water fluoride Mean ±SD: 0.23 mg/L ±0.24 (cycles 3 only) 		
Sampling timeframe • 2009–2011 • 2012–2013	during Cycle 3 Mean (SD)		• Urinary fluoride Mean ±SD: 0.61 mg/L		
Sample size (N) • Cycle 2:	concentration of urinary fluoride		±0.39 (cycles 2 & 3)		
 N=2,520 Cycle 3: N=2,667 Sex (%) 	adjusted for specific gravity (mg/L) • <u>Urinary fluoride –</u> <u>sample 1</u> 0.61 (0.39)		 An increase of 1.0 mg/L in water fluoride concentration was associated with 6.1 times higher odds of an ADHD after 		
Men: 50.8%–52.7%	• <u>CWF status - sample 2</u> 0.64 (0.45) • <u>Tap water fluoride –</u>		accounting for potential confounders		
• Resided in home for ≤ 2 years	sample 3 • 0.62 (0.48)		 UF_{SG} did not significantly predict ADHD aOR=0.96 (95% CI: 		
 Reside in place with mixed city fluoridation 			0.63, 1.46); p=0.84		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
status Consume bottled water • Consume well rather than municipal water • Remove fluoride with home filtration system	Mean (SD) concentration of water fluoride (mg/L) • <u>Urinary fluoride –</u> <u>sample 1</u> 0.23 (0.24)		• UF _{SG} did not significantly predict SDQ hyperactive/ inattentive subscale scores aOR = 0.31 (-0.04,	
Source of funding: Faculty of Health, York University	• <u>CWF status – sample</u> <u>2</u> 0.26 (0.26) • <u>Tap water fluoride –</u> <u>sample 3</u> 0.22 (0.24)		0.66); p = 0.08 • An increase of 1.0 mg/L in water fluoride	
Conflict of interest: No COI	0.23 (0.24) Mean (SD) • <u>Urinary fluoride</u> 11.3 (3.4) • <u>CWF status</u>		concentration was associated with 6.1 times higher odds of an ADHD after adjusting for potential confounders	
	11.3 (3.3) • <u>Tap water fluoride</u> 11.2 (3.5)		 UF_{SG} did not significantly predict ADHD aOR=0.96 (95% CI: 0.63, 1.46); p=0.84 	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			• UF _{SG} did not significantly predict SDQ hyperactive/ inattentive subscale scores aOR = 0.31 (-0.04, 0.66); p = 0.08		
			<u>ADHD diagnosis & tap</u>		
			water fluoride		
			 aOR = 6.10 (1.60, 22.8); p < 0.05 Exposure-response relationship: yes 		
			<u>SDQ</u>		
			hyperactive/inattentive		
			subscale score & tap		
			water fluoride		
			• aOR = 0.31 (0.04, 0.58); p < 0.05		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			 Exposure-response relationship: yes 		
			ADHD diagnosis &		
			<u>UF_{SG}</u>		
			• aOR = 0.96 (0.63, 1.46); p < 0.05		
			 Exposure-response relationship: yes 		
			<u>SDQ</u>		
			Hyperactive/Inattentive		
			Subscale Score & UFsc	<u>i</u>	
			• aOR = 0.31 (-0.04, 0.66); p = 0.05 Exposure-response		
			relationship: yes		

Risk of bias as	ssessment	
Bias domain	Criterion	Response

Risk of bias a	ssessment			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in		Participants who lived in private households across	
	appropriate comparison groups?	++	Canada were randomly selected from Cycle 2 (2009–	
			2011) and Cycle 3 (2012–2013) of the CHMS.	
Confounding	Did the study design or analysis account		Yes (child's sex, age at interview, ethnicity (white or	
	for important confounding and modifying		other), BMI, highest level of parental education, total	
	variables?	++	household income, smoking at home [yes/no], concurrent	
			blood lead level [log10-transformed], specific gravity of	
			urinary fluoride concentration)	
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Not considered a risk of bias as it documented the exclusion of those who reported drinking bottled water as	

Risk of bias	assessment		
			their main source of water, or those who lived in their residence location for less than 3 years.
Detection	Can we be confident in the exposure characterization?	++	Yes, urinary fluoride was measured in non-fasting spot samples, adjusted for specific gravity (UFSG), and analyzed using an Orion PH meter with a fluoride ion selective electrode after being diluted with an ionic adjustment buffer. Samples were not standardized though with respect to collection time.
	Can we be confident in the outcome assessment?	++	Yes, hyperactivity/inattention subscale score from the Strengths and Difficulties Questionnaire (SDQ; Goodman, 2001) and a physician-made diagnosis of ADHD were measured for all participants in both Cycles 2 and 3 of the CMHS.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods	++	None identified

Risk of bias a	Risk of bias assessment				
	were appropriate and researchers adhered				
	to the study protocol)?				

Shaik 2019 66

Study Characteristic	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Long term intake of
Original study	Fluoride levels in	Thyroid function	 Descriptive analyses 	fluoridated drinking
-	drinking water	biomarkers (TSH, T3,		water (0.02 -1.4
	0	T4 in serum)	Desertion	ppm) did not show
Study design:			Results:	effect on the thyroid
Cross-sectional	Method of exposure		Water fluoride mean:	function in the
	assessment:	Method of outcome	Group I (0.01-0.6 ppm):	children with normal
	 Water analysis was 	ascertainment:	0.22	nutritional status
Country:	carried out using	 Serum T3, T4 was 	Group II (0.7-1.2 ppm):	and optimal iodine
India	OAKTON Fluoride Ion Selective	determined with	0.89	intake
	Electrode	Competitive Chemi Luminescent	Group III (1.3-2.0 ppm):	
	Equipment, USA.	Immunoassay kits	1.44	

Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants:		 Serum TSH was determined with Ultra- 		
Children 9-13 years old		Sensitive Sandwich	•TSH: 40% of children of	
with lifelong residence in		Chemi-Luminescent	group I had deranged levels followed by group	
one of 19 villages in		Immunoassay with analyzer according to	III (20%) and Group II	
Mysore Taluk, with water		the manufacturer recommendation.	(16%) ●T4: 24% of children of	
fluoride levels 0.01-1.8			both groups I and III	
ppm). Children must			had deranged levels followed by group II	
have had good general			(20%)	
health, normal nutritional			 Inter group correlation of drinking water 	
status, and were			fluoride levels to	
consuming lodized salt			number of deranged serum T3, T4, and TSH of the children showed non-significant	
Sampling time frame:			association	
NR				
Sample size (N):				
293				

Study Characteristics	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex:				
Boys: 46%				
Exclusions:				
Non-resident children,				
and those with				
substandard growth or	r			
health status				
Source of funding/				
support:				
NR				
Author declaration o	f			
interest:				
No COI				

Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level	N/A	
	adequately randomized?		
	Was allocation to study groups adequately	N/A	
	concealed?		
	Did selection of study participants result in		Whereas participants were selected using the same
	appropriate comparison groups?	+	criteria, recruitment time frame was not reported
Confounding	Did the study design or analysis account for		Not reported
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	There was no attrition of exclusion of participants from
	exclusion from analysis?	++	the analysis in this study
Detection	Can we be confident in the exposure	++	Yes, exposure was consistently measured in drinking
	characterization?	ŦŦ	water using specialized tests
	Can we be confident in the outcome		Outcome was assessed using specialized standards.
	assessment?	++	Study was double-blinded with no likelihood to bias
			results.

Risk of bias	Risk of bias assessment					
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Soto-Barreras 2019 67

Study Characteristic	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "No evidence was found for fluoride-
Original study	Fluoride levels in	 Intellectual ability Dental fluorosis 	 Statistical significance at p<0.05 	associated cognitive deficits.
	 Drinking water samples 			As the level of fluoride
Study design:	 Urine samples 	Method of outcome	Results:	consumption remains a public
Cross-sectional study		ascertainment:	• Mean (<i>±</i> SD) water	health concern and its
			fluoride levels (mg/L) by	implications for

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Country: Mexico	Method of exposure assessment: • Ion selective electrode	Intellectual ability: Raven's Colored Progressive Matrices (RCPM) Dental fluorosis:	dental fluorosis categories ○ <i>TF 0: 0.75 ± 0.95</i> ○ <i>TF 1 – 2: 0.67 ± 0.15</i> ○ <i>TF 3 – 4: 1.22 ± 1.09</i> ○ <i>TF > 5: 1.66±0.93</i>	health are still uncertain, further research is needed to clarify whether or not fluoride may		
Participants: Children (9 to 10 years of age) in grade 4 attending public elementary schools in Chihuahua	Exposure level: See results for exposure levels by dental fluorosis and intellectual ability categories	Thylstrup-Fejerskov (TF) Index used to examine vestibular, occlusal, and lingual surfaces	• Mean (\pm SD) urinary fluoride levels (mg/L) by dental fluorosis categories • TF 0: 0.48 \pm 0.23 • TF 1 - 2: 0.51 \pm 0.38 • TF 3 - 4: 0.62 \pm 0.32 • TF > 5: 0.67 \pm 0.41 • p-value: 0.088	 possibly have adverse effects on brain development." (p. 481) "The fluoride content in the drinking water and the exposure dose were significantly higher in the moderate-to- 		
Sampling time frame: May – December 2017 Sample size:			 Mean (±SD) exposure dose to fluoride (EDI) (mg/kg bw/day) by dental fluorosis categories TF 0: 0.016 ± 0.02 TF 1 – 2: 0.017 ± 0.02 	severe fluorosis cases. The urinary fluoride level increased as the level of the severity of the dental fluorosis increased but no		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex:			○ p-value: 0.001	difference was present." (p. 477 – 478)
Men: 88 (54.7%)			 Mean (±SD) water fluoride levels (mg/L) by IQ categories Grade I: 1.48 ± 1.13 	
 Exclusions: Received topical fluoride application in last 6 months 			 Grade II: 1.05 ± 1.06 Grade III: 1.04 ± 1.06 Grade IV: 0.97 ± 1.10 Grade V: 0.79 ± 1.17 p-value: 0.645 	
Have different residence since time of				
 pregnancy Have mental illness diagnosis Have systemic disorder diagnosis 			 Mean (±SD) urinary fluoride levels (mg/L) by IQ grade categories Grade I: 0.45 ± 0.34 Grade II: 0.54 ± 0.29 Grade III: 0.61 ± 0.38 Grade IV: 0.56 ± 0.33 	
Source of funding / support:			 Grade V: 0.35 ± 0.19 p-value: 0.559 	
			 Mean (±SD) exposure dose/daily intake by IQ grade categories 	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
PRODEP program Mexican Minister o Education (SEP)			 Grade I: 0.03 ±0.03 Grade II: 0.026 ±0.03 Grade III: 0.027 ±0.03 Grade IV: 0.027 ±0.03 Grade IV: 0.029 ±0.03 Grade V: 0.016 ±0.03 p-value: 0.389)3)3		
Author declaration interest:	on of					

Risk of bias a	Risk of bias assessment					
Bias domain	Criterion	Res	ponse			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			
	Was allocation to study groups adequately concealed?	N/A	Not applicable			

Risk of bias a	ssessment		
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (received topical fluoride application in last 6 months, have different residence since time of pregnancy, have mental illness diagnosis, or have systemic disorder diagnosis)
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water using the ion selective electrode (Orion 9609BNWP, Ionplus Sure- Flow Fluoride Electrode, Thermo Scientific, USA)
	Can we be confident in the outcome assessment?	++	Yes,outcome++Yes, outcome (dental(IQ/intellectual ability)fluorosis) was measured

Risk of bias	assessment			
			was measured by an independent examiner, using the Raven's Colored Progressive Matrices (RCPM). Lack of blinding of outcome assessors would not appreciably bias results.	by a single examiner, assisted by a recorder, using the Thysltrup and Fejerskov Index. Lack of blinding of outcome assessors would not appreciably bias results.
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes presented in results set for data extraction	issed in methods were with adequate level of detail
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Zhang 2019 68

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Women who had
Original study	 Dental cleaning during 	Prevalence of preterm	Multivariate logistic	dental cleaning
	pregnancy (DC) alone	births (birth < 37 weeks	regression	during pregnancy
	 Community water fluoridation (CWF) alone 	gestation)	 Adjusted for maternal sociodemographic characteristics (age, 	and lived in a
Study design:	• DC and CWF	·		community with
Cross-sectional	combined		race, nativity, education, income, health	water fluoridation
		Method of outcome	insurance), previous medical risk (diabetes, preterm births) and	had lower
	Method of exposure	ascertainment:		prevalence of
Country:	assessment:	Derived from the	behavioral factors (BMI)	preterm birth.
US	• DC: PRAMS survey	infant's birth certificate		
	questionnaire		Results:	
Participants:	 CWF: MA Dept. of Public Health, Office of Oral Health 		Water fluoride levels: NR	
Massachusetts (MA)				
resident women with a				
live birth (2009- 2016)			 Prevalence of preterm birth among women 	
who responded to the			with a singleton live	
PRAMS survey			birth was 8.5% in Massachusetts.	

Study	Exposure	Outcome	Analysis & Results	Conclusions
(Pregnancy Risk Assessment			 Overall, 58.7% of women had dental cleaning during 	
Monitoring System)			pregnancy, and 63.6% lived in CWF. •Compared to women	
Sampling time fran	ne:		without DC and CWF and adjusting for potential confounders:	
2009-2016			 O Dental cleaning alone and preterm birth: significant (aRR = 0.74 [95% CI 0.55– 	
Sample size (N): 9,234			0.98]) ○ CWF alone and preterm birth: non- significant (aRR = 0.81 [95% CI 0.63–	
Sex: Women: 100%			1.05]) o DC–CWF and preterm birth:	
Exclusions:			significant (aRR = 0.74 [95% CI 0.57– 0.95]) were significant	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Missing data for dental cleaning during pregnancy, CWF, and/or gestational age Missing data on relevant maternal characteristics 				
Source of funding/				
support:				
CDC				
Author declaration of				
interest:				
NR				

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level	N/A		
	adequately randomized?			

Risk of bias a	ssessment		
	Was allocation to study groups adequately concealed?	N/A	
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected using the same criteria, during the same timeframe
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as maternal sociodemographic characteristics (age, race, nativity, education, income, health insurance), previous medical risk (diabetes, preterm births) and behavioral factors (BMI)
Performance	Were experimental conditions identical across study groups?	N/A	
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Not considered a risk of bias as study reported that nonresponse adjustment factors were incorporated to address the increased likelihood of non-response from certain groups of women, such as those who had < 12 years of education.

Risk of bias	assessment		
Detection	Can we be confident in the exposure		Yes, exposure was consistently measured using the
	characterization?	++	PRAMS survey questionnaire (DC), and the MA Dept.
			of Public Health records (CWF)
	Can we be confident in the outcome	++	Yes, outcome was retrieved from state infant birth
	assessment?	TT	certificates
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of
			detail for data extraction
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Zhou 2019 69

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 High intake of fluoride may act
Original study				directly and/or

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
	Fluoride levels in	Prevalence of one of	Multiple logistic	indirectly on the	
Study design:	drinking water	seven eye diseases	regression analysis Adjusted for age, 	eyeball.	
Cross-sectional			smoking, drinking habits, blood pressure,	association of water fluoride	
	Method of exposure	Method of outcome	BMI, education, and	levels with	
0	assessment:	ascertainment:	annual income.	pterygium and arteriosclerotic	
Country:	Fluoride levels in the	Complete ocular		retinopathy, and significant inverse	
China	blood, urine, and	examination	Results:	association with	
	drinking-water		 Drinking-water fluoride: >1.2 mg/L 	cataract. Non-significant 	
Participants:			21.2 mg/L	associations with primary angle	
Residents (for ≥10			• Fluoride in the drinking	closure glaucoma,	
years) of the Han			water was closely associated with:	diabetic retinopathy, age-	
nationality in 1 of 12			 Cataract: OR: 0.543 (95% CI 0.310– 	related macular degeneration, and	
villages in north east			0.845).	strabismus.	
China, aged ≥40 years			 Pterygium: OR: 1.991 (95% CI 		
old, with no congenital			1.931–3.622). o Arteriosclerotic		
eye disease or ocular			retinopathy: OR:		
trauma			2.011 (95% Cl 1.121–3.637).		
			 Primary angle closure glaucoma: 		

Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time	frame:		OR:1.179 (95% CI:	
			0.788–1.489).	
NR			 Diabetic retinopathy. 	
			OR: 1.845 (95% CI:	
			0.931–3.120).	
Sample size (N).		 Age-related macular degeneration: OR: 	
			1.048 (95% CI:	
1,813			0.735–2.221).	
			 O.130-2.221). ○ Strabismus: OR: 	
			1.598 (95% CI:	
-			0.936–2.689).	
Sex:				
Men: 30%				
			 Compared to the control 	bl
			group:	
Exclusions:			 Significant decrease 	
Exclusions:			for cataract (14.9% i exposed group,	n
•Less than 10 y	ears of		24.7% in control	
residence			group)	
 congenital eye 			 Significant increases 	3
disease or ocu			for pterygium (7.7%	
trauma			in exposed group,	
			3.2% in control	
			group)	
Source of fund	ing/		 Significant increases 	3
			for arteriosclerotic	
support:			retinopathy (17.6% i	n

Study	Exposure	Outcome	Analysis & Results	Conclusions
 Center for Endemic Disease Control Chinese Center for Disease Control and Prevention 		 exposed group, 6.4% in control group). Non-significant associations with primary angle closure glaucoma, diabetic retinopathy, age- 		
Author declaration of interest:		related macular degeneration, and strabismus		

Risk of bias assessment					
Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A			
	Was allocation to study groups adequately concealed?	N/A			
	Did selection of study participants result in appropriate comparison groups?	+	Whereas participants were selected using the same criteria, recruitment time frame was not reported		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Except for gender (P<0.001), there was no significant difference between the two groups (exposed vs		

Risk of bias as	ssessment		
			control) for the other the confounders such as age,
			smoking and drinking habits, blood pressure, body
			mass index, education, and the annual income.
Performance	Were experimental conditions identical across	N/A	
	study groups?		
	Were the research personnel and human	N/A	
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	There was no attrition of exclusion of participants from
	exclusion from analysis?		the analysis in this study
Detection	Can we be confident in the exposure		Whereas the exposure was measured in drinking
	characterization?	+	water, serum and urine, no information was provided
			on the methods/tests used in that regard
	Can we be confident in the outcome		Outcome was assessed using standard examinations.
	assessment?	+	With no information provided, lack of blinding might
		-	have an impact on ocular assessments conducted on
			study participants.
Selective	Were all measured outcomes reported?		Yes, primary outcomes discussed in methods were
reporting		++	presented in results section with adequate level of
			detail for data extraction

Risk of bias assessment			
Other	Were there no other potential threats to internal		None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the	++	
	study protocol)?		

Zhou 2019a 70

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"In conclusion, we	
Original study	<u>Fluoride levels in</u>	 Genotoxicity 	 Multivariable linear and 	have showed that	
		(Mitochondrial DNA	logistic regression	low-to-moderate	
	 Drinking water samples 	(mtDNA) levels) • Dental fluorosis (DF)	models Fluoride categorized 	concentrations of	
Study design:	 Urine samples 		into tertiles (T)	water fluoride and	
Cross-sectional study		Method of outcome	 Association of mtDNA with water and urinary 	urinary fluoride	
	Method of exposure		fluoride levels were	were positively	
	assessment:	ascertainment:	adjusted for age,	associated with DF	
Country:		• mtDNA: quantitative	gender, BMI, LBW, maternal education,	prevalence, while	
China		real-time polymerase chain reaction assay	paternal education, and family income	inversely	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
	 National standardized ion selective electrode 	 <u>DF</u>: Dean's classification system. 	 Association of DF with water and urinary 	associated with	
Participants:	method	Two independent	fluoride levels were	circulating mtDNA levels. Additionally,	
Children (7 to 13 years		experts conducted each examination. DF	adjusted for age, gender, BMI, LBW,	our study indicates	
to age), from rural areas	Exposure level in	index was determined	maternal education,	that the gender	
with low-to-moderate	mg/L (P25 – P75):	using the most serious form of fluorosis on ≥ 2	paternal education, and family income	potentially modifies	
fluoride exposure in	Non-DF group	teeth		the associations of	
Tianjin			Results:	DF prevalence with	
	• Water: 0.70 (0.40 – 0.80)			relative mtDNA	
Compliant time from a	• Urine: 0.17 (0.09 –		mtDNA	levels and low-to-	
Sampling time frame:	0.31)		Change (95% CI) in	moderate fluoride	
2015			mtDNA levels among those with water fluoride	exposure, and that	
	DF group		levels in T2 and T3	the reduced	
Sample size:	• Water: 1.60 (1.20 –		compared to T1 (mg/L) T1 (≤ 0.70)	mtDNA levels may	
-	2.60)		Reference	partly mediate the	
616	• Urine: 2.11 (0.45 – 2.69)		<u>T2 (0.71 – 1.50)</u>	elevated	
	,		B = -0.24 (-0.32, -0.15)	prevalence of	
Sex N (%):			P = 0.035	moderate DF in	
			<u>T3 (> 1.50)</u>		
Non-DF group			B = -0.32 (-0.39, -0.24)		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Men: 109 (45.4%)		P <0.001	children under	
			Trend test	such exposure."	
			P <0.001		
<u>DF group</u> Men: 202 (53.7%)		 Change (95% CI) in mtDNA levels per 1 mg/L increase in water fluoride level B = -0.10 (-0.14, -0.06) 		
Exclusions (fror	n		P <0.001		
analysis):Have cavitiesHave orthodontiappliances	ic		 Change (95% CI) in mtDNA levels among those with urinary fluoride levels in T2 and T3 compared to T1 (mg/L) T1 (≤ 0.21) 		
Source of funding	ng /		Reference		
support:			<u>T2 (0.22 – 2.08)</u>		
• The State Key F	Program		B = -0.03 (-0.12, 0.06)		
of National Natu Science of Chin	Iral		P = 0.516		
• The National Na	atural		<u>T3 (> 2.08)</u>		
Science Founda China	ation of		B = -0.27 (-0.35, -0.20)		
Unina			P <0.001		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
The Fundamental			Trend Test	
Research Funds fo	or the		P <0.001	
Central Universitie	-		 Change (95% CI) in mtDNA levels per 1 mg/L increase in urinary fluoride level 	/
Author declaratio	n of		B = -0.12 (-0.14, -0.09)
interest:			P <0.001	
NR			1 (0.001	
			Total DF	
			 Odds (95% CI) of total DF among those with water fluoride levels in T2 and T3 compared to T1 (mg/L) <u>T1 (≤ 0.70)</u> 	
			Reference	
			<u>T2 (0.71 – 1.50)</u>	
			OR = 2.58 (2.02, 3.30))
			P <0.001	
			<u>T3 (> 1.50)</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			OR = 3.64 (2.91, 4.55)
			P <0.001	
			Trend Test	
			P <0.001	
			 Odds (95% CI) of total DF per 1 mg/L increase in water fluoride level 	
			OR = 1.47 (1.40, 1.55)
			P <0.001	
			 Odds (95% CI) of total DF among those with urinary fluoride levels in T2 and T3 compared to T1 (mg/L) <u>T1 (≤ 0.21)</u> 	
			Reference	
			<u>T2 (0.22 – 2.08)</u>	
			OR = 1.49 (1.26, 1.77)
			P <0.001	
			<u>T3 (> 2.08)</u>	
			OR = 3.16 (2.53, 3.95)

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			P <0.001	
			Trend Test	
			P <0.001	
			 Odds (95% CI) of total DF per 1 mg/L increase in urinary fluoride level 	
			OR = 1.39 (1.32, 1.46	i)
			P <0.001	
			Very Mild DF	
			 Odds (95% CI) of very mild DF among those with water fluoride levels in T2 and T3 compared to T1 (mg/L) <u>T1 (≤ 0.70)</u> 	
			Reference	
			<u>T2 (0.71 – 1.50)</u>	
			OR = 2.33 (1.55, 3.51)
			P <0.001	
			<u>T3 (> 1.50)</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			OR = 4.93 (3.48, 6.98	3)
			P <0.001	
			Trend Test	
			P <0.001	
			 Odds (95% CI) of very mild DF per 1 mg/L increase in water fluoride level 	
			OR = 1.85 (1.63, 2.11)
			P <0.001	
			 Odds (95% CI) of very mild DF among those with urinary fluoride levels in T2 and T3 compared to T1 (mg/L) <u>T1 (≤ 0.21)</u> 	
			Reference	
			<u>T2 (0.22 – 2.08)</u>	
			OR = 1.31 (0.92, 1.86	5)
			P = 0.135	
			<u>T3 (> 2.08)</u>	
			OR = 4.02 (2.81, 5.74	.)

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			P <0.001	
			Trend Test	
			P <0.001	
			 Odds (95% CI) of very mild DF per 1 mg/L increase in urinary fluoride level 	
			OR = 1.57 (1.41, 1.76)
			P <0.001	
			Mild DF	
			 Odds (95% CI) of mild DF among those with water fluoride levels in T2 and T3 compared to T1 (mg/L) <u>T1 (≤ 0.70)</u>)
			Reference	
			<u>T2 (0.71 – 1.50)</u>	
			OR = 4.17 (2.80, 6.20)
			P <0.001	

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>T3 (> 1.50)</u>	
			OR = 6.88 (4.78, 9.92))
			P <0.001	
			Trend Test	
			P <0.001	
			 Odds (95% CI) of mild DF per 1 mg/L increase in water fluoride level 	
			OR = 1.68 (1.57, 1.79))
			P <0.001	
			 Odds (95% CI) of mild DF among those with urinary fluoride levels in T2 and T3 compared to T1 (mg/L) <u>T1 (≤ 0.21)</u> 	
			Reference	
			<u>T2 (0.22 – 2.08)</u>	
			OR = 1.79 (1.44, 2.23))
			P <0.001	
			<u>T3 (> 2.08)</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			OR = 5.99 (4.15, 8.66)
			P <0.001	
			Trend Test	
			P <0.001	
			 Odds (95% CI) of mild DF per 1 mg/L increase in urinary fluoride level 	
			OR = 1.56 (1.45, 1.67)
			P <0.001	
			Moderate DF	
			 Odds (95% CI) of moderate DF per 1 mg/L increase in water fluoride level 	
			OR = 3.85 (3.01, 4.92)
			P <0.001	
			 Odds (95% CI) of moderate DF per 1 	

Study	Exposuro			
	Exposure	Outcome	Analysis & Results	Conclusions
			mg/L increase in urinary fluoride level	
			OR = 2.85 (2.39, 3.39)	
			P <0.001	

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable			
	Was allocation to study groups adequately concealed?	N/A Not applicable			
	Did selection of study participants result in appropriate comparison groups?	++ Yes, participants were selected during the same timeframe and according to the same criteria.			

Risk of bias as	ssessment		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it accounted for major confounders such as age, gender, BMI, low birth weight, maternal education, paternal education and family income
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (children with cavities or had orthodontic appliances during the investigarion period)
Detection	Can we be confident in the exposure characterization?	++	Yes, exposure was measured in water using the national standardized ion selective electrode method
	Can we be confident in the outcome assessment?	++	 * Yes, outcome (dental fluorosis) was measured independently by two dentists using Dean's Fluorosis Index. * Yes, outcome (mitochondrial DNA) was measured using DNA samples extracted from lymphocytes using the DNA extraction kit (GK1042, Shanghai Generay

Risk of bias	assessment		
			Biotech Co., Ltd., Shanghai, China), and quantified using
			the Nanodrop ND1000 (Thermo scientific, Wilmington,
			DE, USA).
			* Lack of blinding of outcome assessors would not
			appreciably bias results.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of detail
			for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Bashash 2018 71

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Positive association		
Original study	Fluoride levels in	 Attention-deficit/ hyperactivity disorder (ADHD) related 	 Multivariate gamma regression models were used 	between higher prenatal fluoride		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	 Maternal urinary 	symptoms in children	Models were adjusted	exposure and
Study design:	samples (prenatal fluoride exposure	between 6 to 12 years of age	for child characteristics	symptoms of
	biomarker)	jeale et age	(gestational age, birth	inattention, but not
Prospective cohort			weight, sex, parity, age at outcome	hyperactivity or
study	Method of exposure	Method of outcome	assessment) and	impulse control, in a
	assessment:	ascertainment:	maternal characteristics	large Mexican cohort of
Country: Mexico		Conners' Rating	(smoking history,	children, suggesting
	 ≥ 1 second morning void spot urine 	Scales-Revised (CRS-	marital status, education,	neurotoxicity of early-
	sample from	<u>R)</u>	socioeconomic	life exposure to fluoride
Participants: Mother-	gestational period was used and	 Completed by 	status, and cohort)	
child pairs residing in	adjusted for	mothers		
Mexico City enrolled in	creatinine	 Used to evaluated ADHD related 	Results:	
two of four cohorts of	 Number of participants (N) with 	behaviours	Change (95% CI) in	
the Early Life	maternal urinary	• Scores the following:	,	
Exposures to	fluoride measures adjusted for	Cognitive Problems + Inattention, Restless-	outcome per 0.5 mg/L	
Environmental	creatinine by	Impulsive,	unit increase in	
Toxicants (ELEMENT)	trimester: 1 st Trimester:	Hyperactivity, ADHD Index, DSM-IV	maternal urinary	
study; specifically,	N = 175	Inattention, DSM-IV	fluoride levels adjusted	
participants from	<u>2nd Trimester:</u>	Hyperactivity- Impulsivity, and DSM- IV ADHD Total	for creatinine	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
cohorts 2A and 3 were	N = 80	Conners' Continuous	• CRS-R scores (N =	
included in the	3 rd Trimester:	Performance Test, 2 nd	210) <u>Cognitive Problems +</u>	
analysis.	N = 62	edition (CPT-II)	Inattention	
	Number of	 Completed by children 	β= 2.54 (0.44, 4.63)	
Sampling time frame:	participants (N) by	Used to evaluate	p= 0.0178	
Cohort 2A:	number of measurements	sustained attention	Restless-Impulsive	
	<u>3 measurements:</u>	and inhibitor controlScores the following:	β= 1.92 (-0.07, 3.91)	
•1997 to 1999		Omission Errors,	p= 0.0586	
<u>Cohort 3:</u>	N = 14	Commission Errors, and Hit Reaction	<u>Hyperactivity</u>	
• 2001 to 2003	2 measurements:	Time	β= 1.05 (-0.91, 3.00)	
	N = 78	Other Details	p= 0.2953	
Sample size (N): 213	1 measurement:	CRS-R and CPT-II	ADHD Index	
Mother-child pairs		were completed during the same visit	β= 2.47 (0.43, 4.50)	
	N = 122	 Age and sex 	p= 0.0175	
		standardization were applied to outcome	DSM-IV Inattention	
Sex:	Exposure levels:	measures	β= 2.84 (0.84, 4.84)	
<u>Girls:</u>		• Experienced	p= 0.0054	
•N (%) = 116 (54)	 Mean (95% CI) level of fluoride in maternal 	psychologist oversaw the psychometric tests performed		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Exclusions: No gestational urine sample available > 14 gestational weeks at recruitment Child behavioral tests not conducted during specified time period (6 to 12 years of age) History of psychiatric disorder(s) Medical complications Gestational use of alcohol/illegal drugs by the mother 	urine adjusted for creatinine 0.85 mg/L (0.81, 0.90)		$\begin{array}{l} \underline{\text{DSM-IV}} \\ \underline{\text{Hyperactivity-}} \\ \underline{\text{Impulsivity}} \\ \beta = 1.69 \ (-0.33, \ 3.70) \\ p = 0.1016 \\ \underline{\text{DSM-IV}} \ \text{ADHD} \ \text{Total} \\ \beta = 2.38 \ (0.42, \ 4.34) \\ p = 0.0176 \\ \bullet \ \text{CPT-II} \ \text{scores} \ (\text{N} = 210) \\ \underline{\text{Omission Errors}} \\ \beta = 0.22 \ (-2.30, \ 2.74) \\ p = 0.8643 \end{array}$	
Source of funding/ support: U.S. NIH, NIEHS/EPA,			Commission Errors β = -0.43 (-2.38, 1.51) p= 0.6641	
and the National Institute of Public			<u>Hit Reaction Time</u> β= 1.07 (-1.19, 3.32)	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Health/Ministry of	of		p= 0.3546	
Health of Mexico	D;			
facilities provide	d by			
the American Br	itish			
Cowdray Hospita	al			
Author declara	tion of			
interest: NR				

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion	Res	ponse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		

Risk of bias as	ssessment		
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Participants were maternal-child pairs from Mexico City, and consisted of two of four cohorts from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study. Time of recruitment was from 1997 to 1999 for cohort 2A and 2001 to 2003 for cohort 3; however, mean maternal urinary fluoride levels adjusted for creatinine was not significantly different between groups.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, regression models were adjusted for child characteristics (gestational age, birth weight, sex, parity, and age at outcome assessment), and maternal characteristics (smoking history, marital status, education, socioeconomic status, and cohort). Interaction between sex and maternal urinary fluoride levels adjusted for creatinine was assessed in sensitivity analysis.
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable

Risk of bias	assessment				
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	matching outcome (C for this project. Howe outcome information child pairs, leaving 27 of whom 210 mother- R and CPT-II analyse	CRS-F ever, c were 14 par child es (20	um of one MUFcr and a R or CPT-II) were identified complete demographic and missing among 17 mother- rticipants for our analyses, pairs had data for the CRS- 06 had data for both) (Fig. 1).
Detection	Can we be confident in the exposure characterization?	++		ring p it met	·
	Can we be confident in the outcome assessment?	+	Participants were recruited at 14 gestational weeks or less, and outcomes were measured in children between 6	++	Participants were recruited at 14 gestational weeks or less, and outcomes were measured in children between 6 to 12 years of age; regression models

Risk of bias assessment		
	to 12 years of age;	were adjusted for the age
	regression models	at outcome assessment.
	were adjusted for	Conners' Continuous
	the age at outcome	Performance Test (CPT-II)
	assessment.	was completed by the
	Conners' Rating	child. An experienced
	Scales-Revised	psychologist oversaw the
	(CRS-R) was	psychometric tests.
	completed by the	
	mother. " parents	
	were unaware of	
	their offspring's	
	fluoride exposure	
	status, removing	
	reporting bias as a	
	limitation. An	
	experienced	
	psychologist	
	oversaw the	
	psychometric tests.	
	However, missing	

Trial Ex. 131.448

Risk of bias	assessment		
Solaatiiva	Were all managered outcomes reported?		teacher assessment report is a major limitation.
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the methods section were reported on in the results section.
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.

Cui 2018 72

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	 In the overall participants, the

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Original study	Fluoride levels in urine samples	Intelligence quotient (IQ)	Multiple linear regression models were used Model for overall	DRD2 Taq 1A polymorphism itself was not related to IQ scores in children
Study design:		Method of outcome	were adjusted for age	who had a high level
Cross-sectional study	Method of exposure	ascertainment:	of child, maternal education, smoker in	of urine fluoride. • In the CC/CT
,	assessment:	 Determined using the 	the family, stress, and	subgroup, urine
Country: China	 Morning urine samples were collected Measured using ion 	 Determined using the Combined Raven's Test – The Rural in China (CRT-RC) method Test was 	 anger Model for DRD2 SNP of CC or CT was adjusted for age of child, maternal 	 fluoride levels and IQ scores in children were unrelated. Among the participants carrying
Participants: Children	selective electrode method Exposure levels:	 administered by professionals Age-specific groups of the CRT-RC: 	education, smoker in the family, stress, and anger • Model for DRD2 SNP	the TT genotype, there was a strong and robust negative linear relationship
(7 to 12 years of age) from four schools in	•	Low: ≤ 69	of TT was adjusted for age of child and	between log-urine fluoride and IQ scores
	Median (interquartile	Borderline: 70 – 79	having a cold	in children after
Tianjin found in	range) levels of fluoride	Low average: 80 –	Robust estimates of	adjusting for child age and have a cold more
locations with historic	in urine by DRD2	89	variance were acquired using a	than 5 times a year.
endemic (1.52 – 2.49	single nucleotide	Average: 90 – 109	bootstrap procedure	
mg/L fluoride level in	polymorphism (SNP)	High average: 110 –		
drinking water) and	-CC(N - 102)	119	Result:	
non-endemic (0.20 –	• <u>CC (N = 103)</u> 1.3 (0.9 – 1.6)	110		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
1.00 mg/L levels of fluoride in drinking water) fluorosis.	• <u>CT (N = 179)</u> 1.2 (0.8 – 1.8) • <u>TT (N = 44)</u> 1.3 (1.0 – 2.0)	Good: 120 – 129 Excellent: ≥ 30	 Change (95% CI) in IQ score per log-unit increase in urinary fluoride among all participants and by subgroups 	
Sampling time frame: 2014 – 2015			<u>Overall (N = 323)</u> β = -2.47 (-4.93, - 0.01) p = 0.049	
Sample size (N): 323			[Bootstrapped estimate: 95%Cl = - 4.97, 0.03;	
Sex: Boys:			p = 0.053] <u>DRD2 SNP of CC or</u>	
• N (%) = 177 (54.8)			<u>CT (N = 279)</u> β = - 1.59 (- 4.24,	
Exclusions:			1.05) p = 0.236	
 Informed consent forms not signed by guardians 			[Bootstrapped estimate:	

Study Characteristics		
Outcome	Analysis & Results	Conclusions
	95%CI = -4.14,	
	0.95;	
	p = 0.220]	
	DRD2 SNP of TT (N	
	<u>= 44)</u>	
	β = -12.31 (-18.69, -	
	5.94)	
	p = < 0.001	
	[Bootstrapped	
	estimate:	
	95%Cl = -19.66, -	
	4.96;	
	p = 0.001]	
	• "the safety threshold of urine fluoride levels in the	
	Outcome	$\begin{array}{l} 95\% \text{CI} = -4.14, \\ 0.95; \\ p = 0.220] \\ \hline D \text{RD2 SNP of TT (N} \\ = 44) \\ \beta = -12.31 (-18.69, - \\ 5.94) \\ p = < 0.001 \\ [Bootstrapped \\ estimate: \\ 95\% \text{CI} = -19.66, - \\ 4.96; \\ p = 0.001] \\ \bullet`` the safety \\ threshold of urine \end{array}$

Study Character	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			mg/L, 1.97 mg/L))" (p.	
			276)	

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in	++	Participants were children (7 to 12 years of age) from	
	appropriate comparison groups?		four schools in Tianjin (2014-2015) found in locations	
			with historical endemic (1.52 - 2.49 mg/L fluoride level	
			in drinking water) and non-endemic (0.20 - 1.00 mg/L	
			levels of fluoride in drinking water) fluorosis.	
Confounding	Did the study design or analysis account for	++	Model for overall was adjusted for age of child,	
	important confounding and modifying variables?		maternal education, smoker in the family, stress, and	
			anger. Model for DRD2 SNP of CC or CT was	

Risk of bias as	ssessment		
			adjusted for age of child, maternal education, smoker
			in the family, stress, and anger. Model for DRD2 SNP
			of TT was adjusted for age of child and having a cold.
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?	1.177	
	Were the research personnel and human		Not applicable
	subjects blinded to the study group during the	N/A	
	study?		
Attrition	Were outcome data complete without attrition or	++	Reasons for exclusion were provided. A total of 400
	exclusion from analysis?		children (7–12 years old) were enrolled. Children who
			had no informed consent form signed by their
			guardians or moved out (n = 35) and no DRD2
			genotyping measurement (n = 42) were excluded,
			leaving 323 children for the study.
Detection	Can we be confident in the exposure	++	Fluoride levels were measured in urine. No differences
	characterization?		in exposure assessment methods were reported
			between participants.
	Can we be confident in the outcome	++	The Combined Raven's Test - The Rural in China
	assessment?		(CRT-RC) method was used by professionals to

Risk of bias assessment			
			determine child IQ. Outcome unlikely to be affected by blinding status.
Selective reporting	Were all measured outcomes reported?	++	The outcome mentioned in the study objective was reported on in the results section.
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.

Jimenez-Cordova 2018 73

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 "…urinary excretion of 4 early kidney
Original study	Fluoride levels in	<u>Kidney injury</u>	 Multiple linear regression analysis 	injury biomarkers (ALB, Cys-C, KIM-1
Study design:	 Drinking water samples Urine samples 	 Urine levels of albumin (ALB), cystatin-C (Cys-C), 	was usedInteraction analysis between fluoride and	and OPN) is related to environmental F exposure in an adult
Cross-sectional study		kidney injury	tAS was conducted	population, without a As interaction effect.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	Co-exposure:	molecule 1 (KIM-1), clusterin (CLU),	 Results considered significant at p < 0.05 	Our results suggest a possible tubular
Country: Mexico	Arsenic levels in	osteopontin (OPN),	and marginally	dysfunction from F
	Urine samples	and trefoil factor 3 (TIFF-3))	 significant at p < 0.1 ALB models were adjusted for specific 	exposure that might increase susceptibility to the future
Participants: Adult (18			gravity, protein (15	development of
to 77 years of age)	Method of exposure	Kidney function	mg/dL), protein (30	CKD." (p. 104)
residents of 3	assessment:	Glomerular filtration	mg/dL), mine-worker, Diabetes, urine	
Chihuahua	Fluoride levels in water	rate (eGFR)	leucocytes, Age, sex	
communities (El Sauz,	and urine samples		 Cys-C models were adjusted for specific 	
Aldama, and Gpe.	Potentiometric	Method of outcome	gravit, protein (15	
Victoria) exposed to	method using ion	ascertainment:	mg/dL), protein (30 mg/dL) amorphous	
fluoride via drinking	selective electrode Inorganic arsenic and	<u>eGFR</u>	urate crystals, and age	
water	<u>corresponding</u>	 Estimated using 	 OPN models were 	
	metabolite levels in	levels of creatinine (Creat) in serum and	adjusted for specific gravity, amorphous	
Sampling time frame:	urine samples	the Chronic Kidney Disease	urate crystals, age, and sex	
July 2013	Hydride generation- cryotrapping-atomic absorption	Epidemiology Collaboration (CKD- EPI) formula • Commercial kit used	• CLU models were adjusted for specific gravity, protein (15	
Sample size (N): 239	spectrometry using Perkin Elmer Analyst	• Commercial kit used to determine Creat levels in urine	mg/dL), protein (30 mg/dL), smoking index, age, and sex	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	400 spectrometer and	Urinary kidney damage		
Sex:	multi-atomizer Total urinary arsenic 	<u>biomarkers</u>	adjusted for specific gravity, amorphous	
Men	(tAS) is the sum of inorganic arsenic and	 First morning void samples used 	urate crystals, mucoprotein,	
•N (%) = 68 (28.8)	corresponding metabolites monomethylarsonic	 Luminex xMAP Technology using 	atherogenic index, and age • TFF-3 models were	
Exclusions:	acid (MAs) or dimethylarsinic acid (DMAs)	MILLIPLEX MAP Human Kidney Toxicity panel 3 and 4	adjusted for specific gravity, diabetes, age,	
•< 18 years of age	Normalization of	Biomarker levels in	and sex ●eGFR models were	
 Infrequent consumption of tap 	fluoride and tAS levels	urine were adjusted for specific gravity	adjusted for vascular diseases, cholesterol,	
water	<u>in urine</u>	and Creatinine	alkaline phosphatase,	
• Live in study area for < 1 year	 Levine-Fahy method 		and nephrotoxic drug	
Have cancer or kidney disease	and urinary strip specific gravity		use	
	Specific gravity		Results:	
Source of funding/	Exposure levels:		Change in outcome	
support:	Geometric mean		(p-value) per unit increase of fluoride in	
Mexican National	(Interquartile range; IQR) level of water		water (mg/L) and urine (µg/mL)	
Council of Science and	fluoride (mg/L); N =		ALB (µg/mL)	
Technology	232		<u></u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	1.5 (0.19 – 1.8)		Water: β= 1.20 (p=	
Author declaration of interest: None	 Geometric mean (IQR) level of urinary fluoride (µg/mL); N = 236 2.0 (1.1 – 3.5) Geometric mean (IQR) level of urinary tAS (ng/mL); N = 236 18.55 (10.6 – 34.1) Geometric mean (IQR) level of urinary inorganic As (ng/mL); N = 236 1.8 (0.91 – 4.4) 		<pre> <0.001) Urine: β= 0.56 (p= <0.001) Cys-C (µg/mL) Water: β= 0.03 (p= 0.005) Urine: β= 0.022 (p= 0.001) OPN (µg/mL) Water: β= 0.10 (p= 0.028) Urine: β= 0.038 (p= 0.041) CLU (µg/mL) </pre>	
			Water: β= 0.09 (p= 0.118)	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Urine: β= 0.07 (p=	
			0.100)	
			<u>KIM-1 (ng/mL)</u>	
			Water: β= 0.045 (p=	
			0.162)	
			Urine: β = 0.048 (p=	
			0.008)	
			<u>TFF-3 (ng/mL)</u>	
			Water: β = 2.88 (p=	
			0.010)	
			Urine: β = 1.14 (p=	
			0.115)	
			eGFR (mL/min/1.73	
			<u>m²)</u>	
			Water: β = 0.19 (p=	
			0.675)	
			Urine: β = 0.49 (p=	
			0.030)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions

Risk of bias assessment			
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in	++	Participants consisted of adult residents of 3
	appropriate comparison groups?		Chihuahua communities in Mexico. The study was
			conducted in July 2013.
Confounding	Did the study design or analysis account for	++	Multiple linear regression models were adjusted for
	important confounding and modifying variables?		several confounders. List of confounders vary by
			outcome. See Table 4 on p. 102 for details. Arsenic
			was assessed for potential interaction with fluoride.

Risk of bias as	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided for the study. "Adults who reported cancer or kidney disease were excluded from the study." (p. 98) Three participants without samples of urine were excluded.
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in water and urine. No difference in exposure assessment methods were found between study participants.
	Can we be confident in the outcome assessment?	++	Kidney injury biomarkers were measured in urine, and eGFR was estimated using levels of creatinine in serum and the Chronic Kidney Disease Epidemiology Collaboration formula. Blinding status unlikely to affect outcome assessment.
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the abstract were reported on in the results section.

Risk of bias assessment					
Other	Were there no other potential threats to internal	++	None identified.		
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?				

Kumar, V 2018 74

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 Mean TSH, water fluoride levels, urine
Original study	Fluoride levels in	Thyroid functional	Chi-square and Mann	fluoride levels and
Study design:	• water • Serum • Urine	 <u>activity</u> Serum levels of free triiodothyronine (T3), 	 Whitney tests Results considered significant at p<0.05 	serum fluoride levels of subjects of group 1 were found to be significantly higher than that of subjects
Cross-sectional study	Method of exposure	free thyroxine (T4), and thyroid	Results:	of group 2 (p-value < 0.05).
	assessment:	stimulating hormone (TSH)	 Mean free T3 (pg/ml) by study group 	 Fluorosis and thyroid functional activity are
Country: India	 Manual titration method, automatic 		A: 3.125; B: 2.698	positively correlated with each other.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	analyzer, and	Method of outcome	p = 0.26	Excessive fluoride
Participants: Children	radiometer ascertainment:	ascertainment:	 Mean free T4 (ng/dL) by study group 	levels also lead to alteration in thyroid
(8 to 15 years of age)	Exposure levels:	• Immuno	A: 1.282; B: 1.193	hormones activity
from endemic fluorosis	•	Chemiluminescence Mircroparticle Assay	p = 0.41	
area and fluorosis non- endemic area	 Mean (range) level of water fluoride (ppm) by study groups A1: 1.1 (1.5 - 5) 	with Autoanalyzer	 Mean TSH (µIU/m) by study group A: 3.849; B: 2.588 	
	A2: 3.3 (1.8 – 5.8)		p = 0.02	
Sampling time frame:	B: 0.99 (0.94 – 1.08)		Mean water fluoride (ppm) by study group	
NR	 Range of urinary fluoride (ppm) level 		(ppm) by study group A: 2.877; B: 1.020	
	by study groups		p = 0.01	
Sample size (N): 400	A1: 0.27 – 8.6 A2: 0.6 – 7.64		 Mean urinary fluoride (ppm) by study group A: 2.982; B: 0.761 	
<u>Group A (N = 200):</u>	B: 0.22 – 1.07		·	
Subjects from endemic	 Range of serum 		p = 0.02	
fluorosis area • A1 (N = 100):	fluoride (ppm) level by study groups A1: 0.05 – 0.71		 Mean serum fluoride (ppm) by study group A: 0.195; B: 0.059 	
Subjects with dental	A2: 0.05 – 0.71		p = 0.03	
fluorosis	B: 0.03 – 0.10		 Percent (%) of thyroid hormone level 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 A2 (N = 100): Subjects with no dental fluorosis 			derangement by study group A: 67.5; B: 54	
<u>Group B (N = 200):</u>				
Subjects from fluorosis				
non-endemic area				
(controls)				
 Subjects with no dental fluorosis 				
Sex: NR				
Exclusions:				
 ≥ 15 years of age History of cancer, chronic disease, other type of dental staining, and medication use that interferes with thyroid 				

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Source of funding/ support: None						
Author declaration of interest: None						

Risk of bias assessment					
Bias domain	Criterion	Res	ponse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	+	Participants consisted of children 8 to 15 years of age. Information on recruitment time frame and participation rate not found.		

Risk of bias as	Risk of bias assessment				
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Subjects more than 15 years of age, or having history of the presence of any other form of dental staining, cancer/chronic disease and having thyroid-interfering medication were excluded from the study. Sample sizes were the same between study groups.		
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in water, urine, and serum. No differences in exposure assessment methods were found between study groups.		
	Can we be confident in the outcome assessment?	++	Thyroid hormones were measured in serum, and therefore are unlikely to be affected by blinding status.		
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the introduction section were reported on in the results section.		

Risk of bias assessment					
Other	Were there no other potential threats to internal	++	None identified.		
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?				

Kumar, S 2018 75

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The severity of	
Original study	Fluoride levels in	Severity of Dental	 Logistic regression 	dental fluorosis is	
0 2		Fluorosis (DF)	analysis conducted to	positively	
	Water samples		examine association between DF and	correlated with the	
Study design:			potential risk factors	fluoride content in	
Cross-sectional study	Method of exposure	Method of outcome	 Model variables include location, water storage 	the water. The	
	assessment:	ascertainment:	method, and water	water fluoride	
	Electrochemical probe	 DF severity was 	fluoride content Statistical significance 	content is the	
Country:	method IS-3025 (Part 60).	determined using the Modified Dean Index	at $p < 0.05$	strongest predictor	

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
India	Exposure level:	 Examinations were conducted by trained dentists 		for dental fluorosis." (p. 6)		
Participants:	<u>Mean (SD) water</u> <u>fluoride levels</u>	community periodontal index probe	Results:			
Adolescents (12 to 15 years of age) from 16 schools in Jhabua and Dhar districts	• Jhabua: 1.29 (±0.52) • Dhar: 1.23 (±0.39) • Total: 1.27 (±0.46)		<u>Correlation between</u> <u>water fluoride levels</u> (ppm) and DF severity • r = 0.967; p = 0.000			
Sampling time frame: January 2015 to July 2015			<u>Odds (95% CI) of DF at</u> <u>>1.2ppm compared to ≤</u> <u>1.2ppm</u>			
Sample size: 800			•OR = 1.764 (1.309, 2.377); p < 0.0001			
Sex N (%):						

Study Character	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Boys: 398 (49.75	%)			
Exclusions:				
Medically				
compromised • Unwilling to				
participateNo parental const	sent			
•				
Source of fundin	ng /			
support:				
None that would				
influence the resu	ılts			
Author declarati	on of			
interest:				
No COI				

Risk of bias a	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes, it considered for major confounders such as sex, residency, storage of water, dental hygiene, diet
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Study provided reasons for exclusion of participants (unwilling to participate, medically compromised, or whose parents did not give consent)

Risk of bias assessment					
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the		
	characterization?		electrochemical probe met	hod I	S-3025 (Part 60).
	Can we be confident in the outcome	++	Yes, outcome (dental	++	Yes, outcome
	assessment?		fluorosis) was done by		(mitochondrial DNA)
			trained dentists, using		was measured
			Dean's modified index.		using DNA samples
			Lack of blinding of		extracted from
			outcome assessors		lymphocytes using
			would not appreciably		the DNA extraction
			bias results.		kit (GK1042,
					Shanghai Generay
					Biotech Co., Ltd.,
					Shanghai, China),
					and quantified using
					the Nanodrop
					ND1000 (Thermo
					scientific,
					Wilmington, DE,
					USA). Lack of
					blinding of outcome

Risk of bias	Risk of bias assessment					
Selective	Ware all manuford autoomee reported?			assessors would not appreciably bias results.		
reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed presented in results section with a detail for data extraction			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified			

Malin 2018 76

Study Characteristics	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures	Outcome(s)	Statistical analysis:	"Adults living in
Original study	Fluoride levels in	Thyroid function	 Linear regression was 	Canada who have
	 Drinking water 		used to model TSH	moderate-to-severe

racteristics				
Ехро	posure	Outcome	Analysis & Results	Conclusions
gn: ●Urir	rine	Method of outcome	levels as a function of	iodine deficiencies
onal study	te e les sel te	ascertainment	urinary fluoride and iodine levels	and higher levels of
	<u>ine level in</u>	Serum TSH	 Adjusting for age, sex 	urinary fluoride may
• Urir	rine		BMI, serum calcium)	be at an increased
Meth	thod of exposure		Results	risk for underactive
	certainment		Water fluoride (mg/L)	thyroid gland
period Wate	<u>iter fluoride</u>		Mean ±SD: 0.22 ±0.24	activity."
12 – 2013) Basic	sic anion exchange			
chroi s:	omatography.		Urinary fluoride (mg/L)	
icans (3-79)			Mean ±SD: 0.94 ±1.05	
es (CHMS)	nary fluoride			
Non-	n-fasting spot		Change (95%Cl) in	
samp	nples, analyzed		serum TSH (mIU/L) per	
e. usinę	ng an Orion PH		unit increase in UFsg	
mete	ter with a fluoride ion		(mg/L)	
selec	ective electrode after			
	ng diluted with an		No iodine deficiency	
ionic	ic adjustment buffer		ß = -0.02 (-0.19, 0.15)	
e: using mete selec being	ng an Orion PH ter with a fluoride ion ective electrode after ng diluted with an		unit increase in UFsg (mg/L)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Exclusions:			p = 0.43	
People living in the 3	<u>lodine</u>			
territories, remote areas, reserves, or	Colorimetric		lodine deficiency	
aboriginal settlements,	microplate assay (using		ß = 0.36 (-0.03, 0.75)	
full-time North American military, and institutionalized	spot urine samples)		<i>p</i> = 0.03	
persons	Water fluoride			
 Use of thyroid drugs Prior thyroid diseases Pregnancy with excess 	$0.22 \text{ mg/L} \pm 0.24$			
iodine levels (> 2.37 µmol/L)	Urinary fluoride			
	0.94 mg/L ± 1.05			
Source of funding:	5			
• SSHRC • CIHR • CFI				
 Statistics Canada 				
Conflict of interest:				
No COI				

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Respo	onse		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Were the comparison groups appropriate?	++	Participants 3-79 years old were recruited from 16 sites across all provinces from Cycle 3 (2012–2013) of the CHMS. Exclusions included: people living in the 3 territories, on reserves or other aboriginal settlements in the provinces, full-time members of the North American forces, institutionalized people, and those living in remote areas, pregnant women, those with thyroid conditions or abnormally high iodine levels. The overall response rate for all aspects of Cycle 3 was 79%		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Yes (sex, age, BMI, total household income, serum calcium level, specific gravity of urinary fluoride concentration)		

Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Missing data were<5% in all analyses except for household income which was reported by 77% of respondents; however, Statistics Canada provided imputed estimates for these missing values.
Detection	Can we be confident in the exposure characterization?	++	Yes, urinary fluoride was measured in non-fasting spot samples, adjusted for specific gravity (UFSG), and analyzed using an Orion PH meter with a fluoride ion selective electrode after being diluted with an ionic adjustment buffer. Samples were not standardized though with respect to collection time.
	Can we be confident in the outcome assessment?	++	TSH was measured in blood samples collected by a phlebotomist using a standard venipuncture method. Serum TSH was measured using a 3 rd generation assay analyzer equipped with a chemiluminescent detection system. Serum free T4 was analyzed using a competitive chemiluminescent

Risk of bias	Risk of bias assessment				
Selective	Were all measured outcomes reported?		immunoassay. Thyroid hormones were analyzed at the INSPQ on the Siemens ADVIA Centaur XP analyzer. Iodine level was measured in spot urine samples by colorimetric microplate assay. Yes, primary outcomes discussed in methods were		
reporting	were an measured outcomes reported :	++	presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Mohd Nor 2018 77

Study Characteristic	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Findings indicate
Original study		Dental fluorosis		that the change in

477

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
	Fluoride levels in public		Binary logistic	fluoride level from			
Study design: Cross	drinking water supply	Method of outcome	regression	0.7 to 0.5 ppm has			
sectional		ascertainment:		reduced fluorosis			
			Results:	and maintains a			
	Method of exposure	 Assessment of dental fluorosis was 	"The provelence of	caries-preventive			
Country: Malaysia	assessment:	conducted by trained	 "The prevalence of fluorosis (Dean's score 	effect. Although			
	Water fluoride: NR	clinical and calibrated examiners (NAMN).	≥ 2) among children in the fluoridated area	there is a reduction			
Participants:		 Assessment of fluorosis was 	(35.7%, 95% CI: 31.9%-39.6%) was	in fluorosis			
•	Exposure level:	conducted by	significantly higher (P <	prevalence, the			
Lifelong residents aged		examining the	0.001) than children in	difference was not			
9- and 12-year-olds	• Original: 0.7 ppm	maxillary central incisors using Dean's	the nonfluoridated area (5.5%, 95% CI: 3.6%-	statistically			
	 Reduced: 0.5 ppm 	Fluorosis Index.	(3.3 <i>%</i> , 95 <i>%</i> C1. 3.0 <i>%</i> 7.4%)."	significant."			
Sampling time frame:		 Consensus on outcome assessment must be achieved by 	 "Of those in the fluoridated area, the prevalence of fluorosis 	C			
2015 (calculated using		agreement of two	decreased from 38.4%				
the following information		additional examiners, who did not	(95% CI: 33.1% 44.3%) for 12-year-olds to				
reported by the authors)		participate in children's	31.9% (95% CI: 27.6%- 38.2%) for 9-year-olds,				
•9-year-old children		examination, with the	although this difference				
(born between 1 January and 31 December 2006		initial examiner.	was not statistically significant (P = 0.139)."				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 12-year-old children (born between 1 				
January and 31			Fluorosis prevalence	
December 2003)			no. (%)	
			<u>(0) Normal</u>	
Sample size:			• Fluoridated: 342	
1,143 children aged 9-12			(56.3)	
years old			Nonfluoridated: 494	
			(90.1)	
			(1) Questionable	
Sex: Boys: 491 (43%)			 Fluoridated: 41 (6.8) 	
			Nonfluoridated: 23 (4.2)	
			(2) Very mild	
Exclusions:			 Fluoridated:95 (15.7) 	
Children who missed			Nonfluoridated: 23 (4.2)	
clinical examination.			(3) Mild	
Children with				
unerupted, partially unerupted or fractured	1		 Fluoridated: 65 (10.7) Nonfluoridated: 5 (0.9) 	
incisor(s), or have a				
fixed orthodontic			(4) Moderate	
appliance.			 Fluoridated:53 (8.7) 	
			 Nonfluoridated: 2 (0.4) 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			(5) Severe	
Source of funding / support: Ministry of Higher Education, Malaysia			 Fluoridated:0 Nonfluoridated: 0 <u>Not able to score</u> Fluoridated:11 (1.8) Nonfluoridated: 1 (0.2) 	
Author declaration of interest:	f		<u>Total</u> • Fluoridated:607 (100.0) • Nonfluoridated: 548 (100.0)	
			<u>Fluorosis (Deans > 0)</u> Fluoridated: 254 (42.6), P < 0.001 Nonfluoridated: 53 (9.7) <u>Fluorosis (Deans ≥ 2)</u>	

Study Character	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			Fluoridated:213 (35.7),		
			P<0.001		
			Nonfluoridated: 30 (5.5)		
			Bivariate analysis of		
			fluorosis prevalence		
			with different fluoride		
			exposures		
			<u>Fluorosis Deans ≥2</u>		
			0 ppm lifetime		
			 N (%): 30 (12.30%) OR (95% Cl), p-value: Ref. 		
			0.5 ppm lifetime		
			 N (%): 100 (41.2%) OR (95% Cl), p-value: 8.45 (5.45-13.10), 0.001 		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			0.7 ppm for first 2 years	
			and then 0.5 ppm	
			 N (%): 113 (46.5%) OR (95% Cl), p-value: 10.88 (7.03-16.84), 0.001 	
			Any fluorosis: Deans > 0	
			0 ppm lifetime	
			• N (%): 53 (9.7%) • OR (95% CI), p-value: Ref.	
			0.5 ppm lifetime	
			 N (%): 123 (40.5%) OR (95% Cl), p-value: 6.33 (4.40-9.12), 0.001 	
			0.7 ppm for first 2 years	
			and then 0.5 ppm	
			 N (%): 161 (55.1%) OR (95% Cl), p-value: 7.58 (5.26-10.93), 0.001 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Fluorosis prevalence	
			after fluoride	
			concentration in the	
			water supply was	
			reduced	
			Fluorosis (Deans > 0)	
			% Prevalence 12-year-	
			old (PreReduction)	
			 Fluoridated: 44.6 Nonfluoridated (control): 10.3 	
			% Prevalence 9-year-ol	d
			(PostReduction)	
			 Fluoridated: 39.3 Nonfluoridated (control): 8.9 	
			% Difference (post-pre)	

Study Character	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			 Fluoridated: -5.3 Nonfluoridated (control): -1.4 		
			% Difference (pre)		
			• Fluoridated: 34.3		
			% Difference (post)		
			• Fluoridated: 30.4		
			<u>Fluorosis (Deans ≥ 2)</u>		
			% Prevalence 12-year-		
			old (PreReduction)		
			 Fluoridated: 38.4 Nonfluoridated (control): 4.7 		
			% Prevalence 9-year-ol	d	
			(PostReduction)		
			 Fluoridated: 31.9 Nonfluoridated (control): 6.5 		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			% Difference (post-pre)	
			 Fluoridated: -6.5 Nonfluoridated (control): 1.8 	
			% Difference (pre)	
			• Fluoridated: 33.7	
			% Difference (post)	
			 Fluoridated: 25.4 	

Bias domain	Criterion	Response
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable
	Was allocation to study groups adequately concealed?	N/A Not applicable

Risk of bias a	ssessment		
	Did selection of study participants result in	++	Yes, participants were selected during the same
	appropriate comparison groups?		timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for	-	NR
	important confounding and modifying variables?		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(children who missed clinical examination, or children
			with unerupted, partially unerupted or fractured incisor(s),
			or have a fixed orthodontic appliance).
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from public
	characterization?		water supply records
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured using the
	assessment?		Dean's Index by 1 clinical examiner and verified by 2
			trained examiners who were not involved in the clinical
			examination. The diagnosis of dental fluorosis was

Risk of bias	Risk of bias assessment				
			confirmed only based on agreement of three out of four dentists of each group agreed. conditions. All examiners were blinded to the exposure status, with unique coding of each photograph.		
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified		

Mustafa 2018 78

Study Characteristic	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	 Life-long fluoride intake from combined sources for

487

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Original study	Fluoride levels in • Groundwater samples	 Schooling performance (average score and high score [> 70%] 	 Pearson correlation analysis was conducted 	adolescents in the United States were not strongly associated with pQCT
Study design:	Mothed of experience	prevalence)	Decultor	bone measures at
Ecological study	Method of exposure		Results:	age 17. ∙ Findings provide
	assessment:	Method of outcome	Ground water	support to the
Country: Sudan	 Rainy and dry season samples were 	ascertainment:	fluoride	assertion that fluoride intakes, within these
Country: Oddan	acquired from rural	Subjects assessed	<u>Dry season</u>	ranges, are not associated with
	parts of Khartoum state	 Islamic studies I 	0.14–2.07 mg/L	adverse consequences on
Participants: primary	• A sample of 16	Islamic studies II		bone outcome
school students (6 to	groundwater wells were collected per	ArabicEnglish	<u>Rainy season</u>	measures by age 17.
14 years of age)	season	Mathematics	0.01 – 1.34 mg/L	
residents of rural areas	 Analyzed "using SPADNS reagent as 	SciencesHistory		
in Khartoum state	described by Standard Methods." (p. 105)	 Technology Primary examination 	 Correlation between average level of fluoride in drinking 	
Commission times from a		<u>results</u>	water (mg/L) and	
Sampling time frame: NR	Exposure levels:	 Acquired from the Ministry of Education- 	average school performance score (%) by subject	
	 Range for levels of fluoride in 	Khartoum State	Islamic studies I	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sample size (N): N = 775	groundwater by season <u>Dry season</u>	 Obtained for schools in locations sampled for groundwater 	r = -0.50; p = 0.008 Islamic studies II	
-	0.14 – 2.07 mg/L <u>Rainy season</u>	J.	r = -0.47; p = 0.013	
Sex: • Boys N = 315	0.01 – 1.34 mg/L		<u>Arabic</u>	
Exclusions: NR			r = -0.32; p = 0.11 <u>English</u>	
			r = -0.46; p = 0.016	
Source of funding/			Mathematics	
support:			r = - 0.33; p = 0.097	
Primary school			<u>Sciences</u>	
results from the Ministry of Education-			r = -0.53; p = 0.005	
Khartoum StateFinancial support			<u>History</u>	
from the Department of Research, Ministry			r = -0.59; p = 0.001	
of Higher Education and Scientific			<u>Technology</u>	
Research, Sudan			r = -0.30; p = 0.158	

489

Study Characte	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			Overall score		
Author declara	tion of		r = -0.51; p = 0.007		
			Correlation between average level of fluoride in drinking water (mg/L) and the prevalence of high school performance score (%) by subject Islamic studies I		
			r = -0.59; p = 0.001		
			Islamic studies II		
			r = -0.35; p = 0.078		
			<u>Arabic</u>		
			r = -0.47; p = 0.014		
			<u>English</u>		
			r = -0.41; p = 0.034		
			Mathematics		
			r = -0.39; p = 0.045		
			<u>Sciences</u>		

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			r = -0.60; p = 0.001	
			<u>History</u>	
			r = -0.46; p = 0.016	
			Technology	
			r = -0.22; p = 0.265	
			Overall score	
			r = -0.48; p = 0.012	

Risk of bias assessment				
Bias domain Criterion Response				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	+	Participants consisted of children (6 to 14 years of age) in primary school who resided in rural areas of	

Risk of bias as	ssessment		
			Khartoum state. The recruitment timeframe was not found.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	No mention of excluding participants or missing data.
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in groundwater. No difference in exposure assessment methods was found between study areas.
	Can we be confident in the outcome assessment?	++	Primary examination results provided by the Ministry of Education-Khartoum State were used to determine school performance. "The examinations are set and organized by the educational authorities of each state"

Risk of bias	Risk of bias assessment				
			(p. 105). Outcome unlikely to be affected by blinding status.		
Selective reporting	Were all measured outcomes reported?	++	Outcomes mentioned in the abstract were also reported on in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	+	Exposure was assessed at each study area. As individual levels of exposure were not measured, the possible variation between participants within a study area could not be accounted for in the analysis (i.e. the potential exposure difference between those who drink more water than those who drink less water).		

Oweis 2018 79

Study characteristic	S			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type: Original study	Exposure:	Outcomes:	Statistical analysis:	 "In summary, the findings show that the effects of life-long fluoride intake from

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	Period-specific daily	Radial and tibial bone	Multivariate	combined sources for
Study design:	intake of fluoride	characteristics	regression models were used	adolescents in the United States were
Prospective cohort study	 Birth to 8.5 years 8.5 to 14 years 14 to 17 years Birth to 17 years 	 Cortical content Cortical density Trabecular content Trabecular density 	• Models were adjusted for height, weight, calcium and protein intake, time since	not strongly associated with pQCT bone measures at age 17 the study
	Cumulative average	Compression strength Torsion strength	peak height velocity (PHV), and physical	findings provide support to the assertion that fluoride
Country: USA	daily intake of fluorideBirth to 17 years	Method of outcome	 activity. Results were considered significant at p < 0.01 	intakes, within these ranges, are not associated with
Participants:		ascertainment:	Results were	adverse
Adolescents (17 years	Method of exposure	• Peripheral	considered suggestive at	consequences on bone outcome
of age) whose families	assessment:	quantitative computed	0.01 <p<0.05< td=""><td>measures by age 17."</td></p<0.05<>	measures by age 17."
were recruited into the	Questionnaires were	tomography (pQCT) used to acquire		(p. 9)
Iowa Fluoride Study	administered to determine fluoride	measurements at 17	Results:	
(IFS) from hospitals	intake frequency and	years of age The total 	RADIAL BONE -	
following birth	amounts, and were distributed at the	compression strength of the bone was	GIRLS	
Sampling time frame:	following time periods: " ages 1.5, 3, 6, and 9 months, then every four months up to age 4 years, and	 of the bone was calculated using the total area and total density Radiographic imaging was performed by 	 Change (SE) in trabecular content (mg) per 1 mg unit increase in daily 	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
<u>IFS:</u> 1992 to 1995	then every 6 months up to age 17 years." (p. 5)	technicians (N = 2) who were certified with the International	fluoride intake during the specified time period among girls	
lowa Bone	 Sources of exposure assessed include " water, other 	Society of Clinical Densitometry (ISCD) • "The non-weight	<u>0 to 8.5 years (N = 140)</u>	
<u>Development Study</u> (IBDS) – IFS Subset	beverages, selected foods, dietary fluoride	bearing, non- dominant arm, and	$\beta = -2.60 \ (2.53)$	
1998 to 2000	supplements, and ingested fluoride	the weight-bearing left leg were selected for imaging " (p. 4)	p = 0.31 <u>8.5 to 14 years (N =</u>	
Sample size (N): 380	 toothpaste" (p. 4) Assays of individual and filtered water, select foods, and beverages were 	for imaging." (p. 4)	<u>125)</u> β = -0.15 (2.21) p = 0.95	
Sex (N):	performed to determine the amount of fluoride		<u>14 to 17 years (N = 122)</u>	
• Boys N = 176	 State health department records 		$\beta = 0.09 (1.84)$ p = 0.96	
Exclusions: NR	were used to determine levels of fluoride in public water		<u>0 to 17 years (N = 112)</u>	
Source of funding/ support:	Exposure levels:		β = 0.59 (3.30) p = 0.86	

Study characteristics	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
 NIH grants Wright-Bush Shreves Endowed Professor Fund University of Iowa 	 Range for level of fluoride intake Women: 0.7 - 0.8 mg /day 		 Change (SE) in trabecular density (mg/cm³) per 1 mg unit increase in daily fluoride intake during the specified time 		
Author declaration of interest: NR	Men: 0.7 - 0.9 mg /day.		period among girls <u>0 to 8.5 years (N =</u> <u>140)</u>		
			$\beta = 2.22 (9.50)$ p = 0.82		
			$\frac{8.5 \text{ to } 14 \text{ years (N = }}{125)}$		
			β = -3.79 (8.08) p = 0.64 <u>14 to 17 years (N =</u>		
			<u>122)</u> β = 3.70 (6.59)		
			p = 0.58 <u>0 to 17 years (N =</u> <u>112)</u>		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = 0.99 (12.14)		
			p = 0.94		
			• Change (SE) in cortical content (mg) per 1 mg unit increase in daily fluoride intake during the specified time period among girls 0 to 8.5 years (N = 140) $\beta = -5.79$ (2.54) p = 0.03 8.5 to 14 years (N = 125) $\beta = -0.74$ (2.19) p = 0.74 14 to 17 years (N = 122)		
			$\beta = -1.19 (1.76)$		
			p = 0.50		

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			<u>0 to 17 years (N =</u>		
			<u>112)</u>		
			β = -3.19 (3.33)		
			p = 0.34		
			 Change (SE) in cortical density (mg/cm³) per 1 mg unit increase in daily fluoride intake during the specified time period among girls <u>0 to 8.5 years (N =</u> 		
			<u>140)</u>		
			$\beta = 5.30$ (4.44)		
			p = 0.24		
			<u>8.5 to 14 years (N =</u>		
			<u>125)</u>		
			$\beta = -4.30$ (3.63)		
			p = 0.24		
			<u>14 to 17 years (N =</u>		
			<u>122)</u>		

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			$\beta = 0.42 (3.05)$		
			p = 0.89		
			<u>0 to 17 years (N =</u>		
			<u>112)</u>		
			β = -2.28 (5.46)		
			p = 0.68		
			 Change (SE) in compression strength (mg²/mm⁴) per 1 mg unit increase in daily fluoride intake during the specified time period among girls <u>0 to 8.5 year (N =</u> 		
			<u>140)</u>		
			$\beta = -1.08$ (2.42)		
			p = 0.66		
			<u>8.5 to 14 year (N =</u>		
			<u>125)</u>		
			$\beta = -1.21$ (2.12)		
			p = 0.57		

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>14 to 17 years (N =</u>	
			<u>122)</u>	
			$\beta = 0.09$ (1.76)	
			p = 0.96	
			<u>0 to 17 years (N =</u>	
			<u>112)</u>	
			β = -2.00 (3.10)	
			p = 0.52	
			 Change (SE) in torsion strength (mm³) per 1 mg unit increase in daily fluoride intake during the specified time period among girls <u>0 to 8.5 years (N =</u> 	
			<u>140)</u>	
			β = -31.42 (12.28)	
			p = 0.02	
			<u>8.5 to 14 years (N =</u>	
			<u>125)</u>	

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = -3.76 (9.95)		
			p = 0.71		
			<u>14 to 17 years (N =</u>		
			<u>122)</u>		
			$\beta = -7.34$ (7.73)		
			p 0.35		
			<u>0 to 17 years (N =</u>		
			<u>112)</u>		
			β =-21.00 (14.95)		
			p = 0.17		
			RADIAL BONE -		
			BOYS		
			 Change (SE) in trabecular content (mg) per 1 mg unit increase in daily fluoride intake during the specified time 		
			the specified time period among boys		

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			<u>0 to 8.5 years (N =</u>		
			<u>125)</u>		
			$\beta = -4.83$ (3.85)		
			p = 0.21		
			<u>8.5 to 14 years (N =</u>		
			<u>112)</u>		
			β = -1.79 (3.52)		
			p = 0.61		
			<u>14 to 17 years (N =</u>		
			<u>115)</u>		
			$\beta = 1.41$ (2.57)		
			p = 0.59		
			<u>0 to 17 years (N =</u>		
			<u>105)</u>		
			β =-5.63 (4.28)		
			p = 0.19		
			 Change (SE) in trabecular density (mg/cm³) per 1 mg unit increase in daily 		

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			fluoride intake during the specified time period among boys <u>0 to 8.5 years (N =</u> <u>125)</u>		
			$\beta = 0.36 (10.77)$		
			p = 0.98		
			<u>8.5 to 14 years (N =</u>		
			<u>112)</u>		
			β = -3.36 (9.22)		
			p = 0.72		
			<u>14 to 17 years (N =</u>		
			<u>115)</u>		
			$\beta = 1.27$ (7.00)		
			p = 0.86		
			<u>0 to 17 years (N =</u>		
			<u>105)</u>		
			β = -7.88 (11.51)		
			p = 0.50		

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			 Change (SE) in cortical content (mg) per 1 mg unit increase in daily fluoride intake during the specified time period among boys <u>0 to 8.5 years (N =</u> 		
			<u>125)</u>		
			$\beta = 2.94$ (4.04)		
			p = 0.47		
			<u>8.5 to 14 years (N =</u>		
			<u>112)</u>		
			β = -0.36 (3.49)		
			p = 0.92		
			<u>14 to 17 years (N =</u>		
			<u>115)</u>		
			$\beta = 1.82$ (2.63)		
			p = 0.49		
			<u>0 to 17 years (N =</u>		
			<u>105)</u>		

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 0.37 (4.10)	
			p = 0.93	
			• Change (SE) in cortical density (mg/cm ³) per 1 mg unit increase in daily fluoride intake during the specified time period among boys 0 to 8.5 years (N = <u>125</u>) $\beta = 11.64$ (6.09) p = 0.06 <u>8.5 to 14 years (N = 112)</u>	
			$\beta = 0.92$ (4.94)	
			p = 0.86	
			<u>14 to 17 years (N =</u>	
			<u>115)</u>	
			$\beta = -0.51$ (3.73)	
			p = 0.90	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>0 to 17 years (N =</u>	
			<u>105)</u>	
			β = -0.21 (6.16)	
			p = 0.98	
			 Change (SE) in compression strength (mg²/mm⁴) per 1 mg unit increase in daily fluoride intake during the specified time period among boys <u>0 to 8.5 years (N =</u> 	
			<u>125)</u>	
			$\beta = 2.70$ (4.29)	
			p = 0.53	
			<u>8.5 to 14 years (N =</u>	
			<u>112)</u>	
			$\beta = -0.79$ (3.65)	
			p = 0.83	
			<u>14 to 17 years (N =</u>	
			<u>115)</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 1.83 (2.80)	
			p = 0.52	
			<u>0 to 17 years (105)</u>	
			$\beta = 0.72$ (4.43)	
			p = 0.88	
			 Change (SE) in torsion strength (mm³) per 1 mg unit increase in daily fluoride intake during the specified time period among boys <u>0 to 8.5 years (N =</u> 	
			<u>125)</u>	
			β = -1.08 (19.57)	
			p = 0.96	
			<u>8.5 to 14 years (N =</u>	
			<u>112)</u>	
			β = -2.02 (16.68)	
			p = 0.91	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>14 to 17 years (N =</u>	
			<u>115)</u>	
			$\beta = 14.60 \ (12.40)$	
			p = 0.24	
			<u>0 to 17 years (N =</u>	
			<u>105)</u>	
			$\beta = 8.05 (19.62)$	
			p = 0.69	
			TIBIAL BONE - GIRLS	5
			 Change (SE) in trabecular content (mg) per 1 mg unit increase in daily fluoride intake during the specified time period among girls <u>0 to 8.5 years (N =</u> 	
			<u>136)</u>	
			$\beta = 2.77$ (7.78)	

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			p = 0.73		
			<u>8.5 to 14 years (N =</u>		
			<u>121)</u>		
			$\beta = 2.86$ (6.37)		
			p = 0.66		
			<u>14 to 17 years (N =</u>		
			<u>119)</u>		
			β = -0.25 (5.60)		
			p = 0.97		
			<u>0 to 17 years (N =</u>		
			<u>109)</u>		
			$\beta = 0.24 (10.07)$		
			p = 0.98		
			 Change (SE) in trabecular density (mg/cm³) per 1 mg unit increase in daily fluoride intake during the specified time period among girls 		

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>0 to 8.5 years (N =</u>	
			<u>136)</u>	
			$\beta = 0.38$ (9.28)	
			p = 0.97	
			<u>8.5 to 14 years (N =</u>	
			<u>121)</u>	
			$\beta = -1.97$ (7.70)	
			p = 0.80	
			<u>14 to 17 years (N =</u>	
			<u>119)</u>	
			$\beta = 1.24$ (6.10)	
			p = 0.84	
			<u>0 to 17 years (N =</u>	
			<u>109)</u>	
			β = -8.66 (11.63)	
			p = 0.46	
			 Change (SE) in cortical content (mg) per 1 mg unit increase in daily 	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			fluoride intake during the specified time period among girls <u>0 to 8.5 years (N =</u>	
			<u>136)</u>	
			$\beta = -11.97$ (9.97)	
			p = 0.23	
			<u>8.5 to 14 years (N =</u>	
			<u>121)</u>	
			$\beta = 14.18 \ (8.01)$	
			p = 0.08	
			<u>14 to 17 years (N =</u>	
			<u>119)</u>	
			$\beta = 11.49$ (6.25)	
			p = 0.07	
			<u>0 to 17 years (N =</u>	
			<u>109)</u>	
			$\beta = 14.24 \ (11.95)$	
			p = 0.24	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			 Change (SE) in cortical density (mg/cm³) per 1 mg unit increase in daily fluoride intake during the specified time period among girls <u>0 to 8.5 years (N =</u> 	
			<u>136)</u>	
			$\beta = 6.44$ (4.91)	
			p = 0.19	
			<u>8.5 to 14 years (N =</u>	
			<u>121)</u>	
			β = -6.64 (3.84)	
			p = 0.09	
			<u>14 to 17 years (N =</u>	
			<u>119)</u>	
			$\beta = -1.11$ (3.10)	
			p = 0.72	
			<u>0 to 17 years (N =</u>	
			<u>109)</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = -0.86 (6.07)	
			p = 0.89	
			• Change (SE) in compression strength (mg ² /mm ⁴) per 1 mg unit increase in daily fluoride intake during the specified time period among girls 0 to 8.5 years (N = <u>136</u>) $\beta = -5.39$ (5.56) p = 0.34 <u>8.5 to 14 years (N =</u> <u>121</u>) $\beta = 0.96$ (4.67)	
			p = 0.84	
			<u>14 to 17 years (N =</u>	
			<u>119)</u>	
			$\beta = 3.17 (3.72)$	
			p = 0.40	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>0 to 17 years (N =</u>	
			<u>109)</u>	
			β = -1.62 (6.82)	
			p = 0.82	
			 Change (SE) in torsion strength (mm³) per 1 mg unit increase in daily fluoride intake during the specified time period among girls <u>0 to 8.5 years (N =</u> 	
			<u>136)</u>	
			β = -111.79 (60.22)	
			p = 0.07	
			<u>8.5 to 14 years (N =</u>	
			<u>121)</u>	
			$\beta = 111.99$ (49.32)	
			p = 0.03	
			<u>14 to 17 years (N =</u>	
			<u>119)</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 44.73 (38.60)	
			p = 0.25	
			<u>0 to 17 years (N =</u>	
			<u>109)</u>	
			β = 64.15 (74.10)	
			p = 0.39	
			TIBIAL BONE - BOYS	;
			 Change (SE) in trabecular content (mg) per 1 mg unit increase in daily fluoride intake during the specified time period among boys 0 to 8.5 years (N = 104) 	
			<u>124)</u>	
			$\beta = -1.95 \ (9.08)$	
			p = 0.84	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>8.5 to 14 years (N =</u>	
			<u>111)</u>	
			$\beta = 0.02$ (7.82)	
			p = 0.99	
			<u>14 to 17 years (N =</u>	
			<u>114)</u>	
			$\beta = 9.77$ (5.84)	
			p = 0.10	
			<u>0 to 17 years (N =</u>	
			<u>104)</u>	
			$\beta = -5.82$ (9.37)	
			p = 0.54	
			 Change (SE) in trabecular density (mg/cm³) per 1 mg unit increase in daily fluoride intake during the specified time period among boys 0 to 8.5 years (N = 124) 	

Study characte	Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			β = 9.91 (9.63)		
			p = 0.31		
			<u>8.5 to 14 years (N =</u>		
			<u>111)</u>		
			$\beta = 2.65$ (8.43)		
			p = 0.76		
			<u>14 to 17 years (N =</u>		
			<u>114)</u>		
			$\beta = 6.64$ (6.32)		
			p = 0.30		
			<u>0 to 17 years (N =</u>		
			<u>104)</u>		
			$\beta = 7.31 (10.37)$		
			p = 0.49		
			 Change (SE) in cortical content (mg) per 1 mg unit increase in daily fluoride intake during the specified time period among boys 		

Study characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			<u>0 to 8.5 years (N =</u>	
			<u>124)</u>	
			$\beta = 13.74 \ (13.05)$	
			p = 0.30	
			<u>8.5 to 14 years (N =</u>	
			<u>111)</u>	
			$\beta = 13.18 \ (11.40)$	
			p = 0.25	
			<u>14 to 17 years (N =</u>	
			<u>114)</u>	
			$\beta = 21.40$ (8.38)	
			p = <0.01	
			<u>0 to 17 years (N =</u>	
			<u>104)</u>	
			β = 16.19 (13.63)	
			p = 0.24	
			 Change (SE) in cortical density (mg/cm³) per 1 mg unit increase in daily 	

Study characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			fluoride intake during the specified time period among boys <u>0 to 8.5 years (N =</u> <u>124)</u> $\beta = 7.37 (5.50)$ p = 0.19 <u>8.5 to 14 years (N =</u>	
			<u>111)</u>	
			β = -7.16 (4.37)	
			p = 0.11	
			<u>14 to 17 years (N =</u>	
			<u>114)</u>	
			$\beta = -3.52$ (3.46)	
			p = 0.31	
			<u>0 to 17 years (N =</u>	
			<u>104)</u>	
			β = -0.06 (5.52)	
			p = 0.99	

Study characte	ristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			 Change (SE) in compression strength (mg²/mm⁴) per 1 mg unit increase in daily fluoride intake during the specified time period among boys <u>0 to 8.5 years (N =</u> 	
			<u>124)</u>	
			$\beta = 10.96$ (7.81)	
			p = 0.17	
			<u>8.5 to 14 years (N =</u>	
			<u>111)</u>	
			$\beta = 7.53$ (6.92)	
			p = 0.28	
			<u>14 to 17 years (N =</u>	
			<u>114)</u>	
			$\beta = 10.58 (5.22)$	
			p = 0.05	
			<u>0 to 17 years (N =</u>	
			<u>104)</u>	

Study characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			β = 9.37 (8.34)	
			p = 0.27	
			• Change (SE) in torsion strength (mm ³) per 1 mg unit increase in daily fluoride intake during the specified time period among boys 0 to 8.5 years (N = <u>124</u>) $\beta = 93.65$ (87.79)	
			p = 0.29	
			<u>8.5 to 14 years (N =</u>	
			<u>111)</u>	
			$\beta = 72.06$ (74.95)	
			p = 0.34	
			<u>14 to 17 years (N =</u>	
			<u>114)</u>	
			$\beta = 175.06 \ (56.42)$	
			p = <0.01	

Study characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			<u>0 to 17 years (N =</u>		
			<u>104)</u>		
			$\beta = 90.24$ (95.28)		
			p = 0.35		

Risk of bias assessment				
Bias domain Criterion Response			ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in		Participants were adolescents (17 years of age),	
	appropriate comparison groups?		whose families were recruited from lowa hospitals	
			following birth. The time of sampling for the lowa	
			Fluoride Study (IFS) was from 1992 to 1995, and for	
			the Iowa Bone Development Study (IBDS), a subset of	
			IFS, was from 1998 to 2000.	

Risk of bias as	Risk of bias assessment				
Confounding	Did the study design or analysis account for important confounding and modifying variables?	++	Mutlivariable regression models were adjusted for height, weight, time since PHV [Peak Height Velocity], calcium and protein intake, and physical activity		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion and missing data were reported. Specifically, [n]ine tibial scans at 4% and 38% combined had movement artifacts and were excluded from the analyses. [a] 20% lower sample size resulted when calcium, protein, and physical activity were added to the model due to missing data."		
			Interpolation was used when assessing fluoride intake: period-specific daily fluoride intakes in mg F/day were determined using area-under-the-curve (AUC). Each AUC required data at the upper and lower endpoints,		

Risk of bias	assessment		
			with endpoints allowed to be interpolated from
			estimates within 7 months of the stated endpoints. The
			cumulative 'average' daily fluoride intake in mg from
			birth to age 17 years was calculated using AUC, with
			the requirements that each participant have at least
			one daily fluoride intake estimate recorded, obtained
			or interpolated for each of the period-specific fluoride
			intakes. If a time point was missing, linear interpolation
			using the nearest two points to the required time point
			was done.
Detection	Can we be confident in the exposure	—	Fluoride intake was assessed using multiple
	characterization?		questionnaires, and considered the following sources
			of exposure: water, other beverages, selected
			foods, dietary fluoride supplements, and ingested
			fluoride toothpaste. The study authors state that
			"[f]luoride intakes for the study participants were based
			on parent and adolescent reports of ingested fluoride-
			containing products, which is an indirect method of
			quantifying intake, limited to fluoride assay results, and

Risk of bias	Risk of bias assessment				
			possesses several limitations in terms of its reliability and validity.		
	Can we be confident in the outcome assessment?	++	Participants were followed from birth to 17 years of age. Trabecular and cortical bone characteristics of the radial and tibial bone were determined using peripheral quantitative computed tomography (pQCT). Radiographic imaging was performed by certified technicians.		
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the methods section were reported on in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

Quadri 2018xxviii 80

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	 Increased levels of apoptosis were
Original pilot study	Fluoride levels in	Nephrotoxicity:	 One-way analysis of variance (ANOVA) or 	observed in high fluoride group (Gp 2)
Study design:	Urine samplesSerum samples	 Renal tubule ultrastructural changes 	Student's t test used to statistically compare groups	compared to normal fluoride group (Gp 1), which leads to cell
Case-control (Only	Method of exposure	 Renal tubule apoptosis 	 Results were identified as 	death and renal injury.
cross-sectional	assessment:		statistically significant at p <0.05	 Various degrees of fluoride-associated
analysis results	 Measured using 	Method of outcome	at p <0.00	damages to the
relevant to the review are included)	potentiometric method with fluoride	ascertainment:	Results:	architecture of tubular epithelia,
	selective ion electrode	<u>Renal biopsy</u>	Ultrastructural changes	such as cell swelling and lysis,
Country: India	Exposure levels:	 Suggested for G-1 and G-2 participants who had kidneys of regular size with no 	• TEM images showed accumulation of multiple dark	cytoplasmic vacuolation, nuclear condensation, apoptosis, and
	Urinary fluoride,	blockage and	spherical microparticles within	necrosis, were observed.
	mean ±SD	proteinuria, but the cause was unknown	the tubular basement membranes and	

xxviii Quadri et al. 2018: Although study is designed primarily as case-control studies, only results from the cross-sectional analysis were relevant to this review. Therefore, study was assessed for quality as cross-sectional using the OHAT risk of bias tool.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants: Children (4 to 12 years of age) with nephrotic syndrome minimal change disease (NS- MCD) from All India Institute of Medical Sciences' department for pediatric outpatients	 Gp 0: 0.56 ppm ±0.15 Gp 1: 0.61 ppm ±0.17 Gp 2: 4.01 ppm ±1.83 Serum fluoride, mean ±SD Gp 0: 0.07 ppm ±11 Gp 1: 0.07 ppm ±0.01 Gp 2: 0.1 ppm ±0.013 Significantly higher	 Ultrasounds were used to guide the procedure Biopsy gun was used to acquire kidney tissues A nephrologist and/or interventional radiologist conducted the procedure <u>Ultrastructural changes</u> of kidney tissues 	basement membrane disintegration in Gp 2 • Glycogen lysis, rarefactions of cytoplasmic ground substances, hypervacuolation, and chromosome condensation were observed frequently in the renal tubule of Gp 2 while the same was less	
Sampling time frame: June 2012 - January 2015 Sample size (N): 156 <u>Group 1 (G-1):</u> Nephrotic syndrome	 level of fluoride in urine was reported among participants in G-2 than those in G-1 and G-0 (p = 0.001) Significantly higher level of fluoride in serum was reported among participants in G-2 than those in G-1 and G-0 (p = 0.001) 	 Transition electron microscopy (TEM) <u>Renal tubule apoptosis</u> Terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assay 	 frequent in Gp1. The increased levels of nuclear swelling, chromatin disintegration, and other signs of apoptosis were observed in G-2 as compared to Gp 1. The pyknotic changes in the cells of the renal tubules of G-2 observed but it was only occasional. 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
patients (NSP) with				
normal fluoride levels			Renal tubule apoptosis	
<u>in urine (≤ 1 ppm)</u> • N = 32			 Level of renal tubule apoptosis among 	
Group 2 (G-2): NSP			participants in G-1 and G2	
with high fluoride levels in urine (> 1 ppm)			G-1 = 7%	
			G-2 = 22% p = 0.001	
• N = 32 <u>Group 0 (G-0): Healthy</u>			p = 0.001	
controls matched by				
age with normal				
<u>fluoride levels in urine</u> (≤ 1 ppm)				
• N = 32				
Sex: NR				
Exclusions: NR				

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Source of fundi support: None	ng/						
Author declarat interest: None	ion of						

Risk of bias assessment					
Bias domain	ponse				
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	++	Participants were children (4 to 12 years of age) with nephrotic syndrome minimal change disease (NS- MCD) from All India Institute of Medical Sciences'		

Risk of bias as	Risk of bias assessment				
			department of pediatric outpatients. The study period		
			was from June 2012 to January 2015. Each study		
			group has the same number of participants.		
Confounding	Did the study design or analysis account for	—	ANOVA or t-tests were used to conduct statistical		
	important confounding and modifying variables?		comparisons between study groups.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or	-	N of childhood nephrotic syndrome patients recruited =		
	exclusion from analysis?		156; however, N in group $1 = 32$, N in group $2 = 32$,		
			and N in healthy controls or group $0 = 32$		
Detection	Can we be confident in the exposure	++	Fluoride levels were measured in urine and serum		
	characterization?		samples. No differences in exposure assessment		
			methods were reported between study groups.		
	Can we be confident in the outcome	+	Ultrastructural and apoptotic analysis was conducted		
	assessment?		with transmission electron microscopy and terminal		
			deoxynucleotidyl transferase deoxyuridine		

Risk of bias a	Risk of bias assessment					
			triphosphate nick end labelling, respectively. Blinding status unlikely to affect outcome assessment.			
Selective reporting	Were all measured outcomes reported?	+	Ultrastructural changes in kidney tissues and apoptosis in kidney tubules were mentioned in the methods section. Ultrastructural changes were described in more specific details in the results section.			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	+	Insufficient information on participants available (i.e. patient characteristics, general place of residence, etc.).			

Rathore 2018 81

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcomes:	Statistical analysis:	• When serum FT3,		
Original Study	Fluoride levels in	Thyroid hormone	NR	FT4 and TSH of different category of		
	Drinking water	<u>derangement</u>		our study were compared we found		
Study design:	samples Urine samples 	 Serum levels of free T4 (FT4), free T3 	Results:	significant difference between these.		
Cross-sectional study	 Blood samples 	(FT3), and thyroid stimulating hormone	 Free T3: mean, ±SD, [range] (pg/mL) 	• FT3 levels was highest in gp 4 with		
	Method of exposure	(TSH)	<u>Gp 1:</u> 2.66 pg/mL	minor difference in other groups;		
Country: India	assessment:		±0.46, [2.11 – 3.89]	concentration of FT4		
	Drinking water	Method of outcome	<u>Gp 2:</u> 2.73 pg/mL	levels was maximum in gp 3, whereas TSH		
	samples:	ascertainment:	±0.36, [2.13 – 3.56]	levels were		
Participants: Children		Chemiluminescence	<u>Gp 3:</u> 2.84 pg/mL	significantly higher in gp 4.		
(8 to 14 years of age)	 Electrochemical method 	Assay	±0.46, [2.02 – 4.26]	 As the level of fluoride increases in 		
from Jodhpur district	Urine and blood		<u>Gp 4:</u> 3.06 pg/mL	drinking water, levels		
villages of Rajasthan	samples		±0.78, [1.91 – 4.42]	of thyroid hormones were also increased		
	• F ion specific		• Free T4: mean ±SD,	but the levels were not as significantly		
Sampling time frame:	electrode <u>Exposure groups</u>		[range] (ng/dL) 	higher as other		
NR			[0.79 – 1.79]	studies.		

532

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	Villages were categorized based on		<u>Gp 2:</u> 1.02 ±0.26,	
Sample size (N): 100	fluoride levels in		[0.78 – 1.89]	
• N = 25 per exposure	drinking water, yielding the following		<u>Gp 3:</u> 1.11 ±0.28,	
group	exposure groups:		[0.76 – 1.98]	
			<u>Gp 4:</u> 1.22 ± 0.33,	
Sex: NR			[0.75 – 1.89]	
	Gp 3: 2-3.9 ppm			
Exclusions: "Children	Gp 4: ≥ 4ppm		 TSH: Mean ± SD, [range] (μIU/mL) 	
who were not the			<u>Gp 1:</u> 1.33 ±0.78,	
permanent residents of	Exposure levels:		[0.4 – 2.99]	
that particular area and	Urinary fluoride, mean		<u>Gp 2:</u> 1.64 ±0.88),	
with a change of	± sD ○ Gp 1: 1.25 mg/L		[0.29 – 3.76]	
source of drinking	±0.42		<u>Gp 3:</u> 1.86 ±0.77,	
water, those with	 ○ Gp 2: 1.23 mg/L ±0.32 		[0.76 – 3.74]	
orthodontic brackets,	• Gp 3: 3.03 mg/L		<u>Gp 4:</u> 1.91 ±1.10,	
dentofacial deformities	±0.58			
or any syndromes or	 Gp 4: 4.49 mg/L ±1.21 		[0.75 – 4.99]	
uncooperative,	• Serum fluoride, mean ±SD			

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
medically and	○ Gp 1: 0.046 mg/L				
physically	±0.02				
compromised	 ○ Gp 2: 0.046 mg/L ±0.02 				
patients…" (p. 328)	○ Gp 3: 0.11 mg/L				
	±0.09 ○ Gp 4: 0.20 mg/L				
	±0.13				
Source of funding/					
support: NR					
Author declaration of					
interest: NR					

Risk of bias assessment						
Bias domain	Criterion	Res	ponse			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable			

Risk of bias a	ssessment		
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	+	Participants were children from Jodhpur district villages of Rajasthan. Recruitment time frame and participation rate between exposure groups not found.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Children who were not the permanent residents of that particular area and with a change of source of drinking water, those with orthodontic brackets, dentofacial deformities or any syndromes or uncooperative, medically and physically compromised patients were excluded from the study. Sample sizes were the same across exposure groups (N = 25).

Risk of bias	Risk of bias assessment					
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in drinking water, urine, and blood. No difference in exposure assessment methods were found between exposure groups.			
	Can we be confident in the outcome assessment?	++	FT3, FT4, and TSH were measured in serum, and therefore are unlikely to be affected by blinding status.			
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the abstract were reported on in the results section.			
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	+	No description of the statistical methods used in the analysis.			

Shruthi 2018 82

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposure:	Outcomes:	Statistical analysis:	 Higher proportion of study subjects with 		
Original study	Fluoride levels in	Non-skeletal	Frequency between	clinical manifestations		
Study design:	 Drinking water samples 	manifestations of fluoride toxicity	study groups	of non-skeletal fluorosis compared to those without clinical		
Study design.			Result:	manifestations of non-skeletal fluorosis		
Cross-sectional study	Method of exposure assessment:	Method of outcome ascertainment:	 Number (%) of participants with non- 	at nearly same doses of fluoride exposure in both high and		
Country: India	 Measured using ion- electrode method Used to calculate exposure dose which 	Evaluated using clinical history for the	skeletal manifestations of fluorosis by study groups	normal fluoride groups indicates that these manifestations may be due to		
Participants:	takes into	following:	<u>Dyspepsia = 32 (100.0)</u>	fluoride exposure through water or		
Individuals living in	consideration Fluoride level (mg/L)	 Dyspepsia with 	High fluoride group	other sources like		
randomly selected	Water intake/day	nausea, vomiting, abdomen pain,	=	food.		
villages of Bangarpet	(L/day)	constipation, or	24 (75.0)	dyspepsia in the high		
taluk, Kolar. Study	Body weight (kg)	diarrhea • Muscle weakness	Normal fluoride	fluoride group are three-times higher		
groups are comprised		TirednessFatigue	group =	than those in the normal fluoride group.		
of areas with high		Polyuria	9 (25 0)	normai nuonue group.		
(Thimmasandra and	Exposure levels:	 Polydipsia 	8 (25.0)			

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Batwarahalli) and normal (Maddinayakanahalli) levels of fluoride in water. The median (interquartile range) age of participants is 30 (18.75 – 45) years in the high fluoride group, and 33 (20 – 45) years in the normal fluoride group. Sampling time frame: Study duration of 1 year	High fluoride group > 1.5 mg/L fluoride in water Normal fluoride group < 1.0 mg/L fluoride in water	 Recurrent abortions or stillbirths 	Muscle weakness = 13 (100.0) High fluoride group=9 (69.23)Normal fluoridegroup =4 (30.77)Fatigue = 32 (100.0)High fluoride group=19 (59.38)Normal fluoridegroup =13 (40.62)	
Sample size (N):				

538

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
High fluoride group			 "None of the study participants had complaints of 	
Normal fluoride group			polyuria, polydipsia, repeated abortions,	
• N = 417			and repeated stillbirths…" (p. 1225)	
Sex:			 "The study subjects with clinical manifestations of 	
High fluoride group			non-skeletal fluorosis were higher	
Men N (%): 245 (55.1) Normal fluoride group			compared to those without clinical manifestations of	
• Men (%) = 200 (44.9)			non-skeletal fluorosis at nearly same doses of fluoride exposure	
Exclusions:			in both high and normal fluoride groups…" (p. 1225)	
 Has no teeth, 			groups (p. 1223)	
 Has artificial teeth 				
 Is pregnant 				
Is bedridden				
 Is not available following the second visit 				

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Source of funding/	,			
support:				
None				
Author declaration	of			
interest:				
None				

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	

Risk of bias a	Risk of bias assessment				
	Did selection of study participants result in appropriate comparison groups?	++	Participants consisted of individuals living in villages that were randomly selected from Bangarpet taluk, Kolar. Study groups were comprised of areas with high and normal levels of fluoride in water. The median (interquartile range) age of participants is 30 (18.75 – 45) years in the high fluoride group, and 33 (20 – 45) years in the normal fluoride group. The study duration was 1 year.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Persons with no teeth, artificial teeth, pregnant women, bedridden, and the persons who were not available even after two visits were excluded from the study. No mention of missing data.		

Risk of bias	assessment		
Detection	Can we be confident in the exposure	++	Fluoride was measured in drinking water. No difference
	characterization?		in exposure assessment methods were reported
			between participants.
	Can we be confident in the outcome	—	Clinical history of select conditions were used to
	assessment?		determine non-skeletal fluorosis manifestations.
			Uncertain if outcome assessors were blinded to
			exposure status.
Selective	Were all measured outcomes reported?	++	Outcomes mentioned in the methods section were also
reporting			reported on in the results section.
Other	Were there no other potential threats to internal	++	None identified.
sources	validity (e.g., statistical methods were		
	appropriate and researchers adhered to the		
	study protocol)?		

Yu 2018 83

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 "In our study, urinary fluoride levels
Original study	Fluoride levels in	Intelligence quotient	Piecewise linear	presented a positive
	 Urine samples 	(IQ)	regression and multiple logistic	relationship with water fluoride
Study design:	 Drinking water samples 	Method of outcome	regression models were used to assess	concentration, indicating that fluoride
Cross-sectional study	·	ascertainment:	associations of interest	from drinking water makes important
	Method of exposure	Second edition of the	 Stepwise linear 	contribution to urinary
Country: China	assessment:	Combined Raven's	regression models used to identify	fluoride." (p. 120) • "…chronic exposure
Country. China	Water samples	<u>Test – The Rural in</u>	possible confoundersModels were adjusted	to excessive fluoride, even at a moderate
	 Public water supplies 	<u>China (CRT-RC2)</u>	for age, sex, paternal	level, was inversely
Participants: Random	were randomly sampled per village	• Used to determine IQ	education, maternal education, and low	associated with children's
sample of children (7 to	(N = 168)	scores which was grouped as:	birth weight	intelligence scores, especially excellent
13 years of age) from rural areas of Tianjin	 Measured using the national standardized 	Retarded: ≤ 69	Results:	intelligence
city with high and	ion selective electrode method	Marginal: 70 – 79		performance, with threshold and
normal levels of	Urine samples:	Dull normal: 80 – 89	 Threshold effect analysis: Change 	saturation effects observed in the dose-
fluoride	 Early morning spot urine samples were acquired from 	Normal: 90 – 109	(95% CI) in IQ scores per 0.5 mg/L increment of fluoride	response relationships." (p. 123)

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sampling time frame: 2015	 participants (N = 2,380) Measured using the national standardized ion selective electrode method 	High normal: 110 – 119 Superior: 120 – 129 Excellent: ≥ 130 • The validated test	in water by concentration ranges 0.20 - 3.40 mg/L $\beta = -0.04 (- 0.33, 0.24)$	
Sample size (N): 2,886 Normal-fluoride exposure (water) fluoride $\leq 1.0 \text{ mg/L}$ • N = 1,636 High-fluoride exposure (water fluoride > 1.0 mg/L)	Exposure levels: • Mean (SD) levels of fluoride in water (mg/L) (p <0.001) <u>Normal-fluoride</u> exposure 0.50 (0.27) <u>High-fluoride</u> exposure	was independently completed by participants within 40 minutes and this was overseen by four trained professionals	$\frac{3.40 - 3.90 \text{ mg/L}}{\beta = -4.29 (-8.09, -0.48)}$ • Threshold effect analysis: Change (95% CI) in IQ scores per 0.5 mg/L increment of fluoride in urine by concentration ranges 0.01 - 1.60 mg/L	
• N = 1,250 Sex:	2.00 (0.75) • Mean (SD) levels of fluoride in urine (mg/L) (p <0.001) <u>Normal-fluoride</u> <u>exposure</u>		β = 0.36 (- 0.29, 1.01) <u>1.60 – 2.50 mg/L</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Normal-fluoride	0.41 (0.49)		β = -2.67 (-4.67, -	
<u>exposure</u>	<u>High-fluoride</u>		0.68)	
•Boys N (%): 849	<u>exposure</u>		<u>2.50 – 5.54 mg/L</u>	
(51.9)	1.37 (1.08)		β = -0.84 (-2.18,	
High-fluoride exposure			0.50)	
• Boys N (%): 667 (53.4)				
 Exclusions: Were not lifetime residents of the study area Has a disease that impacts intelligence 			 Odds (95% CI) of IQ level among children exposed to high water fluoride (> 1.0 mg/L) compared to normal water fluoride (≤ 1.0 mg/L); normal IQ is the control 	
(congenital or acquired)			Excellent IQ	
 Has history of 			OR = 0.47 (0.32, 0.71)	
cerebral trauma or neurological disorders			Superior IQ	
Has history of a			OR = 0.89 (0.69,	
positive screening test for Down's			1.15)	
syndrome or hepatitis			High normal IQ	

Study	Exposure	Outcome	Analysis & Results	Conclusions
B/treponema			OR = 0.96 (0.80,	
palladium infectionGestational exposu	r۵		1.15)	
to maternal smoking			Dull normal IQ	
Gestational exposu			OR = 0.85 (0.62,	
to maternal drinking)		1.17)	
			Marginal IQ	
Source of funding/			OR = 1.25 (0.69,	
support:		2.26)		
State Key Program	of		2.20)	
National Natural				
Science of China, a the Fundamental	ind		• Odds (95% CI) of IQ	
Research Funds for	r		level among children exposed to high urine	
the Central	I		fluoride (> 1.60 mg/L)	
Universities			compared to normal	
			urine fluoride (≤ 1.60	
			mg/L); normal IQ is	
Author declaration	of		the control	
interest: None			Excellent IQ	
			OR = 0.49 (0.26,	
			0.93)	
			Superior IQ	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			OR = 0.84 (0.58,		
			1.20)		
			High normal IQ		
			OR = 0.87 (0.68,		
			1.12)		
			Dull normal IQ		
			OR = 0.63 (0.39,		
			1.01)		
			Marginal IQ		
			OR = 1.44 (0.72,		
			2.91)		
			 Stratified threshold effect analysis: Odds (95% CI) of IQ level per 0.5 mg/L increment of fluoride in water; normal IQ is the control 		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Excellent IQ (Fluoride	
			<u>level of 0.20 – 1.40</u>	
			<u>mg/L)</u>	
			OR = 0.60 (0.47,	
			0.77)	
			Excellent IQ (Fluoride	
			<u>level of 1.40 – 3.90</u>	
			<u>mg/L)</u>	
			OR = 1.09 (0.88,	
			1.36)	
			Superior IQ	
			OR = 0.99 (0.93,	
			1.06)	
			High normal IQ	
			OR = 0.98 (0.94,	
			1.03)	
			Dull normal IQ	
			OR = 0.96 (0.88,	
			1.05)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
			Marginal IQ	
			OR = 1.04 (0.89,	
			1.23)	
			• Stratified threshold effect analysis: Odds (95% CI) of IQ level per 0.5 mg/L increment of fluoride in urine; normal IQ is the control <u>Excellent IQ</u> OR = 0.87 (0.76,	
			1.01)	
			Superior IQ	
			OR = 0.96 (0.89,	
			1.04)	
			<u>High normal IQ</u>	
			OR = 0.99 (0.94,	
			1.04)	
			Dull normal IQ	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
			OR = 0.90 (0.81,		
			1.00)		
			Marginal IQ		
			OR = 1.07 (0.91,		
			1.25)		

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in appropriate comparison groups?	++	Participants were a random sample of children (7 to 13 years of age) from rural areas of Tianjian City with high and normal levels of fluoride. The study was conducted in 2015 and the multistage random	

Risk of bias as	Risk of bias assessment				
			sampling technique, stratified by area, was performed		
			to select representative samples among local children		
			who were permanent residents since birth.		
Confounding	Did the study design or analysis account for	++	Regression models were adjusted for age, sex,		
	important confounding and modifying variables?		paternal education, maternal education, and low birth		
			weight.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human		Not applicable		
	subjects blinded to the study group during the	N/A			
	study?				
Attrition	Were outcome data complete without attrition or	++	Of the 2886 children recruited, urine samples were		
	exclusion from analysis?		acquired from 2380 participants. A total of 2886		
			children completed the IQ assessments.		
Detection	Can we be confident in the exposure	++	Fluoride was measured in drinking water and urine		
	characterization?		samples. No differences in exposure assessment		
			methods were found between participants.		
	Can we be confident in the outcome	++	IQ scores were determined using the Combined		
	assessment?		Raven's Test - The Rural in China (2nd Edition) which		

Risk of bias assessment				
			is a validated test that was independently completed by participants within 40 minutes, and this was overseen by trained professionals. Outcome unlikely to be affected by blinding status.	
Selective reporting	Were all measured outcomes reported?	++	Yes, the outcome mentioned in the abstract was reported on in the results section.	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.	

Arulkumar 2017xxix 84

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcomes:	Statistical analysis:	 The PON1 and related activities such 	
Original study	Fluoride levels in	Degree of lipid	 Pearson's correlation 	as ARE and	
	• Serum	peroxidation	was used • Correlations at level	lactonase were found to be reduced in	
Study design:	Method of exposure	 Plasma thiobarbituric acid reactive 	of 0.05 and 0.01 (2- tailed) were identified as significant	fluorosis patients. It is ascribed from the findings that the toxic	
Case-control (Only	assessment:	substance (TBARS)	as significant	effect of fluoride	
cross-sectional		 Erythrocyte TBARS Lipid profiles 		collectively abrogates	
analysis results are	Venipuncture used to		Results:	not only antiatherogenic	
relevant to current	collect samples of overnight fasting	 Cholesterol Triglyceride (TGL) 	Correlation between	activity but also	
review)	blood • Measured using	High-density	serum fluoride and	reduces lactonase activity of PON1	
	Orion Ion Analyser	lipoprotein (HDL) • LDL	outcomes in patients	thereby toxic HCy	
Country:	,	• VLDL	with fluorosis	may get accumulated, which support the	
Country.	Exposure level:	Enzyme activity	 Plasma TBARS 	chances of	
India	 Drinking water fluoride concentration: > 1.5 	 Paraoxonase (PON1) Arylesterase (ARE) Lactonase 	r = 0.095; p = 0.019 • <u>Erythrocyte TBARS</u> r = 0.783; p = 0.000	cardiovascular related complications in fluorosis patients. • Positive correlation	
	mg/l			with erythrocyte	

^{xxix} Arulkumar 2017: Although study is designed primarily as case-control study, only results from the cross-sectional analysis were relevant to this review. Therefore, study was assessed for quality as cross-sectional using the OHAT risk of bias tool.

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants: Fluorosis (dental and skeletal) cases and controls from 3 Tamil Nadu districts with high levels of fluoride in water (Salem, Dharmapuri, and Krishnagiri) Sampling time frame: NR Sample size (N): 508	 Mean (SD) level of fluoride (mg/L) in serum by study groups <u>Group I (controls):</u> 0.07 (0.08) <u>Group II (mild fluorosis):</u> 0.13 (0.02) <u>Group III (moderate fluorosis):</u> 0.19 (0.03) <u>Group IV (severe fluorosis):</u> 	 Method of outcome ascertainment: Venipuncture used to collect samples of overnight fasting blood Biochemical assays conducted at ≤ 2 days from sample collection Erythrocyte and plasma TBARS Creatinine kinase (CK-MB) assay Used to evaluate fluoride toxicity by identifying lipid peroxidation products 	• <u>Cholesterol</u> r = 0.121; p = 0.003 • <u>TGL</u> r = -0.043; p = NS • <u>HDL</u> r = -0.075; p = 0.006 • <u>LDL</u> r = 0.157; p = 0.000 • <u>VLDL</u> r = -0.038; p = NS • <u>PON1</u> r = -0.738; p = 0.000 • <u>ARE</u> r = -0.447; p = 0.000 • <u>Lactonase</u> r = -0.645; p = 0.000	TBARS (p < 0.01), plasma TBARS (p < 0.05), cholesterol (p < 0.01) and LDL (p < 0.01). • Significant inverse association of serum fluoride levels with PON1, ARE, and lactonase. • No significant association of serum fluoride levels with TGL and VLDL. • No observed correlation with serum HDL; however, serum fluoride modulates the activities of PON1, ARE and lactonase. • Increased LDH5 isoenzyme (liver
<u>Group I (controls)</u> • N = 52 <u>Group II (mild fluorosis)</u>	0.28 (0.03)	 TGL and HDL AGAPPE diagnostic kit 	bound and pesticide scavenging enzymes in fluorosis patients.	synthesized) activity is an indication of possible liver damage in fluorosis patients. Therefore, it was concluded that the

Study Characteristi	CS			
Study	Exposure	Outcome	Analysis & Results	Conclusions
 N = 112 <u>Group III (moderate</u> <u>fluorosis)</u> N = 136 <u>Group IV (severe</u> <u>fluorosis)</u> N = 208 		Other parameters of blood • Standard protocols <u>PON1</u> • p-nitrophenol released at 412 nm used to determine	Serum level of AChE (U/I) • Controls: 6.29 ± 0.68 • Mild: 4.64 ± 0.54 • Moderate: 4.11 ± 0.4 • Severe: 3.78 ± 0.35	prolonged fluoride ingestion (observed in moderate and severe groups) caused continuous multifaceted calamities beyond the regenerative capacity of the liver tissues.
 N = 200 Sex (N): Group I (controls) Men = 28; Women 24 Group II (mild fluoros) 		enzyme activity <u>ARE</u> • Enzyme activity determined using absorbance of phenylacetate at 270 nm	$\frac{\text{Serum level of}}{\text{ATPase/Na+ K+}}$ $\frac{\text{ATPase}}{\text{Outrols: } 2.41 \pm 0.34}$ $\cdot \text{Mild: } 2.56 \pm 0.31$ $\cdot \text{Moderate: } 2.64 \pm 0.29$ $\cdot \text{Severe: } 2.87 \pm 0.4$	
 Men = 76; Women 36 <u>Group III (moderate</u> fluorosis) Men = 78; Women 58 		 Lactonase activity UV-visible spectrophotometer used to determine absorbance at 270 nm 		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Group IV (severe		Serum level of AChE		
<u>fluorosis)</u>		and ATPase/Na+ K+		
 Men = 112; Women = 96 Exclusions: "smoking, heart, liver/kidney disease, cancer, chronic inflammation, autoimmune and hematological disorders." (p. 207) 		ATPase • AChE: described by Ellman et al. [17] • ATPase: measured by estimating the liberated inorganic phosphorus (Pi), after the reaction of erythrocytes homogenate with ATP [18]. • Total ATPase: assayed using UV-vis		
Source of funding/		spectrophotometer at 660 nm.		
support:				
Periyar University, and				
Indian Council of				
Medical Research				

Study Character	istics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declaration	on of			

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	
	Did selection of study participants result in	+	Participants were from 3 Tamil Nadu (India) districts	
	appropriate comparison groups?		with high levels of fluoride in water. Recruitment time	
			frame not found.	
Confounding	Did the study design or analysis account for		NR	
	important confounding and modifying variables?			

Risk of bias as	ssessment		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided for the study. "Exclusion criteria were smoking, heart, liver/kidney disease, cancer, chronic inflammation, autoimmune and hematological disorders." (p. 207) There was no mention of missing data.
Detection	Can we be confident in the exposure characterization?	++	Fluoride was measured in serum. No difference in exposure assessment methods were found between participants.
	Can we be confident in the outcome assessment?	++	Outcome levels were measured using blood samples, and therefore are unlikely to be affected by blinding status.
Selective reporting	Were all measured outcomes reported?	++	Outcomes mentioned in the methods section were also reported on in the results section.

Risk of bias assessment				
Other	Were there no other potential threats to internal	++	None identified.	
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?			

Bashash 2017 85

Study Characteristics	5			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcomes:	Statistical analysis:	Higher prenatal exposure to fluoride
Original study	Fluoride levels in	Neurocognitive	 Linear regression 	(as indicated by
	 Maternal urinary samples during 	function in children at 4 years of age, and 6 to	 Models were used Models assessing maternal urinary 	average creatinine- adjusted maternal urinary fluoride
Study design: Prospective cohort	gestation (proxy measure of prenatal	12 years of age	fluoride levels as exposure were	concentrations during pregnancy) was
	exposure to fluoride)Child urinary samples		adjusted for child characteristics	associated with lower GCI scores in
study	at 6 to 12 years of age (proxy measure of postnatal exposure to fluoride)	Method of outcome ascertainment:	(gestational age, birth weight, sex, parity, age at outcome assessment) and	children at approximately 4y old, and with lower Full-

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Country: Mexico Participants: Mother- child pairs from three hospitals in Mexico City that were enrolled in two of four cohorts of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study; specifically, participants from cohorts 2A and 3 were included in the analysis	 Method of exposure assessment: Second morning void spot urine sample Ion-selective electrode-based assays used to measure fluoride in most samples Maternal fluoride levels in urinary samples were adjusted for creatinine Child fluoride levels in urinary samples were adjusted for specific gravity 	Standardized version of McCarthy Scales of Children's Abilities (MSCA) • Completed at 4 years of age • Used to acquire a standardized composite score called the General Cognitive Index (GCI) Wechsler Abbreviated Scale of Intelligence (WASI) • Completed at 6 to 12 years of age • Used to acquire Full- Scale IQ Other Details	maternal characteristics (smoking history, marital status, delivery age, IQ, education, and cohort) • Models assessing child urinary fluoride levels were adjusted for the main covariates of interest Results: Change (95% CI) in outcome per 0.5 mg/L increase in maternal urinary fluoride levels adjusted for creatinine	Scale IQ scores at 6– 12 y old. In models that focused on the cross- sectional relationship between children's exposure to fluoride (reflected by their specific gravity– adjusted urinary fluoride levels) and IQ score and that contained the main covariates of interest, there was not a clear, statistically significant association between contemporaneous children's urinary fluoride (CUFsg) and IQ either unadjusted or adjusting for MUFcr
Sampling time frame:	Exposure levels: Water fluoride levels in Mexico City:	 Experienced developmental psychologist trained and oversaw the 	• <u>GCI</u> β = -3.15 (-5.42, - 0.87)	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
<u>Cohort 2A:</u> • May 1997 – July 1999 <u>Cohort 3</u> • 2001 to 2003 Sample size (N): 299	 0.15 - 1:38 mg/L (Juárez- Lópezetal.2007; Martínez-Mier et al.2005). Maternal urinary fluoride (Mean ±SD) 	administration of tests by three other psychologists • Psychologist conducting the assessment was blinded to the child's exposure level	p = 0.01 • $\frac{IQ}{\beta}$ = -2.50 (-4.12, - 0.59) p = 0.01	
mother-child pairs	 0.88 mg/L ±0.34 Child urinary fluoride 		Change (95% CI) in outcome per 0.5 mg/L	
Sex: <u>GCI analysis: Girls</u>	(Mean ±SD) 0.84 mg/L ±0.40		increase in child urinary fluoride levels adjusted for specific gravity	
 N (%) = 160 (56) <u>IQ analysis: Girls</u> N (%) = 116 (55) 			• $IQ - Without$ adjustment of maternal urinary fluoride levels $\beta = -0.89$ (-2.63,	
Exclusions:			0.85) • <u>IQ – With adjustment</u> <u>of maternal urinary</u> <u>fluoride levels</u>	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
No gestational urine			β = - 0.77 (-2.53,	
sample available (Cohort 1 and 2B)			0.99)	
•> 14 gestational				
weeks at recruitment				
 Do not intend to 				
reside in study area				
for ≥ 5 years				
History of psychiatric				
disorders, pregnancies that are				
high-risk, or				
gestational diabetes				
Daily alcohol				
consumption				
 Illegal/prescription 				
drug use				
• Have kidney disease, high blood pressure,				
preeclampsia,				
circulatory disease,				
and seizures during				
gestation				
No neurocognitive				
function measurement in the				
child				
orma				

Study Characte	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Source of fundi	ing/					
support: NIH,						
NIEHS/EPA, and	d the					
National Institute	e of					
Public Health/Mi	nistry					
of Health of Mex	ico;					
facilities provided	d by					
the American Br	itish					
Cowdray Hospita	al					
Author declarat	tion of					
interest: No con						
financial interest	S					

Risk of bias as	Risk of bias assessment				
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in		Participants were mother-child pairs from three		
	appropriate comparison groups?		hospitals in Mexico City that were enrolled in two of		
			four cohorts of the Early Life Exposures in Mexico to		
			Environmental Toxicants (ELEMENT) study. Time of		
		++	recruitment was from May 1997 to July 1999 for cohort		
			2A and 2001 to 2003 for cohort 3; however, mean		
			maternal urinary fluoride levels adjusted for creatinine		
			was not significantly different between groups (Cohort		
			3 - Intervention; Cohort 3 - Placebo; Cohort 2A).		
Confounding	Did the study design or analysis account for		Regression models were adjusted for child		
	important confounding and modifying variables?		characteristics (gestational age, birth weight, sex,		
		+	parity, and age at outcome assessment), and maternal		
			characteristics (smoking history, marital status, age at		
			delivery, IQ, education, and cohort).		

Risk of bias a	ssessment		
			We also note that the coefficients for the associations between fluoride on cognition varied substantially in some of the sensitivity analyses, particularly with respect to the subgroups of participants who have data on SES, lead exposure, and mercury exposure (of which, for the latter, the effect estimates almost doubled).
Performance	Were experimental conditions identical across study groups? Were the research personnel and human subjects blinded to the study group during the study?	N/A N/A	Not applicable Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	_	Reasons for exclusion were documented. $N = 512$ for pregnant women with data on fluoride and creatinine; N = 312 and 234 for children with data on GCI and IQ, respectively; $N = 287$ for children with GCI and complete covariate data; $N = 211$ for children with IQ and complete covariate data. In the comparisons of participants in relation to missing data, the proportion of females was

Risk of bias	assessment		
			somewhat higher in the included versus excluded group for both the GCI and IQ analyses, and the mean levels of maternal blood Hg for those included were 28.5% and 24.9% higher than the mean levels for those excluded in the GCI and IQ analyses, respectively. We also note that the coefficients for the associations between fluoride on cognition varied substantially in some of the sensitivity analyses, particularly with respect to the subgroups of participants who have data on SES, lead exposure, and mercury exposure (of which, for the latter, the effect estimates almost doubled).
Detection	Can we be confident in the exposure characterization?	+	Fluoride levels were measured in maternal and child urinary samples. A relatively smaller number of prenatal samples were assessed at a different lab because the quality control criteria for ion-selective electrode-based methods were not met.
	Can we be confident in the outcome assessment?	++	Participants were recruited at 14 Participants were recruited at 14

Risk of bias assessment

gestational weeks or less. General Cognitive Index (GCI) was acquired using the standardized version of the McCarthy Scales of children's Abilities (MSCA) at age 4. An experienced developmental psychologist trained and oversaw the administration of the tests by three other psychologists. As well, the psychologist conducting the assessment was blinded to the child's exposure level.

gestational weeks or less. Full-Scale IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI) at age 6 to 12. An experienced developmental psychologist trained and oversaw the administration of the tests by three other psychologists. As well, the psychologist conducting the assessment was blinded to the child's exposure level. Regression models were adjusted for the age at outcome assessment.

Risk of bias a	Risk of bias assessment				
			Regression models were adjusted for the age at outcome assessment.		
Selective reporting	Were all measured outcomes reported?	++	Yes, outcomes mentioned in the abstract were also reported on in the results section.		
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified.		

Chauhan 2017 4

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposure:	Outcomes:	Statistical analysis:	• "This study suggests	
Abstract	• Fluoride	 Semen morphological parameters Hypothalamic- 	NR	that hypothalamic testicular axis hormones and oxidative stress	
Study design: NR	Method of exposure assessment: NR	testicular axis hormones (LH, FSH, prolactin,	Results: ●"LH, FSH,	parameters can be useful as early markers for	
Country: India	Exposure level: NR	testosterone)Oxidative stress markers	testosterone and prolactin values was significantly (p<0.05) alters in fluoride exposed population."	determination of disease fluorosis in population those residing in high fluoride regions." (p.	
Participants:		Method of outcome	(p. S236)	S236)	
Population exposed to		ascertainment: NR	 "Increased lipid peroxidation and 		
fluoride			Protein carbonyl content and decreased antioxidant		
Sample size (N): 100			status i.e., SOD, CAT, GPx and GSH was observed." (p. S236)		
Sex: Men (100%)			 "Sperm count, motility and viability was delineated in exposed population." (p. S236) 		

Study Characteris	Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Exclusions: NR						
Source of funding	I					
support: NR						
Author declaration	h of					
interest: NR						

Risk of bias assessment				
Bias domain	Criterion	Res	ponse	
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable	
	Was allocation to study groups adequately concealed?	N/A	Not applicable	

Risk of bias a	ssessment		
	Did selection of study participants result in appropriate comparison groups?	NA	Abstract
Confounding	Did the study design or analysis account for important confounding and modifying variables?	NA	Abstract
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	NA	Abstract
Detection	Can we be confident in the exposure characterization?	NA	Abstract
	Can we be confident in the outcome assessment?	NA	Abstract
Selective reporting	Were all measured outcomes reported?	NA	Abstract

Risk of bias assessment					
Other	Were there no other potential threats to internal	NA	A Abstract		
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?				

Stephenson 2017 5

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference Type:	Exposure:	Outcomes:	Statistical analysis:	• These results suggest	
Abstract	 Fluoridated water 	 Suicide rates 	Correlation coefficients	that fluoridation may be correlated with a decrease in the	
Study design: NR	Method of exposure	Method of outcome		rate of suicide by reducing the levels of	
	assessment:	ascertainment:	Results	microorganisms found in drinking	
Country: US	 State data from the CDC 	• NR	 Relationship between fluoridated water and suicide rates: 	water.	
			<u>Year 2010</u>		
Participants: NR	Exposure levels: NR		r= -0.386; p= 0.05		
			<u>Year 2012</u>		

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Sampling time frame	9:		r= -0.324; p= 0.020		
2010, 2012, and 2014	1		<u>Year 2014</u>		
			r= -0.342; p= 0.014		
Sample size (N): NR					
Sex: NR					
Age: NR					
Exclusions: NR					
Source of funding/					
support: USTAR					

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Author declaration of interest: NR						

Bias domain Criterion Response					
Blas domain	Citterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	NA	Abstract		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	NA	Abstract		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		

Risk of bias assessment			
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable
Attrition	Were outcome data complete without attrition or exclusion from analysis?	NA	Abstract
Detection	Can we be confident in the exposure characterization?	NA	Abstract
	Can we be confident in the outcome assessment?	NA	Abstract
Selective reporting	Were all measured outcomes reported?	NA	Abstract
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	NA	Abstract

Verma 2017 86

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"Prevalence of	
Original study	Fluoride levels in	Dental fluorosis	 Chi-square test Multivariable analysis with generalized estimating equation (GEE) regression model 	dental fluorosis	
	ground water			was considerably	
	-			high, affecting	
Study design:		Method of outcome		nearly two-thirds of	
Cross-sectional study	Method of exposure	ascertainment:		the students, and	
	assessment:	 Dental examination 	Results:	mainly in	
	The Orion method	using Dean's fluorosis index	Karl Pearson correlation coefficient (all 6 villages)	government	
Country:	(Selective Electrode	Community fluorosis		schools and long-	
India	fluoride estimation	index (CFI)		term residents of	
	apparatus)		 Mean fluoride level in water: 1.4 mg/L ± 0.38 	the area."	
Participants:			 Community fluorosis index: 2.3 ± 0.37 		
High school adolescents	Exposure level:				
(12–17 years) from	Mean water fluoride:		Multivariable regression		
randomly selected	•Holur: 0.85 mg/L.		analysis (GEE) by		
government and private			drinking water source:		
schools in urban and	mg/L		C C		
rural areas of Kolar	• All 6 villages: 1.4 ±0.38		 Fluorosis present: 		

Study Characteris	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
taluka (6 villages). students who were residents of the are since birth were ind in the study. Sampling time fra	ea cluded		 Bore well water: 551 (63.7%) Pipe/tape water: 79 (64.8%) Total: Bore well water: 865 Pipe/tape water:122 β estimate (95%CI): Bore well water: 0.92(-0.32,2.16), p- 0.92(-0.32,2.16), p- 		
February - August			value: 0.145 o Pipe/tape water: 0		
Sample size:					
1,026					
Sex (N):					
Boys: 509 (49.6%)					
Exclusions:					

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
NR					
Source of funding	ng /				
support:					
None					
Author declarat	ion of				
interest:					
• No COI					

Risk of bias assessment					
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable			
	Was allocation to study groups adequately concealed?	N/A Not applicable			

Risk of bias a	ssessment		
	Did selection of study participants result in	++	Yes, participants were selected during the same
	appropriate comparison groups?		timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for	++	Yes, it accounted for some confounders such as
	important confounding and modifying variables?		fluoridated toothpaste, consumption of finger millet
			and tea.
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	-	Insufficient information provided on reasons for
	exclusion from analysis?		exclusion of participants
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using the
	characterization?		Orion method (Selective Electrode fluoride estimation
			apparatus).
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by a
	assessment?		dental specialist using Dean's Fluorosis Index and
			Community fluorosis index (CFI). Lack of blinding of

Risk of bias assessment				
			outcome assessors would not appreciably bias results.	
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

Cardenas-Gonzalez 2016 87

Study Characteristics	;			
Study	Exposure	Outcome	Analysis & Results	Conclusions
	Exposures:	Outcomes:	Statistical analysis:	 The correlation of fluoride levels

Study Characteristics	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Fluoride levels in	<u>Kidney injury</u>	• Spearman's	between urine and	
Original study	 Urine samples Drinking water samples 	 biomarkers Kidney injury molecule 1 (KIM-1) 	correlation and linear regression models were used.Model 1 was adjusted	water samples was significant suggesting that water is the main source of	
Study design:		Neutrophil gelatinase-	for age, sex, and BMI z-score	fluoride exposure. • Urinary miR-200c	
Cross-sectional study	Method of exposure	associated lipocalin (NGAL)	Model 2 was adjusted	was correlated with	
	assessment:	• Serum creatinine	for model 1 covariates and	fluoride There was no correlation	
	Urine Samples	(SCr) ●MircroRNAs	urinary specific	between any of the	
Country: Mexico	 One spot urine sample used Ion selective 	(miRNAs): miR-21, miR200c, and miR- 423 • Estimated glomerular	 gravity Model 3 was adjusted for model 1 covariates and urinary creatinine 	other biomarkers and toxicants exposure levels. • Regression models examining the	
Participants: Children	electrode was used to measure fluoride	filtration rate (eGFR) • Albumin-creatinine	unnary creatinine	association between	
(5 to 12 years of age)	Water samples	 Albumin-creatinine ratio (ACR) 	Results:	urine fluoride and the kidney injury	
residents of Villa de	 Water samples were 		Results.	biomarkers did not	
Reyes County of San	collected on March	Method of outcome	Correlation between	show any statistically	
Luis Potosi, who were	2015	ascertainment:	urinary levels of	significant differences (data not shown).	
between grades 1 to 6	 tap and bottled water samples were 		fluoride (ppm) and		
at two public	acquired from 63	KIM-1 and NGAL	kidney injury		
elementary schools	 Participants Well water samples were acquired at 	 Micro-bead assays Measured in urine 	biomarkers:		
		samples	● <u>KIM-1 (pg/mL)</u>		

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
	various depths (1 m =	<u>Urinary albumin,</u>	r = 0.09; p = 0.38	
Sampling time frame:	superficial; 100 m = middle; 130 m =	urinary creatinine, and	• <u>NGAL (ng/mL)</u> r = -0.2; p = 0.07	
June 2014	deep) from three water systems that	<u>SCr</u>	• miR-21 (copies/µl)	
	are local lon selective 	 Daytona auto- analyzer 	r = 0.05; p = 0.67	
Sample size (N): 83	electrode was used to measure fluoride	miRNAs	• <u>miR-200c (copies/µl)</u> r = 0.27; p = 0.01	
		 RNA isolation, reverse transcription, 	• <u>miR-423 (copies/µl)</u> r = 0.14; p 0.22	
Sex:	Exposure level:	pre-amplification, qPCR, and	• <u>SCr (mg/dL)</u>	
<u>Boys</u>	Tap water fluoride,	quantification	r = 0.07; p = 0.53	
N (%) = 47 (56.63)	mean (range)	 Measured in urine samples 	• <u>eGFR (mL/min)</u> r = - 0.19; p = 0.07	
	 2.47 ppm (2.08 - 2.94) 		• <u>ACR (mg/gCr)</u> r = 0.08; p = 0.45	
Exclusions:	Urinary fluoride,		T = 0.06, p = 0.45	
•Were not lifetime	mean (range)			
residents of the study area	2.18 ppm (0.34 -		Regression analysis	
 Girls with menarche Has congenital kidney disease or urinary tract infections 	8.60)		 No statistically significant differences reported between fluoride levels in urine 	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
 Nonsteroidal anti- inflammatory drugs or antibiotics use 			and outcome biomarkers	
Source of funding/				
support:				
 National Council on Science and Technology Fundacion Mexico en Harvard A. C., NIH/NIEHS Harvard-NIEHS Centre for Environmental Health HSPH-NIEHS 				
Author declaration of				
interest: None				

Risk of bias a	Risk of bias assessment				
Bias domain	Criterion	Response			
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in	++	Participants were children (5 to 12 years of age) from		
	appropriate comparison groups?		Villa de Reyes county of San Luis Potosi, who were		
			between grades 1 to 6 at two public elementary		
			schools. The time of sampling for the study was June		
			2014.		
Confounding	Did the study design or analysis account for	++	Model 1 was adjusted for age, sex, and BMI z-score.		
	important confounding and modifying variables?		Model 2 was adjusted for model 1 covariates and		
			urinary specific gravity. Model 3 was adjusted for		
			model 1 covariates and urinary creatinine.		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		

Risk of bias	Risk of bias assessment				
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	Reasons for exclusion were provided for the study. "Of the initial 107 child participants, we excluded 16 with no urine or blood sample and 8 with an incomplete questionnaire." (p. 655)		
Detection	Can we be confident in the exposure characterization?	++	Fluoride levels were measured in urine and tap water samples. No difference in exposure assessment methods were found between participants.		
	Can we be confident in the outcome assessment?	++	Several kidney injury biomarkers were measured in urine (KIM-1, NGAL, miR-21, miR-200c, miR-423, creatinine) or serum (creatinine). Other biomarkers of kidney injury assessed include the estimated glomerular filtration rate (eGFR) and albumin- creatinine ratio (ACR), where albumin was measured in urine.		
Selective reporting	Were all measured outcomes reported?	+	All outcomes mentioned in the methods section were reported on in the results section. Although spearman correlation coefficients and p-values were reported for the association between fluoride and outcomes, regression estimates were not provided but indicated as not being statistically different.		

Risk of bias assessment					
Other	Were there no other potential threats to internal	++	None identified.		
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?				

de Moura 2016 88

Study Characteristics							
Study	Exposure	Outcome	Analysis & Results	Conclusions			
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"The prevalence of			
Original study	Fluoride levels in	Dental fluorosis	 Prevalence of dental 	fluorosis was high,			
- <u></u>			fluorosis	though the severity			
	• Water		Descriptive data	was low in			
Study design:		Method of outcome	analysis	individuals			
Cross-sectional	Method of exposure	ascertainment:		exposed to			
	assessment:	Assessment conducted	Results:	fluoridation since			
Country:	NR	by dental surgeons	 The prevalence of fluorosis was 77.9% (n = 445). 	birth."			

Study	Exposure	Outcome	Analysis & Results	Conclusions
Brazil Participants: 11 to 14-year-old school children with fully erupted permanent teeth, signed informed consent, and completed socio-demographic questionnaire. Sampling time frame: 2011	Exposure level: 0.6-0.8 ppm (as reported by the same author in in earlier study (Moura et al. 2010), for the same city of residence of the study participants	using the Thylstrup- Fejerskov (TF) Index	 12.1% (n = 69) of all participants had fluorosis of TF3, and 0.4% of TF4 and TF5 (n=2). Of the participants with higher severity of fluorosis: 98.6% (n = 70) belonged to the lowest social class (≥ B2), 91.5% were born and always lived in Teresina, 94.4% consumed fluoridated water supply 76% used infant toothpaste, and 64% reported swallowing this toothpaste 	
Sample size: 571 (out of 596)			uns tootnpaste	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex (N):				
NR				
Exclusions:				
 Children with imperfect amelogenesis Children undergoing fixed orthodontic treatment at the time of the assessment. Children who were absent on the day of clinical examination 				
Source of funding /				
support:				
NR				

Study Characteris	stics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Author declaratio	n of			
interest:				
NR				

Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	++	Yes, participants were selected during the same timeframe and according to the same criteria.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable

Risk of bias	assessment		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(children with imperfect amelogenesis, undergoing fixed
			orthodontic treatment at the time of the assessment, or
			those who were absent on the day of clinical
			examination).
Detection	Can we be confident in the exposure	-	NR
	characterization?		
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by dental
	assessment?		surgeons using the Thylstrup-Fejerskov (TF) Index.
			Dentists were blinded to participants' clinical condition
			and residence.
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were
reporting			presented in results section with adequate level of detail
			for data extraction
Other	Were there no other potential threats to internal	++	None identified
sources	validity (e.g., statistical methods were		

Risk of bias assessment

appropriate and researchers adhered to the study protocol)?

Heck 2016 89

Study Characteristics						
Study	Exposure	Outcome	Analysis & Results	Conclusions		
Reference type:	Exposures:	Outcomes:	Statistical analysis:	No evidence of an		
Dissertation	 Fluoridated water 	 Trouble working 	 Linear regression 	effect of water		
		Retardation	models used	fluoridation on general		
	 Gener Method of exposure 		 Models adjusted for race, sex, urban 	health, trouble working		
Study design:	assessment:		status, and income.	for children or adults,		
Cross-sectional study		Method of outcome		retardation in children.		
,	 Data from the 1992 Fluoridation Census 	ascertainment:	Results:			
	and the 1990 Census	Trouble working in	Change (standard			
Country:	were combined to acquire the proportion	children and adults:	error; SE) in outcome			
U.S.	of individuals with	 Self-reported 	from the effect of			
	optimally fluoridated water in a county	Difficulty conducting specific activities	residential optimal			

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Participants: Child (14 to 15 years of age) and adult (17 to 90 years of age) civilians who are not institutionalized from the National Health and Nutrition Examination Survey III (NHANES III)	 The same fluoridation exposure is given to all individuals in the same county Exposure levels: NR 	 (housework, gardening, exercise, or play) Categories: No difficulty, some difficulty, moderate difficulty, and could not do Retardation in children Self-reported Physician diagnosed mental retardation General Health in children and adults 	water fluoridation among children • <u>Trouble working (N =</u> 2,583) $\beta = 0.039 (0.039)$ • <u>Retardation (N =</u> 4,796) $\beta = 0.001 (0.002)$ • <u>General Health (N =</u> 4,618) $\beta = -0.159 (0.165)$	
Sampling time frame: NR Sample size (N):		 General health of participant as decided by physician Categories: Excellent, very good, good, fair, and poor 	Change (SE) in outcome from the effect of optimal water fluoridation among adults	
 Counties: 35 Populations: > 500,000 			• Trouble working (N = $\frac{7,100}{\beta}$ = 0.041 (0.043)	

Study Characterist	ics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex: NR			• <u>General health (N =</u> <u>7,088)</u> β = -0.028 (0.143)	
Exclusions: NR				
Source of funding/ support: NR	,			
Author declaration interest: NR	of			

Risk of bias as	ssessment		
Bias domain	Criterion	Res	ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	+	Study subject were from NHANES III where "national estimates of the health and nutritional status of the United States' civilian, noninstitutionalized population aged two months and older" are provided. Recruitment time frame not found.
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Models adjusted for race, sex, urban status, and income
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable

Risk of bias							
Attrition	Were outcome data complete without		Not reporte	d.			
	attrition or exclusion from analysis?						
Detection	Can we be confident in the exposure		Fluoride ex	posure e	stimated using	g data fro	om the 1992
	characterization?	++	Fluoridatior	n Census	and 1990 Ce	nsus fror	n the US Bureau of
			the Census	6.			
	Can we be confident in the outcome		Trouble		Retardation		General health
	assessment?		working is		is self-		status was
			self-		reported.		determined by an
			reported.		Outcome		examining
			Outcome		assessors		physician.
			assessors		unlikely		Outcome
			unlikely		affected by		assessors
		++	affected	++	exposure	++	unlikely affected
			by		status as		by exposure
			exposure		data were		status as data
			status as		from		were from
			data were		different		different sources.
			from		sources.		
			different				
			sources.				

Risk of bias assessment					
Selective reporting	Were all measured outcomes reported?	++	Yes, results were reported for general health, trouble working, and retardation.		
Other	Were there no other potential threats to		Exposure was assessed at the level of the county. As		
sources	internal validity (e.g., statistical methods		individual levels of exposure were not measured, variation in		
	were appropriate and researchers	<u>т</u>	fluoride levels within the county could not be accounted for in		
	adhered to the study protocol)?	+	the analysis (i.e. potential difference in fluoride water		
			exposure among those who drink tap water sometime		
			compared to all the time).		

Kousik 2016 90

Study Characteristi	cs			
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposure:	Outcomes:	Statistical analysis:	 The results also reveal that exposure
Original study	Fluoride levels in	 Body mass index (BMI) 	 Correlation analysis 	dose has a positive correlation with
Study design:	 Urine samples Ground water samples 	Intelligence quotient (IQ)	Results:	urinary fluoride (r=0.513, P < 0.01), a negative correlation with IQ (r = -0.343 ,

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Cross-sectional study/ ecological study	Method of exposure	Method of outcome ascertainment:	 Correlation between urinary fluoride and exposure dose r = 0.513; p = <0.01 	P<0.01), and a non- significant correlation with BMI (r = 0.083). • Children residing in
Country: India	 assessment: <u>Water samples</u> Randomly acquired from 50 tube wells 	 BMI Information needed for calculations were acquired from 8 primary schools 	• Correlation between urinary fluoride and BMI r = 0.022; p not	areas with higher than normal water fluoride level demonstrated more impaired
Participants: Children	 Performed field 	IQ	<0.01	development of intelligence
(6 to 18 years of age)	investigations during November 2014	Determined using the	 Correlation between urinary fluoride and 	intelligence
from Simlapal Block in	 Measured using ion- selective electrode 	Combined Raven's	IQ	
Bankura District Sampling time frame:	Used to calculate 'Fluoride exposure dose' (ED) which takes into consideration:	Test for Rural China (CRT-RC) • Test was independently completed in a	r = -0.751; p = <0.01 • Correlation between exposure dose and BMI r = -0.083; p not <	
NR	Fluoride level	double-blind manner in the classroom	0.01	
Sample size (N): 149	Water intake/day Body weight	 Scores were grouped as Retarded/low: ≤ 69 Borderline: 79 - 79 	• Correlation between exposure dose and IQ r = -0.343; p = <	
	Urine samples	Below average: 80 –	0.01	
Sex:		89	Relationship between exposure dose and	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
<u>Boys</u> ● N = 66	 Measured using ion- selective electrode Exposure levels: 	Average: 90 – 109 Above average: 110 – 119	BMI among boys age 6-8 years BMI = 13.9 - 2.7 ED r = 0.073	
Exclusions: NR	Mean (SD) levels of fluoride	Excellent: 120 – 129 Outstanding: ≥ 130	p = 0.832 • Relationship between	
Source of funding/ support: NR	in water samples 2.11 mg/L (1.64) • Levels of fluoride in		exposure dose and BMI among girls age 6-8 years BMI = 13.3 + 29.3	
	urine samples Min = 0.45 mg/L		ED r = 0.092	
Author declaration of	Max = 17.00 mg/L		p = 0.716	
interest: NR			 Relationship between exposure dose and BMI among boys age 8-10 year BMI = 15.3 – 12.7 	
			ED	
			r = 0.124	
			p = 0.451	
			 Relationship between exposure dose and 	

Study Characte	eristics			
Study	Exposure	Outcome	Analysis & Results	Conclusions
			BMI among girls age 8-10 years BMI = 14.1 – 5.69	
			ED	
			r = 0.144	
			p = 0.362	
			 Relationship between exposure dose and BMI among boys age >10 years BMI = 17.3 - 20.1 	
			ED	
			r = 0.217	
			p = 0.371	
			 Relationship between exposure dose and BMI among girls age >10 years BMI = 14.3 + 3.63 	
			ED	
			r = 0.133	
			p = 0.575	

Bias domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable		
	Was allocation to study groups adequately concealed?	N/A	Not applicable		
	Did selection of study participants result in appropriate comparison groups?	+	Participants consist of children (6 to 18 years of age) from Simlapal Block in Bankura District. Recruitment timeframe not found.		
Confounding	Did the study design or analysis account for important confounding and modifying variables?	-	NR		
Performance	Were experimental conditions identical across study groups?	N/A	Not applicable		
	Were the research personnel and human subjects blinded to the study group during the study?	N/A	Not applicable		
Attrition	Were outcome data complete without attrition or exclusion from analysis?	++	No mention of excluding participants or missing data.		

Risk of bias	assessment				
Detection	Can we be confident in the exposure		Fluoride levels were r	neas	ured in water and urine. No
	characterization?	++	difference in assessm	nent r	nethods were reported
			between participants.		
	Can we be confident in the outcome		Eight primary		The intelligence quotient
	assessment?		schools of		(IQ) of each child was
			respective villages		measured according to
			were used to collect		Combined Raven's Test for
			age, weight and		Rural China (CRT-RC),
			height for		published by Huadong
			calculating body		Normal University in 1989.
		++	mass index (BMI).	++	The children were
			Outcome unlikely to		administered to take the test
			be affected by		in the classroom, working
			blinding status.		independently, in a double-
					blind manner according to
					the directions of the CRT-
					RC manual for the test
					administration conditions."
Selective	Were all measured outcomes reported?	++	Yes, outcomes menti	oned	in the abstract were reported
reporting		++	on in the results secti	on.	

Risk of bias assessment				
Other	Were there no other potential threats to internal		None identified.	
sources	validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++		

Sabokseir 2016 91

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	 "Fluorosis indices, if used
Original study	Fluoride levels in	 Dental fluorosis 	 Logistic regression was used to assess the 	alone, could result in
	 Water 		association between	misdiagnosis of
Study design:		Method of outcome	fluoride drinking water levels and fluorosis	dental fluorosis and misguide
Cross-sectional study	Method of exposure	ascertainment:		health policymakers in
	assessment:	 Dentists assessed photos using the 	Results:	their decision
Country:	 Acquired from the town's primary health care trust 	Dean's Index and Thylstrup and Fejerskov (TF) Index		about public health measure related to use of fluoride."

Study	Exposure	Outcome	Analysis & Results	Conclusions
Iran			Percentage of genuine	 "Information
	Exposure level:		fluorosis by exposure	about adverse health-related
Participants:	Fluoride levels by town		categories	conditions linked to DDEs at
-	and category of		High Water Fluoride:	specific positions
Children (9 years of age)	exposure:		47.7%	on teeth could help to
randomly selected from			 Optimal Water Fluoride: 20.6% 	differentiate
locations with high,	Gerash (high fluoride)		Low Water Fluoride:	between genuine fluorosis and
optimal, and low fluoride	 2.12 – 2.85 ppm 		3.3%	fluorosis-
drinking water levels in	<u>Sepidan (low fluoride)</u>		• p-value: <0.001	resembling defects." (p. 8)
Fars	• 0.24 – 0.29 ppm			delects. (p. o)
	Shiraz (optimal fluoride)		Odds (95% CI) of	
Sampling time frame:	• 0.62 – 1.22 ppm		genuine fluorosis with	
NR	• 0.02 – 1.22 ppm		optimal compared to high	
			fluoride levels:	
Sample size:			• 0.292 (0.168 – 0.506)	
376			Odds (95% CI) of	
3/0			genuine fluorosis with low	

Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions
Sex (N): Boys: 196 (53%)			compared to high fluoride	9
Doy3. 100 (0070)			•0.037 (0.011 – 0.127)	
Exclusions:				
 Resided in other town from birth to age 5 years for >6 months <7 permanent incisor teeth Have orthodontic brackets Have overlapping teeth Have large restorations Have severe extrinsic stains on incisors 				
Source of funding /				
support:				
 Vice-Chancellery for Research of Shiraz University of Medical Science 				

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Author declarat	ion of				
interest:					
No COI					

Bias domain	ias domain Criterion		ponse
Selection	Was administered dose or exposure level adequately randomized?	N/A	Not applicable
	Was allocation to study groups adequately concealed?	N/A	Not applicable
	Did selection of study participants result in appropriate comparison groups?	+	Yes, participants were selected using the same criteria However, the sampling timeframe was not reported
Confounding	Did the study design or analysis account for important confounding and modifying variables?	+	Study accounted only for sex

Risk of bias as	ssessment		
Performance	Were experimental conditions identical across	N/A	Not applicable
	study groups?		
	Were the research personnel and human	N/A	Not applicable
	subjects blinded to the study group during the		
	study?		
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants
	exclusion from analysis?		(resided in other town from birth to age 5 years for >6
			months, have <7 permanent incisor teeth, orthodontic
			brackets, overlapping teeth, large restorations, or severe
			extrinsic stains on incisors).
Detection	Can we be confident in the exposure	++	Yes, fluoride exposure levels were obtained from each
	characterization?		town's primary health care trust records
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was measured by 8
	assessment?		calibrated dentists: 4 using the Dean's Index (DI) and 4
			using Thylstrup and Fejerskov (TF) Index. The diagnosis
			of dental fluorosis was confirmed only if three out of four
			dentists of each group agreed. Dentists were blinded to
			participants' clinical condition and residence.

Risk of bias assessment				
Selective	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were	
reporting			presented in results section with adequate level of detail	
			for data extraction	
Other	Were there no other potential threats to internal	++	None identified	
sources	validity (e.g., statistical methods were			
	appropriate and researchers adhered to the			
	study protocol)?			

Xiang 2016 92

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Reference type:	Exposures:	Outcome(s):	Statistical analysis:	"This study	
Original study	Fluoride levels in	Dental fluorosis	 Prevalence of dental 	suggests that	
enginal etally		Defect dental fluorosis	fluorosis and defect	defluoridation of	
	 Taps, deep wells, or river sources 		dental fluorosis were calculated	drinking water is	
Study design:			Calculated	effective for	

Study Characteristics					
Study	Exposure	Outcome	Analysis & Results	Conclusions	
Cross-sectional study	Method of exposure	Method of outcome	Results:	controlling endemic	
	assessment:	ascertainment:	 "The prevalence of 	fluorosis in China	
Country: China	 Fluoride ion selective electrode 	 Permanent teeth were examined by dentists and endemic fluorosis 	dental fluorosis and defect dental fluorosis in 2002 had a significant positive dose-response	and that the role of fluoridation of public water	
	Exposure level:	control and prevention expert	correlation with the drinking water fluoride with the coefficient	supplies for the of control dental	
Participants:	Mean fluoride level in	conducted using Dean's classification	correlations, regression equations, and p values being r=0.999, y=99.552/(1+40.049xe– 3.464x), and p=0.017; and r=0.987, y=17.520x – 6.950, and p=0.001, respectively." (p. 23)	caries needs to be	
Children (8 – 14 years of	tap water (SD) in 2013	and the Chinese		further studied." (p.	
age) from Wamiao and	<u>Wamiao</u>	"Clinical diagnostic standard for dental		23)	
Xinhuai	•0.91 mg/L (0.02) <u>Xinhuai</u>	fluorosis" Defect dental fluorosis:)	
Sampling time frame:	0.89 mg/L (0.03)	"Defect means there was a small dent, or/and	• "The prevalence of		
 2002: before defluoridation 2013: 10 years after defluoridation 		a large pit, or/and a larger striped area in the surface of the dental enamel. Defect dental fluorosis included some	dental fluorosis and defect dental fluorosis were significantly decreased with the decreased drinking water fluoride in Wamiao in 2013 after defluoridation compared		
Sample size (N):		"moderate" dental	with the results in 2002." (p. 23)		

Study Characteris	Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions	
<u>2002:</u> • Wamiao = 236 • Xinhuai = 290 <u>2013:</u> • Wamiao = 68 • Xinhuai = 65		fluorosis (grade 3) and all "severe" dental fluorosis (grade 4) as diagnosed by Dean's criteria" (p. 25)			
Sex (N): <u>Wamiao in 2002</u> Men: 130 (55.1%)					
<u>Xinhuai in 2002</u> Men: 159 (54.8%)					
Exclusions: 2013 participants					

Study Characterist	ics			Study Characteristics				
Study	Exposure	Outcome	Analysis & Results	Conclusions				
Absent from village f	or							
>=1year								
Source of funding /	1							
support:								
National Natural Scie	ence							
Foundation of China								
Author declaration	of							
interest:								
No COI								

Risk of bias assessment				
Bias domain	Criterion	Response		
Selection	Was administered dose or exposure level adequately randomized?	N/A Not applicable		

Risk of bias as	ssessment						
	Was allocation to study groups adequately	N/A	Not applicable				
	concealed?						
	Did selection of study participants result in	++	Yes, participants were selected during the same				
	appropriate comparison groups?		timeframe and according to the same criteria.				
Confounding	Did the study design or analysis account for	-	NR				
	important confounding and modifying variables?						
Performance	Were experimental conditions identical across	N/A	Not applicable				
	study groups?						
	Were the research personnel and human	N/A	Not applicable				
	subjects blinded to the study group during the						
	study?						
Attrition	Were outcome data complete without attrition or	++	Study provided reasons for exclusion of participants				
	exclusion from analysis?		(those who were absent from village for >=1year).				
Detection	Can we be confident in the exposure	++	Yes, exposure was measured in water using a fluoride				
	characterization?		ion selective electrode (Manufactured by Chang Sha Yi				
			Ming Experimental Instrument Co., Ltd, China).				
	Can we be confident in the outcome	++	Yes, outcome (dental fluorosis) was assessed by 2				
	assessment?		dentists and 1 expert in endemic fluorosis using Dean's				
			Index and the Chinese "Clinical diagnostic standard for				

Risk of bias assessment				
			dental fluorosis" (WS/T208-2001). Lack of blinding of outcome assessors would not appreciably bias results.	
Selective reporting	Were all measured outcomes reported?	++	Yes, primary outcomes discussed in methods were presented in results section with adequate level of detail for data extraction	
Other sources	Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	++	None identified	

2.3. Quality assessment of the included human studies^{xxx}

Study			bias ey bi		exclusion bias		Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)			
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Mercado 2023 6	N/A	N/A	++	-	N/A	N/A	++	++	++	++	++	2
Tang 2023 ⁷	N/A	N/A	+	++	N/A	N/A	++	++	++	++	++	2
Ahmad 2022 ⁸	NA	NA	-	-	N/A	N/A	-	-	-	++	++	3
Feng 2022 ⁹	N/A	N/A	++	++	N/A	N/A	++	++	-	++	++	2
García-Escobar 2022 10	NA	NA	+	-	NA	NA	++	++	++	++	++	2
Goodman 2022 11	N/A	N/A	+	++	N/A	N/A	++	++	++	++	++	1
Gupta 2022 12	N/A	N/A	++	-	N/A	N/A	++	++		++	++	2
Ibarluzea 2022 13	NA	NA	++	++	NA	NA	++	++	++ ++	++	++	1
Kaur 2022 14	N/A	NA	++	-	NA	NA	++	++	+	++	++	2

 $^{\mbox{\tiny XXX}}$ Quality of evidence was assessed using the OHAT risk of bias tool

Study	Selection bia			Confounding bias			Attrition/ exclusion bias	Detection		Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Marques 2022 15	NA	NA	++	++	NA	NA	++	++	++	++	++	1
McLaren 2022 16	NA	NA	++	++	NA	NA	++	+	++	++	++	1
Rani 2022 <u>17</u>	NA	NA	+	-	NA	NA	-	++	++	++	++	2
Saeed 2022 18	N/A	N/A	+	++	N/A	N/A	-	++	+ ++	++	++	2
Tawfik 2022 19	N/A	N/A	++	-	N/A	N/A	++	+	++	++	++	2
Thilakarathne 2022 20	NA	NA	+	-	NA	NA	++	++	++	++	++	2
Al-Omoush 2021 21	N/A	N/A	+	-	N/A	N/A	-	++	++ ++	++	2	2
Ayele 2021 22	N/A	N/A	++	+	N/A	N/A	++	++	++ -	++	++	2
Cao 2021 23	N/A	N/A	++	-	N/A	N/A	-	++	++	++	++	2
Dong 2021 24	N/A	N/A	++	++	N/A	N/A	-	++	++	++	++	1
Du 2021 ²⁵	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Farmus 2021 26	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1

Study	Selection bia			Confounding bias			Attrition/ exclusion bias	Detection		Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Fernandes 2021 27	NA	NA	++	-	NA	NA	++	++	++	++	++	2
Helte 2021 28	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
James 2021 ²⁹	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Meghe 2021 ³⁰	N/A	N/A	+	-	N/A	N/A	+	++	-	++	++	2
Meng 2021 31	N/A	N/A	++	-	N/A	N/A	-	++	++	++	++	2
Mohd Nor 2021 32	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Rojanaworarit 2021 33	NA	NA	++	++	NA	NA	++	++	++	++	++	1
Sharma 2021 34	N/A	N/A	+	-	N/A	N/A	-	++	-	++	++	2
Silva 2021 35	N/A	N/A	+	++	N/A	N/A	++	++	++	++	++	1
Tkachenk 2021 36	N/A	N/A	+	-	N/A	N/A	++	+	++	++	++	2
Wang 2021 37	N/A	N/A	++	++	N/A	N/A	++	++	++ ++	++	++	1
Yani 2021 38	N/A	N/A	+	-	N/A	N/A	++	-	+ +	++	++	2

Study	Selection bia	15		Confounding bias		nce bias	Attrition/ exclusion bias	Detection	bias	Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Yu 2021 ³⁹	N/A	N/A	++	++	N/A	N/A	++	++	+	++	++	1
Zhao 2021 40	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Bai 2020 ^{<u>41</u>}	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Cui 2020 42	N/A	N/A	++	-	N/A	N/A	++	++	+ ++ ++	++	++	2 ^{xxxi}
Das 2020 43	N/A	N/A	++	-	N/A	N/A	-	++	++	++	++	2
Fernandes 2020 44	N/A	N/A	+	-	N/A	N/A	++	++	++	++	++	2
Godebo 2020 45	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Kim 2020 46	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Krishna 2020 47	N/A	N/A	++	+	N/A	N/A	++	++	++	++	++	1
Lee 2020 48	N/A	N/A	++	+	N/A	N/A	++	++	++	++	++	1

xxxi Cui 2020: Assessment of question 9 (Outcome assessment) was (+) for IQ and (++) for thyroid dysfunction and dopamine outcomes. However, the overall study assessment did not change due to this difference.

Study	Selection bia	IS		Confounding bias	Performa	nce bias	Attrition/ exclusion bias	Detection	bias	Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Nanayakkara 2020 49	N/A	N/A	+	-	N/A	N/A	-	++	++	++	++	2
Russ 2020 ⁵⁰	N/A	N/A	++	+	N/A	N/A	++	++	++	++	++	1
Stangvaltaite-Mouhat 2020 ^{<u>51</u>}	N/A	N/A	+	-	N/A	N/A	-	++	++	++	++	2
Sun 2020 52	N/A	N/A	+	++	N/A	N/A	++	++	++	++	++	1
Till 2020 53	N/A	N/A	++	++	N/A	N/A	++	+	++	++	+	1
Wang 2020 54	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
An 2019 55	N/A	N/A	++	+	N/A	N/A	++	++	++	++	++	1
Crnosija 2019 ⁵⁶	N/A	N/A	++		N/A	N/A	++		++	++	++	2
Fernando 2019 57	N/A	N/A	-		N/A	N/A	++	++	+	++		2
Jimenez-Cordova 2019 58	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1

Study	Selection bia	S		Confounding bias	Performa	nce bias	Attrition/ exclusion bias	Detection	bias	Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Jimenez-Cordova 2019a	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Khanoranga 2019 60	N/A	N/A	++	-	N/A	N/A	-	++	++	++	++	2
Liu 2019 ⁶¹	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Malin 2019 ⁶²	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Malin 2019a ⁶³	N/A	N/A	++	++	N/A	N/A	++	+	++	++	++	1
Pei 2019 ⁶⁴	N/A	N/A	+		N/A	N/A	++	++	++	++	++	2
Riddell 2019 ⁶⁵	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Shaik 2019 66	N/A	N/A	+		N/A	N/A	++	++	++	++	++	2
Soto-barreras 2019 67	N/A	N/A	++	-	N/A	N/A	++	++	++	++	++	2
Zhang 2019 68	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Zhou 2019 69	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1

Study	Selection bia	IS		Confounding bias	Performa	nce bias	Attrition/ exclusion bias	Detection	bias	Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Zhou 2019a 70	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Bashash 2018 71	N/A	N/A	++	++	N/A	N/A	++	++	+ ++	++	++	1 ×××ii
Cui 2018 72	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Jimenez-Cordova 2018	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Kumar, V 2018 ⁷⁴	N/A	N/A	+	-	N/A	N/A	++	++	++	++	++	2
Kumar, S 2018 75	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Malin 2018 76	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Mohd Nor 2018 77	N/A	N/A	++	-	N/A	N/A	++	++	++	++	++	2
Mustafa 2018 ⁷⁸	N/A	N/A	+	-	N/A	N/A	++	++	++	++	+	2

xxxii Bashash 2018: Assessment of question 9 (outcome assessment) was different for both outcomes. However, the overall study assessment did not change due to this difference.

Study			Confounding bias			Attrition/ exclusion bias	Detection		Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)	
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Oweis 2018 79	N/A	N/A	++	++	N/A	N/A	++	-	++	++	++	2
Quadri 2018 ⁸⁰	N/A	N/A	++	-	N/A	N/A	-	++	+	+	+	2
Rathore 2018 ⁸¹	N/A	N/A	+	-	N/A	N/A	++	++	++	++	+	2
Shruthi 2018 82	N/A	N/A	++	-	N/A	N/A	++	++	-	++	++	2
Yu 2018 ⁸³	N/A	N/A	++	++	N/A	N/A	++	++	++	++	++	1
Arulkumar 2017 ⁸⁴	N/A	N/A	+	-	N/A	N/A	++	++	++	++	++	2
Bashash 2017 85	N/A	N/A	++	+	N/A	N/A	-	+	++	++	++	1
Chauhan 2017 ^{<u>4</u>}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Stephenson 2017 ⁵	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Verma 2017 ⁸⁶	N/A	N/A	++	++	N/A	N/A	-	++	++	++	++	1
Cardenas-Gonzalez 2016 87	N/A	N/A	++	++	N/A	N/A	++	++	++	+	++	1
de Moura 2016 ⁸⁸	N/A	N/A	++	-	N/A	N/A	++	-	++	++	++	2

Study	Selection bia	S		Confounding bias	Performa	nce bias	Attrition/ exclusion bias	Detection	bias	Selective reporting bias	Other source s of bias	Overall quality of evidence (Score)
	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were the comparison groups appropriate?	Did the study design or analysis account for important confounding and modifying variables?	Were experime ntal conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure character ization?	Can we be confiden t in the outcome assessm ent?	Were all measured outcomes reported?	Other potential threats to internal validity	
Heck 2016 89	N/A	N/A	+	+	N/A	N/A	-	++	++	++	+	1
Kousik 2016 ⁹⁰	N/A	N/A	+	-	N/A	N/A	++	++	++	++	++	2
Sabokseir 2016 ^{<u>91</u>}	N/A	N/A	+	+	N/A	N/A	++	++	++	++	++	1
Xiang 2016 ⁹²	N/A	N/A	++	-	N/A	N/A	++	++	++	++	++	2
Assessment criteria												
Key criterion			Other (no	on-key) criterioi	ו							
Level of bias DL: definitely low risk of bias		++	PL: probab	ly low risk of bi	as +	РН: рі	robably high i	risk of bias	-	DH: definitely	y high risk	of bias

Reference	Comprehensiveness	Methodological Rigor	Summary of Author-reported
(Study Design)			conclusions
Grandjean 2019 ⁹⁴ (Literature Review)	Time Period Covered by Search Restricted to most recent 10 years Sources Searched Electronic databases (Pubmed) Grey literature (Yes) Reference list of articles (Yes) 	 Was screening conducted by two independent reviewers? NR Was data abstraction conducted by two independent investigators? NR Was quality assessment conducted by two independent investigators? NR 	The recent epidemiological results support the notion that elevated fluoride intake during early development can result in IQ deficits that may be considerable. Recognition of neurotoxic risks is necessary when determining the safety of fluoride- contaminated drinking water and fluoride uses for preventive dentistry purposes.
Saeed 2019 ⁹⁵ (Literature Review)	 Number of References Included N= 14 cross-sectional studies N= 5 prospective studies N= 2 retrospective studies Time Period Covered by Search 1989 to 2019 Sources Searched Electronic databases 	Was screening conducted by two independent reviewers? • NR	The significant downsides of fluoride outweigh its benefits for dental problems across many endemic areas of the world. The findings in past literature studies are alarming and the seriousness of this debate urges expediting policymaking and

Table 1: Summary of eligible reviews of human evidencexxxiii

xxxiii Information and data in this table was taken directly from the original publications

Reference	Comprehensiveness	Methodological Rigor	Summary of Author-reported
(Study Design)			conclusions
	 (PubMed, Environmental Health Perspectives, MEDLINE, Google Scholar, Fluoride Action Network, Elsevier, and Springer) Grey literature (NR) Reference list of articles (NR) Number of References Included N= 57 	Was data abstraction conducted by two independent investigators? • NR Was quality assessment conducted by two independent investigators? • NA	awareness campaigns for public safety. The current review highlights some gaps in past literature, needing to be bridged in future research on fluoride toxicity among the human population. The review also prompts the need for more research work on school-going children to curb the rise of dental and skeletal fluorosis and mental disabilities related to early childhood exposure to fluoride in developing countries.
Chaitanya 2018 ⁹⁶ (Systematic Review)	Time Period Covered by Search January 1981 to November 2015 Sources Searched Electronic databases (PubMed, Medline, Embase, Cochrane Library, EBSCO) Grey literature (NR) Reference list of articles (NR) Number of references included	Was screening conducted by two independent reviewers? • No Was data abstraction conducted by two independent investigators? • No Was quality assessment conducted by two independent investigators? • NA	The present systematic review suggests a positive correlation between excess fluoride and hypothyroidism. This calls the need for further well-controlled studies in this otherwise emerging alarming issue. It also calls for considerable community network through health informatics for problem sensitization.

Reference	Comprehensiveness	Methodological Rigor	Summary of Author-reported conclusions
(Study Design)			
	• N= 10		
Duan 2018 ⁹⁷ (Meta-analysis)	 Time Period Covered by Search Electronic databases searched throughout November 2016 Sources Searched Electronic databases 	Was screening conducted by two independent reviewers? • Yes Was data abstraction conducted by two independent investigators?	Greater exposure to high levels of fluoride in water was significantly associated with reduced levels of intelligence in children. Therefore, water quality and exposure to fluoride in water should be controlled in areas with high fluoride levels in water.
	 (PubMed, Embase, and Cochrane Library) Grey literature (NR) Reference list of articles (Yes) Number of References Included N= 26 	 Yes Was quality assessment conducted by two independent investigators? Yes 	
PHO 2018 98 (Literature Review)	 Time Period Covered by Search January 1, 2009 – May 10, 2017 Sources Searched Electronic databases (Ovid MEDLINE, Embase, CINAHL, and Dentistry) 	Was screening conducted by two independent reviewers? • NR Was data abstraction conducted by two independent reviewers? • NR	• Outcomes include dental fluorosis, enamel opacities, hypo-mineralization, and bone health, cancers including bone cancers, reproductive, neurobehavioral effects, mutagenicity, hypothyroidism, and urolithiasis.

 (Study Design) Grey literature (Yes) Reference list of articles (NR) Number of References Included • NR N= 29 articles (Systematic reviews N= 2; cross-sectional studies N= 20; proporting orbot studies N= 20; proporting orbot studies N= 5; 	Reference	Comprehensiveness	Methodological Rigor	Summary of Author-reported
case-control studies N= 2) mg/L and any adverse health effects successed • N= 6 documents from grey literature search as any types of cancer, developmental defects, neurobehavioral effects, or genotoxicity. The studies conducted and genotoxicity.	Reference (Study Design)	 Grey literature (Yes) Reference list of articles (NR) Number of References Included N= 29 articles (Systematic reviews N= 2; cross-sectional studies N= 20; prospective cohort studies N= 5; case-control studies N= 2) N= 6 documents from grey literature 	Was quality assessment conducted by two independent investigators?	 Conclusions Overall, the existing literature suggests that at an optimal concentration of water fluoridation, the only adverse health consequence observed is a mild form of dental fluorosis. The 2010 Health Canada fluoride document states that there is no evidence to support a link between exposure to fluoride in drinking water at or below 1.5 mg/L and any adverse health effects such as any types of cancer, developmental defects, neurobehavioral effects, or genotoxicity. The studies conducted and the organizational reports published after the 2010 Health Canada fluoride

NR = Not Reported; NA = Not Applicable

2.4. Overview of human evidence

Out of a total of 38 endpoints reported in the current review, the current literature search identified new human evidence relating to 15 endpoints, which were not reported in either NHMRC ^{99, 100} or CADTH ^{2, 3} reports. CADTH had initially reported on 23 endpoints, for which the current review updated the evidence on 14 of those endpoints and found no new evidence on the remaining 9 endpoints. This section describes the evolving evidence reported in NHMRC 2016, CADTH 2019, and the current updated review of the literature. A summary is provided for all endpoints in the main manuscript. Where no earlier evidence was reported, the CADTH 2019 conclusion was described as 'N/A'. While no limit was used to restrict studies based on fluoride exposure levels as an exclusion criterion for the literature review, synthesis of evidence was predominantly based on studies generally relevant to the North American context. Although these studies may involve fluoride water concentration higher than those in North American drinking water supplies, they are relevant to the evaluation of causality and exposure-response assessment. Some studies reported results based on serum/urinary fluoride levels). Where available, fluoride levels in drinking water were listed in the following section for the purpose of comparison across studies.

All-cause mortality

NHMRC 2016 ^{99, 100} identified one major study with acceptable quality that reported a small decrease in all-cause mortality incidence in association with CWF. No further evidence was identified by CADTH 2019 ² or Current literature search in relation to all-cause mortality.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Insufficient evidence for an association between water fluoridation at current North American levels and all-cause mortality.

Bone health

Bone cancer

NHMRC ^{99, 100} identified three studies of acceptable quality and three of low quality, where all except one of low quality concluded no association between water fluoridation and bone cancer. NHMRC also identified two systematic reviews where one reported a positive association only in males, and 626 the other reported no clear association. CADTH 2019 ² identified two further studies of acceptable quality, and reported that the evidence up to that date was largely in support of no association between fluoride and bone cancer. The current literature search identified 1 case control study ⁴⁶ and 2 ecological studies ^{48, 56} of high/acceptable quality that were conducted in South Korea ⁴⁸, and the US ^{46, 56}. Two of these studies concluded the absence of association between bone cancer and water fluoridation at a fluoride exposure range between 0.04-0.8 ppm ^{46, 56}. The third study ⁴⁸ that concluded the absence of association did not report a water fluoride exposure level.

Current review evidence synthesis: Based on the available literature to date, there is consistent evidence of no association between bone cancer and fluoride exposures relevant to current North American drinking water levels.

Bone density and quality

NHMRC 2016 $\frac{99, 100}{100}$ identified one systematic review and one study of low quality, which concluded the absence of association between bone quality or osteoporosis (low mineral bone density) and exposure to fluoride. No further evidence was identified by CADTH 2019 ². The current literature search identified 5 new studies including 4 studies of high quality ^{28, 45, 48, 52} and a fifth study with acceptable quality ⁷⁹. One cohort study from Sweden ²⁸ and 2 cross-sectional studies from China ⁵² and Ethiopia ⁴⁵ concluded a positive association between bone quality disruption and fluoride in drinking water (≤1 ppm) ²⁸ or ground water (6.8 ppm) ⁴⁵. The Chinese study ⁵² did not report on the examined fluoride exposure level. Alternatively, 2 studies reported no association between fluoride exposure/intake and bone quality disruption. One ecological study was conducted in South Korea ⁴⁸ on residents from all ages (no water fluoride level reported). Another US cohort study ⁷⁹ was conducted on adolescents (17 years of age) and reported no association between bone quality disruption and life-long fluoride intake from all sources (0.7-0.9 ppm) ⁷⁹.

Current review evidence synthesis: Based on the available literature to date, there is inconsistent evidence for the association of bone quality and fluoride exposures relevant to current North American drinking water levels.

Bone, hip fracture

NHMRC 2016 ^{99, 100} reported two systematic reviews and two studies of acceptable quality, which showed no clear association between fluoride and hip fractures. The later review by CADTH 2019 ² identified one additional study of acceptable quality and concluded that evidence was consistent for no association with fluoride exposure. The current literature search identified 1 ecological study ⁴⁸ of high quality that was conducted in South Korea and concluded the absence of an association between fluoride exposure and the risk of hip fracture.

Current review evidence synthesis: Based on the available literature to date, there is consistent evidence of no association between hip fracture and fluoride exposures relevant to current North American drinking water levels

Bone, musculoskeletal pain

NHMRC 2016 ^{99, 100} identified two studies of low quality, which reported a positive association between musculoskeletal pain and higher fluoride levels (not applicable to the North American context). No further evidence was identified by CADTH 2019 ² or in the current updated literature review in relation to musculoskeletal pain.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Insufficient evidence for an association between water fluoridation at current North American levels and musculoskeletal pain.

Cancer, total incidence and mortality

The earlier review by NHMRC 2016 ^{99, 100} reported conflicting evidence for the association of cancer incidence and mortality based on examination of two systematic reviews and three individual studies of acceptable quality. CADTH 2019 ² identified an additional study of acceptable quality that reported an inverse association and concluded that there was consistent evidence of no association. The current literature search did not identify any new evidence relating to cancer incidence and mortality.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Consistent evidence for no association between water fluoridation at current North American levels and the overall incidence of cancer or cancer-related mortality.

Cognition

Cognition, ADHD

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019a ³ that reported on the association of fluoride with ADHD. The current literature search identified two studies of high quality which examined the association between fluoride exposure and ADHD in youth ⁶⁵ and in children due to maternal exposure to fluoride during pregnancy ⁷¹. The first one ⁶⁵ was a cross-sectional study conducted on North American youth 6-17 years old from the North American Health Measures Survey (Cycles 2 and 3). The study reported a significantly positive association between tap water fluoride (mean of 0.04 mg/L in non-fluoridated regions to 0.49 mg/L in fluoridated regions) and the risk of ADHD including symptoms of hyperactivity and inattention, especially among adolescents. The second study ⁷¹ was a cohort study conducted in Mexico, which enlisted 213 mother-child pairs as part of the ELEMENT study. This study reported an association between higher maternal fluoride levels (measured during pregnancy, mean MUFcr was 0.85 mg/L (SD=0.33)) and "more behavioral symptoms of inattention, but not hyperactivity or impulse control" measured in the children at 6-12 years old. In the study, water fluoride levels of 0.15-1.38 ppm were extrapolated from an earlier study on the ELEMENT cohort in 2017 ⁸⁵.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of ADHD and fluoride exposures relevant to current North American drinking water levels.

Cognition, dementia

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019a ³ that reported on the association of fluoride with dementia. The current literature search identified one large, high quality cohort study ⁵⁰ that was conducted in Scotland and included all people born in 1921 who were at school in Scotland in June 1932, and took part in a comprehensive national intelligence test at a mean age of 11 years (Scottish Mental Survey 1932, SMS1932). The study reported a positive association between the risk of dementia and higher fluoride levels in men and women who consumed water with low fluoride levels (0.05 ppm).

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of dementia and fluoride exposures relevant to current North American drinking water levels.

Cognition, Down syndrome

NHMRC 2016 ^{99, 100} reported on two systematic reviews which did not show a clear association between fluoride and Down syndrome, compared to another study with an large population size and acceptable quality that showed no such association. CADTH 2019a ³ identified an additional, large-size observational study with acceptable quality that reported no association of fluoride exposure and Down syndrome. The current literature search did not identify any new evidence relating to Down syndrome.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Limited evidence for no association between water fluoridation at current North American levels and Down syndrome.

Cognition, IQ

Based on one systematic review and eleven studies (1 high, 2 acceptable, and 8 low quality), the NHMRC ^{99, 100} reported mixed findings regarding the association of fluoride exposure with lower IQ scores in children. A subsequent report by ³ identified a North American cohort study ¹⁰¹ that used data from the MIREC birth cohort, which was conducted on mother-child pairs from six major North American cities. The study reported a positive association between maternal exposure to fluoride and reduction of IQ levels in children 3-4 years old. Despite describing the evidence as weak based on this single cohort study, ³ suggested that results should be part of the efforts to further explore the possible association of fluoride exposure and neurological development in children. In a 2020 update to their 2019 review of neurological and cognitive effects, ¹⁰² identified two additional studies of low quality in relation to IQ, and concluded there was insufficient evidence for an association between IQ levels and "fluoride exposure at the North American water fluoride levels (optimum at 0.7 mg/L)".

A 2020 draft report^{xxxiv} 103 by the US National Toxicology Program (NTP) concluded that exposure to fluoride *"is presumed to be a cognitive neurodevelopmental hazard"* in children, with only limited evidence in support of cognitive effects in adults. This statement was modified in 2022 ¹⁰⁴ in response to another NASEM review: "This review finds, with moderate confidence, that higher fluoride exposure (e.g., represented by populations whose total fluoride exposure approximates or exceeds the World Health Organization Guidelines for Drinking-water Quality of 1.5 mg/L of fluoride) is consistently associated with lower IQ in children. More studies are needed to fully understand the potential for lower fluoride exposure to affect children's IQ." According to NTP, for effects on children's IQ at exposure levels below 1.5 mg/L, the supporting studies provided less consistent results and were mostly at higher risk of bias.

The current literature search identified 21 studies including 13 studies of high quality <u>11</u>, <u>13</u>, <u>18</u>, <u>26</u>, <u>37</u>, <u>39</u>, <u>40</u>, <u>53</u>, <u>54</u>, <u>72</u>, <u>78</u>, <u>83</u>, <u>85</u>, and 5 studies of moderate quality <u>9</u>, <u>14</u>, <u>38</u>, <u>78</u>, <u>90</u> that reported a positive/possible association between fluoride exposure and reduced IQ scores and school performance in children. Three studies of high <u>89</u>, moderate <u>67</u>, or low <u>8</u> quality reported an absence of association with reducing IQ scores.

Studies reporting positive association include a recent and high-quality analysis of critical time windows of exposure using the North American MIREC cohort ²⁶, which reported an association between children's performance IQ and fluoride exposure during the perinatal period and into early childhood. Results suggest that prenatal exposure may be more critical for effects in boys but infancy (over the first year) as the more critical exposure window for girls ^[409]. An earlier study that used the same cohort ⁵³ reported that an increment of 0.5 mg/L in water fluoride concentration corresponded to a 9.3- and a 6.2-point reduction in performance IQ in formula-fed and breastfed children, respectively. Such an association remained significant upon controlling for fetal fluoride exposure.

^{xxxiv} NTP disclaimer: This DRAFT Monograph is distributed solely for the purpose of pre-dissemination peer review under the applicable information quality guidelines. It has not been formally disseminated by NTP. It does not represent and should not be construed to represent any NTP determination or policy. The September 6, 2019 draft monograph was peer reviewed by a committee convened by the National Academy of Sciences, Engineering, and Medicine (NASEM). This current draft incorporates changes in response to that review and is being submitted to the same NASEM committee for an additional round of peer review.

Results from a recent study ¹¹ that used data from the Mexican Cohort ELEMENT suggested that maternal urinary fluoride exposure may affect visual-spatial and perceptual cognitive domains more so than verbal. The study reported a drop of 2 points in IQ scores for each 0.5 mg/L increase in maternal urinary fluoride. An earlier, high quality study ⁸⁵ that analyzed the same Mexican cohort reported a positive association of maternal exposure to fluoride during pregnancy with lower GCI (IQ) scores in children at approximately 4 years old, and with lower Full-Scale IQ scores at 6–12 years old. A fifth study ¹³ examined prenatal fluoride exposure in a small mother-child birth cohort in Spain: Results in boys suggest improved scores in cognitive domains with maternal urinary concentrations.

In a 2020 study ⁵⁴ reported a significant IQ score reduction for each 1 mg/L increase in water fluoride concentration [β : -1.59 (-2.61, -0.57), p=0.002]. An earlier study by ⁸³ reported that each increment of 0.5 mg/L in water fluoride corresponds to a 40% reduction in the odds of having excellent IQ in those exposed to low fluoride levels (0.20-1.40 mg/L). Another high quality study ⁷² reported an association with reduced IQ scores only in children carrying the dopamine receptor-2 (DRD2) Taq 1A- TT genotype, with no similar association with the other DRD2 Taq 1A genotypes. And finally, a cross-sectional study conducted by ⁹⁰ reported a positive and significant correlation between exposure dose and IQ reduction (r = -0.343, p < 0.01).

These studies reported a reduction of IQ scores in association with water fluoride concentrations of 0.01-2.07 ppm $\frac{78}{9}$, 0.58 ppm $\frac{53}{9}$, 0.1–1.6 ppm $\frac{38}{9}$, 0.15-1.38 ppm $\frac{85}{9}$, 0.1–15.8 ppm $\frac{18}{9}$, 0.20–2.49 ppm $\frac{72}{72}$, 0.20–3.90 ppm $\frac{37}{7}$, >1.0 ppm $\frac{9}{71}$, 1.39 ppm $\frac{54}{74}$, 1.53–2.84 ppm $\frac{40}{79}$, 2.0 ppm $\frac{83}{72}$, 2.11 ppm $\frac{90}{72}$, 2–5 ppm $\frac{14}{74}$. Three studies with acceptable quality reported no effect of fluoride on children's IQ at fluoride exposures of 0.3-3.0 ppm $\frac{89}{7}$, 1.22 ppm ±1.09 $\frac{67}{7}$ or 2.04 ppm $\frac{8}{72}$.

Current review evidence synthesis: Based on the available literature to date, the accumulating body of evidence suggests a positive association of reduced IQ scores for children and fluoride exposures relevant to current North American drinking water levels.

Cognition, trouble working

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019a ³ that reported on the association of fluoride with memory loss. The current literature search identified a large cross-sectional study ⁸⁹ with acceptable quality that was conducted using data on >500,000 US 632

adolescents and adults from the National Health and Nutrition Examination Survey III (NHANES III). The study reported no association between exposure to water fluoride (0.3-3 ppm) and trouble working.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of trouble working and fluoride exposures relevant to current North American drinking water levels.

Cardiovascular diseases (CVD)

A number of studies examining individual cardiovascular endpoints were reported in earlier reviews ^{2, 99} as well as by the current review. Whereas the evidence for each individual endpoint is supported by few studies, and given the fact that these endpoints are closely interrelated, the evolving evidence merits further investigation to properly assess the association of fluoride exposure with cardiovascular diseases.

CVD, atherosclerosis

Based on a single study with low quality, NHMRC 2016 ^{99, 100} reported a significantly higher risk of carotid artery atherosclerosis in adults in areas with high fluoride levels (>1.2 ppm). No further studies were identified by CADTH 2019 ². The current literature review identified 3 additional studies that examined the association of fluoride with cardiovascular disease biomarkers. A cross-sectional study ³⁶ with acceptable quality in Ukraine reported that children in the fluorosis area (>1.5 ppm) showed higher blood TBARS levels, while the acyl hydroperoxide levels were non-significantly increased in comparison with healthy children living in the non-fluorosis area. Another cross-sectional study with high quality ⁵⁸ that was conducted in 2015 on 5-12 years old Mexican school children. The study reported significant association of fluoride exposure (0.3 ppm) with alterations in some cardiovascular disease biomarkers, suggesting fluoride exposure may be atherogenic and may increase the likelihood of cardiovascular diseases later in life. A third study of case-control design with acceptable quality ⁸⁴ was conducted on patients with dental and skeletal fluorosis in India. The study reported variable associations of fluoride (>1.5 ppm) with different cardiovascular disease biomarkers, which support the chances of cardiovascular-related complications in fluorosis patients.

Current review evidence synthesis: Based on the available literature to date, there is limited evidence for an association of atherosclerosis and fluoride exposures relevant to current North American drinking water levels.

CVD, hypertension

Five studies were reported by NHMRC 2016 $\frac{99, 100}{(n=3)}$ (n=3) and CADTH 2019 $\frac{2}{(n=2)}$ provided mixed findings on the association of fluoride with risk of hypertension. All studies were of low quality and were derived from countries with higher fluoride levels compared to those implemented in Canada. The current review did not identify any additional studies in relation to this endpoint.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Insufficient evidence for an association between water fluoridation at current North American levels and hypertension.

CVD, myocardial infarction

There were no earlier studies identified in NHMRC 2016 ^{99, 100}. With only one study with large population size and low quality that reported no association between fluoride and myocardial infarction, CADTH 2019 ² concluded there was insufficient evidence for this association. The current review did not identify any additional studies in relation to myocardial infarction.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Insufficient evidence for an association between water fluoridation at current North American levels and myocardial infarction.

Diabetes mellitus

As reported by CADTH 2019², there were only two earlier studies with low quality that provided mixed evidence for the association of exposure to fluoride with risk of diabetes mellitus (DM). No earlier studies were identified by NHMRC 2016^{99,100}. The current literature search identified 1 study of high quality that was conducted in India and concluded that the increase in serum Fluoride

increases diabetes mellitus and diabetic nephropathy $\frac{47}{2}$. Serum fluoride levels ranged from 0.5128 ±0.30 (DM with CKD) to 0.6318 ±0.59 (DM without CKD).

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of diabetes mellitus and fluoride exposures relevant to current North American drinking water levels.

Eye diseases and conditions

Eye, select diseases

There were no earlier studies identified in NHMRC 2016 $^{99, 100}$ or CADTH 2019 ² that reported on the association of fluoride with eye diseases. The current review identified one study 69 of high quality that was conducted on Chinese adults aged >40 years old, with no congenital eye disease or ocular trauma, for examining the association between water fluoride exposure (>1.2 ppm) and seven eye diseases. The study reported significant positive associations with pterygium and arteriosclerotic retinopathy, a significant inverse association with cataracts, and non-significant associations with primary angle closure glaucoma, diabetic retinopathy, age-related macular degeneration, and strabismus.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of any of the examined eye diseases and fluoride exposures relevant to current North American drinking water levels.

Eye, refractive errors

An earlier review by CADTH 2019² identified a single low-quality study and concluded that evidence was insufficient for an assessment of this association. There were no earlier studies identified in NHMRC 2016^{99, 100} or Current literature search in relation to the association of fluoride exposure with the prevalence of refractive errors (myopia, hyperopia, astigmatism) ².

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Insufficient evidence for an association between water fluoridation at current North American levels and refractory errors.

Fluorosis

Fluorosis, dental

Earlier evidence on the association of fluoride with dental fluorosis was reported by NHMRC ^{99, 100} (three systematic reviews) and CADTH ² (21 studies: 1 acceptable, 19 low; N= 35,374), which reported consistent findings for an association between fluoride and dental fluorosis. The current literature search identified 33 cross-sectional studies, including 15 studies of high quality ^{15, 18, 19, 23, 24, 29, 32, 33, 35, 37, 70, 75, 86, 91, 105} and 18 studies of acceptable quality ^{6, 7, 10, 12, 17, 20, 21, 27, 34, 38, 43, 44, 51, 60, 67, 77, 88, 92} that were not included in earlier reviews. Thirty-two of those studies reported a positive/possible association with dental fluorosis at a wide range of fluoride concentration in drinking water (both tap and ground). Out of those 32 studies, 6 were conducted in China ^{7, 17, 23, 37, 70, 92}, 5 in India ^{10, 12, 34, 75, 86}, 5 in Brazil ^{15, 27, 35, 44, 88}, 2 in Malaysia ^{32, 77}, 2 in Pakistan ^{18, 60}, and 1 in each of Canada ¹⁰⁵, Egypt ¹⁹, Indonesia ³⁸, Iran ⁹¹, Jordan ²¹, Lithuania ⁵¹, Mexico ⁶⁷, Peru ⁶, Saudi Arabia ⁴³, Sri Lanka ²⁰, Thailand ³³, and USA ²⁴.

The study by ²⁴ included children and adolescents (age 6 to 19 years), and reported the odds (95%CI) of dental fluorosis (Dean's Fluorosis Index (DFI) \geq 1) as 1.48 (1.13, 1.96), 1.92 (1.44, 2.58), and 2.30 (1.75, 3.07) times greater at water fluoride levels of 0.31 – 0.50 mg/L, 0.51 – 0.70 mg/L, and >0.70 mg/L, compared to \leq 0.30 mg/L. ³² conducted a study on children (age 9 to 12 years) and reported that compared to those exposed to non-fluoridated water, the odds of dental fluorosis (DFI \geq 2) (95% CI) were 5.97 (3.32, 10.72) times greater among children with a lifetime exposure to 0.5 ppm fluoride, and 9.12 (5.15, 16.14) times greater among those exposed to 0.7 ppm fluoride during the first two years of life, followed by a level of 0.5 ppm.

The study by ⁷⁰ included children (age 7 to 13 years) from rural areas with low-to-moderate levels of fluoride and reported that each 1mg/L increase of water fluoride was associated with a 1.47 (1.40, 1.55), 1.85 (1.63, 2.11), 1.68 (1.57, 1.79), and 3.85 (3.01, 4.92) increased odds (95% CI) of total, very mild, mild and moderate dental fluorosis, respectively ⁷⁰. The study by ⁷⁵ included adolescents (age 12 to 15 years), and reported a correlation coefficient between water fluoride and dental fluorosis severity of 0.97 (p-value <0.05). In the bivariate analysis, the study reported 1.76 (1.31, 2.38) times greater odds (95% CI) of dental fluorosis (any fluorosis, measured using the Modified Dean's Index) among participants exposed to water fluoride levels >1.2 ppm compared to ≤1.2 ppm.

³⁶ included adolescents (age 12 to 17 years), and demonstrated a positive correlation (rho = 0.57) between the Community Fluorosis index (CFI) and levels of fluoride in drinking water. The study by ⁹¹ included children (age 9 years), and reported the frequency of participants with genuine fluorosis (excludes fluorosis-resembling defects) as 42 (47.7%), 39 (20.6%), and 3 (3.3%) in areas with high, optimal, and low levels of fluoride, respectively. Compared to areas with high levels of fluoride, the odds of genuine dental fluorosis were 70.8% (OR= 0.29, 95% CI: 0.17, 0.51) and 96.3% (OR= 0.04, 95% CI: 0.01, 0.13) less in areas with optimal and low levels of fluoride, respectively. In general, studies identified by the current literature search reported a wide range of fluoride concentrations ranging from 0.06 ppm in Brazil ⁴⁴ to >4 ppm in Iran ⁹¹.

Further to a study conducted in 2022 in Canada $\frac{105}{105}$ where the reported fluoride levels in tap water was 0.1 – 1.0 ppm, other examples of fluoride concentrations relevant to the North American context were reported from Ireland (tap water, 0.6 – 1.0 ppm) ²⁹, China (tap water, 0.89 – 0.91 ppm) ⁹², Mexico (tap water, 1.22 ±1.09 ppm) ⁶⁷, and India (tap water, 0.67-0.83 ^[404], 1.1–2.92 ¹⁰ ¹⁷ and 1.27 ±0.46 ppm ⁷⁵). Only 2 studies ^{29, 51} reported non-significant (possible) association between high drinking water fluoride (>6 ppm) and dental fluorosis.

Although no meta-analysis was conducted for the current review, an earlier review 106 included a dose-response meta-analysis of 40 studies at high risk of bias (published up to that time). The results suggested that at 0.4 ppm fluoride, 10% of a population (95% CI: 6%-15%) would be expected to have dental fluorosis of aesthetic concern (defined as \geq 3 TFI, \geq 2 TSIF, or mild or worse DFI) [odds ratio= 2.90 (95% CI 2.05 to 4.10) for each 1 mg/L increase of fluoride exposure].

Current review evidence synthesis: Several newer studies have been published since the CADTH 2019 review, adding to the large body of literature on fluoride and dental fluorosis effects. Evidence in these new studies is consistent with previously published work for the prevalence of dental fluorosis in populations with varying levels of fluoride in drinking water.

Fluorosis, skeletal

Earlier evidence on the association of fluoride with skeletal fluorosis was reported by NHMRC 2016 $\frac{99, 100}{100}$ (one systematic review at 3.8 to 8 ppm and two studies of low quality at <4, 4 to 6, and >6 ppm for one study, and 1.51 to 3.71 ppm for the other study) and CADTH 2019 ² (two studies of low quality at North American CWF levels). Evidence was collectively reported by CADTH 2019 as 638

insufficient to conclude an association. The current literature review search identified 3 crosssectional studies with high/acceptable quality that were conducted in China ⁶⁴, Ethiopia ²², and India ³⁰ on individuals aged 10 years or older. Whereas only 1 study ²² reported a positive association between fluoride exposure and skeletal fluorosis, the 2 other studies of acceptable quality reported a possible impact ³⁰, ⁶⁴. Reported ground water fluoride levels included a mean (SD) of 6.8 ppm (±4.3) in one study and a wide range of $\leq 1 - >4.0$ in another study. No water fluoride levels could be extracted, or extrapolated from the third study⁶⁴.

Current review evidence synthesis: Based on the available literature to date, there is limited evidence for an association of skeletal fluorosis with fluoride exposures relevant to North American drinking water.

Genotoxicity

There were no earlier studies identified in NHMRC 2016 $^{99, 100}$ or CADTH 2019 ² that reported on the association of fluoride exposure and genotoxicity. The current literature search identified 2 cross-sectional studies that were conducted in China with high 31 or acceptable quality 70 . Whereas the first study 31 suggested a possible association of fluoride exposure (1.1 – 4.1 ppm) with disrupting DNA methylation, the second study 70 concluded a positive association of low-moderate water fluoride exposure (0.60 ppm) and disrupting circulating mitochondrial DNA (mtDNA) levels.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of genotoxicity and fluoride exposures relevant to current North American drinking water levels.

Growth and development

BMI

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure and BMI. The current literature search identified an ecological study ⁹⁰ with acceptable quality that was conducted on Indian children and adolescents (6-18 years old), which reported a positive and non-significant correlation between water fluoride levels (range: 0.25-9.4 ppm; average: 2.1 ppm) and BMI.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of BMI and fluoride exposures relevant to current North American drinking water levels.

Childhood obesity

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure with childhood obesity. The current literature search identified a single cross-sectional study ⁶¹ with high quality that was conducted on Chinese children and adolescents aged 7–13 years old from ground water-supplied areas. The study reported an association of low-to-moderate exposure to fluoride (0.83 ppm) with overweight status and obesity in children.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of childhood obesity and fluoride exposures relevant to current North American drinking water levels.

Newborn's height and weight

A single study of low quality was reported by NHMRC 2016 ^{99, 100}, which reported that mothers exposed to drill water with a fluoride level of 4.7 ppm were more likely to have low birth weight newborns. Another study with low quality, as reported by CADTH 2019 ², showed a positive correlation between drinking water fluoride and infant height and weight. The current review did not identify any additional studies for this endpoint.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Insufficient evidence for an association between water fluoridation at current North American levels and newborns' weight or newborns' height.

Kidney diseases Kidney, dysfunction There were no earlier studies identified in NHMRC 2016 ^{99, 100} that reported on the association of fluoride and kidney dysfunction. In 2019, the review by CADTH 2019 ² identified a single study with low quality and concluded that there was insufficient evidence on the association between CWF and kidney dysfunction.

The current literature search identified 4 studies with high quality and 2 studies with acceptable quality, which examined the association of fluoride exposure with kidney dysfunction. Four out of these 6 studies reported results consistent with a possible association ^{49, 57, 62, 73}. The first study ⁶² was cross-sectional in design that was conducted on US adolescents (12-19) as part of the NHANES survey, which suggested a possible association with complex changes in kidney functions. A second cross-sectional study ⁷³ was conducted on Mexican adults (18-77 years old) who were exposed to high drinking water fluoride levels. The study reported a possible fluoride-associated kidney tubular dysfunction, with a likely impact on future development of chronic kidney dysfunction. A third cross-sectional study with acceptable quality ⁴⁹ was conducted on 19-76 years old, non-dialysis, biopsy-proven CKDu adult cases. Study suggested a possible association at water fluoride exposure and CKDu. These 4 studies reported kidney dysfunction at water fluoride concentrations of 0.48 ppm ⁶², 1.33 ppm ⁵⁷, 1.5 ppm ⁷³ and 0.68 ppm (±0.48)⁴⁹.

One cross-sectional study with high quality was conducted on 5-12 years old Mexican school children ⁵⁸, and reported an inconclusive association with kidney disease of unknown origin (CKDU) at a fluoride concentration of 0.3 ppm. Another cross-sectional study conducted on Mexican children (5-12 years old) reported no association between kidney injury biomarkers and fluoride ⁸⁷ at a concentration of 2.47 ppm.

Current review evidence synthesis: Based on the available literature to date, there is limited evidence for an association of kidney dysfunction (mainly CKDu) and fluoride exposures relevant to current North American drinking water levels.

Kidney, stones

The review by CADTH 2019² concluded there was limited evidence for an inverse association between fluoride exposure and development of kidney stones based on a single study with

acceptable quality. There were no studies identified in NHMRC 2016 ^{99, 100} or Current literature search that reported on the association of fluoride exposure with kidney stones.

*Current review evidence synthesis: I*n the absence of new studies, the CADTH summary of evidence remains unchanged: Limited evidence for an inverse association between water fluoridation at current North American levels and the incidence of kidney stones.

Kidney, ultrastructural

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure with ultrastructural changes in the kidney. The current literature search identified a single study of acceptable quality, which was conducted in India on children (4-12 years old) with nephrotic syndrome minimal change disease (NS-MCD). Although the study was case-control in design, only cross-sectional analysis results relevant to the current review were included. The study reported a positive association between fluoride exposure and ultrastructural changes and apoptosis in human renal tubules ⁸⁰. However, no water fluoride levels were extracted or extrapolated from this identified study.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of ultrastructural changes in the kidney and fluoride exposure.

Liver dysfunction

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure with liver dysfunction. The current literature search identified two studies, which examined the association of fluoride exposure with liver dysfunction. The first ⁶² was cross-sectional in design, that examined data on US adolescents (12-19) as part of the NHANES survey, and suggested a possible association between water fluoride (0.48 ppm) and complex changes in liver functions in adolescents. Another case-control study with acceptable quality ⁸⁴ was conducted on patients with dental and skeletal fluorosis in India, which reported that prolonged water fluoride (>1.5 ppm) could overwhelm the regenerative capacity of liver tissues leading to liver damage.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of liver dysfunction and fluoride exposures relevant to current North American drinking water levels.

Neurologic

Neurologic, Headache

The NHMRC 2016 $\frac{99, 100}{200}$ examined two studies with low quality, which did not provide a clear conclusion on the association between fluoride and headache symptoms. No studies were identified in CADTH 2019a ³. Current literature search identified 1 study ²² that reported a possible association between headache and paresthesia at ground water fluoride level of 6.8 ±4.3 ppm.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of headache and paresthesia and fluoride exposures relevant to current North American drinking water levels.

Neurologic, Sleep-related Outcomes

The NHMRC 2016 ^{99, 100} examined two studies with low quality, which did not provide a clear conclusion on the association between fluoride exposure and insomnia. CADTH 2019a ³ literature search did not identify any new studies. The current literature search identified a single cross-sectional study with high quality ⁶³ that was conducted on US adolescents (16-19) as part of the NHANES survey (2015–2016). This study reported positive and significant associations between water fluoride levels (0.39 ppm) and sleep apnea, bedtime and wake time; non-significant positive associations with the recommended sleep duration and daytime sleepiness; possible and significant inverse association and snoring among males; and no association with trouble sleeping.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of sleep-related outcomes and fluoride exposures relevant to current North American drinking water levels.

Reproduction

Reproduction, abortion and fertility

Two studies of low quality were identified earlier by CADTH 2019², which did not provide a clear conclusion between water fluoride level and rates of abortion. There were no studies identified in NHMRC 2016^{99,100} or Current literature search that reported on the association of fluoride exposure with abortion.

Current review evidence synthesis: In the absence of new studies, the CADTH summary of evidence remains unchanged: Insufficient evidence for an association between water fluoridation at current North American levels and reproduction in women.

Reproduction, preterm births

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure and preterm births. The current literature search identified a single cross-sectional study of high quality, that was conducted on US women with a live birth (2009-2016) who responded to the PRAMS survey (Pregnancy Risk Assessment Monitoring System) ⁶⁸. The study reported that women who had dental cleaning during pregnancy and lived in a community with water fluoridation had lower prevalence of preterm births. However, no water fluoride levels could be extracted, or extrapolated from this identified study.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of preterm births and fluoride exposure.

Reproduction, sex hormone disruption

There were no earlier studies identified in NHMRC 2016 $^{99, 100}$ or CADTH 2019 ² that reported on the association of fluoride exposure and disruption of male sex hormones. The current literature search identified 2 cross-sectional studies of high quality that examined US children and adolescents 6–19 years old (NHANES survey) ⁴¹, and male farmers from Henan Province in China ⁵⁵. Results from the first study ⁴¹ indicated a gender- and age-specific inverse associations of fluoride in plasma and water with sex steroid hormones of total testosterone, estradiol and SHBG in U.S. children and adolescents, with a mean water fluoride level of 0.36 ppm (0.30 – 0.42). The 644

second study ⁵⁵ reported a significant inverse association between water fluoride level and serum sex hormone binding globulin (SGBH) levels but not with androgen binding protein (ABP) levels. The average fluoride concentration in villages in the high exposure group (HEG) was 2.44 ± 1.88 mg/L, and in the control, low exposure villages (LEG) was 0.37 ± 0.15 mg/L. The current review also identified a relevant abstract ⁴ that reported a possible association with altering the hypothalamic testicular axis hormones in human males residing in high fluoride regions. There were insufficient details on the study in the published abstract.

Current review evidence synthesis: Based on the available literature to date, there is limited evidence for an association of levels of sex hormones and fluoride exposures relevant to current North American drinking water levels.

Thyroid dysfunction

Evidence on the association of fluoride with thyroid gland dysfunction was reported on by NHMRC 2016 ^{99, 100} (3 studies of low quality) and CADTH 2019 ² (1 study of acceptable and three studies of low quality), which concluded mixed findings, flagging insufficient evidence for this association.

The current review identified seven relevant studies, which were all of cross-sectional design, and were conducted on children and adolescents. Three studies were conducted in India <u>66, 74, 81</u>, 3 in China <u>25, 42, 54</u>, and 1 in Canada <u>76</u>. Four studies of high <u>25, 54</u> or acceptable quality <u>74, 81</u> reported a positive association with thyroid dysfunction, 1 study of high quality reported a possible association <u>76</u>, and 1 study of acceptable quality that reported a non-significant association <u>42</u> with thyroid dysfunction. These studies identified disruption of thyroid hormones at water fluoride concentrations of 0.22 ppm <u>76</u>, <1ppm <u>81</u>, 1.39 ppm <u>54</u>, and 2.88 ppm <u>74</u>. A seventh study of acceptable quality reported no association between disruption of thyroid functions and drinking water fluoride levels (0.01-2.0 ppm) <u>66</u>.

Current review evidence synthesis: Based on the available literature to date, there is limited evidence to evaluate the association of thyroid hormone disruption and fluoride exposures relevant to current North American drinking water levels.

Other outcomes

Arsenic methylation

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure and arsenic methylation. The current literature search identified a single cross-sectional study of high quality that was conducted on Mexican adults. The study reported a positive association between water fluoride exposure (1.6 ppm) and increasing arsenic (As) toxicity in adults, which has been linked to adverse health outcomes such as cancer, cardiovascular diseases, diabetes and cardiometabolic risk ⁵⁹.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of arsenic methylation and fluoride exposures relevant to current North American drinking water levels.

General health

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure and general health. The current literature search identified a large cross-sectional study ⁸⁹ with acceptable quality that was conducted using data on >500,000 US adolescents and adults from the National Health and Nutrition Examination Survey III (NHANES III). The study reported a lack of evidence for an effect of water fluoridation (0.3-3 ppm) on general health.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of general health and fluoride exposures relevant to current North American drinking water levels.

Other non-skeletal manifestations of fluoride toxicity

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure with non-skeletal manifestations of fluoride toxicity (referred to as non-skeletal fluorosis by some authors). The current literature search identified 2 cross-sectional studies with acceptable quality that were conducted in Ethiopia ²² and India ⁸². The first one ²² reported a possible association between fluoride exposure from ground water and multiple 646

manifestations including loss of appetite, constipation, and fatigue. Participants were 10–70 years old from rural areas who were exposed to groundwater fluoride levels with a mean concentration of $6.8 \pm 4.3 \text{ mg/L}$ (range: 0.3-15.5 mg/L). The second study ⁸² compared individuals living in areas with high-fluoride exposure to those in normal fluoride exposure areas. The study reported that non-skeletal manifestations of fluoride toxicity (dyspepsia, fatigue and muscle weakness) may be due to fluoride exposure through water (>1.5 ppm) or other sources like food.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of the listed non-skeletal manifestations of fluoride toxicity and fluoride exposure.

Suicide

There were no earlier studies identified in NHMRC 2016 ^{99, 100} or CADTH 2019 ² that reported on the association of fluoride exposure and suicide. The current literature search identified a single relevant abstract ⁵, which reported a possible association between fluoride exposure and reduction in suicide rates. However, no water fluoride levels were extracted or extrapolated from this identified abstract.

Current review evidence synthesis: Based on the available literature to date, there is insufficient evidence to evaluate an association of suicide and fluoride exposure.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
All-cause, mortality	1 study (N= 208,570,962, acceptable) A small reduction in incidence rate of all-cause mortality in CWF areas. Difference in rate was: - 1.3% (95% Cl: -2.4%, 0.1%).	No studies	Insufficient evidence for an association at current North American CWF levels.	No new studies	Insufficient evidence for an association at current North American CWF ^{xxxv} levels.
Bone, cancer	2 SR ^{xxxvi} (2 NR ^{xxxvii}); 6 studies (3 acceptable, 3 low) • 1 SR (8 studies; N=NR) No clear association between water fluoridation and the incidence rate of osteosarcoma	2 studies (2 acceptable; N=1,663 and N=710,260,000 person- years) Two studies with partial applicability to the North American context showed no significant	Consistent evidence for no association at current North American CWF levels.	 3 studies (1 high, 2 acceptable) 1 study (N=645, acceptable). No association between CWF and bone cancer 46 1 study (N=4,406,021, high). No association between CWF and bone cancer. Risk was a little high due to smaller 	Sufficient evidence for no association at fluoride exposures relevant to current North

2.5. Summary of evolving human evidence on all endpoints

xxxv CWF: Community water fluoridation

- xxxvi SR: Systematic review
- xxxvii NR: Not reported

	Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
fluoridation 1 study (N=20) 		 Higher exposure to fluoridated water was associated with a higher risk of developing osteosarcoma in males, but not in females 5 studies (N > 253,768,952, partial applicability to the North American context) No significant difference in the incidence rate of osteosarcoma in children and adults between high and low exposure to water fluoridation 	rate of osteosarcoma in children and adults between high and low		other examined bone diseases 48. • 1 study (N=24,661, acceptable). No association with secondary	American DWL ^{xxxviii} .

xxxviii DWL: Drinking water levels

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
	A conclusion could not be drawn from a low-quality study from India with high risk of bias				
Bone, density and quality	 1 SR (NR); 1 study (low) 1 SR (27 studies; N=NR) Addition of fluoride to drinking water at the level of 1 ppm did not associate with a decrease in bone mineral density compared with non- fluoridated water. 1 study (low, N= 675) Prevalence of osteoporosis was not significantly different between groups. (Limited) 	No studies	Insufficient evidence for an association at current North American CWF levels.	 5 studies (4 high and 1 acceptable) 1 study (N=4,306, high) Positive association with increasing bone mass density and skeletal fragility in older women ²⁸ 1 study (N=4,406,021, high) No association between CWF and osteoporosis. ⁴⁸. 1 study (N=722, high) Positive association with decreasing BMD in women ⁵² 1 study (N=341, high) Negative association with bone quality ⁴⁵. 1 study (N=380, acceptable) 	Inconsistent evidence for an association at current North American CWF levels.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				No association with bone quality ⁷⁹ .	
Bone, hip fracture	 2 SRs (2 NR); 2 studies (acceptable) 2 SRs (19 studies; N=NR) No clear association between water fluoridation and hip fracture incidence in adults. 2 studies (acceptable; N=313,329,725) No increased risk of hip fracture from water fluoridation exposure. 	1 study (acceptable; N=477,610,000 person- years) A weak association between water fluoridation and hip fracture observed in females, but not in males.	Consistent evidence for no association with CWF levels.	1 study (high) • 1 study (N=4,406,021, high). No association between CWF and risk of hip fractures in older women ⁴⁸ .	Sufficient evidence for no association at fluoride exposures relevant to current North American DWL.
Bone, musculoskeletal pain	2 studies (2 low; N=3,266) Increased risk of lower back pain and joint pain associated with higher fluoride levels. The results were from studies	No studies	Insufficient evidence for an association at current North American CWF levels.	No new studies	Insufficient evidence for an association at current North American CWF levels.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
Cancer, total,	of low quality and from countries where socio- economic parameters differed than those in Canada. SRs (2 NR); 3 studies	1 study (acceptable;	Consistent	No new studies	Sufficient
incidence and mortality	 e and (2 mil), o clastice (acceptable) 2 SR (13 studies; N=NR) No clear association between water fluoridation and overall cancer incidence 1 study (N=208,770,962) No significant difference in the incidence of all cancer between CWF and non-CWF 1 study (N=555,127,448) Significantly lower incidence rate of 	N=827,660,000 person- years) Incidence of bladder cancer was lower in fluoridation areas. Odds ratio was 0.94 (95% Cl, 0.90 to 0.98).	evidence for no association at current North American CWF levels.		evidence for no association at current North American CWF levels.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
	invasive bladder cancer in CWF. Difference in rate= -8.0% (95% Cl: - 9.9%, -6.0%) • 1 study (N=NR) An inverse correlation between the percentage of the population receiving fluoridated water and incidence of eye cancer (r= -0.45; P=0.002).				
Cognitive, ADHD	No studies	No studies	N/A	 2 studies (2 high) 1 study (cycle 2: N=2,520; cycle 3: N=2,667, high). Positive association with ADHD among North American youth, particularly among adolescents ⁶⁵. 1 study (N=213, high). 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				Positive association with inattention, but not hyperactivity or impulse control (ADHD) in children due to prenatal exposure to fluoride ⁷¹ .	
Cognitive, dementia	No studies	No studies	N/A	 1 study (N=6,980, high). Positive association with dementia risk ⁵⁰. 	Insufficient evidence for an association
Cognitive, Down syndrome	 2 SRs (2 NR); 1 study (acceptable) 2 SRs (N= NR) No clear association between water fluoridation and Down syndrome. 1 study (N=2,272,300) No significant difference in the incidence rate of Down syndrome between CWF and non-CWF. 	1 study (acceptable; N=2,020,259) No significant difference in the incidence rate of Down syndrome by fluoridation status.	Limited evidence for no association at current North American CWF levels.	No new studies	Limited evidence for an association at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
Cognitive, reduction in IQ score	 1 SR (NR); 11 studies (1 high, 2 acceptable, 8 low) 1 SR (2 studies; N=NR) No evidence of sufficient quality to make any conclusions for a relationship between water fluoridation and IQ in children or cognitive impairment in adults. 1 study (N=992 children and 942 adults; high quality and partial applicability to the North American context) No difference in mean IQ scores of children and adults between fluoridated water (0.7 ppm-1.0 ppm) and naturally occurring water fluoride (0.0 ppm- 0.3 ppm). 	5 low) • 1 study (N=NR, acceptable) No effect of water fluoride on cognitive ability, non-cognitive ability, and math test in participants aged ≥ 16 years in Sweden. • 1 study (N=2,220, low) No clear association between fluoride	Limited evidence for no association at current North American CWF levels.	 21 studies (12 high, 9 acceptable) 1 study (N=386, high) Positive association of prenatal exposure to fluoride with sustained impacts on IQ 11. 1 study (N=316, high) Results in boys suggest improved scores in cognitive domains with maternal urinary concentrations 13. 1 study (N=148, high) Positive association between high fluoride exposure and lower IQ levels 18. 1 study (N=596, high) Positive association of IQ with prenatal and postnatal fluoride exposure, which may be modified by sex (further evidence needed) 26. 	Sufficient evidence for a positive association with lowering IQ scores in children at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
	• 10 studies (N= 1,445) Mixed findings on the relationship between water fluoridation and IQ or cognitive function from low quality studies with limited applicability to the North American context.	 4 studies (N=1,341, low) Mixed findings from studies of low quality and with limited applicability to the North American context. 		 1 study (N=709, high) Positive association between low-to-moderate fluoride exposure with alteration of IQ 37. 1 study (N=952, high) Positive association between intelligence and fluoride, and possibly with the interaction of fluoride with mitochondrial function-related SNP-set, genes and pathways ³⁹. 1 study (N=567, high) Positive association of exposure to drinking water fluoride and IQ in children. Dopamine-related genes polymorphism may modify the effects of such exposure ⁴⁰. 1 study (N=571, high). Positive association with alterations in childhood thyroid 	

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				 function that may modify the association between fluoride and intelligence (IQ scores) 54. 1 study (N=398, high). Positive association with diminished non-verbal intellectual abilities (performance IQ) 53. 1 study (N=2,886, high). Negative association with IQ scores 83. 1 study (N=323, high). Negative association with IQ scores 63. 1 study (N=323, high). Negative association with IQ scores in children carrying the dopamine receptor-2 (DRD2) Taq 1A- TT genotype. No association with the other DRD2 Taq 1A genotypes 72. 1 study (N=299, high). Positive association of prenatal exposure with lower 	
				GCI (IQ) scores in children at	

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				()	
				approximately 4 y old, and	
				with lower Full-Scale IQ	
				scores at 6–12 y old ⁸⁵ .	
				 1 study (n=90, acceptable) 	
				Positive association between	
				excess drinking water fluoride	
				exposure and IQ reduction 14.	
				 1 study (n=100, acceptable) 	
				Positive association of	
				intelligence of children with	
				prevalence of fluorosis, with	
				the intelligence level of those	
				in high-exposure areas being	
				lower than those in low-	
				exposure areas <u>³⁸.</u>	
				 1 study (n=683, acceptable) 	
				Positive association of IQ	
				reduction with fluoride	
				exposure, as well as with	
				fluoride's interaction with	
				MTHFD1 polymorphisms ⁹ .	

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				 1 study (N >500.000, acceptable). No evidence of an effect of water fluoridation on retardation in children ⁸⁹. 1 study (N=149, acceptable). Negative correlation with IQ ⁹⁰. 1 study (N=498, acceptable) Some non-significant frequency differences between urinary fluoride levels and reducing IQ scores ⁴² 1 study (N=775, acceptable). Possible inverse association with schooling performance (IQ) ⁷⁸. 1 study (N=120, acceptable) No significant difference was present between the IQ distribution in the high and low 	
				fluoride areas ⁸ .	

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				• 1 study (N=498, acceptable) No association between fluoride and IQ scores 67	
Cognitive, trouble working	No studies	No studies	N/A	 1 study (N >500.000, acceptable). No evidence of an effect of water fluoridation on trouble working for children or adults 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.
CVD, atherosclerosis	1 study (N= 500, low) Significantly higher risk of carotid artery atherosclerosis in adults in areas with high fluoride levels (>1.2 ppm).	No studies	Insufficient evidence for an association at current North American CWF levels.	3 studies (1 high, 2 acceptable) • 1 study (N=31, acceptable) <i>Children in the fluorosis area</i> <i>had higher blood TBARS</i> <i>levels, while the acyl</i> <i>hydroperoxide levels were</i> <i>non-significantly increased in</i> <i>comparison with healthy</i> <i>children living in the non-</i> <i>fluorosis area</i> 36.	Limited evidence for an association at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				 1 study (N= 374, high). Significant positive association of urinary fluoride with cardiovascular diseases' markers VCAM-1, ICAM-1 and cIMT, significant negative association with sCys-C, and no significant association with ET-1 58. 1 study (N= 508, acceptable). Positive correlation with erythrocyte TBARS (p <0.01), plasma TBARS (p <0.05), cholesterol (p <0.01) and LDL (p <0.01). Significant inverse association with PON1, ARE, and lactonase. No significant association with TGL and VLDL. No observed correlation with serum HDL; however, serum fluoride modulates the activities of 	
				PON1, ARE and lactonase,	

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				which might be useful for predicting the risk of atherosclerosis in fluorosis patients ⁸⁴ .	
CVD, hypertension	3 studies (low; N>160,637) Mixed findings from studies of low quality and derived from countries where fluoride levels were many times higher than the current North American levels	2 studies (2 low; N=3,224) <i>Mixed findings from</i> <i>studies of low quality</i> <i>and from countries</i> <i>where fluoride levels</i> <i>were many folds</i> <i>higher than the</i> <i>current North</i> <i>American levels (2</i> <i>studies</i>	Insufficient evidence for an association at current North American CWF levels.	No new studies	Insufficient evidence for an association at current North American CWF levels.
CVD, myocardial infarction	No studies	1 study (low; N=474,217) No significant difference in the risk of myocardial infarction and water	Insufficient evidence for an association at current North American CWF levels.	 1 study (N=31, acceptable) Children in the fluorosis area had higher blood TBARS levels, while the acyl hydroperoxide levels were non-significantly increased in comparison with healthy 	Insufficient evidence for an association at current North American CWF levels.

Outcome	NHMRC 2016	CADTH 2019 new evidence fluoride levels in	CADTH 2019 conclusion	Current review (2022/2023) children living in the non-	Revised conclusion
Diabetes Mellitus	No studies	Sweden. 2 studies (2 low) • 1 study (N=NR) No convincing evidence for an association between water fluoride levels and incidence of type 1 diabetes in Canada • 1 study (N=NR) A positive relationship between added fluoride in drinking water, even at optimum level, and the incidence and prevalence of diabetes in the US.	Insufficient evidence for an association at current North American CWF levels.	fluorosis area ³⁶ . • 1 study (N=92, high) The increase in serum Fluoride increases diabetes mellitus and diabetic nephropathy ⁴⁷	

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
Eye, diseases	No studies	No studies	N/A	 1 study (N= 1, 813, high). Possible (significant) positive association of water fluoride levels with pterygium and arteriosclerotic retinopathy, and significant inverse association with cataract. Non-significant associations with primary angle closure glaucoma, diabetic retinopathy, age-related macular degeneration, and strabismus ⁶⁹. 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.
Eye, refractive errors	No studies	1 study (low; N=1,415) No difference in prevalence of refractive errors (myopia, hyperopia, astigmatism) between high and low water fluoride levels.	Insufficient evidence for an association at current North American CWF levels.	No new studies	Insufficient evidence for an association at current North American CWF levels.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
Fluorosis, dental	 3 SRs (2 NR, 1 high) 1 SR (88 studies; N= NR) Prevalence increased with water fluoride levels. Prevalence of dental fluorosis of any level of severity at 1 ppm was 48% (95% Cl, 40 to 75), of which 12.5% (95% Cl, 7.0 to 21.5) had fluorosis of aesthetic concern. 1 SR (10 studies; N= NR) A fourfold higher risk in the development of overall dental fluorosis and fluorosis of aesthetic concern in optimal water fluoridation compared with non-CWF. The absolute increase in prevalence 	21 studies (1 acceptable, 20 low; N= 35,374) In all studies, dental fluorosis prevalence and its severity increased with increased water fluoride levels (21 studies;). The majority of evidence (17 out of 21 studies) derived from countries where water fluoride levels were many folds higher than the current North American levels.	Consistent evidence for an association at current North American CWF levels.	 33 studies (15 high, 18 acceptable) Thirty-two studies (3 studies (15 high quality 15, 18, 19, 23, 24, 29, 32, 33, 35, 37, 70, 75, 86, 91, 105 and 17 acceptable 6, 7, 10, 12, 17, 20, 21, 27, 34, 38, 43, 44, 60, 67, 77, 88, 92 These studies reported a positive association with dental fluorosis at a wide range of fluoride concentration in drinking water (both tap and ground). Only 1 study 51 (acceptable, N= 1,397) Study reported no significant association between high drinking water fluorosis. 	Sufficient evidence for a positive association at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
	 was 26% and 5%, respectively. 1 SR (90 studies; N= 59,630) Prevalence of any level at 0.7 ppm was 40%, of which 12% had fluorosis of aesthetic concern 				
Fluorosis, skeletal	 1 SR (NR); 2 studies (2 low) 1 SR (1 study; N=NR) Skeletal fluorosis found only in areas of high fluoride levels (3.8 ppm to 8.0 ppm). 2 studies (2 low, N=2,816) No clear relationship between water fluoride level and prevalence of skeletal fluorosis (<4, 4 to 6, and >6 ppm for one 	2 studies (2 low; N=1,595) <i>Mixed findings from</i> <i>studies of low quality</i> <i>and from countries</i> <i>where fluoride levels</i> <i>were many folds higher</i> <i>that current North</i> <i>American levels.</i>	Insufficient evidence for an association at current North American CWF levels.	 3 studies (1 high, 2 acceptable) 1 study (N=316, high) Positive association between fluoride and skeletal fluorosis 22. 1 study (N=3,268, acceptable) Possible association between fluoride and skeletal fluorosis 30 1 study (N=302, acceptable). Possible impact on some of the genetic biomarkers of skeletal fluorosis 64. 	Limited evidence for an association with fluoride exposure relevant to North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
	study, and 1.51 to 3.71 ppm for the other study).				
Genotoxicity	No studies	No studies	N/A	 2 studies (1 high, 1 acceptable) 1 study (N=281, acceptable) Possible association of fluoride exposure with disrupting DNA methylation 31. 1 study (N=616, high) Positive association of low- moderate water fluoride exposure and disrupting circulating mitochondrial DNA (mtDNA) levels ²⁰. 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.
Growth & development, BMI	No studies	No studies	N/A	• 1 study (N=149, acceptable). Positive, non-significant correlation with BMI ⁹⁰ .	Insufficient evidence for an association at fluoride exposures relevant to

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
Growth &	No studies	No studies	N/A	• 1 study (N=2,340, high).	current North American DWL. Insufficient
development, childhood obesity				Low-to-moderate fluoride exposure is associated with overweight and obesity in children. Gender and paternal education level may modify the relationship ⁶¹ .	evidence for an association at fluoride exposures relevant to current North American DWL.
Growth & development, Newborn's height & weight	1 study (low; N=324) Mothers exposed to drill water with a fluoride level of 4.7 ppm had higher risk to have low birth weight newborns.	1 study (low; N= 492) A positive correlation between babies' height (r = 0.69; P < 0.001) or babies' weight $(r = 0.44; P < 0.001)$ and drinking water fluoride.	Insufficient evidence for an association at current North American CWF levels.	No new studies.	Insufficient evidence for an association at current North American CWF levels.
Kidney, dysfunction	No studies	1 study (low; N= 824) No conclusion could be drawn due to	Insufficient evidence for an association at current North	6 studies (4 high, 2 acceptable) 1 study (N=311, acceptable) 	Limited evidence for an association at fluoride

668

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
		significant methodological limitations and lack of statistical analysis.	American CWF levels.	 Possible association with chronic kidney disease of unknown origin (CKDU) ⁴⁹ 1 study (N=4,470, high). Possible association with kidney functions (lower estimated glomerular filtration rate and blood urea nitrogen concentration, and slightly elevated serum uric acid concentration) in adolescents ⁶². 1 study (N= 239, high). Possible association with kidney tubular dysfunction ⁷³. 1 study (N=193, acceptable). Possible association with chronic kidney disease of unknown origin (CKDU) ⁵⁷. 1 study (N= 374, high). Inconclusive association of fluoride exposure with kidney 	exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				 injury (increased eGFR, decreased uCys-C, and no significant association with KIM-1) 58. 1 study (N= 83, high). No association was found between kidney injury biomarkers and fluoride 87. 	
Kidney, stones	No studies	1 study (acceptable; N=47,610,000 person- years) Lower incidence of emergency admissions for kidney stones in CWF areas in England. Incidence rate ratio was 0.90 (95% CI, 0.82 to 0.98).	Limited evidence for an inverse association at current North American CWF levels.	No new studies	Limited evidence for an inverse association at current North American CWF levels.
Kidney, ultrastructural	No studies	No studies	N/A	 1 study (N=156, acceptable). 	Insufficient evidence for an association with

670

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				Positive association with ultrastructural changes and apoptosis in human renal tubules ⁸⁰ .	fluoride exposure.
Liver dysfunction	No studies	No studies	N/A	 2 studies (1 high, 1 acceptable) 1 study (N=4,470, high). Possible association between fluoride exposure and complex changes in liver functions ⁶². 1 study (N= 508, acceptable). Increased LDH5 isoenzyme (liver synthesized) activity is an indication of possible liver damage in fluorosis patients. Therefore, prolonged fluoride ingestion overwhelmed the regenerative capacity of liver tissues. Serum fluoride modulates the activities of PON1, ARE and lactonase, which might be useful for 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				predicting the risk of liver diseases in fluorosis patients ⁸⁴ .	
Neurologic, Headache	2 studies (2 low; N=5,342) No conclusion could be drawn due to significant methodological limitations and lack of statistical analysis.	No studies	Insufficient evidence for an association at current North American CWF levels.	 1 study (N=316, acceptable) Possible association between fluoride and headache and paresthesia ²². 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.
Neurologic, Sleep- related Outcomes	2 studies (2 low; N=5,342) No conclusion could be drawn for the association of fluoride exposure and insomnia due to significant methodological limitations and lack of statistical analysis.	No studies	Insufficient evidence for an association at current North American CWF levels.	 1 study (N= 419, high). Fluoride exposure may contribute to changes in sleep cycle regulation and sleep behaviors among older adolescents in the US. Positive and significant association between water fluoride levels and sleep apnea, bed time and wake time. Non-significant positive 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
Reproduction, abortion and fertility	No studies	 2 studies (2 low; N=5,993) No clear relationship between water fluoride level and rates of abortion and fertility due to lack of controlling for confounders, from studies of low quality and of limited applicability to the North American context. 	Insufficient evidence for an association at current North American CWF levels.	association with recommended sleep duration and daytime sleepiness. Possible (significant) inverse association between water fluoride levels and snoring among males. No association with trouble sleeping 63. No new studies	Insufficient evidence for an association at current North American CWF levels.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
Reproduction, preterm births	No studies	No studies	N/A	• 1 study (N=9,234, high). Women who had dental cleaning during pregnancy and lived in a community with water fluoridation had lower prevalence of preterm birth (significant). Water fluoridation alone was inversely associated (non-significant) with prevalence of preterm births 68.	Insufficient evidence for an association with fluoride exposure.
Reproduction, sex hormone disruptions	No studies	No studies	N/A	2 studies (2 high), 1 abstract (N/A) • 1 study (N=3,392, high) <i>Significant inverse</i> <i>associations of fluoride in</i> <i>plasma and water with sex</i> <i>steroid hormones of total</i> <i>testosterone, estradiol and</i> <i>SHBG in U.S. children and</i> <i>adolescents</i> ⁴¹ . • 1 study (N= 348, high).	Limited evidence for an association at fluoride exposures relevant to current North American DWL.

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
				 Significant inverse association between urinary fluoride levels and serum sex hormone binding globulin levels: SHBG (significant) and ABP (non- significant) ⁵⁵. 1 abstract (N= 100, N/A). Possible association with altering the hypothalamic testicular axis hormones in human males residing in high fluoride regions (insufficient study information) 4. 	
Thyroid function	3 studies (3 low) • 3 studies (N=789) <i>Mixed findings from</i> <i>studies of low quality and</i> <i>with limited applicability</i> <i>the North American</i> <i>context.</i>	 4 studies (1 acceptable, 3 low) 1 study (N=5,201) No association between fluoride exposure and impaired thyroid functioning in the 	Insufficient evidence for an association at current North American CWF levels.	 7 studies (3 high, 4 acceptable) 1 study (N=446, high) Positive association with thyroid dysfunction (TSH, Tvol)²⁵. 1 study (N=498, acceptable). Non-significant frequency differences between urinary fluoride levels and TSH⁴² 	Limited evidence for an association at fluoride exposures relevant to current North American DWL.

Outcome NHMRC 2016	CADTH 2019 new	CADTH 2019	Current review	Revised
	evidence	conclusion	(2022/2023)	conclusion
	North American population. • 1 study (N=7,935 GP practices) Significantly higher odds of GP practice recording high levels of hypothyroidism in areas with fluoridation compared with areas without fluoridation in the US • 2 studies (N=1,037) No clear relationship between water fluoride and thyroid function from studies of low quality and with limited applicability to the		 1 study (N=6,914,124, high). Possible association with thyroid hypofunction ⁷⁶. 1 study (N=571, high). Positive association with alterations in childhood thyroid function that may modify the association between fluoride and intelligence (IQ scores) ⁵⁴. 1 study (N=400, acceptable). Positive association with alteration in thyroid hormones activity ⁷⁴. 1 study (N=100, acceptable). Positive association with increased thyroid hormone levels ⁸¹. 1 study (N=293, acceptable). No association with thyroid functions in children with 	

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
		North American context.		normal nutritional status and optimal iodine intake ⁶⁶ .	
Other outcomes, arsenic methylation	No studies	No studies	N/A	 1 study (N=236, high). Positive association with increasing arsenic (As) toxicity in adults, which has been linked to adverse health effects such as cancer, cardiovascular diseases, diabetes and cardiometabolic risk ⁵⁹. 	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.
Other outcomes, general health	No studies	No studies	N/A	• 1 study (N >500.000, acceptable). No evidence of an effect of water fluoridation on general health ⁸⁹ .	Insufficient evidence for an association at fluoride exposures relevant to current North American DWL.
Other outcomes, other non-skeletal	2 studies (2 low; N=5,342)	No studies	Insufficient evidence for an	2 studies (acceptable)1 study (N=316, acceptable)	Insufficient evidence for an

677

Outcome	NHMRC 2016	CADTH 2019 new evidence	CADTH 2019 conclusion	Current review (2022/2023)	Revised conclusion
manifestations of	No conclusion could be		association at	Possible association between	association with
fluoride toxicity	drawn due to significant		current North	fluoride and Loss of appetite,	fluoride
	methodological limitations		American CWF	constipation, and fatigue $\frac{22}{2}$.	exposure.
	and lack of statistical		levels.	 1 study (N=903, acceptable). 	
	analysis.			Compared to low-fluoride	
				group, persons in the high-	
				fluoride group reported	
				dyspepsia (75.0%), fatigue	
				(59.4%), and muscle	
				weakness (69.2%) ⁸² .	
Other outcomes,	No studies	No studies	N/A	• 1 abstract (N=201, N/A).	Insufficient
suicide				Possible association with	evidence for an
				decrease in suicide rates	association with
				(insufficient study information)	fluoride
				<u>5</u> .	exposure.

Supplementary Material 3. Excluded human studies

This supplement lists all epidemiologic studies identified in the search, but considered ineligible for the systematic review, with reasons provided for exclusion at both level 1 (title and abstract screening) and level 2 (full text examination).

Level	Reason for exclusion	References
Level 1	Irrelevant exposure (other type of fluoride/water)	821
(Title and abstract	Irrelevant population (non-human studies)	798
screening)	Irrelevant outcome	332
2,202	Irrelevant study type (non-original studies)	36
	Irrelevant assessment	63
	Non-recent (prior to 2016)	152
L2	Unavailable full-text	29
(Full-text examination)	Examined in earlier reviews	34
422	Irrelevant exposure (other type of fluoride/water)	31
	Irrelevant population (non-human studies)	12
	Irrelevant outcome	98
	Irrelevant study type (non-original studies)	214
	References in non-Latin languages	4

Table 2: Human studies excluded at levels 1 and 2 by reason for exclusion

List of excluded studies (arranged by exclusion level, reason for exclusion, then alphabetically by first author's last name)

Le vel	Bibliography	Reason for exclusion
L1	Abouleish, M. Y. Z. (2016). Evaluation of fluoride levels in bottled water and their contribution to health and teeth problems in the United Arab Emirates Saudi Dental Journal, 28(4), 194-202	Duplicate reference
L1	Alarcón-Herrera, M. T.,Martin-Alarcon, D. A.,Gutiérrez, M.,Reynoso-Cuevas, L.,Martín- Domínguez, A.,Olmos-Márquez, M. A.,Bundschuh, J. (2020). Co-occurrence, possible origin, and health- risk assessment of arsenic and fluoride in drinking water sources in Mexico: geographical data visualization Science of the Total Environment, 698(#issue#), 134168	Duplicate reference
L1	Altine, B.,Gai, Y.,Han, N.,Jiang, Y.,Ji, H.,Fang, H.,Niyonkuru, A.,Bakari, K. H.,Rajab Arnous, M. M.,Liu, Q.,Zhang, Y.,Lan, X. (2019). Preclinical Evaluation of a Fluorine-18 (¹⁸ F)- Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging Molecular Pharmaceutics, 16(11), 4563-4571	Duplicate reference
L1	Angulo, M., Cuitino, E., Molina-Frechero, N., Emilson, C. G. (2020). The association between the prevalence of dental fluorosis and the socio- economic status and area of residence of 12-year- old students in Uruguay Acta Odontol Scand, 78(1), 26-30	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Arnold, W. H.,Gröger, Ch,Bizhang, M.,Naumova, E. A. (2016). Dentin abrasivity of various desensitizing toothpastes Head & face medicine, 12(#issue#), 16- 16	Duplicate reference
L1	Athapattu, B. C. L., Thalgaspitiya, T. W. L. R., Yasaratne, U. L. S., Vithanage, M. (2017). Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka Environmental geochemistry and health, 39(6), 1397-1407	Duplicate reference
L1	Bachanek, Teresa, Hendzel, Barbara, Wolańska, Ewa, Samborski, Dariusz, Jarosz, Zbigniew, Pitura, Karolina Maria, Dzida, Katarzyna, Podymniak, Mariusz, Tymczyna-Borowicz, Barbara, Niewczas, Agata, Shybinskyy, Volodymyr, Zimenkovsky, Andryi (2019). Condition of mineralized tooth tissue in a population of 15-year-old adolescents living in a region of Ukraine with slightly exceeded fluorine concentration in the water Annals of agricultural and environmental medicine : AAEM, 26(4), 623-629	Duplicate reference
L1	Barberio, Amanda M.,Hosein, F. Shaun,Quiñonez, Carlos,McLaren, Lindsay (2017). Fluoride exposure and indicators of thyroid functioning in the North American population: implications for community water fluoridation Journal of epidemiology and community health, 71(10), 1019-1025	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Barberio, Amanda M.,Quiñonez, Carlos,Hosein, F. Shaun,McLaren, Lindsay (2017). Fluoride exposure and reported learning disability diagnosis among North American children: Implications for community water fluoridation North American journal of public health = Revue 682estizo682ne de sante publique, 108(3), e229-e239	Duplicate reference
L1	 Bartos, M.,Gumilar, F.,Gallegos, C. E.,Bras, C.,Dominguez, S.,Monaco, N.,Esandi, M. D. C.,Bouzat, C.,Cancela, L. M.,Minetti, A. (2018). Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the alpha7 nicotinic receptor and oxidative stress Reproductive Toxicology, 81(#issue#), 108-114 	Duplicate reference
L1	Bondu, J. D., Selvakumar, R., Fleming, J. J. (2018). Validating a High Performance Liquid Chromatography-Ion Chromatography (HPLC-IC) Method with Conductivity Detection After Chemical Suppression for Water Fluoride Estimation Indian Journal of Clinical Biochemistry, 33(1), 86-90	Duplicate reference
L1	Bouyeure-Petit, A. C., Chastan, M., Edet-Sanson, A., Becker, S., Thureau, S., Houivet, E., Vera, P., Hapdey, S. (2017). Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for ¹⁸ F-FDG-PET-CT: phantom validation, practical implications and patient	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	evaluation British Journal of Radiology, 90(1070), 20160549	
L1	Broadbent, Jonathan M., Thomson, W. Murray, Ramrakha, Sandhya, Moffitt, Terrie E., Zeng, Jiaxu, Page, Lyndie A. Foster, Poulton, Richie (2015). Community Water Fluoridation and Intelligence: Prospective Study in New Zealand American Journal of Public Health, 105(1), 72-76	Duplicate reference
L1	Brooks, A.,Jackson, I.,Scott, P. (2017). Evaluation of metal-protein aggregate radioligand [¹⁸ F]FL2-b by small animal PET imaging and autoradiography in alzheimer's disease, amyotrophic lateral sclerosis, and lewy body dementia Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Duplicate reference
L1	CADTH (2019). Dental and other health outcomes North American Agency for Drugs and Technologies in Health. CADTH Rapid Response Reports, 10(#issue#), 23	Duplicate reference
L1	Cardenas-Gonzalez, M.,Osorio-Yanez, C.,Gaspar- Ramirez, O.,Pavkovic, M.,Ochoa-Martinez, A.,Lopez- Ventura, D.,Medeiros, M.,Barbier, O. C.,Perez- Maldonado, I. N.,Sabbisetti, V. S.,Bonventre, J. V.,Vaidya, V. S. (2016). Environmental exposure to arsenic and chromium in children is associated with	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	kidney injury molecule-1 Environmental Research, 150(#issue#), 653-662	
L1	Cárdenas-González, M.,Osorio-Yáñez, C.,Gaspar- Ramírez, O.,Pavković, M.,Ochoa-Martínez, A.,López-Ventura, D.,Medeiros, M.,Barbier, O. C.,Pérez-Maldonado, I. N.,Sabbisetti, V. S.,Bonventre, J. V.,Vaidya, V. S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1 Environmental research, 150(#issue#), 653-662	Duplicate reference
L1	Cárdenas-González, Mariana, Jacobo Estrada, Tania, Rodríguez-Muñoz, Rafael, Barrera-Chimal, Jonatan, Bobadilla, Norma A., Barbier, Olivier C., Del Razo, Luz M. (2016). Sub-chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin Journal of applied toxicology : JAT, 36(2), 309-319	Duplicate reference
L1	Chaitanya, N. C. S. K.,Karunakar, P.,Allam, N. S. J.,Priya, M. H.,Alekhya, B.,Nauseen, S. (2018). A systematic analysis on possibility of water fluoridation causing hypothyroidism Indian journal of dental research : official publication of Indian Society for Dental Research, 29(3), 358-363	Duplicate reference
L1	Chi, Donald L. (2014). Caregivers Who Refuse Preventive Care for Their Children: The Relationship Between Immunization and Topical Fluoride Refusal American Journal of Public Health, 104(7), 1327-33	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	 Chiba, F. Y., Tsosura, T. V. S., Pereira, R. F., Mattera, M. S. de L. C., Santos, R. M. dos, Marani, F., Garbin, C. A. S., Moimaz, S. A. S., Sumida, D. H. (2019). Mild chronic NaF intake promotes insulin resistance and increase in inflammatory signaling in the white adipose tissue of rats Fluoride, 52(1), 18-28 	Duplicate reference
L1	Chiotellis, Aristeidis, Sladojevich, Filippo, Mu, Linjing, Müller Herde, Adrienne, Valverde, Ibai E., Tolmachev, Vladimir, Schibli, Roger, Ametamey, Simon M., Mindt, Thomas L. (2016). Novel chemoselective (18) F-radiolabeling of thiol- containing biomolecules under mild aqueous conditions Chemical communications (Cambridge, England), 52(36), 6083-6086	Duplicate reference
L1	Choubisaa, S. L. (2018). A brief and critical review of endemic hydrofluorosis in Rajasthan, India Fluoride, 51(1), 13-33	Duplicate reference
L1	Collier, T. L., Yokell, D. L., Livni, E., Rice, P. A., Celen, S., Serdons, K., Neelamegam, R., Bormans, G., Harris, D., Walji, A., Hostetler, E. D., Bennacef, I., Vasdev, N. (2017). Automated radiosynthesis of MK-6240 and validation for human use Journal of labelled compounds and radiopharmaceuticals. Conference: 22^{nd} international symposium on radiopharmaceutical sciences, ISRS, 60(#issue#), #Pages#	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Cooray, T.,Wei, Y.,Zhong, H.,Zheng, L.,Weragoda, S. K.,Weerasooriya, A. R. (2019). Assessment of Groundwater Quality in CKDu Affected Areas of Sri Lanka: Implications for Drinking Water Treatment International Journal of Environmental Research & Public Health [Electronic Resource], 16(10), 14	Duplicate reference
L1	Cooray, T.,Wei, Y.,Zhong, H.,Zheng, L.,Weragoda, S. K.,Weerasooriya, R. (2019). Assessment of groundwater quality in CKDu Affected areas of Sri Lanka: Implications for drinking water treatment International Journal of Environmental Research and Public Health, 16 (10) (no pagination)(1698), #Pages#	Duplicate reference
L1	Cotruvo, Joseph A. (2018). Drinking water contaminants guidebook #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Daiwile, A. P., Tarale, P., Sivanesan, S., Naoghare, P. K., Bafana, A., Parmar, D., Kannan, K. (2019). Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis Ecotoxicol Environ Saf, 169(#issue#), 410-417	Duplicate reference
L1	de Cassia Alves Nunes, R.,Chiba, F. Y.,Pereira, A. G.,Pereira, R. F.,de Lima Coutinho Mattera, M. S.,Ervolino, E.,Louzada, M. J. Q.,Buzalaf, M. A. R.,Silva, C. A.,Sumida, D. H. (2016). Effect of Sodium Fluoride on Bone Biomechanical and Histomorphometric Parameters and on Insulin	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Signaling and Insulin Sensitivity in Ovariectomized Rats Biological Trace Element Research, 173(1), 144-153	
L1	Dec, K.,Łukomska, A.,Baranowska-Bosiacka, I.,Pilutin, A.,Maciejewska, D.,Skonieczna-Żydecka, K.,Derkacz, R.,Goschorska, M.,W (2018). Pre-and postnatal exposition to fluorides induce changes in rats liver morphology by impairment of antioxidant defense mechanisms and COX induction Chemosphere, 211(#issue#), 112-119	Duplicate reference
L1	Dec, K.,Łukomska, A.,Maciejewska, D.,Jakubczyk, K.,Baranowska-Bosiacka, I.,Chlubek, D.,W (2017). The influence of fluorine on the disturbances of homeostasis in the central nervous system Biological Trace Element Research, 177(2), 224-234	Duplicate reference
L1	Dian, B. J., Selvakumar, R., Joseph, F. J., Teresa, M. M., Thomas, V. P., Sheshadri, M. S. (2017). Does Vitamin D Deficiency and Renal Dysfunction play a role in the pathogenesis of Fluorotoxic Metabolic Bone Disease (FMBD) Indian Journal of Endocrinology and Metabolism, 21 (7 Supplement 1)(#issue#), 65	Duplicate reference
L1	Enriquez, J. S.,Yu, M.,Bouley, B. S.,Xie, D.,Que, E. L. (2018). Copper(ii) complexes for cysteine detection using ¹⁹ F magnetic resonance Dalton transactions (Cambridge, England : 2003), 47(42), 15024-15030	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Escobar-García, Diana,Mejía-Saavedra, Jesús,Jarquín-Yáñez, Lizet,Molina-Frechero, Nelly,Pozos-Guillén, Amaury (2016). Collagenase 1A2 (COL1A2) gene A/C polymorphism in relation to severity of dental fluorosis Community Dentistry & Oral Epidemiology, 44(2), 162-168	Duplicate reference
L1	Fallahzadeh, R. A., Miri, M., Taghavi, M., Gholizadeh, A., Anbarani, R., Hosseini-Bandegharaei, A., Ferrante, M., Oliveri Conti, G. (2018). Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water Food Chem Toxicol, 113(#issue#), 314-321	Duplicate reference
L1	Farooqi, A.,Sultana, J.,Masood, N. (2017). Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications Toxicology & Industrial Health, 33(8), 655-672	Duplicate reference
L1	Fromme, Hermann,Wöckner, Mandy,Roscher, Eike,Völkel, Wolfgang (2017). ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany International journal of hygiene and environmental health, 220(2 Pt B), 455-460	Duplicate reference
L1	Frood, R.,Baren, J.,McDermott, G.,Bottomley, D.,Patel, C.,Scarsbrook, A. (2018). Diagnostic performance of a streamlined ¹⁸ F-	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria Clinical Radiology, 73(7), 632-639	
L1	Frood, R.,McDermott, G.,Scarsbrook, A. (2018). Respiratory-gated PET/CT for pulmonary lesion 689estizo689ne689ation-promises and problems Br J Radiol, 91(1086), 20170640	Duplicate reference
L1	Ganyaglo, S. Y.,Gibrilla, A.,Teye, E. M.,Owusu- Ansah, E. D. J.,Tettey, S.,Diabene, P. Y.,Asimah, S. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana Chemosphere, 233(#issue#), 862-872	Duplicate reference
L1	Ganyaglo, Samuel Y.,Gibrilla, Abass,Teye, Emmanuel M.,Owusu-Ansah, Emmanuel De-Graft Johnson,Tettey, Sampson,Diabene, Perpetual Y.,Asimah, Seyram (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana Chemosphere, 233(#issue#), 862-872	Duplicate reference
L1	Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K. (2018). Source and chemical species characterization of PM <inf>10</inf> and human health risk assessment of semi-urban, urban and	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	industrial areas of West Bengal, India Chemosphere, 207(#issue#), 626-636	
L1	Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K. (2018). Source and chemical species characterization of PM ₁₀ and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India Chemosphere, 207(#issue#), 626-636	Duplicate reference
L1	Guissouma, W.,Othman, Hakami,Al-Rajab, A. J.,Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia Chemosphere, 177(#issue#), 102-108	Duplicate reference
L1	Hao, Yun-Peng,Liu, Zheng-Yu,Xie, Cheng,Zhou, Lu,Sun, Xun (2016). Novel fluorinated docetaxel analog for anti-hepatoma: Molecular docking and biological evaluation European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 88(#issue#), 274-281	Duplicate reference
L1	Hariri, M., Mirvaghefi, A., Farahmand, H., Taghavi, L., Shahabinia, A. R. (2018). In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario) Environmental Toxicology & Pharmacology, 58(#issue#), 59-69	Duplicate reference
L1	Hermenegildo, B.,Ribeiro, C.,Pérez-Álvarez, L.,Vilas, José L.,Learmonth, David A.,Sousa, Rui A.,Martins,	Duplicate reference

690

Le vel	Bibliography	Reason for exclusion
	 P.,Lanceros-Méndez, S. (2019). Hydrogel-based magnetoelectric microenvironments for tissue stimulation Colloids and surfaces. B, Biointerfaces, 181(#issue#), 1041-1047 	
L1	Higashiyama, A.,Komori, T.,Juri, H.,Inada, Y.,Azuma, H.,Narumi, Y. (2018). Detectability of residual invasive bladder cancer in delayed ¹⁸ F- FDG PET imaging with oral hydration using 500 mL of water and voiding-refilling Annals of Nuclear Medicine, 32(8), 561-567	Duplicate reference
L1	 Hoover, A. J.,Lazari, M.,Ren, H.,Narayanam, M. K.,Murphy, J. M.,van Dam, R. M.,Hooker, J. M.,Ritter, T. (2016). A Transmetalation Reaction Enables the Synthesis of [¹⁸F]5- Fluorouracil from [¹⁸F]Fluoride for Human PET Imaging Organometallics, 35(7), 1008- 1014 	Duplicate reference
L1	Hu, Yueli,Wu, Boyue,Jin, Qing,Wang, Xueyuan,Li, Yan,Sun, Yuxiu,Huo, Jianzhong,Zhao, Xiaojun (2016). Facile synthesis of 5 nm NaYF ₄ :Yb/Er nanoparticles for targeted upconversion imaging of cancer cells Talanta, 152(#issue#), 504-512	Duplicate reference
L1	Iafisco, Michele, Degli Esposti, Lorenzo, Ramírez- Rodríguez, Gloria Belén, Carella, Francesca, Gómez- Morales, Jaime, Ionescu, Andrei Cristian, Brambilla, Eugenio, Tampieri, Anna, Delgado-López, José Manuel (2018). Fluoride-doped amorphous calcium	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	phosphate nanoparticles as a promising biomimeticmaterial for dental remineralization Scientific reports,8(1), 17016-17016	
L1	Iarc Working Group on the Evaluation of Carcinogenic Risk to Humans (2017). Some Chemicals Used as Solvents and in Polymer Manufacture #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	ISRCTN16831120 (2016). A study to investigate the effect of a sensitivity toothpaste in providing relief from tooth sensitivity <u>http://www</u> .who.int/trialsearch/Trial2.aspx?TrialID=IS RCTN16831120., #volume#(#issue#), #Pages#	Duplicate reference
L1	Jack, B.,Ayson, M.,Lewis, S.,Irving, A. ,Agresta, B.,Ko, H. ,Stoklosa, A. (2016). Health Effects of Water Fluoridation: Evidence Evaluation Report. National Health and Medical Research Council, #volume#(#issue#), #Pages#	Duplicate reference
L1	Janka, Z. (2019). [Tracing trace elements in mental functions] Ideggyogy Sz, 72(11-12), 367-379	Duplicate reference
L1	Jeong, J. H., Cho, I. H., Chun, K. A., Kong, E. J., Kwon, S. D., Kim, J. H. (2016). Correlation Between Apparent Diffusion Coefficients and Standardized Uptake Values in Hybrid ¹⁸ F-FDG PET/MR: Preliminary Results in Rectal Cancer Nuclear Medicine and Molecular Imaging, 50(2), 150-156	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Jiang, F.,Lei, P.,Chen, Y.,Zuu, X.,Lao, P.,Pan, X. (2017). Quantitative computed tomography measurement skeletal fluorosis rabbits bone density and the correlation with bone injury. [Chinese] Chinese Journal of Endemiology, 36(6), 414-417	Duplicate reference
L1	Jiang, H.,Bansal, A.,Pandey, M. K.,Peng, K. W.,Suksanpaisan, L.,Russell, S. J.,Degrado, T. R. (2016). Synthesis of ¹⁸ F- Tetrafluoroborate via radiofluorination of boron trifluoride and evaluation in a murine C6-Glioma tumor model Journal of Nuclear Medicine, 57(9), 1454-1459	Duplicate reference
L1	Jiang, Huailei,Bansal, Aditya,Pandey, Mukesh K.,Peng, Kah-Whye,Suksanpaisan, Lukkana,Russell, Stephen J.,DeGrado, Timothy R. (2016). Synthesis of 18F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation in a Murine C6- Glioma Tumor Model Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 57(9), 1454-1459	Duplicate reference
L1	Jiménez-Córdova, Monica I.,Cárdenas-González, Mariana,Aguilar-Madrid, Guadalupe,Sanchez-Peña, Luz C.,Barrera-Hernández, Ángel,Domínguez- Guerrero, Iván A.,González-Horta, Carmen,Barbier, Olivier C.,Del Razo, Luz M. (2018). Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	low arsenic levels Toxicology and applied pharmacology, 352(#issue#), 97-106	
L1	Jiménez-Córdova, Mónica I.,González-Horta, Carmen,Ayllón-Vergara, Julio C.,Arreola-Mendoza, Laura,Aguilar-Madrid, Guadalupe,Villareal-Vega, Efraín E.,Barrera-Hernández, Ángel,Barbier, Olivier C.,Del Razo, Luz M. (2019). Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride Environmental research, 169(#issue#), 220-228	Duplicate reference
L1	Johansson, E.,Lubberink, M.,Heurling, K.,Eriksson, J. W.,Skrtic, S.,Ahlstrom, H.,Kullberg, J. (2018). Whole-Body Imaging of Tissue-specific Insulin Sensitivity and Body Composition by Using an Integrated PET/MR System: A Feasibility Study Radiology, 286(1), 271-278	Duplicate reference
L1	Kaur, L.,Rishi, M. S.,Siddiqui, A. U. (2020). Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India Environmental Pollution, 259 (no pagination)(113711), #Pages#	Duplicate reference
L1	Khandare, A. L.,Gourineni, S. R.,Validandi, V. (2017). Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India Environmental Monitoring and Assessment, 189 (11) (no pagination)(579), #Pages#	
L1	Kong, Xiang-Yu,Hou, Ling-Jie,Shao, Xiu- Qing,Shuang, Shao-Min,Wang, Yu,Dong, Chuan (2019). A phenolphthalein-based fluorescent probe for the sequential sensing of Al(3+) and F(-) ions in aqueous medium and live cells Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 208(#issue#), 131-139	Duplicate reference
L1	Kopycka-Kedzierawski, D. T.,Meyerowitz, C.,Litaker, M. S.,Chonowski, S.,Heft, M. W.,Gordan, V. V.,Yardic, R. L.,Madden, T. E.,Reyes, S. C.,Gilbert, G. H.,National Dental, Pbrn Collaborative Group (2017). Management of Dentin Hypersensitivity by National Dental Practice-Based Research Network practitioners: results from a questionnaire administered prior to initiation of a clinical study on this topic BMC Oral Health, 17(1), 41	Duplicate reference
L1	Kudinov, K. A.,Cooper, D. R.,Ha, J. K.,Hill, C. K.,Nadeau, J. L.,Seuntjens, J. P.,Bradforth, S. E. (2018). Scintillation Yield Estimates of Colloidal Cerium-Doped LaF ₃ Nanoparticles and Potential for "Deep PDT" Radiation Research, 190(1), 28-36	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Kurtdede, E.,Pekcan, M.,Karagül, H. (2017). Fluorosis problem in Turkey and biochemical interaction of fluorine Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 12(3), 320-326	Duplicate reference
L1	Kurtdede, E., Pekcan, M., Karagül, H. (2018). Free radicals, reactive oxygen species and relationship with oxidative stress Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 13(3), 373-379	Duplicate reference
L1	 Levine, K. E., Redmon, J. H., Elledge, M. F., Wanigasuriya, K. P., Smith, K., Munoz, B., Waduge, V. A., Periris-John, R. J., Sathiakumar, N., Harrington, J. M., Womack, D. S., Wickremasinghe, R. (2016). Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples Environmental Monitoring & Assessment, 188(10), 548 	Duplicate reference
L1	Li, Bing-Yun,Yang, Yan-Mei,Liu, Yang,Sun, Jing,Ye, Yan,Liu, Xiao-Na,Liu, Hong-Xu,Sun, Zhen-Qi,Li, Mang,Cui, Jing,Sun, Dian-Jun,Gao, Yan-Hui (2017). Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis PloS one, 12(2), e0171011-e0171011	Duplicate reference
L1	Li, P.,Oyang, X.,Zhao, Y.,Tu, T.,Tian, X.,Li, L.,Zhao, Y.,Li, J.,Xiao, Z. (2019). Occurrence of perfluorinated compounds in agricultural	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China Chemosphere, 225(#issue#), 659-667	
L1	Li, Yuan,Wang, Fei,Feng, Jia,Lv, Jun-Ping,Liu, Qi,Nan, Fang-Ru,Zhang, Wei,Qu, Wen-Yan,Xie, Shu-Lian (2019). Long term spatial-temporal dynamics of fluoride in sources of drinking water and associated health risks in a semiarid region of	Duplicate reference
	Northern China Ecotoxicology and environmental safety, 171(#issue#), 274-280	
L1	Liang, C.,Gao, Y.,He, Y.,Han, Y.,Manthari, R. K.,Tikka, C.,Chen, C.,Wang, J.,Zhang, J. (2020). Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies Environ Pollut, 256(#issue#), 113438	Duplicate reference
L1	Lisova, K.,Chen, B. Y.,Wang, J.,Fong, K. M. M.,Clark, P. M.,van Dam, R. M. (2020). Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2- [¹⁸ F]fluoroethyl)-L-tyrosine ([¹⁸ F]FET) EJNMMI Radiopharmacy and Chemistry, 5 (1) (no pagination)(1), #Pages#	Duplicate reference
L1	Lisova, K., Chen, B. Y., Wang, J., Fong, K. M., Clark, P. M., van Dam, R. M. (2019). Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	[¹⁸ F]fluoroethyl)-L-tyrosine ([¹⁸ F]FET) Ejnmmi Radiopharmacy & Chemistry, 5(1), 1	
L1	Liu, G.,Chen, Y.,Jia, M.,Sun, Z.,Ding, B.,Shao, S.,Jiang, F.,Fu, Z.,Ma, P.,Lin, J. (2019). One-pot synthesis of SiO <inf>2</inf> -coated Gd <inf>2</inf> (WO <inf>4</inf>) <inf>3</inf> :Yb <sup >3+/Ho³⁺ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton transactions (Cambridge, England : 2003), 48(28), 10537-10546</sup 	Duplicate reference
L1	Liu, G.,Chen, Y.,Jia, M.,Sun, Z.,Ding, B.,Shao, S.,Jiang, F.,Fu, Z.,Ma, P.,Lin, J. (2019). One-pot synthesis of SiO ₂ -coated Gd ₂ (WO ₄) ₃ : Yb ³⁺ /Ho ³⁺ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton Transactions, 48(28), 10537-10546	Duplicate reference
L1	Liu, G.,Sun, Z.,Fu, Z.,Ma, L.,Wang, X. (2017). Temperature sensing and bio-imaging applications based on polyethylenimine/CaF ₂ nanoparticles with upconversion fluorescence Talanta, 169(#issue#), 181-188	Duplicate reference
L1	Liu, Guofeng,Chen, Yeqing,Jia, Mochen,Sun, Zhen,Ding, Binbin,Shao, Shuai,Jiang, Fan,Fu, Zuoling,Ma, Ping'an,Lin, Jun (2019). One-pot	Duplicate reference

Le		
	Bibliography	
vel	017	

synthesis of SiO(2)-coated Gd(2)(WO(4))(3):Yb(3+)/Ho(3+) nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton transactions (Cambridge, England : 2003), 48(28), 10537-10546 L1 Liu, Jing, Wang, Hong-Wei, Zhao, Wen-Peng, Li, Xiao-Duplicate reference Ting, Lin, Lin, Zhou, Bian-Hua (2019). Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure Toxicology and industrial health, 35(1), 43-52 L1 Lowe, P. T., Dall'Angelo, S., Fleming, I. N., Piras, Duplicate reference M., Zanda, M., O'Hagan, D. (2019). Enzymatic radiosynthesis of a ¹⁸F-Glu-Ureido-Lys ligand for the prostate-specific membrane antigen (PSMA) Organic & biomolecular chemistry, 17(6), 1480-1486 L1 Lutje, S., Franssen, G. M., Herrmann, K., Boerman, O. Duplicate reference C., Rijpkema, M., Gotthardt, M., Heskamp, S. (2019). In vitro and in vivo characterization of an¹⁸F-ALF-labeled PSMA ligand for imaging of PSMA-expressing xenografts Journal of Nuclear Medicine, 60(7), 1017-1022 L1 Ma, Q., Huang, H., Sun, L., Zhou, T., Zhu, J., Cheng, Duplicate reference X., Duan, L., Li, Z., Cui, L., Ba, Y. (2017). Geneenvironment interaction: Does fluoride influence the reproductive hormones in male farmers modified by

Le vel	Bibliography	Reason for exclusion
	ERA gene polymorphisms? Chemosphere, 188(#issue#), 525-531	
L1	 Malvezzi, M. A. P. N., Pereira, H. A. B. S., Dionizio, A., Araujo, T. T., Buzalaf, N. R., Sabino-Arias, I. T., Fernandes, M. S., Grizzo, L. T., Magalhaes, A. C., Buzalaf, M. A. R. (2019). Low-level fluoride exposure reduces glycemia in NOD mice Ecotoxicology and Environmental Safety, 168(#issue#), 198-204 	Duplicate reference
L1	Malvezzi, Maria Aparecida Pereira Nunes,Pereira, Heloisa Aparecida Barbosa Silva,Dionizio, Aline,Araujo, Tamara Teodoro,Buzalaf, Nathalia Rabelo,Sabino-Arias, Isabela Tomazini,Fernandes, Mileni Silva,Grizzo, Larissa Tercilia,Magalhães, Ana Carolina,Buzalaf, Marilia Afonso Rabelo (2019). Low-level fluoride exposure reduces glycemia in NOD mice Ecotoxicology and environmental safety, 168(#issue#), 198-204	Duplicate reference
L1	Martignon, S.,Opazo-Gutiérrez, M. O.,Velásquez- Riaño, M.,Orjuela-Osorio, I. R.,Avila, V.,Martinez- Mier, E. A.,González-Carrera, M. C.,Ruiz-Carrizosa, J. A.,Silva-Hermida, B. C. (2017). Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Huila (Colombia) Environmental Monitoring and Assessment, 189(6), 264	
L1	Martínez-Acuña, Mónica I.,Mercado-Reyes, Marisa,Alegría-Torres, Jorge A.,Mejía-Saavedra, José J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México Environmental monitoring and assessment, 188(8), 476-476	Duplicate reference
L1	Michelena, Olatz,Padro, Daniel,Carrillo-Carrión, Carolina,Del Pino, Pablo,Blanco, Jorge,Arnaiz, Blanca,Parak, Wolfgang J.,Carril, Mónica (2017). Novel fluorinated ligands for gold nanoparticle labelling with applications in (19)F-MRI Chemical communications (Cambridge, England), 53(16), 2447-2450	Duplicate reference
L1	Molina-Frechero, Nelly,Nevarez-Rascón, Martina,Tremillo-Maldonado, Omar,Vergara-Onofre, Marcela,Gutiérrez-Tolentino, Rey,Gaona, Enrique,Castañeda, Enrique,Jarquin-Yañez, Lizet,Bologna-Molina, Ronell (2020). Environmental Exposure of Arsenic in Groundwater Associated to Carcinogenic Risk in Underweight Children Exposed to Fluorides International journal of environmental research and public health, 17(3), E724	Duplicate reference
L1	Montanha-Andrade, K.,Maia, W.,Pimentel, A. C. P.,Arsati, Y. B. O. L.,Santos, J. N. D.,Cury, P. R. (2019). Dental health status and its indicators in	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	adult Brazilian Indians without exposition to drinking water fluoridation: a cross-sectional study Environmental science and pollution research international, 26(33), 34440-34447	
L1	Munoz-Millan, P.,Zaror, C.,Espinoza-Espinoza, G.,Vergara-Gonzalez, C.,Munoz, S.,Atala-Acevedo, C.,Martinez-Zapata, M. J. (2018). Effectiveness of fluoride varnish in preventing early childhood caries in rural areas without access to fluoridated drinking water: a randomized control trial Community dentistry and oral epidemiology, 46(1), 63-69	Duplicate reference
L1	Murtaza, B.,Natasha,,Shahid, M.,Imran, M.,Shah, N. S.,Abbas, G.,Naeem, M. A.,Amjad, M. (2019). Compositional and health risk assessment of drinking water from health facilities of District Vehari, Pakistan Environmental geochemistry and health., 11(#issue#), #Pages#	Duplicate reference
L1	Nath, K. J.,Sharma, Vinod Prakash (2017). Water and Sanitation in the New Millennium #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00066963 (2006). Fluoride Varnish Randomized Clinical Trial #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00758394 (2008). Clinical Study to Compare Dental Plaque Control #journal#, #volume#(#issue#), #Pages#	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	NCT00762528 (2010). Compare Anti-inflammatory Dentifrices #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00763256 (2009). The Effect of Periodontal Treatment and the Use of Dentifrice on Glycaemic Control in Diabetics #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00875212 (2009). Effect of Calcium Glycerophosphate (CaGP) – Fluoride Dentifrice on Dental Biofilm pH #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00926328 (2008). Comparative Efficacy of a Toothpaste That Reduces Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00936975 (2014). Fluorine F 18 Sodium Fluoride Positron Emission Tomography in Evaluating Response to Dasatinib in Patients With Prostate Cancer and Bone Metastases #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT00981825 (2008). Efficacy of Salivary Bacteria and Post Brushing #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01014143 (2008). Evaluating Commercial Anti- Plaque Products and Oral Rinse #journal#, #volume#(#issue#), #Pages#	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	NCT01072201 (2008). To Access the Effects of Mucositis in Adults With Dental Implants #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01128972 (2010). Evaluation of a Test Mouthwash and Dentifrice Regimen in an In-situ Model of Dental Erosion #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01240551 (2013). F-18 Sodium Fluoride in Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01500187 (2014). Fluoride Varnish for Treatment of White Spot Lesions #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01563172 (2012). Effect of Dentifrice Usage Regime on Delivery and Efficacy of Fluoride #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01610167 (2012). NUPROI Sensodyne Prophylaxis Paste With Noval(r)Sensitivity Relief Study #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01629290 (2015). In Vivo Comparison of Salivary Fluoride Levels Following the Application of Different 5% NaF Varnishes #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01665911 (2013). An in Situ Study on the Impact of Fluoride Dose and Concentration in Milk	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	on Its Anti-caries Efficacy #journal#, #volume#(#issue#), #Pages#	
L1	NCT01727258 (2013). A Test on a New Experimental Mouth Rinse for Relieving Tooth Sensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT01901250 (2013). Xylitol for Caries Prevention in Inner-City Children #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02004990 (2015). Dental Office Prevention Strategies for Children #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02207400 (2015). To Evaluate Efficacy and Tolerability of Sodium Bicarbonate Toothpaste and Its Effect on Opportunistic or Resistant Organisms #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02207907 (2015). To Evaluate the Efficacy and Tolerability of Sodium Bicarbonate Toothpaste #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02243046 (2015). The Clinical Investigation of a Zinc Based Toothpaste in Reducing Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02319668 (2015). Antimicrobial Agent for Reducing Bacteria in Aerosols and Oral Cavity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02360124 (2015). Preventing and Arresting Dental Root Surface Caries in Community-dwelling	Duplicate reference

705

Le vel	Bibliography	Reason for exclusion
	Older Adults #journal#, #volume#(#issue#), #Pages#	
L1	NCT02360995 (2015). The Clinical Investigation of Toothpaste as Compared to Toothpaste and Mouthwash in Reducing Plaque and Gingivitis: A Six-week Clinical Study in the US #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02366689 (2015). Clinical Study Comparing Dental Plaque and Gingivitis Reduction After Using One of Three Oral Hygiene Multi-component Regimens (Using of a Manual Toothbrush, a Toothpaste and a Mouthwash) #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02371616 (2015). Clinical Study to Evaluate the Efficacy of Two Dentifrices for Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02612064 (2016). The Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02750943 (2016). Potential of Stannous Fluoride Toothpaste to Reduce Gum Disease #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT02753075 (2016). A Study in Dentinal Hypersensitivity (DH) Participants to Assess the	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Efficacy of an Occluding Dentifrice. #journal#, #volume#(#issue#), #Pages#	
L1	NCT03072719 (2017). The Efficacy of a Dentifrice in Providing Relief From Immediate and Short Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT03296072 (2018). In Situ Erosion Study to Investigate the Effectiveness of an Experimental Toothpaste #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT03383783 (2018). Evaluation of the Fluoride Dose Response of a Modified In Situ Caries Model #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	NCT03405259 (2018). A Clinical Study to Compare Professional Treatments for Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Omóbòwálé, Temidayo Olutayo,Oyagbemi, Ademola Adetokunbo,Alaba, Bukola Ayokunmi,Ola-Davies, Olufunke Eunice,Adejumobi, Olumuyiwa Abiola,Asenuga, Ebunoluwa Racheal,Ajibade, Temitayo Olabisi,Adedapo, Adeolu Alex,Yakubu, Momoh Audu (2018). Ameliorative effect of Azadirachta indica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated k½se 1/2 signaling Journal of basic and clinical physiology and pharmacology, 29(2), 155-164	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Otabashi, M., Vriamont, C., Desfours, C., Morelle, J. L. (2017). Fully automated [¹⁸ F]FAZA production on allinone (Trasis) at commercial scale Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S458	Duplicate reference
L1	Palmeira, A. R. D. O. A., da Silva, V. A. T. H., Dias Junior, F. L., Stancari, R. C. A., Nascentes, G. A. N., Anversa, L. (2019). Physicochemical and microbiological quality of the public water supply in 38 cities from the midwest region of the State of São Paulo, Brazil. Water Environment Research, 91(8), 805-812	Duplicate reference
L1	Palmieri, M. J., Andrade-Vieira, L. F., Campos, J. M. S., Gedraite, L. dos S., Davide, L. C. (2016). Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: a comparative analysis in meristematic cell type on toxicity bioassays Ecotoxicology and Environmental Safety, 133(#issue#), 442-447	Duplicate reference
L1	 Patel, P. P.,Patel, P. A.,Zulf, M. M.,Yagnik, B.,Kajale, N.,Mandlik, R.,Khadilkar, V.,Chiplonkar, S. A.,Phanse, S.,Patwardhan, V.,Joshi, P.,Patel, A.,Khadilkar, A. V. (2017). Association of dental and skeletal fluorosis with calcium intake and serum vitamin D concentration in adolescents from a region endemic for fluorosis Indian Journal of Endocrinology and Metabolism, 21(1), 190-195 	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Public Health Agency of Canada, (2018). The State of Community Water Fluoridation Across Canada: 2017 Report #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Pucelik, Barbara, Gürol, Ilke, Ahsen, Vefa, Dumoulin, Fabienne, D (2016). Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations European journal of medicinal chemistry, 124(#issue#), 284-298	Duplicate reference
L1	Ramesh, M.,Malathi, N.,Ramesh, K.,Aruna, R. M.,Kuruvilla, S. (2017). Comparative Evaluation of Dental and Skeletal Fluorosis in an Endemic Fluorosed District, Salem, Tamil Nadu Journal of pharmacy and bioallied sciences., 9(Suppl 1), S88- S91	Duplicate reference
L1	Rashid, Abdur,Guan, Dong-Xing,Farooqi, Abida,Khan, Sardar,Zahir, Salman,Jehan, Shah,Khattak, Seema Anjum,Khan, Muhammad Sufaid,Khan, Raees (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan The Science of the total environment, 635(#issue#), 203-215	Duplicate reference
L1	Rodriguez Castillo, Alfredo Santiago,Guihéneuf, Solène,Le Guével, Rémy,Biard, Pierre- François,Paquin, Ludovic,Amrane, Abdeltif,Couvert, Annabelle (2016). Synthesis and toxicity evaluation	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor Journal of hazardous materials, 307(#issue#), 221-230	
L1	Romero, Verena, Norris, Frances J., Ríos, Juvenal A., Cortés, Isel, González, Andrea, Gaete, Leonardo, Tchernitchin, Andrei N. (2017). The impact of tap water fluoridation on human health Revista medica de Chile, 145(2), 240-249	Duplicate reference
L1	Roy Chowdhury, A.,Mondal, A.,Roy, B. G.,K, J. C. B.,Mukhopadhyay, S.,Banerjee, P. (2017). Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F ⁻ : experimental and DFT studies Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 16(11), 1654-1663	Duplicate reference
L1	Saha, D,Marwaha, S,Mukherjee, A (2018). Clean and Sustainable Groundwater in India #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Sariñana-Ruiz, Yareli A.,Vazquez-Arenas, Jorge,Sosa-Rodríguez, Fabiola S.,Labastida, Israel,Armienta, Ma Aurora,Aragón-Piña, Antonio,Escobedo-Bretado, Miguel A.,González- Valdez, Laura S.,Ponce-Peña, Patricia,Ramírez- Aldaba, Hugo,Lara, René H. (2017). Assessment of	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico Chemosphere, 178(#issue#), 391-401	
L1	Savchenkov, M. F.,Efimova, N. V.,Manueva, R. S.,Nikolaeva, L. A.,Shin, N. S. (2016). Thyroid gland pathology in children population exposed to the combination of iodine deficiency and fluoride pollution of environment. [Russian] Gigiena i Sanitariia, 95(12), 1201-1205	Duplicate reference
L1	Sezgİn, B. I.,Onur, Ş G.,Menteş, A.,Okutan, A. E.,Haznedaroğlu, E.,Vieira, A. R. (2018). Two-fold excess of fluoride in the drinking water has no obvious health effects other than dental fluorosis Journal of Trace Elements in Medicine and Biology, 50(#issue#), 216-222	Duplicate reference
L1	Sezgin, Batın Ilgıt,Onur, Şirin Güner,Menteş, Ali,Okutan, Alev Eda,Haznedaroğlu, Eda,Vieira, Alexandre Rezende (2018). Two-fold excess of fluoride in the drinking water has no obvious health effects other than dental fluorosis Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 50(#issue#), 216-222	Duplicate reference
L1	Shruthi, M. N.,Santhuram, A. N.,Arun, H. S.,Kumar, B. N. K. (2016). A comparative study of skeletal fluorosis among adults in two study areas of	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Bangarpet taluk, Kolar Indian Journal of Public Health, 60(3), 203-209	
L1	Sikdar, P. K (2019). Groundwater Development and Management: Issues and Challenges in South Asia #journal#, #volume#(#issue#), #Pages#	Duplicate reference
L1	Simon, Maciej J. K.,Beil, Frank Timo,Riedel, Christoph,Lau, Grace,Tomsia, Antoni,Zimmermann, Elizabeth A.,Koehne, Till,Ueblacker, Peter,Rüther, Wolfgang,Pogoda, Pia,Ignatius, Anita,Amling, Michael,Oheim, Ralf (2016). Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure Clinical oral investigations, 20(9), 2361-2370	Duplicate reference
L1	Sweileh, W. M.,Zyoud, S. H.,Al-Jabi, S. W.,Sawalha, A. F.,Shraim, N. Y. (2016). Drinking and recreational water-related diseases: a bibliometric analysis (1980- 2015) Ann Occup Environ Med, 28(1), 40	Duplicate reference
L1	 Tanifum, Eric A., Devkota, Laxman, Ngwa, Conelius, Badachhape, Andrew A., Ghaghada, Ketan B., Romero, Jonathan, Pautler, Robia G., Annapragada, Ananth V. (2018). A Hyperfluorinated Hydrophilic Molecule for Aqueous (19) F MRI Contrast Media Contrast media & molecular imaging, 2018(#issue#), 1693513- 1693513 	Duplicate reference
L1	Valdez Jiménez, L.,López Guzmán, O. D.,Cervantes Flores, M.,Costilla-Salazar, R.,Calderón Hernández,	Duplicate reference

712

Le vel	Bibliography	Reason for exclusion
	J.,Alcaraz Contreras, Y.,Rocha-Amador, D. O. (2017). In utero exposure to fluoride and cognitive development delay in infants Neurotoxicology, 59(#issue#), 65-70	
L1	Vivar, M.,Pichel, N.,Fuentes, M.,Martínez, F. (2016). An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict The Science of the total environment, 550(#issue#), 534- 546	Duplicate reference
L1	 Wang, F.,Hou, T. Z.,Li, J. J.,Li, Z. Z.,Tang, C. F. (2016). [Effect of magnesium and selenium on the expression of matrix metalloproteinases-20 and kallikrein 4 in fluorosis mice] Chung-Hua Kou Ihiang i Hsueh Tsa Chih Chinese Journal of Stomatology, 51(9), 546-51 	Duplicate reference
L1	Wang, H. W.,Liu, J.,Zhao, W. P.,Zhang, Z. H.,Li, S. Q.,Li, S. H.,Zhu, S. Q.,Zhou, B. H. (2019). Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats Biol Trace Elem Res, 189(2), 511-518	Duplicate reference
L1	Wang, He-Xuan,Zhu, Li-Nan,Guo, Fu-Qiao (2019). Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO(2) nanotube arrays Environmental science and pollution research international, 26(33), 33847-33855	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	Wang, Hong-Wei,Liu, Jing,Zhao, Wen-Peng,Zhang, Zi-Hao,Li, Si-Qi,Li, Si-Han,Zhu, Shi-Quan,Zhou, Bian-Hua (2019). Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats Biological trace element research, 189(2), 511-518	Duplicate reference
L1	Wang, Hong-Wei,Zhao, Wen-Peng,Tan, Pan- Pan,Liu, Jing,Zhao, Jing,Zhou, Bian-Hua (2017). The MMP-9/TIMP-1 System is Involved in Fluoride- Induced Reproductive Dysfunctions in Female Mice Biological trace element research, 178(2), 253-260	Duplicate reference
L1	 Wang, M.,Li, X.,He, W. Y.,Li, J. X.,Zhu, Y. Y.,Liao, Y. L.,Yang, J. Y.,Yang, X. E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China Environ Pollut, 249(#issue#), 423-433 	Duplicate reference
L1	Wang, Mei,Li, Xiang,He, Wen-Yan,Li, Jin-Xin,Zhu, Yan-Yuan,Liao, Yu-Liang,Yang, Jin-Yan,Yang, Xiao- E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China Environmental pollution (Barking, Essex : 1987), 249(#issue#), 423-433	Duplicate reference
L1	Wasana, Hewa M. S.,Aluthpatabendi, Dharshani,Kularatne, W. M. T. D.,Wijekoon, Pushpa,Weerasooriya, Rohan,Bandara,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Jayasundera (2016). Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water Environmental geochemistry and health, 38(1), 157-168	
L1	Wasana, Hewa M. S.,Perera, Gamage D. R. K.,Gunawardena, Panduka De S.,Fernando, Palika S.,Bandara, Jayasundera (2017). WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues Scientific reports, 7(#issue#), 42516- 42516	Duplicate reference
L1	 Wei, Yan,Zeng, Beibei,Zhang, Hua,Chen, Cheng,Wu, Yanli,Wang, Nanlan,Wu, Yanqiu,Shen, Liming (2016). iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis International journal of molecular sciences, 17(10), 1644 	Duplicate reference
L1	Xie, Yun-Liang,Zhang, Bo,Jing, Ling (2018). MiR- 125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia- reperfusion injury by targeting p53 Neurological research, 40(10), 828-837	Duplicate reference
L1	Yadav, K. K.,Sandeep, Kumar,Quoc Bao, Pham,Neha, Gupta,Rezania, S.,Hesam, Kamyab,Shalini, Yadav,Vymazal, J.,Vinit,	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Kumar,Doan Quang, Tri,Talaiekhozani, A.,Shiv, Prasad,Reece, L. M.,Neeraja, Singh,Maurya, P. K.,Cho, JinWoo (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: a comprehensive review Ecotoxicology and Environmental Safety, 182(#issue#), 109362	
L1	Yao, X.,Zhao, R.,Zha, Z.,Choi, S.,Ploessl, K.,Alexoff, D.,Zhu, L.,Kung, H. (2019). Optimization of solid phase extraction (SPE) in preparation of D3- [¹⁸ F]FSP: A new PET imaging agent for mapping Abeta plaques Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Duplicate reference
L1	Yeung, S ,Argaez, C,CADTH (2017). Silver Diamine Fluoride for the Prevention and Arresting of Dental Caries or Hypersensitivity: A Review of Clinical Effectiveness, Cost-Effectiveness and Guidelines CADTH Rapid Response Reports, #volume#(#issue#), #Pages#	Duplicate reference
L1	Yİldİrİm, S.,Ekİn, S.,Huyut, Z.,Oto, G.,Comba, A.,Uyar, H.,Sengul, E.,Cİnar, D. A. (2018). Effect of chronic exposure to sodium fluoride and 7,12- dimethylbenz[a]anthracene on some blood parameters and hepatic, renal, and cardiac histopathology in rats Fluoride, 51(3), 278-290	Duplicate reference
L1	Yousefi, M.,Asghari, F. B.,Zuccarello, P.,Oliveri Conti, G.,Ejlali, A.,Mohammadi, A. A.,Ferrante, M. (2019). Spatial Distribution Variation and	Duplicate reference

Le vel	Bibliography	Reason for exclusion
	Probabilistic Risk Assessment of Exposure to Fluoride in Ground Water Supplies: A Case Study in an Endemic Fluorosis Region of Northwest Iran Int J Environ Res Public Health, 16(4), #Pages#	
L1	Zhang, L. E., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., Zhang, Z., Zou, Y. (2017). Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas Environ Pollut, 222(#issue#), 118- 125	Duplicate reference
L1	Zhang, R.,Liao, Q. X.,Ke, L. L.,Ouyang, W.,Zhang, Z. G. (2017). The molecular mechanisms of the renal injury in fluorosis induced by drinking water with a high fluoride ion content and the effects of selenium intervention Fluoride, Part 2. 50(1), 105-120	Duplicate reference
L1	Zhang, Y.,Zhang, L.,Yang, J.,Wu, Z.,Ploessl, K.,Zha, Z.,Liu, F.,Xu, X.,Zhu, H.,Yang, Z.,Zhu, L.,Kung, H. F. (2019). Initial experience in synthesis of (2S,4R)-4- [¹⁸ F]fluoroglutamine for clinical application Journal of Labelled Compounds and Radiopharmaceuticals, 62(5), 209-214	Duplicate reference
L1	Zhao, YangFei,Zhao, Jun,Wang, JinMing,Wang, JunDong (2017). Fluoride exposure changed the structure and the expressions of HSP related genes in testes of pubertal rats Chemosphere, 184(#issue#), 1080-1088	Duplicate reference

Le vel	Bibliography	Reason for exclusion
L1	ACTRN12618000095268 (2018). A clinical trial to evaluate the influence of Casein Phosphopeptide- Amorphous Calcium Phosphate (CPP-ACP) – Cranberry toothpastes in changing the bacterial composition of dental plaque deposits on teeth of orthodontic patients. #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ACTRN12618001865202 (2018). Topical agents for dental caries arrest in preschool children #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Adachi-Mejia, A. M., Murray, C. J., Karagas, M. R. (2019). "If providers had recommended it, we would have had it tested": rural mothers' perspectives on barriers and facilitators to testing for arsenic in their well water Journal of Environmental Health, 82(3), 26-32	Irrelevant exposure
L1	AhovuoSaloranta, Anneli,Forss, Helena,Hiiri, Anne,Nordblad, Anne,Makela, Marjukka (2016). Pit and fissure sealants versus fluoride varnishes for preventing dental decay in the permanent teeth of children and adolescents Cochrane Database of Systematic Reviews, #volume#(1), #Pages#	Irrelevant exposure
L1	Akiniwa, K,Narita, K (2019). The Harmful Effect on the Human Body of Hydrogen Fluoride Following the Use of Sodium Fluoride in Dental Caries Prevention XXXIVth Conference of the International Society For Fluoride Research, 52(1), 80-81	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Alehosseini, M.,Edris, H.,Fathi, M. (2017). Influence	Irrelevant exposure
	of strontium on the structure and biological	
	properties of mechanical activation s719estizo719ne719arapatite nanopowder for bone	
	replacement Iranian Journal of Biotechnology,	
	ISSUE)(#issue#), 115	
L1	Ammanath, G., Yeasmin, S., Srinivasulu, Y., Vats,	Irrelevant exposure
	M., Cheema, J. A., Nabilah, F., Srivastava, R., Yildiz, U.	
	H.,Alagappan, P.,Liedberg, B. (2019). Flow-through	
	colorimetric assay for detection of nucleic acids in	
	plasma Analytica Chimica Acta, 1066(#issue#), 102-	
	111	
L1	Antuganov, D.,Ryzhkova, D.,Zykova, '.,Vinal'ev,	Irrelevant exposure
	A.,Antuganova, Y.,Samburov, O.,Zykov, M. (2017). Modification of the automatic synthesis method for	
	[¹⁸ F]-FDOPA production Journal of	
	Labelled Compounds and Radiopharmaceuticals, 60	
	(Supplement 1)(#issue#), S457	
L1	Athapattu, B. C. L., Thalgaspitiya, Twlr, Yasaratne, U.	Irrelevant exposure
	L. S., Vithanage, M. (2017). Biochar-based	
	constructed wetlands to treat reverse osmosis	
	rejected concentrates in chronic kidney disease	
	endemic areas in Sri Lanka Environmental	
	Geochemistry & Health, 39(6), 1397-1407	
L1	Aurlene, N.,Manipal, S.,Rajmohan,,Prabu,	Irrelevant exposure
	D.,Sindhu, R. (2019). Topical fluoride as a panacea	

Le vel	Bibliography	Reason for exclusion
	for dental caries: A review Journal of Pharmaceutical Sciences and Research, 11(9), 3320-3325	
L1	Avenell, Alison, Smith, Toby O., Curtain, James P., Mak, C. S. Jenson, Myint, Phyo K. (2016). Nutritional supplementation for hip fracture aftercare in older people Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Awad, A.,Cipriani, A. (2017). Prophylactic mood stabilization: What is the evidence for lithium exposure in drinking water? Bipolar Disorders, 19(7), 601-602	Irrelevant exposure
L1	Bader, JD,Rozier, G,Harris, R,Lohr, KN (2016). Dental caries prevention: the physician's role in child oral health (Structured abstract) Agency for Healthcare Research and Quality (AHRQ), #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Baglar, S. (2018). Sub-ablative Er,Cr:YSGG laser irradiation under all-ceramic restorations: effects on demineralization and shear bond strength Lasers in Medical Science, 33(1), 41-49	Irrelevant exposure
L1	Bajpai, A.,Lakshminarayanan, N.,Khushwaha, K.,Banerjee, S. (2017). Simultaneous synthesis of O-(2'-[¹⁸ F] fluoroethyltyrosine and [¹⁸ F] fluoromisonidazole using solid phase extraction method Indian Journal of Nuclear Medicine, 32 (5 Supplement 1)(#issue#), S15	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Bao, YiXiang,Deng, ShanShan,Jiang, XinShu,Qu, YingXi,He, Yuan,Liu, LiQuan,Chai, QiWan,Mumtaz, M.,Huang, Jun,Cagnetta, G.,Yu, Gang (2018). Degradation of PFOA substitute: GenX (HFPO-DA ammonium salt): oxidation with UV/persulfate or reduction with UV/sulfite? Environmental Science & amp; Technology, 52(20), 11728-11734	Irrelevant exposure
L1	Bao, YiXiang,Huang, Jun,Cagnetta, G.,Yu, Gang (2019). Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/sulfite reduction Water Research (Oxford), 163(#issue#), 114907	Irrelevant exposure
L1	 Barr, H.,Isabelle, M.,Old, O.,Lloyd, G.,Lau, K.,Dorney, J.,Lewis, A.,Geraint, T.,Shepherd, N.,Bell, I.,Stone, N.,Kendall, C. (2016). Raman spectroscopycancer diagnostic for pathology of barrett's oesophagus Gut, 65 (Supplement 1)(#issue#), A177 	Irrelevant exposure
L1	Baysoy, G.,Uzulmez, R. H. (2018). Who is your dietitian? Diet of breastfeeding mothers with an allergic infant lacks many essential nutrients Journal of Pediatric Gastroenterology and Nutrition, 66 (Supplement 2)(#issue#), 981	Irrelevant exposure
L1	Becam, J.,Gaulier, J. M.,Baillif-Couniou, V.,Sastre, C.,Piercecchi, M. D.,Leonetti, G.,Pelissier-Alicot, A. L. (2019). MDMA-related deaths: About 3 cases Toxicologie Analytique et Clinique, 31 (2 Supplement)(#issue#), S38	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Benson, Philip E.,Parkin, Nicola,Dyer, Fiona,Millett, Declan T.,Germain, Peter (2019). Fluorides for preventing early tooth decay (demineralised lesions) during fixed brace treatment. Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	 Bentini, R.,Pola, A.,Rizzi, L. G.,Athanassiou, A.,Fragouli, D. (2019). A highly porous solvent free PVDF/expanded graphite foam for oil/water separation Chemical Engineering Journal, 372(#issue#), 1174-1182 	Irrelevant exposure
L1	Berroteran-Infante, N.,Hacker, M.,Mitterhauser, M.,Wadsak, W. (2016). Improved automated radiosynthesis of [¹⁸ F]FEPPA EJNMMI Radiopharmacy and Chemistry. Conference: 18th European Symposium on Radiopharmacy and Radiopharmaceuticals. Austria., 1(Supplement 1), #Pages#	Irrelevant exposure
L1	Bohmer, V. I., Van Der Born, D., Szymanski, W., Klopstra, M., Visser, T. J., Feringa, B. L., Elsinga, P. H. (2018). Automation of Click Chemistry for the synthesis of ¹⁸ F-labelled PSMA-tracers using the FlowSafe EJNMMI Radiopharmacy and Chemistry. Conference: 19th European Symposium on Radiopharmacy and Radiopharmaceuticals, ESRR'18. Netherlands., 3(Supplement 1), #Pages#	Irrelevant exposure
L1	Bohmer, V.,Van Der Born, D.,Szymanski, W.,Antunes, I.,Klopstra, M.,Samplonius,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	D.,Sijbesma, J.,Helfrich, W.,Visser, T.,Feringa, B.,Elsinga, P. (2019). ¹⁸ F-labelled click based PSMA-tracer for prostate cancer imaging Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S94-S95	
L1	Boston, Catherine Moore, Banacos, Natalie, Heiger- Bernays, Wendy (2019). Per- and Polyfluoroalkyl Substances: A National Priority for Safe Drinking Water Public Health Reports, 134(2), 112-117	Irrelevant exposure
L1	 Bouyeure-Petit, A. C., Chastan, M., Edet-Sanson, A., Becker, S., Thureau, S., Houivet, E., Vera, P., Hapdey, S. (2017). Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for (18)F-FDG-PET-CT: phantom validation, practical implications and patient evaluation Br J Radiol, 90(1070), 20160549 	Irrelevant exposure
L1	Bowden, G.,Franke, A.,Pichler, B.,Maurer, A. (2019). Automated synthesis of [¹⁸ F]O ⁶ -[(4- [¹⁸ F]fluoro)benzyl]guanine ([¹⁸ F]pFBG) via [¹⁸ F]- fluorobenzyl alcohol ([¹⁸ F]4FBnOH) from an optimized copper mediated radiofluorination (CMRF) of 4-tributyltin-benzyl alcohol Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S329-S331	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Boyles, A. L.,Blain, R. B.,Rochester, J. R.,Avanasi, R.,Goldhaber, S. B.,McComb, S.,Holmgren, S. D.,Masten, S. A.,Thayer, K. A. (2017). Systematic review of community health impacts of mountaintop removal mining Environment International, 107(#issue#), 163-172	Irrelevant exposure
L1	Bozorgi, M., Ghasempour, M., Ahmadi, G., Khafri, S. (2018). Comparison between the effects of green and black tea, and fluoride on microhardness and prevention of demineralization of deciduous teeth enamel Journal of Babol University of Medical Sciences, 20(6), 14-19	Irrelevant exposure
L1	Bruton, T. A.,Blum, A. (2017). Proposal for coordinated health research in PFAS-contaminated communities in the United States Environmental Health: A Global Access Science Source, 16 (1) (no pagination)(120), #Pages#	Irrelevant exposure
L1	Burnazi, E.,Carlin, S.,Lyashchenko, S.,Rotstein, B. H.,Vasdev, N.,Lewis, J. S. (2017). Iodonium ylide- mediated radiofluorination of [¹⁸ F]MFBG and novel formulation with cation exchange solid-phase extraction Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S490-S491	Irrelevant exposure
L1	Burnazi, E.,Carlin, S.,Lyashchenko, S.,Staton, K.,Brown, A.,Hicks, S.,Veach, D.,Lewis, J. S. (2017). High-yield manual synthesis of 16beta-	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	<pre>[¹⁸F]-fluoro-5alpha-dihydrotestosterone ([¹⁸F]FDHT) using reverse-phase HPLC purification Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S427-S428</pre>	
L1	Burnett, G. R.,Gallob, J. T.,Milleman, K. R.,Mason, S.,Patil, A.,Budhawant, C.,Milleman, J. L. (2018). Potassium oxalate oral rinses for long-term relief from dentinal hypersensitivity: Three randomised controlled studies Journal of dentistry, 70(#issue#), 23-30	Irrelevant exposure
L1	Cai, H.,Zhu, X.,Peng, C.,Xu, W.,Li, D.,Wang, Y.,Fang, S.,Li, Y.,Hu, S.,Wan, X. (2016). Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China Ecotoxicol Environ Saf, 131(#issue#), 14-21	Irrelevant exposure
L1	Cai, J.,Burrow, M. F.,Manton, D. J.,Tsuda, Y.,Sobh, E. G.,Palamara, J. E. A. (2019). Effects of silver diamine fluoride/potassium iodide on artificial root caries lesions with adjunctive application of proanthocyanidin Acta Biomaterialia, 88(#issue#), 491-502	Irrelevant exposure
L1	Catán, S. P.,Juarez, N. A.,Bubach, D. F. (2016). Characterization of freshwater changes in lakes of Nahuel Huapi National Park produced by the 2011 Puyehue-Cordón Caulle eruption Environmental	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Science and Pollution Research, 23(20), 20700-20710	
L1	Cavalli, A. M., Florio, F. M. (2018). Children's Menu Diversity: influence on Fluoride Absorption and Excretion Journal of contemporary dental practice, 19(1), 30-36	Irrelevant exposure
L1	Chansaenpak, K.,Kamkaew, A.,Weeranantanapan, O.,Suttisintong, K.,Tumcharern, G. (2018). Coumarin probe for selective detection of fluoride ions in aqueous solution and its bioimaging in live cells Sensors, 18(7), 2042	Irrelevant exposure
L1	Chen, S.,Song, L.,Xie, X.,Han, X.,Cheng, B. (2016). A case of abdominal mesenteric Castleman's disease with left renal cell carcinoma and stomach leiomyoma Hellenic Journal of Nuclear Medicine, 19(3), 285-288	Irrelevant exposure
L1	Chen, Y.,Ginga, N. J.,LePage, W. S.,Kazyak, E.,Gayle, A. J.,Wang, J.,Rodriguez, R. E.,Thouless, M. D.,Dasgupta, N. P. (2019). Enhanced Interfacial Toughness of Thermoplastic-Epoxy Interfaces Using ALD Surface Treatments ACS applied materials & interfaces, 11(46), 43573-43580	Irrelevant exposure
L1	Chen, Y.,Li, H.,Li, M.,Niu, S.,Wang, J.,Shao, H.,Li, T.,Wang, H. (2017). Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	and -NF-kappaB signaling pathways J Ethnopharmacol, 200(#issue#), 165-173	
L1	Chiotellis, A.,Sladojevich, F.,Mu, L.,Muller Herde, A.,Valverde, I. E.,Tolmachev, V.,Schibli, R.,Ametamey, S. M.,Mindt, T. L. (2016). Novel chemoselective (18)F-radiolabeling of thiol- containing biomolecules under mild aqueous conditions Chem Commun (Camb), 52(36), 6083-6	Irrelevant exposure
L1	Chong, Lee-Yee, Clarkson, Janet E., Dobbyn-Ross, Lorna, Bhakta, Smriti (2018). Slow-release fluoride devices for the control of dental decay Cochrane Database of Systematic Reviews, #volume#(4), #Pages#	Irrelevant exposure
L1	Choubisa, S. L., Choubisa, D. (2016). Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India Environmental science and pollution research international, 23(8), 7244-7254	Irrelevant exposure
L1	Clark, D.,Levin, L. (2018). Tooth hypersensitivity treatment trends among dental professionals Quintessence international (Berlin, Germany : 1985), 49(2), 147-151	Irrelevant exposure
L1	Colla, V.,Branca, T. A.,Rosito, F.,Lucca, C.,Padilla Vivas, B.,Menéndez Delmiro, V. (2016). Sustainable Reverse Osmosis application for wastewater treatment in the steel industry Journal of Cleaner Production, 130(#issue#), 103-115	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Collier, T. L., Yokell, D. L., Livni, E., Rice, P. A., Celen, S., Serdons, K., Neelamegam, R., Bormans, G., Harris, D., Walji, A., Hostetler, E. D., Bennacef, I., Vasdev, N. (2017). Automated radiosynthesis of [¹⁸ F]MK-6240 and validation for human use Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S612	Irrelevant exposure
L1	Crone, B. C.,Speth, T. F.,Wahman, D. G.,Smith, S. J.,Abulikemu, G.,Kleiner, E. J.,Pressman, J. G. (2019). Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water Critical Reviews in Environmental Science and Technology, 49(24), 2359-2396	Irrelevant exposure
L1	Ctri, (2018). A study on fluoride retention in the oral cavity.http://www.who.int/trialsearch/Trial2.aspx?Trial ID=CTRI, 04(013052), #Pages#	Irrelevant exposure
L1	Ctri, (2018). Study of effect of 5 oral agents on the pH of saliva after drinking a carbonate <u>d drink</u> http://www.who.int/trialsearch/Trial2.aspx?TrialID=C TRI, 04(013467), #Pages#	Irrelevant exposure
L1	Ctri, (2018). Study of effect of 5 oral agents on the pH of saliva after drinking a test flavour <u>ed milk</u> http://www.who.int/trialsearch/Trial2.aspx?TrialID=C TRI, 04(013480), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Ctri, (2018). Study of effects of 5 oral agents on the pH of saliva after drinking a test mixed fruit juice <u>ht</u> tp://www.who.int/trialsearch/Trial2.aspx?TrialID=C TRI, 04(013482), #Pages#	Irrelevant exposure
L1	Daly, N.,Farren, M.,McKeating, A.,Moffitt, K.,Sheehan, S. R.,Turner, M. J. (2016). Universal screening for gestational diabetes mellitus (GDM) with a fasting plasma glucose measurement under strict preanalytical conditions at the first prenatal visit American Journal of Obstetrics and Gynecology, 1)(#issue#), S169-S170	Irrelevant exposure
L1	Dam, J.,Langkjaer, N.,Baun, C.,Olsen, B. (2019). Preparation and evaluation of [¹⁸ F] AIF-NOTA-NOC for PET imaging of neuroendocrine tumors Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S416-S417	Irrelevant exposure
L1	Das, S., de Oliveira, L. M., da Silva, E., Liu, Y., Ma, L. Q. (2017). Fluoride concentrations in traditional and herbal teas: Health risk assessment Environ Pollut, 231(Pt 1), 779-784	Irrelevant exposure
L1	Day, R.,Bradberry, S. M.,Thomas, S. H. L.,Vale, J. A. (2019). Liquid laundry detergent capsules (PODS): a review of their composition and mechanisms of toxicity, and of the circumstances, routes, features, and management of exposure Clinical Toxicology, 57(11), 1053-1063	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	de Cassia Alves Nunes, R.,Chiba, F. Y.,Pereira, A. G.,Pereira, R. F.,de Lima Coutinho Mattera, M. S.,Ervolino, E.,Louzada, M. J.,Buzalaf, M. A.,Silva, C. A.,Sumida, D. H. (2016). Effect of Sodium Fluoride on Bone Biomechanical and Histomorphometric Parameters and on Insulin Signaling and Insulin Sensitivity in Ovariectomized Rats Biological Trace Element Research, 173(1), 144-53	Irrelevant exposure
L1	Dehbandi, R.,Moore, F.,Keshavarzi, B. (2018). Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran Chemosphere, 193(#issue#), 763-776	Irrelevant exposure
L1	Deraedt, Q.,Masset, J.,Otabashi, M.,Philippart, G. (2017). Efficient commercial scale [¹⁸ F]FES production on AllinOne (Trasis) Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S195	Irrelevant exposure
L1	Devalankar, D.,McConathy, J. (2019). Fully automated radiosyntheses of the ¹⁸ F- labeled amino acids MeFAMP and AFETP for oncologic imaging Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure
L1	Dimachkie, P.,Peicher, K.,Maalouf, N. M. (2017). Inhalation of air dust cleaner causing skeletal	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	fluorosis Endocrine Reviews. Conference: 99th Annual Meeting of the Endocrine Society, ENDO, 38(3 Supplement 1), #Pages#	
L1	Dinneen, J.,Fitzgibbon, M.,O'Gorman, P. (2018). Glucose determination at point of care using blood gas analyser-a worthy substitute for laboratory analysis in the oral glucose tolerance test Clinical Chemistry and Laboratory Medicine, 56 (2)(#issue#), eA83	Irrelevant exposure
L1	Dorri, Mojtaba, Martinez-Zapata, Jose Maria, Walsh, Tanya, Marinho, C. C. Valeria, Sheiham, Aubrey, Zaror, Carlos (2018). Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries Cochrane Database of Systematic Reviews, #volume#(3), #Pages#	Irrelevant exposure
L1	Duijster, D.,Monse, B.,Dimaisip-Nabuab, J.,Djuharnoko, P.,Heinrich-Weltzien, R.,Hobdell, M.,Kromeyer-Hauschild, K.,Kunthearith, Y.,Mijares- Majini, M. C.,Siegmund, N.,Soukhanouvong, P.,Benzian, H. (2017). 'Fit for school' - a school- based water, sanitation and hygiene programme to improve child health: results from a longitudinal study in Cambodia, Indonesia and Lao PDR BMC public health, 17(1), 302	Irrelevant exposure
L1	Eachempati, Prashanti,Kumbargere Nagraj, Sumanth,Kiran Kumar Krishanappa, Salian,Gupta, Puneet,Yaylali, Ethem Ibrahim (2018). Home-based	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	chemically-induced whitening (bleaching) of teeth in adults Cochrane Database of Systematic Reviews, #volume#(12), #Pages#	
L1	Ebenhan, T.,Wagener, J.,Suthiram, J.,Marjanovic, P. B.,Sathekge, M. M.,Zeevaart, J. R. (2016). ⁶⁸ Ga-PSMA-11: An one-year performance experience on a single vial kit-type preparation of a potent PET radio diagnostic agent for prostate cancer imaging Molecular Imaging and Biology, 18 (2 Supplement)(#issue#), S1173	Irrelevant exposure
L1	Enriquez, J. S.,Yu, M.,Bouley, B. S.,Xie, D.,Que, E. L. (2018). Copper(ii) complexes for cysteine detection using (19)F magnetic resonance Dalton Trans, 47(42), 15024-15030	Irrelevant exposure
L1	Eskola, O.,Yim, C. B.,Johnson, T.,Bergman, J.,Solin, O. (2019). Synthesis of ¹⁸ F-labelled fragmented antibody [¹⁸ F]Fab Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S186-S187	Irrelevant exposure
L1	EUCTR2009-010725-39-GB (2010). A randomised controlled trial to measure the effects and costs of a dental caries prevention regime for young children attending primary care dental services - NIC-PIP Northern Ireland Caries Prevention in Practice Trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EUCTR2010-024624-20-GB (2011). A Pilot Study Investigating the Sensitivity of 18F-labelled Sodium	Irrelevant exposure

Le Bibliography vel

	Fluoride PET-CT for Detecting Skeletal Metastases in Renal Cell Carcinoma compared to Planar Bone Scintigraphy and Multidetector CT - 18F-Fluoride PET-CT for Detecting Bone Metastases in RCC #journal#, #volume#(#issue#), #Pages#	
L1	EudraCT-2004-002366-38 (2004). Fluoride uptake and remineralisation of incipient carious lesions following the application of fluoride fluids with different fluoride concentrations #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2008-008594-58 (2008). In situ mineral change and fluoride retention of sound and demineralized enamel in high cariogenic milieus following the single application of a 1.25%- fluoride or a placebo gel. #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2009-010725-39 (2009). A randomised controlled trial to measure the effects and costs of a dental caries prevention regime for young children attending primary care dental services #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2009-015914-23 (2009). Clinical efficacy of an experimental toothpaste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2010-020538-24 (2010). White spot lesion development in post-orthodontic patients following weekly application of a 1.25% fluoride gel	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	compared to placebo over 6 months #journal#, #volume#(#issue#), #Pages#	
L1	EudraCT-2010-023476-23 (2010). Seal or Varnish? A Randomised Trial To Determine The Relative Cost And Effectiveness Of Pit And Fissure Sealants And Fluoride Varnish In Preventing Dental Decay #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	EudraCT-2014-000952-26 (2014). Dual Antiplatelet Therapy to Inhibit Coronary Atherosclerosis and Myocardial Injury in Patients with Necrotic High-risk Coronary Plaque Disease #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Faidallah, H. M.,Al-Mohammadi, M. M.,Alamry, K. A.,Khan, K. A. (2016). Synthesis and biological evaluation of fluoropyrazolesulfonylurea and thiourea derivatives as possible antidiabetic agents Journal of Enzyme Inhibition & Medicinal Chemistry, 31(sup1), 157-163	Irrelevant exposure
L1	Farkas, A.,Wolf, M.,Landzberg, E.,Woods, K.,Lynch, M. (2018). Treatment of ventricular fibrillation due to ammonium bifluoride poisoning with hemodialysis Clinical Toxicology, 56 (10)(#issue#), 1063	Irrelevant exposure
L1	Farronato, M.,Cossellu, G.,Farronato, G.,Inchingolo, F.,Blasi, S.,Angiero, F. (2019). Physico-chemical characterization of a smart thermo-responsive fluoride-releasing poloxamer-based gel Journal of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Biological Regulators and Homeostatic Agents, 33(4), 1309-1314	
L1	Fatemeh, M.,Marjan, S.,Homa, N.,Mahsa, S. (2017). CPP-ACP: effect on Dental Plaque Acidity after Water Rinsing Following Topical Fluoride Therapy Journal of clinical pediatric dentistry, 41(1), 22-26	Irrelevant exposure
L1	Fernandez-Maza, L.,Corral, A.,Becerro, A.,Gonzalez, D.,Parrado, A.,Balcerzyk, M.,Ocana, M. (2019). ¹⁸ F-fluorination of BaGdF5 nanoparticles for multimodal imaging and PET/CT biodistribution in mouse Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S166-S168	Irrelevant exposure
L1	Flood, S.,Asplund, K.,Hoffman, B.,Nye, A.,Zuckerman, K. E. (2017). Fluoride Supplementation Adherence and Barriers in a Community Without Water Fluoridation Academic Pediatrics, 17(3), 316-322	Irrelevant exposure
L1	Fookes, F. A., Mengatto, L. N., Rigalli, A., Luna, J. A. (2019). Controlled fluoride release for osteoporosis treatment using orally administered chitosan hydrogels Journal of Drug Delivery Science and Technology, 51(#issue#), 268-275	Irrelevant exposure
L1	Fosso-Kankeu, E., Waanders, F., Fourie, C. L. (2016). Adsorption of Congo Red by surfactant-impregnated bentonite clay Desalination and Water Treatment, 57(57), 27663-27671	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Frezzo, J. A.,Hoang, D. M.,Wadghiri, Y. Z.,Montclare, J. K. (2016). Traceable and thermoresponsive multifunctional engineered protein drug delivery agents for metastatic breast cancer Molecular Imaging and Biology, 18 (2 Supplement)(#issue#), S279	Irrelevant exposure
L1	Frood, R.,Baren, J.,McDermott, G.,Bottomley, D.,Patel, C.,Scarsbrook, A. (2018). Diagnostic performance of a streamlined (18)F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria Clin Radiol, 73(7), 632-639	Irrelevant exposure
L1	Frood, R.,McDermott, G.,Scarsbrook, A. (1086). Respiratory-gated PET/CT for pulmonary lesion characterisation-promises and problems British Journal of Radiology, 91(1086), #Pages#	Irrelevant exposure
L1	Gai, Y.,Altine, B.,Han, N.,Lan, X. (2019). Preclinical evaluation of a ¹⁸ F-labeled phosphatidylinositol 3-kinase inhibitor for breast cancer imaging Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure
L1	Gai, Y.,Yuan, L.,Li, H.,Zeng, D.,Lan, X. (2018). Imaging of melanoma Using Al ¹⁸ F labeled peptidomemitic ligand LLP2A Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Galal, A. A. A., Reda, R. M., Abdel-Rahman Mohamed, A. (2018). Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide Fish Shellfish Immunol, 77(#issue#), 445-456	Irrelevant exposure
L1	Galvin, Imelda M.,Steel, Andrew,Pinto, Ruxandra,Ferguson, Niall D.,Davies, William Mark (2018). Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome Cochrane Database of Systematic Reviews, #volume#(12), #Pages#	Irrelevant exposure
L1	 Garner, L. E., Steirer, K. X., Young, J. L., Anderson, N. C., Miller, E. M., Tinkham, J. S., Deutsch, T. G., Sellinger, A., Turner, J. A., Neale, N. R. (2017). Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte ChemSusChem, 10(4), 767-773 	Irrelevant exposure
L1	Ghosh, P.,Banerjee, P. (2019). A Journey towards Salivary Fluoride Level Detection by Suitable Low Cost Chemosensor: From Molecule to Product Chem Rec, 19(10), 2119-2129	Irrelevant exposure
L1	Gilbert, F. J. (2016). Beyond FDG: Getting new PET tracers into practice Journal of Medical Imaging and	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Radiation Oncology, 60 (Supplement 1)(#issue#), 33	
L1	Girardi, P.,Merler, E. (2019). A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid Environmental Research, Part A. 179 (no pagination)(108743), #Pages#	Irrelevant exposure
L1	Godel, J,North American Paediatric Society,Community Paediatrics Committee (2002). The use of fluoride in infants and children Paediatrics & Child Health, 7(8), 569-572	Irrelevant exposure
L1	Goh, Hoe Hock,Doubleday, Bridget (2018). Aids for mechanical cleaning of teeth with fixed braces Cochrane Database of Systematic Reviews, #volume#(1), #Pages#	Irrelevant exposure
L1	Grover, P. K.,Kaur, K.,Gautam, C. S. (2018). Impact of milk intake on dental fluorosis in the North Indian population: An observational study Biomedicine (India), 38(2), 190-194	Irrelevant exposure
L1	Grusovin, Gabriella Maria,Coulthard, Paul,Worthington, Helen V.,George, Peter,Esposito, Marco (2019). Interventions for replacing missing teeth: maintaining and recovering soft tissue health around dental implants Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Gusman, Mariya,Aminsharifi, Jamie A.,Peacock, Justin G.,Anderson, Shane B.,Clemenshaw, Michael	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	N.,Banks, Kevin P. (2019). Review of 18F- Fluciclovine PET for Detection of Recurrent Prostate Cancer RadioGraphics, 39(3), 822-841	
L1	Gutierrez, R. M. P., Hoyo-Vadillo, C. (2017). Anti- inflammatory Potential of Petiveria alliacea on Activated RAW264.7 Murine Macrophages Pharmacogn Mag, 13(Suppl 2), S174-s178	Irrelevant exposure
L1	Hao, Y. P.,Liu, Z. Y.,Xie, C.,Zhou, L.,Sun, X. (2016). Novel fluorinated docetaxel analog for anti- hepatoma: Molecular docking and biological evaluation Eur J Pharm Sci, 88(#issue#), 274-81	Irrelevant exposure
L1	Hasan, R.,Talha, M.,Weinstein, R. S. (2017). Tea drinker's fluorosis Endocrine Reviews. Conference: 99th Annual Meeting of the Endocrine Society, ENDO, 38(3 Supplement 1), #Pages#	Irrelevant exposure
L1	 He, F.,Li, C.,Zhang, X.,Chen, Y.,Deng, X.,Liu, B.,Hou, Z.,Huang, S.,Jin, D.,Lin, J. (2016). Optimization of upconversion luminescence of Nd(3+)-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery Dalton Trans, 45(4), 1708-16 	Irrelevant exposure
L1	He, P.,Domarkas, J.,Cawthorne, C.,Archibald, S. (2017). Microfluidic devices for electrode trapping of [¹⁸ F]fluoride from [¹⁸ O]water and continuous flow radiosynthesis of [¹⁸ F]FLT Journal of Nuclear Medicine. Conference: Society of Nuclear	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	
L1	Health Canada, (#year#). A MULTINATIONAL, MULTICENTER, PHASE 2 STUDY OF TESETAXEL PLUS A REDUCED DOSE OF CAPECITABINE IN PATIENTS WITH HER2 NEGATIVE, HORMONE RECEPTOR POSITIVE, LOCALLY ADVANCED OR METASTATIC BREAST CANCER WHO HAVE NOT PREVIOUSLY RECEIVED A TAXANE #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A MULTINATIONAL, MULTICENTER, RANDOMIZED, PHASE 3 STUDY OF TESETAXEL PLUS A REDUCED DOSE OF CAPECITABINE VERSUS CAPECITABINE ALONE IN PATIENTS WITH HER2 NEGATIVE, HORMONE RECEPTOR POSITIVE, LOCALLY ADVANCED OR METASTATIC BREAST CANCER PREVIOUSLY TREATED WITH A TAXANE #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A PHASE 2, OPEN- LABEL, MONOTHERAPY, MULTICENTER STUDY TO EVALUATE THE EFFICACY AND SAFETY OF INCB054828 IN SUBJECTS WITH MYELOID/LYMPHOID NEOPLASMS WITH FGFR1 REARRANGEMENT #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Health Canada, (#year#). A PHASE I/IB OPEN- LABEL, MULTI-CENTER, DOSE ESCALATION STUDY OF GWN323 (ANTI-GITR) AS A SINGLE AGENT AND IN COMBINATION WITH PDR001 (ANTI-PD-1) IN PATIENTS WITH ADVANCED SOLID TUMORS AND LYMPHOMAS #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A PHASE III, DOUBLE- BLIND, PLACEBO-CONTROLLED, RANDOMIZED STUDY OF IPATASERTIB IN COMBINATION WITH ATEZOLIZUMAB AND PACLITAXEL AS A TREATMENT FOR PATIENTS WITH LOCALLY ADVANCED UNRESECTABLE OR METASTATIC TRIPLE-NEGATIVE BREAST CANCER #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). A PHASE III, MULTICENTER, RANDOMIZED, OPEN-LABEL TRIAL TO EVALUATE EFFICACY AND SAFETY OF RIBOCICLIB WITH ENDOCRINE THERAPY AS AN ADJUVANT TREATMENT IN PATIENTS WITH HORMONE RECEPTOR-POSITIVE, HER2- NEGATIVE, EARLY BREAST CANCER (NEW ADJUVANT TRIALWITH RIBOCICLIB #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). AN OPEN-LABEL, MULTICENTER, PHASE IIIB STUDY TO ASSESS THE SAFETY AND EFFICACY OF RIBOCICLIB (LEE011) IN COMBINATION WITH LETROZOLE	Irrelevant exposure
741		

Le vel	Bibliography	Reason for exclusion
	FOR THE TREATMENT OF MEN AND POSTMENOPAUSAL WOMEN WITH HORMONE RECEPTOR-POSITIVE (HR+) HER2-NEGATIVE (HER2-) ADVANCED BREAST CANCER (ABC) WITH NO PRIOR HORMONAL THERAPY FOR ADVANCED DISEASE #journal#, #volume#(#issue#), #Pages#	
L1	Health Canada, (#year#). DEVELOPING OPTIMAL PARAMETERS FOR HYPERPOLARIZED NOBLE GAS (3HE AND 129XE) AND INERT FLUORINATED GAS MAGNETIC RESONANCE IMAGING OF LUNG DISORDERS #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). EVALUATION OF REGIONAL LUNG VENTILATION IN PARTICIPANTS WITH LUNG DISORDERS USING INHALED INERT FLUORINATED GASES AS CONTRAST AGENTS FOR MAGNETIC RESONANCE IMAGING #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Health Canada, (#year#). REGISTRY OF SODIUM 18F-FLUORIDE (NA18F) POSITRON EMISSION TOMOGRAPHY (PET) SCANS PERFORMED TO EVALUATE SKELETAL PATHOLOGY IN CHILDREN #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Henry, B. J., Carlin, J. P., Hammerschmidt, J. A., Buck, R. C., Buxton, L. W., Fiedler, H., Seed, J., Hernandez,	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	O. (2018). A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers Integr Environ Assess Manag, 14(3), 316-334	
L1	Hequet, E.,Henoumont, C.,Muller, R. N.,Laurent, S. (2019). Fluorinated MRI contrast agents and their versatile applications in the biomedical field Future Med Chem, 11(10), 1157-1175	Irrelevant exposure
L1	Herbaut, M.,Zoghlami, A.,Habrant, A.,Falourd, X.,Foucat, L.,Chabbert, B.,Paës, G. (2018). Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance Biotechnology for Biofuels, 11(52), (27 February 2018)	Irrelevant exposure
L1	Hermenegildo, B.,Ribeiro, C.,Perez-Alvarez, L.,Vilas, J. L.,Learmonth, D. A.,Sousa, R. A.,Martins, P.,Lanceros-Mendez, S. (2019). Hydrogel-based magnetoelectric microenvironments for tissue stimulation Colloids Surf B Biointerfaces, 181(#issue#), 1041-1047	Irrelevant exposure
L1	Herndon, J. M. (2016). Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification Front Public Health, 4(#issue#), 139	Irrelevant exposure
L1	Higashiyama, A.,Komori, T.,Juri, H.,Inada, Y.,Azuma, H.,Narumi, Y. (2018). Detectability of residual invasive bladder cancer in delayed (18)F-FDG PET	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	imaging with oral hydration using 500 mL of water and voiding-refilling Ann Nucl Med, 32(8), 561-567	
L1	Hines, Deon,Shiyou, Xu,Stranick, Michael,Lavender, Stacey,Pilch, Shira,Yun-Po, Zhang,Sullivan, Richard,Montesani, Luigi,Montesani, Lorenzo,Mateo, Luis R.,Williams, Malcolm (2019). Effect of a stannous fluoride toothpaste on dentinal hypersensitivity: In vitro and clinical evaluation Journal of the American Dental Association (JADA), 150(#issue#), S47-S59	Irrelevant exposure
L1	Hirakawa, K.,Suzuki, A.,Ouyang, D.,Okazaki, S.,Ibuki, Y.,Nakazaki, J.,Segawa, H. (2019). Controlled Photodynamic Action of Axial Fluorinated DiethoxyP(V)tetrakis(p-methoxyphenyl)porphyrin through Self-Aggregation Chem Res Toxicol, 32(8), 1638-1645	Irrelevant exposure
L1	Honda, N.,Yoshimoto, M.,Mizukawa, Y.,Osaki, K.,Kanai, Y.,Kurihara, H.,Tateishi, H.,Takahashi, K. (2017). Radiosynthesis of 2- [¹⁸ F]fluoro-4-borono-phenylaranine ([¹⁸ F]FBPA) using copper mediated oxidative aromatic nucleophilic [¹⁸ F]fluorination Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S512	Irrelevant exposure
L1	Hong, Catherine H. L.,Shijia, Hu,Haverman, Thijs,Stokman, Monique,Napeñas, Joel J.,Braber,	Irrelevant exposure

vei		
	Jacolien Bos-den,Gerber, Erich,Geuke, Margot,Vardas, Emmanouil,Waltimo, Tuomas,Jensen, Siri Beier,Saunders, Deborah P.,Hu, Shijia (2018). A systematic review of dental disease management in cancer patients Supportive Care in Cancer, 26(1), 155-174	
L1	Hongyong, W.,Zou, P.,Xie, M.,Liu, Y.,Wu, J.,Wu, H. (2019). A high yield automated synthesis of ¹⁸ F-FLT On PET-MF- 2V-IT-I module with SPE purification European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S853-S854	Irrelevant exposure
L1	 Hoover, A. J.,Lazari, M.,Ren, H.,Narayanam, M. K.,Murphy, J. M.,van Dam, R. M.,Hooker, J. M.,Ritter, T. (2016). A Transmetalation Reaction Enables the Synthesis of [(18)F]5-Fluorouracil from [(18)F]Fluoride for Human PET Imaging Organometallics, 35(7), 1008-1014 	Irrelevant exposure
L1	Horst, J. A., Tanzer, J. M., Milgrom, P. M. (2018). Fluorides and Other Preventive Strategies for Tooth Decay Dental clinics of North America, 62(2), 207- 234	Irrelevant exposure
L1	Hu, Y.,Wu, B.,Jin, Q.,Wang, X.,Li, Y.,Sun, Y.,Huo, J.,Zhao, X. (2016). Facile synthesis of 5 nm NaYF(4):Yb/Er nanoparticles for targeted upconversion imaging of cancer cells Talanta, 152(#issue#), 504-12	Irrelevant exposure

Le

vel

Bibliography

Le vel	Bibliography	Reason for exclusion
L1	Huang, Y.,Tsai, C.,Ho, B.,Ho, H.,Chang, Y.,Wu, C.,Yen, R.,Shiue, C. (2019). In vitro evaluation of [¹⁸ F]FPA as a fatty acid synthasetargeting imaging agent for breast cancer and its in vivo whole-body biodistribution in normal mice European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S709-S710	Irrelevant exposure
L1	 Iafisco, M.,Degli Esposti, L.,Ramirez-Rodriguez, G. B.,Carella, F.,Gomez-Morales, J.,Ionescu, A. C.,Brambilla, E.,Tampieri, A.,Delgado-Lopez, J. M. (2018). Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization Scientific reports, 8(1), 17016 	Irrelevant exposure
L1	Idon, P. I., Esan, T. A., Bamise, C. T. (2017). Efficacy of Three In-Office Dentin Hypersensitivity Treatments Oral Health & Preventive Dentistry, 15(3), 207-214	Irrelevant exposure
L1	Iglesias-Jerez, R.,Cayero-Otero, M. D.,Martin- Banderas, L.,Borrego-Dorado, I. (2017). Influence of the use of cryoprotectant on the ladiolabelling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with 99m Tc European Journal of Nuclear Medicine and Molecular Imaging, 44 (2 Supplement 1)(#issue#), S564	Irrelevant exposure
L1	Inkster, J.,Dearling, J.,Snay, E.,Packard, A. (2019). Synthesis of ¹⁸ F-labeled acridinium	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	cations: A new class of potential myocardial perfusion imaging agents Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	
L1	ISRCTN-04899524 (2014). An in situ study to determine the effects of calcium-based toothpaste in orthodontic patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN04899524 (2014). An in situ study to determine the effects of calcium-based toothpaste in orthodontic patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN10406748 (2016). A clinical study to evaluate how effective a dental strip containing an oxalate formulation is at reducing dentine hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-10406748 (2016). A clinical study to evaluate how effective a dental strip containing an oxalate formulation is at reducing dentine hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN10532332 (2018). The repair of early tooth decay using a combination of stannous fluoride and a calcium milk peptide tp://www.who.int/trialsearch/Trial2.aspx?TrialID=ISR CTN10532332., #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	ISRCTN11992428 (2017). A randomised controlled trial to evaluate the cost effectiveness of prescribing high concentration fluoride toothpaste to prevent tooth decay in older adults #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN13773048 (2018). The importance of bioavailable calcium in fluoride dentifrices for tooth enamel remineralization (tp://www.who.int/trialsearch/Trial2.aspx?TrialID=ISR CTN13773048., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-16336355 (2015). Manual versus sonic powered tooth brushing in patients with intellectual disability (Cepillado manual versus cepillado eléctrico para la salud oral en pacientes con discapacidad intelectual leve y moderada) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN16831120 (2016). A study to investigate the effect of a sensitivity toothpaste in providing relief from tooth sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-17029222 (2010). Seal or Varnish? A comparison of the cost and effectiveness of sealants and varnish in preventing dental decay #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN17029222 (2010). Seal or Varnish? A comparison of the cost and effectiveness of sealants	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	and varnish in preventing dental decay #journal#, #volume#(#issue#), #Pages#	
L1	ISRCTN19137849 (2019). Comparing the effects of milk and soy-based drinks on tooth <u>enamel</u> http://www.who.int/trialsearch/Trial2.aspx?TrialID=IS RCTN19137849., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-22801431 (2003). The Mancunian Fluoride Varnish Project #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-35086887 (2013). Stop Caries Stockholm #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-36180119 (2009). Northern Ireland Caries Prevention In Practice trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-41467632 (2004). Dental caries prevention program for Cree mothers and infants #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-47055000 (2012). The effect of propolis on chemotherapy induced oral mucositis and bacteremia during oral mucositis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN47055000 (2012). The effect of propolis on chemotherapy induced oral mucositis and bacteremia during oral mucositis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	ISRCTN-52296479 (2016). Does a new toothpaste act as required to successfully treat dentine hypersensitivity? #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN52296479 (2016). Does a new toothpaste act as required to successfully treat dentine hypersensitivity? #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-67374556 (2009). The Monitor Practice Program - is non-invasive management of dental caries in private practice cost-effective? #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-68970559 (2008). Effects of gustatory stimulants of salivary secretion on the pH and stimulation of saliva #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-72589426 (2011). To measure the benefit of fluoride varnish in preventing dental decay when applied to permanent teeth of children for 3 years in the school setting #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-85164658 (2016). Clinical trial of fluoride varnish in preventing dental caries of Sjögren's syndrome patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	ISRCTN-88646311 (2004). An evaluation of a model system for active prevention in the general dental service. #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-90779069 (2012). The effect of extracting badly decayed baby teeth from young underweight Filipino children on the children's weight and height #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-94617251 (2014). The acceptability and effectiveness of a computer-based oral health intervention for children undergoing caries treatment under general anaesthesia #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN94617251 (2014). The acceptability and effectiveness of a computer-based oral health intervention for children undergoing caries treatment under general anaesthesia #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	ISRCTN-99286964 (2004). Anti-microbial varnish in the management of root caries in mentally and/or medically compromised older adults #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Jahanshahi, M.,Kowsari, E.,Haddadi-Asl, V.,Khoobi, M.,Lee, J. H.,Kadumudi, F. B.,Talebian, S.,Kamaly, N.,Mehrali, M. (2019). Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	effective cancer cell targeting Int J Pharm, 572(#issue#), 118791	
L1	Jameel, R. A.,Khan, S. S.,Rahim, Z. H. A.,Bakri, M. M.,Siddiqui, S. (2016). Analysis of dental erosion induced by different beverages and validity of equipment for identifying early dental erosion, in vitro study Journal of the Pakistan Medical Association, 66(7), 843-848	Irrelevant exposure
L1	Janka, Z. (2019). Tracing trace elements in mental functions. [Hungarian] Ideggyogyaszati Szemle, 72(11-12), 367-379	Irrelevant exposure
L1	Jeong, J. H., Cho, I. H., Chun, K. A., Kong, E. J., Kwon, S. D., Kim, J. H. (2016). Correlation Between Apparent Diffusion Coefficients and Standardized Uptake Values in Hybrid (18)F-FDG PET/MR: Preliminary Results in Rectal Cancer Nucl Med Mol Imaging, 50(2), 150-6	Irrelevant exposure
L1	Jeppesen, T. E.,Kristensen, L. K.,Nielsen, C. H.,Petersen, L. C.,Kristensen, J. B.,Behrens, C.,Madsen, J.,Kjaer, A. (2019). Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde Bioconjugate Chemistry, 30(3), 775-784	Irrelevant exposure
L1	Jiang, H.,Bansal, A.,Pandey, M. K.,Peng, K. W.,Suksanpaisan, L.,Russell, S. J.,DeGrado, T. R. (2016). Synthesis of 18F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	in a Murine C6-Glioma Tumor Model J Nucl Med, 57(9), 1454-9	
L1	Jin, T,Zhang, H,Guan, Z (2019). The Historical Review and Development Strategies on Prevention and Control of Coal-Burning Type of Endemic Fluorosis in Liupanshui, Guizhou of China XXXIVth Conference of the International Society For Fluoride Research, 52(1), 94-95	Irrelevant exposure
L1	Johansson, E.,Lubberink, M.,Heurling, K.,Eriksson, J. W.,Skrtic, S.,Ahlstrom, H.,Kullberg, J. (2018). Whole-body imaging of tissuespecific insulin sensitivity and body composition by using an integrated PET/MR system: A feasibility study Radiology, 286(1), 271-278	Irrelevant exposure
L1	Jordan, R. A., Schulte, A., Bockelbrink, A. C., Puetz, S., Naumova, E., Warn, L. G., Zimmer, S. (2018). Caries-Preventive Effect of Salt Fluoridation in Preschool Children in The Gambia: a Prospective, Controlled, Interventional Study Caries research, 51(6), 596-604	Irrelevant exposure
L1	Ju, X.,Brennan, D.,Parker, E.,Mills, H.,Kapellas, K.,Jamieson, L. (2017). Efficacy of an oral health literacy intervention among Indigenous Australian adults Community dentistry and oral epidemiology, 45(5), 413-426	Irrelevant exposure
L1	Jung, S.,An, J.,Na, H.,Kim, J. (2019). Surface Energy of Filtration Media Influencing the Filtration	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Performance against Solid Particles, Oily Aerosol, and Bacterial Aerosol Polymers (Basel), 11(6), #Pages#	
L1	Kaczmarek, U.,Kowalczyk, W.,Gozdowski, D.,Olczak-Kowalczyk, D. (2018). Dentists' knowledge of fluoride cariostatic mechanisms Nowa Stomatologia, 23(3), 102-109	Irrelevant exposure
L1	Katsifis, A.,Le, V.,Stark, D.,Hossain, M.,Le, T.,Lam, P.,Eberl, S.,Fulham, M. (2018). Optimisation and automation of [18F]PSMA-1007 production, a next generation PET ligand for prostate carcinoma, using a GE FASTIab 2 Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Khan, M. S.,Naz, F.,Javid, R.,Mosby, T. T.,Assaf, N. (2016). Pattern of nutritional deficiencies in childhood cancer patients-experience from a large cancer hospital in Pakistan Pediatric Blood and Cancer, 63 (Supplement 3)(#issue#), S282	Irrelevant exposure
L1	Kim, H.,Choi, J. Y.,Lee, K. H.,Kim, B. T.,Choe, Y. S. (2019). Synthesis and characterization of a difluoroboron complex of fluorine-18 labeled curcumin derivative for beta-amyloid plaque imaging Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S390-S391	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Kim, KyungJo,Baek, KiTae,Ji, SangWoo,Cheong, YoungWook,Yim, GilJae,Jang, Am (2016). Study on electrocoagulation parameters (current density, pH, and electrode distance) for removal of fluoride from groundwater Environmental Earth Sciences, 75(1), 45	Irrelevant exposure
L1	 Kim, M.,Lee, S. J.,Ko, N. R.,Kim, D. H.,Kim, J. S.,Oh, S. J. (2019). Simple and fully automatic production of [¹⁸F]fluorodeprenyl-D2 using FXFN chemistry module Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S332 	Irrelevant exposure
L1	Kong, X. Y.,Hou, L. J.,Shao, X. Q.,Shuang, S. M.,Wang, Y.,Dong, C. (2019). A phenolphthalein- based fluorescent probe for the sequential sensing of Al(3+) and F(-) ions in aqueous medium and live cells Spectrochim Acta A Mol Biomol Spectrosc, 208(#issue#), 131-139	Irrelevant exposure
L1	 Kopycka-Kedzierawski, D. T., Meyerowitz, C., Litaker, M. S., Chonowski, S., Heft, M. W., Gordan, V. V., Yardic, R. L., Madden, T. E., Reyes, S. C., Gilbert, G. H. (2017). Management of Dentin Hypersensitivity by National Dental Practice-Based Research Network practitioners: results from a questionnaire administered prior to initiation of a clinical study on this topic BMC oral health, 17(1), 41 	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Korner, P.,Wiedemeier, D. B.,Attin, T.,Wegehaupt, F. J. (2020). Prevention of Enamel Softening by Rinsing with a Calcium Solution before Dental Erosion Caries research, #volume#(#issue#), 1-7	Irrelevant exposure
L1	Kramer, C. S.,Kanagasundaram, T.,Kopka, K. (2019). Development of a bimodal (PET/NIR) tumor tracer for non-invasive staging and fluorescence guided surgery of prostate cancer European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S753	Irrelevant exposure
L1	Kudinov, K. A., Cooper, D. R., Ha, J. K., Hill, C. K., Nadeau, J. L., Seuntjens, J. P., Bradforth, S. E. (2018). Scintillation Yield Estimates of Colloidal Cerium-Doped LaF3 Nanoparticles and Potential for "Deep PDT" Radiat Res, 190(1), 28-36	Irrelevant exposure
L1	Kulkarni, P.,Anand, A.,Bansal, A.,Jain, A.,Tiwari, U.,Agrawal, S. (2016). Erosive effects of pediatric liquid medicinal syrups on primary enamel: An in vitro comparative study Indian Journal of Dentistry, 7(3), 131-133	Irrelevant exposure
L1	Kumar, N.,Hazari, P. P.,Sony, S.,Swatantra,,Panchal, K. K.,Ramgopal,,Mishra, A. K. (2017). Synthesis of O-(2-[18F] fluoroethyl)-L- Tyrosine based on a cartridge purification method: A simple, fast, and high-yielding automated synthesis Indian Journal of Nuclear Medicine, 32 (5 Supplement 1)(#issue#), S45	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Kumari, U.,Behera, S. K.,Meikap, B. C. (2019). A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater Journal of Hazardous Materials, 365(#issue#), 868- 882	Irrelevant exposure
L1	Lahna, D.,Woltjer, R.,Grinstead, J.,Boespflug, E. L.,Schwartz, D.,Kaye, J. A.,Rooney, W. D.,Silbert, L. C. (2018). Postmortem 7t Mri for Guided Histology and Tissue Segmentation Alzheimer's and Dementia, 14 (7 Supplement)(#issue#), P53	Irrelevant exposure
L1	Lee, S. H.,Park, J. K.,Lee, S. Y.,Lee, J.,Ido, T. (2019). Radiolabeling of SUV size liposome with hexadecyl-4-[¹⁸ F]fluorobenzoate ([¹⁸ F] HFB) for tumor imaging Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S373-S374	Irrelevant exposure
L1	Lepoittevin, B.,Elzein, T.,Dragoe, D.,Bejjani, A.,Lemee, F.,Levillain, J.,Bazin, P.,Roger, P.,Dez, I. (2019). Hydrophobization of chitosan films by surface grafting with fluorinated polymer brushes Carbohydrate polymers, 205(#issue#), 437-446	Irrelevant exposure
L1	Li, B. Y.,Gao, Y. H.,Pei, J. R.,Yang, Y. M.,Zhang, W.,Sun, D. J. (2017). CIC-7/Ostm1 contribute to the ability of tea polyphenols to maintain bone homeostasis in C57BL/6 mice, protecting against	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	fluorosis International Journal of Molecular Medicine, 39(5), 1155-1163	
L1	Li, B. Y., Yang, Y. M., Liu, Y., Sun, J., Ye, Y., Liu, X. N., Liu, H. X., Sun, Z. Q., Li, M., Cui, J., Sun, D. J., Gao, Y. H. (2017). Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis PLoS ONE, 12 (2) (no pagination)(e0171011), #Pages#	Irrelevant exposure
L1	Li, M. H.,Chu, H. H.,Chang, H. C.,Feng, C. F. (2016). Preparing of [¹⁸ F]INER-1577 as histone deacetylase (HDAC2) imaging agent for AD Molecular Imaging and Biology, 18 (2 Supplement)(#issue#), S592-S593	Irrelevant exposure
L1	Li, M. H., Shiue, C. Y., Chang, H. C., Chu, H. H. (2016). Synthesis of [18F]benzamide ([18F]INER- 1577) as Histone Deacetylase (HDACs) imaging agent Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 57(SUPPL. 2), #Pages#	Irrelevant exposure
L1	Li, P.,Oyang, X.,Tu, T.,Tian, X.,Li, L.,Zhao, Y.,Li, J.,Xiao, Z. (2019). Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine- chemical industrial park in China Chemosphere, 225(#issue#), 659-667	Irrelevant exposure
L1	Li, X.,Brejnrod, A. D.,Ernst, M.,Rykaer, M.,Herschend, J.,Olsen, N. M. C.,Dorrestein, P.	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	C.,Rensing, C.,Sorensen, S. J. (2019). Heavy metal exposure causes changes in the metabolic health- associated gut microbiome and metabolites Environment International, 126(#issue#), 454-467	
L1	Li, Z., Jia, K., Duan, Y., Wang, D., Zhou, Z., Dong, S. (2017). Xanomeline derivative EUK1001 attenuates Alzheimer's disease pathology in a triple transgenic mouse model Mol Med Rep, 16(5), 7835-7840	Irrelevant exposure
L1	Lie, M., Thorstensen, K. (2018). A precise, sensitive and stable LC-MSMS method for detection of picomolar levels of serum aldosterone Scandinavian Journal of Clinical and Laboratory Investigation, 78(5), 379-385	Irrelevant exposure
L1	Lindner, J. M., Vogeser, M., Grimm, S. H. (2017). Biphenyl based stationary phases for improved selectivity in complex steroid assays Journal of Pharmaceutical and Biomedical Analysis, 142(#issue#), 66-73	Irrelevant exposure
L1	Lisova, K.,Chen, B. Y.,Wang, J.,Fong, K. M.,Clark, P. M.,van Dam, R. M. (2019). Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[(18)F]fluoroethyl)- L-tyrosine ([(18)F]FET) EJNMMI Radiopharm Chem, 5(1), 1	Irrelevant exposure
L1	Lisova, K.,Wang, J.,Rios, A.,Van Dam, R. M. (2019). Adaptation and optimization of [¹⁸ F]	Irrelevant exposure

Florbetaben ([¹⁸F]FBB) radiosynthesis

Le vel	Bibliography	Reason for exclusion
	to a microdroplet reactor Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S353-S354	
L1	Liu, DanDan,Xu, RongZhen,Liu, Fei (2017). Photodecomposition of perfluorooctanoic acid under UV light in the presence of Fe (III) Environmental Science & amp; Technology (China), 40(5), 26-31	Irrelevant exposure
L1	Liu, G.,Chen, Y.,Jia, M.,Sun, Z.,Ding, B.,Shao, S.,Jiang, F.,Fu, Z.,Ma, P.,Lin, J. (2019). One-pot synthesis of SiO2-coated Gd2(WO4)3:Yb(3+)/Ho(3+) nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition Dalton Trans, 48(28), 10537-10546	Irrelevant exposure
L1	Liu, G.,Sun, Z.,Fu, Z.,Ma, L.,Wang, X. (2017). Temperature sensing and bio-imaging applications based on polyethylenimine/CaF2 nanoparticles with upconversion fluorescence Talanta, 169(#issue#), 181-188	Irrelevant exposure
L1	Liu, R.,Fu, Z.,Zhao, M.,Gao, X.,Li, H.,Mi, Q.,Liu, P.,Yang, J.,Yao, Z.,Gao, Q. (2017). GLUT1- mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates Oncotarget, 8(24), 39476-39496	Irrelevant exposure
L1	Liu, Y.,Qian, M.,Ma, X.,Zhu, L.,Martin, J. W. (2018). Nontarget Mass Spectrometry Reveals New Perfluoroalkyl Substances in Fish from the Yangtze	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	River and Tangxun Lake, China Environ Sci Technol, 52(10), 5830-5840	
L1	Lowe, P. T.,Dall'Angelo, S.,Fleming, I. N.,Piras, M.,Zanda, M.,O'Hagan, D. (2019). Enzymatic radiosynthesis of a (18)F-Glu-Ureido-Lys ligand for the prostate-specific membrane antigen (PSMA) Org Biomol Chem, 17(6), 1480-1486	Irrelevant exposure
L1	Lu, Qing,Wei, ShengYing,Pu, GuangLan,Wang, Mei,Yang, Ping,Li, ShengMei,Cai, ShengHua (2016). Investigation of drinking-tea-borne fluorosis distribution in Haidong, Qinghai Province Modern Preventive Medicine, 43(3), 424-425	Irrelevant exposure
L1	Lundblad, Henrik, Karlsson-Thur, Charlotte, Maguire, Gerald Q., Jr., Jonsson, Cathrine, Noz, Marilyn E., Zeleznik, Michael P., Weidenhielm, Lars (2017). Can Spatiotemporal Fluoride (18F-) Uptake be Used to Assess Bone Formation in the Tibia? A Longitudinal Study Using PET/CT Clinical Orthopaedics & Related Research, 475(2), N.PAG- N.PAG	Irrelevant exposure
L1	Lutje, S.,Franssen, G. M.,Herrmann, K.,Boerman, O. C.,Rijpkema, M.,Gotthardt, M.,Heskamp, S. (2019). In Vitro and In Vivo Characterization of an (18)F-AIF- Labeled PSMA Ligand for Imaging of PSMA- Expressing Xenografts J Nucl Med, 60(7), 1017- 1022	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Ly, P.,Hayes, D. K.,Yamashiroya, V.,Turnure, M. M.,Iwaishi, L. K. (2018). Knowledge and Attitudes Towards Fluoride Supplementation: A Survey of Pediatric Medical and Dental Providers in the State of Hawai'i Hawaii J Med Public Health, 77(11), 275- 282	Irrelevant exposure
L1	Ma, L.,Chen, J.,Han, H.,Liu, P.,Wang, H.,Lin, S.,Zhang, Q.,Lu, D.,Zhang, X. (2019). Effects of lemon essential oil and limonene on the progress of early caries: An in vitro study Archives of oral biology, 111(#issue#), 104638	Irrelevant exposure
L1	Ma, XiangJuan,Bian, LiXia,Ding, JingFeng,Wu, YaPing,Xia, HuiLong,Li, JiongHui (2017). Electrochemical oxidation of quinoline aqueous solution on β -PbO2 anode and the evolution of phytotoxicity on duckweed Water Science and Technology, 75(8), 1820-1829	Irrelevant exposure
L1	Maggitti, A. L.,Blum, L.,McMullin, M. (2016). Quantitative testing for polychlorinated biphenyls (PCBs) in human serum utilizing gas chromatography tandem mass spectrometry (GC- MS/MS) Clinical Chemistry, 62 (10 Supplement 1)(#issue#), S112	Irrelevant exposure
L1	Mandall, Nicky A., Hickman, Joy, Macfarlane, Tatiana V., Mattick, C. R. Rye, Millett, Declan T., Worthington, Helen V. (2018). Adhesives for fixed orthodontic	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	brackets Cochrane Database of Systematic Reviews, #volume#(5), #Pages#	
L1	Marinho, C. C. Valeria, Chong, Yee Lee, Worthington, Helen V., Walsh, Tanya (2016). Fluoride mouthrinses for preventing dental caries in children and adolescents Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Marshall, T. A., Curtis, A. M., Cavanaugh, J. E., Warren, J. J., Levy, S. M. (2019). Child and adolescent sugar-sweetened beverage intakes are longitudinally associated with higher body mass index <i>z</i> scores in a birth cohort followed 17 years Journal of the Academy of Nutrition and Dietetics, 119(3), 425-434	Irrelevant exposure
L1	Marshall, T.,Curtis, A.,Cavanaugh, J.,Warren, J.,Levy, S. (2019). Associations Between Child and Adolescent Beverage Intakes and Age 17-year Percent Body Fat (P21-064-19) Current Developments in Nutrition, 3(Suppl 1), #Pages#	Irrelevant exposure
L1	Matsuura, T.,Shako, N.,Ozaki, K. (2017). Long-term hyperglycemia naturally induces dental caries but not periodontal disease in type-2 diabetic db/db mouse Experimental Animals, 66 (Supplement 1)(#issue#), S61	Irrelevant exposure
L1	Mazur, C. M., Savic, D., Pedoia, V., Venkatachari, A. K., Seo, Y., Franc, B. L., Majumdar, S. (2016). A PET/MR study of cartilage-bone interactions in	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	osteoarthritis using T <inf>1rho</inf> dispersion Molecular Imaging and Biology, 1)(#issue#), S759- S760	
L1	 McInnes, S. J., Michl, T. D., Delalat, B., Al-Bataineh, S. A., Coad, B. R., Vasilev, K., Griesser, H. J., Voelcker, N. H. (2016). "Thunderstruck": Plasma-Polymer- Coated Porous Silicon Microparticles As a Controlled Drug Delivery System ACS Appl Mater Interfaces, 8(7), 4467-76 	Irrelevant exposure
L1	Meenakshi, Singh,Chetana, Vaishnavi,Rakesh, Kochhar,Safrun, Mahmood (2017). Toxigenic Clostridium difficile isolates from clinically significant diarrhoea in patients from a tertiary care centre Indian Journal of Medical Research, 145(6), 840- 846	Irrelevant exposure
L1	Michelena, O.,Padro, D.,Carrillo-Carrion, C.,Del Pino, P.,Blanco, J.,Arnaiz, B.,Parak, W. J.,Carril, M. (2017). Novel fluorinated ligands for gold nanoparticle labelling with applications in (19)F-MRI Chem Commun (Camb), 53(16), 2447-2450	Irrelevant exposure
L1	Millett, Declan T.,Glenny, AnneMarie,Mattick, C. R. Rye,Hickman, Joy,Mandall, Nicky A. (2016). Adhesives for fixed orthodontic bands Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Mirhashemi, A. H., Jahangiri, S., Kharrazifard, M. J. (2018). Release of nickel and chromium ions from	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	orthodontic wires following the use of teeth whitening mouthwashes Progress in Orthodontics, 19 (1) (no pagination)(4), #Pages#	
L1	Mirzaei, A., Yerushalmi, L., Chen, Zhi, Haghighat, F., Guo, JianBo (2018). Enhanced photocatalytic degradation of sulfamethoxazole by zinc oxide photocatalyst in the presence of fluoride ions: optimization of parameters and toxicological evaluation Water Research (Oxford), 132(#issue#), 241-251	Irrelevant exposure
L1	Mishra, R.,Siddiqui, A. A.,Husain, A.,Rashid, M.,Bhardwaj, S. (2016). Design, synthesis and anticonvulsant activity of 1, 3, 5 -triazin-2- imine/one/thione incorporated pyridazines Movement Disorders, 31 (Supplement 1)(#issue#), S96-S97	Irrelevant exposure
L1	Mitra, A.,Rajesh, C.,Lad, S.,Upadhye, T.,Banerjee, S.,Rajan, R. (2017). Automated synthesis of pharmaceutical grade [¹⁸ F]FLT using 5'-O-(Benzoyl)-2,3'-anhydrothymidine Precursor Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S616	Irrelevant exposure
L1	Mitra, R.,Goddard, R.,Porschke, K. R. (2017). 9,9- Difluorobispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin Inorg Chem, 56(11), 6712-6724	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Mohapatra, S.,Das, R. K. (2019). Dopamine integrated B, N, S doped CQD nanoprobe for rapid and selective detection of fluoride ion Anal Chim Acta, 1058(#issue#), 146-154	Irrelevant exposure
L1	Molina-Frechero, N.,Nevarez-Rascon, M.,Tremillo- Maldonado, O.,Vergara-Onofre, M.,Gutierrez- Tolentino, R.,Gaona, E.,Castaneda, E.,Jarquin- Yanez, L.,Bologna-Molina, R. (2020). Environmental Exposure of Arsenic in Groundwater Associated to Carcinogenic Risk in Underweight Children Exposed to Fluorides Int J Environ Res Public Health, 17(3), #Pages#	Irrelevant exposure
L1	Mondal, N. K. (2018). Diagnosis of fluorosis and recovery through easy to practise interventions Fluoride, 51(3), 230-242	Irrelevant exposure
L1	Montedori, Alessandro, Abraha, Iosief, Orso, Massimiliano, D'Errico, Giuseppe Potito, Pagano, Stefano, Lombardo, Guido (2016). Lasers for caries removal in deciduous and permanent teeth Cochrane Database of Systematic Reviews, #volume#(9), #Pages#	Irrelevant exposure
L1	Moon, S. H.,Wilks, M.,Takahashi, K.,Han, P.,Ma, C.,Yuan, H.,El Fakhri, G.,Shoup, T.,Normandin, M. (2019). TEMPO as a PET/MR probe of oxidative stress in cell membranes Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Morales-Roman, R., Tamano-Machiavello, M., Roig- Perez, L., Costa, C., Lanceros-Mendez, S., Gomez- Ribelles, J., Gallego-Ferrer, G. (2017). Electroactive poly(vinylidene fluoride) membranes with hydrophilic domains for osteogenic differentiation Artificial Organs, 41 (9)(#issue#), A62	Irrelevant exposure
L1	Morana, G., Piccardo, A., Luisa Garre, M., Rossi, A. (2016). PET/MR of paediatric brain tumours Cancer Imaging. Conference: 16th Annual Teaching Course of the International Cancer Imaging Society, ICIS, 16(Supplement 1), #Pages#	Irrelevant exposure
L1	Mossine, A.,Tanzey, S.,Brooks, A.,Henderson, B.,Skaddan, M.,Sanford, M.,Scott, P. (2019). Automated production of high specific activity [¹⁸ F]6F-I-DOPA using a TRACERLab FXFN synthesis module Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S225-S226	Irrelevant exposure
L1	Mottaz, H.,Schönenberger, R.,Fischer, S.,Eggen, R. I. L.,Schirmer, K.,Groh, K. J. (2017). Dose- dependent effects of morphine on lipopolysaccharide (LPS)-induced inflammation, and involvement of multixenobiotic resistance (MXR) transporters in LPS efflux in teleost fish Environmental Pollution, 221(#issue#), 105-115	Irrelevant exposure
L1	Mozafari, V.,Khaleghi, F. (2016). Effects of gibberellic acid and nitrogen on some physiology	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	parameters and micronutrients concentration in pistachio under salt stress Journal of Water and Soil, 30(3), Pe955-Pe967	
L1	Mukhopadhyay, D., Priya, P., Chattopadhyay, A. (2016). Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1 Environmental Toxicology and Pharmacology, 40(2), 352-359	Irrelevant exposure
L1	Munoz-Millan, Patricia,Zaror, Carlos,Espinoza- Espinoza, Gerardo,Vergara-Gonzalez, Carolina,Munoz, Sergio,Atala-Acevedo, Claudia,Martinez-Zapata Maria, Jose (2018). Effectiveness of fluoride varnish in preventing early childhood caries in rural areas without access to fluoridated drinking water: a randomized control trial Community dentistry and oral epidemiology, 46(1), 63-69	Irrelevant exposure
L1	Naik, R. G.,Dodamani, A. S.,Vishwakarma, P.,Jadhav, H. C.,Khairnar, M. R.,Deshmukh, M. A.,Wadgave, U. (2017). Level of fluoride in soil, grain and water in Jalgaon district, Maharashtra, India Journal of Clinical and Diagnostic Research, 11(2), ZC05-ZC07	Irrelevant exposure
L1	Nan, L. (2018). Characterization and optimization of the radiochemical synthesis of [¹⁸ F]AMD3465: A potential PET imaging agent for Chemokine Receptor CXCR4	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	
L1	Napolitano, R.,De Matteis, S.,Carloni, S.,Simonetti, G.,Musuraca, G.,Lucchesi, A.,Calistri, D.,Cuneo, A.,Menon, K.,Martinelli, G. (2017). Kevetrin: Preclinical study of a new compound in acute myeloid leukemia Haematologica, 102 (Supplement 2)(#issue#), 371	Irrelevant exposure
L1	Nardi, G. M., Sabatini, S., Lauritano, D., Silvestre, F., Petruzzi, M. (2016). Effectiveness of two different desensitizing varnishes in reducing tooth sensitivity: a randomized double-blind clinical trial Oral & Implantology, 9(4), 185-189	Irrelevant exposure
L1	Naushad, M (2019). A New Generation Material Graphene: Applications in Water Technology #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2016). Efficacy of Different Chlorhexidine Concencaltrials.gov/show/NCT02911766, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Community Partnering to Encourage Healthy Beverage Intake Through Child Care https://clinicaltrials.gov/show/NCT03713840, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Comparison of 5 Buffering Agents on Changes in Salivary pH in Individuals Previously Exposed to a Test Carbonated Drink	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	https://clinicaltrials.gov/show/NCT03526770, #volume#(#issue#), #Pages#	
L1	Nct, (2018). Effect of Different Over-the-counter Toothpastes on Enamel Reminera <u>lization</u> <u>https://clini</u> caltrials.gov/show/NCT03774498, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Effect of the Incoportation of Copper and Zinc Nanoparticles Into Dental A <u>dhesives</u> <u>https://clini</u> caltrials.gov/show/NCT03635138, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2018). Investigation of the Instant Tooth Whitening Effect of a Silica Toothpaste Containing Blue <u>Covarine</u> <u>https://clini</u> caltrials.gov/show/NCT03760367, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2019). Efficacy of Resin Infiltration of Proximal Caries https://clinicaltrials.gov/show/NCT04092296, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nct, (2019). Older Adult Effectiveness of 2 Tr <u>eatments</u> <u>https://clini</u> caltrials.gov/show/NCT03916926, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00062374 (2011). Irinotecan and Cisplatin in Treating Patients Who Are Undergoing Surgery For Locally Advanced Cancer of the Stomach or	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Gastroesophageal Junction #journal#, #volume#(#issue#), #Pages#	
L1	NCT00066963 (2003). Fluoride Varnish Randomized Clinical Trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00300677 (2008). To Determine The Amount Of Voriconazole In The Brain After 2 Loading Doses And 3 Maintenance Doses Over 3 Days #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00372957 (2006). Study Of GW823093 In Japanese Subjects With Type 2 Diabetes Mellitus #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00375830 (2017). Combined 18F-NaF/18F- FDG PET/MRI for Detection of Skeletal Metastases #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00381797 (2015). Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00489827 (2009). Glutamate for Metabolic Intervention in Coronary Surgery #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00572728 (2014). Phase II Study of Fluorine-18 3'-Deoxy-3'-Fluorothymidine (F-18-FLT) in Invasive	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Breast Cancer #journal#, #volume#(#issue#), #Pages#	
L1	NCT00594568 (2011). Effect of LY450139 on the Long Term Progression of Alzheimer's Disease #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00602043 (2011). F-18 16 Alpha- Fluoroestradiol-Labeled Positron Emission Tomography in Predicting Response to First-Line Hormone Therapy in Patients With Stage IV Breast Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00703261 (2009). Evaluate the Utility of 18FDG-PET as a Tool to Quantify Atherosclerotic Plaque (MK-0000-081 AM3)(COMPLETED) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00708097 (2008). In Situ Caries Efficacy of Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00708123 (2008). In Situ Caries of Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00708305 (2008). Evaluation of Plaque Fluid Fluoride Retention From Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00729157 (2012). Aflibercept in Treating Patients With Recurrent and/or Metastatic Thyroid	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Cancer That Did Not Respond to Radioactive Iodine Therapy #journal#, #volume#(#issue#), #Pages#	
L1	NCT00752089 (2008). Experimental Dentifrice Remineralization/Fluoride Uptake in an in Situ Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00758290 (2008). Clinical Study to Evaluate Dental Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00758394 (2007). Clinical Study to Compare Dental Plaque Control #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00758563 (2008). Train New Examiners Via Modified Gingival Margin Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00759031 (2008). Investigation of Dental Plaque and Gingival Index #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00759187 (2008). Evaluate Clinical Research From Commerical Oral Care Products #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00761930 (2008). Compare the Clinical Efficacy of Prototype Toothpastes. #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762177 (2008). Investigate Oral Bacteria in Adult Population #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT00762411 (2011). Effects of LY450139, on the Progression of Alzheimer's Disease as Compared With Placebo #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762450 (2008). Effect on Bacterial Glycolytic Acid Formation on Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762515 (2008). Clinical Study to Evaluate the Treatment of Gingivitis of Two Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762528 (2008). Compare Anti-inflammatory Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762619 (2008). Clinical Study to Examine Brushing on Dental Implants #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762762 (2008). Investigate Plaque and Gingival Index #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00762853 (2008). Development of Clinical Method to Triclosan Retention in Plaque Following Brushing #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00763048 (2008). Collection of Gingival Crevicular Fluid From Periodontitis Patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00763256 (2008). The Effect of Periodontal Treatment and the Use of Dentifrice on Glycaemic	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Control in Diabetics #journal#, #volume#(#issue#), #Pages#	
L1	NCT00763269 (2008). The Efficacy of a Toothpaste to Reduce Sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00875212 (2007). Effect of Calcium Glycerophosphate (CaGP) - Fluoride Dentifrice on Dental Biofilm pH #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00926029 (2008). Compare the Clinical Efficacy of Prototype Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00926328 (2007). Comparative Efficacy of a Toothpaste That Reduces Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00928174 (2013). Measurement of Anti- Androgen Response Using Fluorine-18 Fluorocholine PET/CT in Androgen-Insensitive Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00928252 (2016). Chemotherapy Response Monitoring With 18F-choline PET/CT in Hormone Refractory Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00936975 (2009). Fluorine F 18 Sodium Fluoride Positron Emission Tomography in	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Evaluating Response to Dasatinib in Patients With Prostate Cancer and Bone Metastases #journal#, #volume#(#issue#), #Pages#	
L1	NCT00941668 (2008). Evaluate Inflammation Caused by Gingivitis in Adults #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00963807 (2012). A Comparison of FLT to FDG PET/CT in the Early Assessment of Chemotherapy Response in Stage IB-IIIA Resectable NSCLC #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00964860 (2009). A Controlled Clinical Study to Determine the Gingivitis Benefit of Flossing #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00966953 (2008). Development of Clinical Method to Determination Triclosan Retention in Plaque Following Brushing. #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT00981825 (2007). Efficacy of Salivary Bacteria and Post Brushing #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01005966 (2009). In Situ Caries Model of Fluoride Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01009554 (2009). Oral Tissue Tolerance of a Mouthrinse #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT01014143 (2007). Evaluating Commercial Anti- Plaque Products and Oral Rinse #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01024738 (2008). Study to Determine the Anti- plaque Efficacy of Commerical Toothpastes and an Oral Rinse #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01040169 (2008). Clinical Efficacy of a Toothpaste on Hypersensitivity Reduction #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01049503 (2010). Effect of pH and Fluoride Concentration of Dentifrices on Caries Control #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01072188 (2008). Clinical Efficacy of 10% Arginine Bicarbonate Prophylaxis Paste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01072201 (2007). To Access the Effects of Mucositis in Adults With Dental Implants #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01128946 (2010). Enamel Remineralization Potential of Dentifrices in Situ #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01128972 (2009). Evaluation of a Test Mouthwash and Dentifrice Regimen in an In-situ Model of Dental Erosion #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT01129206 (2012). Pralatrexate and Docetaxel in Treating Patients With Stage IV Esophageal or Gastroesophageal Cancer Who Have Failed Platinum-Based Therapy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01133379 (2010). Tooth Sensitivity Relief by Two Mouthrinses #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01153672 (2012). Vorinostat in Treating Patients With Stage IV Breast Cancer Receiving Aromatase Inhibitor Therapy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01156376 (2010). Oral Irritation Study of Two Experimental Mouthrinses #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01237054 (2011). Imaging in MGUS, SMM and MM #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01240551 (2010). F-18 Sodium Fluoride in Prostate Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01312181 (2015). HealthCall:Brief Intervention to Reduce Non-injecting Drug Use in HIV Primary Care Clinics #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01320943 (2016). Stopping TDF Treatment After Long Term Virologic Suppression in HBeAg-	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	negative CHB #journal#, #volume#(#issue#), #Pages#	
L1	NCT01345292 (2011). A Study of the Relief of Tooth Sensitivity of an Experimental Mouthrinse Device #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01395030 (2017). PET/CT in Diagnosing Patients With Liver Cancer Undergoing Surgical Resection #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01494649 (2011). Pilot Study to Investigate the Efficacy of a Toothpaste in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01496456 (2014). Radiographic Progression of Infiltrated Caries Lesions In-vivo #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01500187 (2011). Fluoride Varnish for Treatment of White Spot Lesions #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01541358 (2012). Sodium Fluoride PET/CT for the Evaluation of Skeletal Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01563172 (2009). Effect of Dentifrice Usage Regime on Delivery and Efficacy of Fluoride #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT01584024 (2017). Resin Infiltration to Arrest Early Tooth Decay #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01592851 (2012). Clinical Efficacy of a Toothpaste in Providing Relief From the Pain of Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01592864 (2012). The Efficacy of a Dentifrice in Providing Relief From the Pain of Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01604109 (2011). Effect of CPP-ACP Paste on Dental Caries in Primary Teeth #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01607411 (2012). A Clinical Study to Evaluate Experimental Children's Toothpastes in an In-Situ Caries Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01610167 (2011). NUPRO(r) Sensodyne Prophylaxis Paste With NovaMin(r)Sensitivity Relief Study #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01629290 (2012). In Vivo Comparison of Salivary Fluoride Levels Following the Application of Different 5% NaF Varnishes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT01641237 (2012). Effect of Fluoride in a Dentifrice on Remineralization of Erosive Lesions #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01648296 (2014). Fatty Acid Radiotracer Comparison Study in Heart Failure Patients #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01652001 (2014). Drug-induced Xerostomia. Evaluation of Malic Acid 1%, Salivary Mucins and Buffering Capacity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01657877 (2013). Anti-caries Potential of a Sodium Monofluorophosphate and Calcium Sodium Phosphosilicate Dentifrice #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01657903 (2012). Evaluation of Efficacy of Experimental Gel to Foam Dentifrices in Dental Erosion #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01665911 (2012). An in Situ Study on the Impact of Fluoride Dose and Concentration in Milk on Its Anti-caries Efficacy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01669785 (2012). NUPRO Sensodyne Prophylaxis Paste With NovaMin Sensitivity Relief Study #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01691560 (2012). Exploratory Study to Evaluate an Occlusion Based Dentifrice in Relief of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	
L1	NCT01720602 (2015). Vorinostat in Treating Patients With Stage IV Breast Cancer Receiving Hormone Therapy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01727258 (2012). A Test on a New Experimental Mouth Rinse for Relieving Tooth Sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01797458 (2013). European Study on Three Different Approaches to Managing Class 2 Cavities in Primary Teeth #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01799226 (2013). Study of the Anti- Inflammatory Effects of Colgate Total® During an Experimental Gingivitis Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01806675 (2016). 18F-FPPRGD2 PET/CT or PET/MRI in Predicting Early Response in Patients With Cancer Receiving Anti-Angiogenesis Therapy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01816048 (2013). NaF Positron Emission Tomography/Computed Tomography (PET/CT)Imaging to Assess Treatment Responsiveness to TAK-700 in Patients With Castrate Resistant Prostate Cancer (CRPC) With	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Bone Metastasis #journal#, #volume#(#issue#), #Pages#	
L1	NCT01827670 (2013). Investigating the Efficacy of a Dentifrice in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01831817 (2013). Exploratory Study to Evaluate the Efficacy of an Occlusion Based Dentifrice in Relief of Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01901250 (2011). Xylitol for Caries Prevention in Inner-City Children #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01908127 (2011). Efficacy of Film Modelling in Paediatric Dentistry #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01928186 (2015). FLT PET in Measuring Treatment Response in Patients With Newly Diagnosed Estrogen Receptor-Positive, HER2- Negative Stage I-III Breast Cancer #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT01962493 (2013). An Efficacy Study of Stain Control of a 67% Sodium Bicarbonate Containing Toothpaste on Chlorhexidine Tooth Staining #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02003183 (2018). Traumatic Brain Injury and Risk for Chronic Traumatic Encephalopathy #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02004990 (2013). Dental Office Prevention Strategies for Children #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02034552 (2016). A Randomized Phase IIa Efficacy and Safety Study of Radium-223 Dichloride With Abiraterone Acetate or Enzalutamide in Metastatic Castration-resistant Prostate Cancer (CRPC) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02080273 (2013). Six Month Plaque and Gingivitis Study Using Colgate Total Toothpaste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02113579 (2014). Test on a New Experimental Mouth Rinse for Relieving Tooth Sensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02151058 (2014). A Clinical Trial to Test the Effect of a Marketed Mouth Rinse on Stain Removal #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02167204 (2019). 18F-FLT PET/CT in Measuring Cell Proliferation in Patients With Brain Tumors #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02187016 (2014). Efficacy and Safety Study of Interproximal Cleaning Modalities on Oral Health #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02193165 (2014). The Clinical Efficacy of Three Oral Hygiene Regimens Using a Manual Toothbrush, Toothpaste and a Mouthwash in Controlling Dental Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02194621 (2014). Clinical Investigation to Examine Toothpaste Effect on Oral Bacteria #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02195583 (2014). The Effect of Experimental Dentifrices on Remineralization of Caries Lesions In- situ #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02200536 (2013). Impact of Providing Free Preventive Dental Health Products on Infant's Tooth Brushing and Bottle-feeding Termination Practices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02207400 (2014). To Evaluate Efficacy and Tolerability of Sodium Bicarbonate Toothpaste and Its Effect on Opportunistic or Resistant Organisms #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02207907 (2014). To Evaluate the Efficacy and Tolerability of Sodium Bicarbonate Toothpaste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02226562 (2014). Clinical Study Investigating the Efficacy of a Mouthwash in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02233998 (2014). A Clinical Trial to Test the Effect of Marketed Mouth Rinses on Decreasing Plaque and Gum Inflammation #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02243046 (2014). The Clinical Investigation of a Zinc Based Toothpaste in Reducing Plaque and Gingivitis #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02319668 (2014). Antimicrobial Agent for Reducing Bacteria in Aerosols and Oral Cavity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02347124 (2017). Promoting Oral Health Among Smokers Randomized Trial #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02350478 (2017). Effects of Linagliptin on Endothelial Function #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02360124 (2014). Preventing and Arresting Dental Root Surface Caries in Community-dwelling Older Adults #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02360995 (2014). The Clinical Investigation of Toothpaste as Compared to Toothpaste and Mouthwash in Reducing Plaque and Gingivitis: A Six-week Clinical Study in the US #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02366689 (2014). Clinical Study Comparing Dental Plaque and Gingivitis Reduction After Using One of Three Oral Hygiene Multi-component Regimens (Using of a Manual Toothbrush, a Toothpaste and a Mouthwash) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02371616 (2014). Clinical Study to Evaluate the Efficacy of Two Dentifrices for Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02384044 (2015). A Pilot Clinical Study to Evaluate the Safety and Efficacy of Marketed Oxalate Strips Compared to a Marketed Safety Pen #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02399163 (2015). Evaluation of Oral Hygiene Products in an In Situ Caries Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02424097 (2016). MI Varnish and MI Paste Plus in a Caries Prevention and Remineralization Study #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02436811 (2015). Oral Health Literacy and Oral Education #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02460562 (2016). Caries Prevention Effect of S-PRG Filler Incorporated in Denture Base Resins on Edentulous Elderly People #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02533466 (2015). In Vivo Investigation of Initial Stages of Enamel Erosion #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02536040 (2016). Stopping Cavities Study: Diammine Silver Fluoride #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02542943 (2015). Efficacy of Two Experimental Oral Rinses in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02548156 (2015). Intra Oral Kinetics of Fluoride Containing Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02612064 (2015). The Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02645617 (2016). Safety Evaluation of Advantage Anti-Caries Varnish #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02651467 (2016). A Study to Investigate Efficacy of Two Experimental Oral Rinses in Providing Long Term Relief From Pain Derived From Exposed Dentine in Response to Chemical, Thermal, Tactile, or Osmotic Stimuli #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02657538 (2014). Validation of Near-infrared Light Transillumination for Interproximal Enamel Caries Detection #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02705716 (2016). Study Investigating Efficacy of an Occluding Dentifrice for Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02731833 (2016). Short Term Clinical Study Investigating the Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02750943 (2015). Potential of Stannous Fluoride Toothpaste to Reduce Gum Disease #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02751320 (2016). Efficacy of Three Toothpastes Using an in Situ Caries Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02751450 (2016). The Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity(DH) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02752958 (2017). Impact of Long Term Management of Dentine Hypersensitivity (DH) With a Daily Use Anti-sensitivity Toothpaste on the Quality	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	of Life Related to Oral Health #journal#, #volume#(#issue#), #Pages#	
L1	NCT02753075 (2015). A Study in Dentinal Hypersensitivity (DH) Participants to Assess the Efficacy of an Occluding Dentifrice #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02768194 (2016). Dentine Tubule Occlusion Assessment in a Modified in Situ Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02773758 (2016). Study to Investigate the Efficacy of an Occluding Dentifrice in Providing Relief From Dentine Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02832375 (2016). Investigating the Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02856880 (2015). A Study to Investigate the Antimicrobial Activity of 2 Test Toothpastes #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02861664 (2016). Assessment of the Efficacy of an Experimental Occlusion Technology Dentifrice in Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02918617 (2016). Clinical Efficacy in Relieving Dentin Hypersensitivity of Nanohydroxyapatite-	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Containing Toothpastes and Cream #journal#, #volume#(#issue#), #Pages#	
L1	NCT02923895 (2016). To Investigate the Efficacy of an Occluding Dentifrice in Dentinal Hypersensitivity (DH) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02924350 (2017). The Efficacy of an Occluding Dentifrice in Providing Relief From Dentinal Hypersensitivity (DH) #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02937636 (2017). To Investigate the Gingivitis Efficacy of a Stannous Fluoride Dentifrice in a Chinese Population #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02953886 (2016). The Effect of Silver Diamine Fluoride (SDF) on Bacteria Involved in Root or Cervical Carious Lesions #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02953886 (2017). The Effect of Silver Diamine Fluoride (SDF) on Bacteria Involved in Root or Cervical Carious Lesions #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT02988349 (2014). Ecological Effect of Arginine Dentifrice on Oral Microbiota #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	NCT02992691 (2017). Efficacy of Three Experimental Toothpastes to Remove Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03072719 (2012). The Efficacy of a Dentifrice in Providing Relief From Immediate and Short Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03160703 (2017). Study to Investigate the Stain Control of Two Stannous Fluoride Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03238352 (2017). A Study to Assess Efficacy of an Experimental Oral Rinse in Providing Long Term Relief From Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03267511 (2017). A Study to Investigate the Stain and Plaque Removal Capability of Two Experimental Potassium Nitrate Dentifrices #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03285984 (2012). Ability of Four Toothpastes to Remove Plaque #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03296072 (2017). In Situ Erosion Study to Investigate the Effectiveness of an Experimental Toothpaste #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03310268 (2018). A Clinical Study to Evaluate a Stannous Fluoride Toothpaste for the Relief of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	
L1	NCT03383783 (2017). Evaluation of the Fluoride Dose Response of a Modified In Situ Caries Model #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03405259 (2013). A Clinical Study to Compare Professional Treatments for Dentinal Hypersensitivity #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03446690 (2015). MI Varnish for the Prevention of White Spot Lesions #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	NCT03546491 (2018). Evaluate Dental Plaque Benefit of a Preventive Treatment Gel #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Nelson, J. D., Spencer, S. M., Blake, C. E., Moore, J. B., Martin, A. B. (2018). Elevating Oral Health Interprofessional Practice Among Pediatricians Through a Statewide Quality Improvement Learning Collaborative J Public Health Manag Pract, 24(3), e19-e24	Irrelevant exposure
L1	Nemoto, A.,Chosa, N.,Kyakumoto, S.,Yokota, S.,Kamo, M.,Noda, M.,Ishisaki, A. (2018). Water- soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells Molecular Medicine Reports, 17(3), 3448-3454	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Nguyen, A. (2017). The effect of various hindered tertiary alcohols on the SN2 radiofluorination of 3'- deoxy-3'-[18 F]fluorothymidine and its in vivo application as a proliferation imaging probe in acute myeloid leukemia Molecular Imaging and Biology, 19 (1 Supplement 1)(#issue#), S589	Irrelevant exposure
L1	Nigam, S.,Domarkas, J.,Bernard, J.,Clemente, G.,Burke, B.,Juge, S.,Malacea-Kabbara, R.,Benoit, D.,Cawthorn, C. (2017). O-BF <inf>3</inf> - Phosphonium pincer moieties in the design of delocalized lipophilic cation based tracers for PET imaging of mitochondrial function Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Irrelevant exposure
L1	Noh, M. F. B. M., Laurens, E., Jeow, S. Y., Vedarethinam, R., Wee, X. J., Fatholmoein, F. Z. B., Pek, G., Ping, H. T. S., Green, D., Chiam, V. K., Boodeea, K., Doshi, P. R., Kulasi, A., Hui, E. T. J., Weekes, A., Robins, E. (2019). Automated synthesis of [¹⁸ F]NAV4694 using GE TracerLab FX-N Pro in compliance with PIC/S GMP Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S333-S334	Irrelevant exposure
L1	Norman, M., Twetman, S., Hultgren Talvilahti, A., Granstrom, E., Stecksen-Blicks, C. (2017). Urinary fluoride excretion in preschool children after intake of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	fluoridated milk and use of fluoride-containing toothpaste Community dental health, 34(1), 27-31	
L1	 Nunes, R. de C. A., Chiba, F. Y., Pereira, A. G., Pereira, R. F., Mattera, M. S. de L. C., Ervolino, E., Louzada, M. J. Q., Buzalaf, M. A. R., Silva, C. A., Sumida, D. H. (2016). Effect of sodium fluoride on bone biomechanical and histomorphometric parameters and on insulin signaling and insulin sensitivity in ovariectomized rats Biological Trace Element Research, 173(1), 144-153 	Irrelevant exposure
L1	Ogo, A.,Miyake, S.,Kubota, H.,Higashida, M.,Matsumoto, H.,Teramoto, F.,Hirai, T. (2017). Synergistic effect of eicosapentaenoic acid on antiproliferative action of anticancer drugs in a cancer cell line model Annals of Nutrition and Metabolism, 71(3/4), 247-252	Irrelevant exposure
L1	Ola-Davies, O. E. (2018). Ameliorative effect of gallic acid against sodium fluoride-induced hypertension and hepato-renal complications in wistar rats African Journal of Biomedical Research, 21(3), 285-294	Irrelevant exposure
L1	Olde Heuvel, J.,De Wit-Van Der Veen, L.,Stokkel, M. P. M.,Van Der Poel, H. G.,Tuch, D. S.,Grootendorst, M. R.,Vyas, K. N.,Slump, C. H. (2019). Cerenkov luminescence imaging for intraoperative specimen analysis: A pre-clinical evaluation European Urology, Supplements, 18 (1)(#issue#), e668-e669	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Omobowale, T. O.,Oyagbemi, A. A.,Alaba, B. A.,Ola- Davies, O. E.,Adejumobi, O. A.,Asenuga, E. R.,Ajibade, T. O.,Adedapo, A. A.,Yakubu, M. A. (2018). Ameliorative effect of Azadirachta indica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated kinase 1/2 signaling Journal of Basic and Clinical Physiology and Pharmacology, 29(2), 155-164	Irrelevant exposure
L1	Otabashi, M., Vergote, T., Desfours, C. (2017). Efficient commercial scale 18F-FES production on AllinOne (Trasis) Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Irrelevant exposure
L1	Otabashi, M., Vergote, T., Desfours, C. (2017). Fully automated 18F-FAZA production on AllInOne (Trasis) at commercial scale Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Irrelevant exposure
L1	Oyagbemi, A. A.,Omobowale, T. O.,Ola-Davies, O. E.,Asenuga, E. R.,Ajibade, T. O.,Adejumobi, O. A.,Afolabi, J. M.,Ogunpolu, B. S.,Falayi, O. O.,Saba, A. B.,Adedapo, A. A.,Yakubu, M. A. (2018). Luteolin-mediated Kim-1/NF-kB/Nrf2 signaling pathways protects sodium fluoride-induced	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	hypertension and cardiovascular complications BioFactors, 44(6), 518-531	
L1	Oyagbemi, A. A.,Omobowale, T. O.,Ola-Davies, O. E.,Asenuga, E. R.,Ajibade, T. O.,Adejumobi, O. A.,Arojojoye, O. A.,Afolabi, J. M.,Ogunpolu, B. S.,Falayi, O. O.,Hassan, F. O.,Ochigbo, G. O.,Saba, A. B.,Adedapo, A. A.,Yakubu, M. A. (2018). Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARgamma signaling pathways BioFactors, 44(5), 465-479	Irrelevant exposure
L1	Ozerskaya, A.,Belugin, K.,Tokarev, N.,Chanchikova, N.,Larkina, M.,Podrezova, E.,Yusubov, M.,Belousov, M. (2019). Radiopharmaceutical production technology at the Nuclear Medicine Centre Federal Siberian Research Clinical Centre, Russia Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S577	Irrelevant exposure
L1	Ozsoy, G.,Kendirli, T.,Ates, U.,Perk, O.,Azapagasi, E.,Ozcan, S.,Baran, C.,Goktug, A.,Dindar, H. (2019). Fatal Refractory Ventricular Fibrillation Due to Ingestion of Hydrofluoric Acid Pediatric emergency care, 35(11), e201-e202	Irrelevant exposure
L1	Paiuk, O. L., Mitina, N. Y., Myagkota, O. S., Volianiuk,K. A., Musat, N., Stryganyuk, G. Z., Reshetnyak, O.V., Kinash, N. I., Hevus, O. I., Shermolovich, Y.G., Zaichenko, A. S. (2018). Fluorine-containing	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	polyamphiphiles constructed from synthetic and biopolymer blocks Biopolymers and Cell, 34(3), 207- 217	
L1	Palmieri, L., Glassner, M., Hoogenboom, R., Staelens, S., Wyffels, L. (2017). Development and in vivo evaluation of ¹⁸ F-labeled PEtOx-RGD for PET imaging of alphavbeta3 integrins Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S511	Irrelevant exposure
L1	Park, J. Y.,Son, J.,Yun, M.,Chun, J. H. (2017). Radiosynthesis of mGlu5 PET tracer [¹⁸ F]PSS232 with protic solvent additives Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S289	Irrelevant exposure
L1	 Paz, S.,Jaudenes, J. R.,Gutierrez, A. J.,Rubio, C.,Hardisson, A.,Revert, C. (2017). Determination of Fluoride in Organic and Non-organic Wines Biological Trace Element Research, 178(1), 153- 159 	Irrelevant exposure
L1	Perala, S. R.,Bhupathiraju, P. (2016). Efficacy of four fluoride mouth rinses on Streptococcus mutans in high caries risk children - A randomized controlled trial Journal of clinical and diagnostic research, 10(9), ZC56-ZC60	Irrelevant exposure
L1	Perrin, D. M. (2016). [(18)F]-Organotrifluoroborates as Radioprosthetic Groups for PET Imaging: From	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Design Principles to Preclinical Applications Acc Chem Res, 49(7), 1333-43	
L1	Peters, M.,Guo, Q.,Strauss, H.,Wei, R.,Li, S.,Yue, F. (2019). Contamination patterns in river water from rural Beijing: A hydrochemical and multiple stable isotope study Science of the Total Environment, 654(#issue#), 226-236	Irrelevant exposure
L1	Petrova, A.,Ol'shevskaya, V.,Zaitsev, A.,Tatarskiy, V.,Radchenko, A.,Kostyukov, A.,Kalinina, E.,Kuzmin, V.,Miyoshi, N.,Shtil, A. (2019). The novel tetracarboranylchlorin derivative for binary anticancer treatment: rapid tumor elimination via superoxide anion production FEBS Open Bio, 9 (Supplement 1)(#issue#), 334-335	Irrelevant exposure
L1	Piatek-Jakubek, K.,Nowak, J.,Boltacz-Rzepkowska, E. (2017). Influence of infiltration technique and selected demineralization methods on the roughness of demineralized enamel: An in vitro study Advances in Clinical and Experimental Medicine, 26(8), 1179- 1188	Irrelevant exposure
L1	Pucelik, B.,Gurol, I.,Ahsen, V.,Dumoulin, F.,Dabrowski, J. M. (2016). Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations Eur J Med Chem, 124(#issue#), 284-298	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Qiu, L.,Xie, M.,Lin, J. (2018). Kit-like 18F radiolabeling of caspase activatable molecular probe for in situ noninvasive imaging of drug-induced apoptosis Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Qu, W.,Kelly, J.,Amor-Coarasa, A.,Waterhouse, N.,Dooley, M.,Babich, J. (2018). Improved two-step click synthesis of [¹⁸ F]RPS-040: A prostate specific membrane antigen (PSMA)- targeted tracer for Imaging prostate cancer (PCa) using positron emission tomography (PET) Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	R. B. R. g9vbx (2017). Comparison of toothpaste containing fluoride associated or not with arginine in initial caries lesions in <u>milk teet</u> h http://www.who.int/trialsearch/Trial2.aspx?TrialID=R BR 2g9vbx, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Raghavendra, Mitta,Kandula, R. R.,Pulala, R. Y.,Korlakunta, N. J. (2018). Alleviatory effects of hydroalcoholic extract of Brassica oleracea var. botrytis leaves against sodium fluoride induced hepatotoxicity and oxidative stress on male Wistar	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	rats Indian Journal of Biochemistry & Biophysics, 55(3), 191-197	
L1	Raghavendra, Mitta, Kandula, R. R., Pulala, R. Y., Korlakunta, N. J., Vattikuti, U. M. R. (2017). Antioxidant and alleviatory effects of hydroalcholic extract of cauliflower leaves against sodium fluoride- induced cardiotoxicity in Wistar male rats Current Science, 112(6), 1183-1186	Irrelevant exposure
L1	Rashid, A.,Guan, D. X.,Farooqi, A.,Khan, S.,Zahir, S.,Jehan, S.,Khattak, S. A.,Khan, M. S.,Khan, R. (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan Sci Total Environ, 635(#issue#), 203-215	Irrelevant exposure
L1	Ren, X.,Hu, Q.,Liu, X.,Shen, Y.,Liu, C.,Yang, L.,Yang, H. (2019). Nanoparticles Patterned Ceramsites Showing Super-Hydrophobicity and Low Crushing Rate: The Promising Proppant for Gas and Oil Well Fracturing Journal of nanoscience and nanotechnology, 19(2), 905-911	Irrelevant exposure
L1	 Resende, R. F., Arantes, B. F., Palma-Dibb, R. G., Faraoni, J. J., de Castro, D. T., de Menezes Oliveira, M. A. H., Soares, C. J., Geraldo-Martins, V. R., Lepri, C. P. (2019). Influence of Er, Cr:YSGG laser on dentin acid resistance after erosive challenge American journal of dentistry, 32(5), 215-218 	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Rho, J., Stares, E., Adams, S. R., Lister, D., Leach, B., Ahrens, E. T. (2019). Paramagnetic Fluorinated Nanoemulsions for in vivo F-19 MRI Molecular Imaging and Biology., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Rikame, V.,Doshi, Y.,Horowitz, R. A.,Kevadia-Shah, V.,Shah, M. (2018). Comparative Evaluation of Fluoridated Mouthwash and Sodium Bicarbonate in Management of Dentin Hypersensitivity: An In Vitro SEM Study Compendium of Continuing Education in Dentistry, 39(1), e5-e8	Irrelevant exposure
L1	Riley, M.,Morrison, L.,McEvoy, A. (2019). Health Maintenance in School-Aged Children: Part I. History, Physical Examination, Screening, and Immunizations American family physician, 100(4), 213-218	Irrelevant exposure
L1	Riley, Philip,Moore, Deborah,Ahmed, Farooq,Sharif, Mohammad O.,Worthington, Helen V. (2015). Xylitol-containing products for preventing dental caries in children and adults Cochrane Database of Systematic Reviews, #volume#(3), #Pages#	Irrelevant exposure
L1	Riondato, M.,Pastorino, S.,Giovacchini, G.,Duce, V.,Ferrando, O.,Cazzola, E.,Gorgoni, G.,Ciarmiello, A. (2019). Feasibility study for the [¹⁸ F]FET manufacturing with a gallium- 68 automated synthesizer in a radiopharmacy without cyclotron facility Clinical and Translational Imaging, 7 (Supplement 1)(#issue#), S128	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Riondato, M.,Pastorino, S.,Giovannini, E.,Ferrando, O.,Lazzeri, P.,Duce, V.,Ciarmiello, A. (2019). [¹⁸ F]FET production with a modified gallium-68 automated synthesizer in a Radiopharmacy without cyclotron facility European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S723	Irrelevant exposure
L1	Rischmueller, M. (2019). Management of Sjogren's syndrome International Journal of Rheumatic Diseases, 22 (Supplement 3)(#issue#), 27-28	Irrelevant exposure
L1	Rodriguez Castillo, A. S.,Guiheneuf, S.,Le Guevel, R.,Biard, P. F.,Paquin, L.,Amrane, A.,Couvert, A. (2016). Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor J Hazard Mater, 307(#issue#), 221-30	Irrelevant exposure
L1	Rollason, Victoria, Laverriere, Alexandra, MacDonald, C. I. Laura, Walsh, Tanya, Tramer, Martin R., VogtFerrier, Nicole B. (2016). Interventions for treating bisphosphonate-related osteonecrosis of the jaw (BRONJ) Cochrane Database of Systematic Reviews, #volume#(2), #Pages#	Irrelevant exposure
L1	Roy Chowdhury, A.,Mondal, A.,Roy, B. G.,K, J. C. B.,Mukhopadhyay, S.,Banerjee, P. (2017). Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F(-):	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	experimental and DFT studies Photochem Photobiol Sci, 16(11), 1654-1663	
L1	Saffioti, N. A., de Sautu, M., Ferreira-Gomes, M. S., Rossi, R. C., Berlin, J., Rossi, Jpfc, Mangialavori, I. C. (2019). E2P-like states of plasma membrane Ca(2+)ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues Biochim Biophys Acta Biomembr, 1861(2), 366-379	Irrelevant exposure
L1	Saha, A.,Mukherjee, A. K.,Ravichandran, B. (2016). Musculoskeletal problems and fluoride exposure: A cross-sectional study among metal smelting workers Toxicology & Industrial Health, 32(9), 1581-8	Irrelevant exposure
L1	Salvio, L. A.,DoCarmo, V. C. F. T.,Andrade, T. P. S.,Baroudi, K. (2019). Effect of the combined use of adhesive systems and oxalate-based and fluoride- based dentin desensitizers on bond strength Journal of Clinical and Diagnostic Research, 13(9), ZC17- ZC21	Irrelevant exposure
L1	Samstein, M.,Kaplan, B.,Ponda, P. (2019). What's Not in the Water? Pseudoallergic Reactions to Niacinamide Containing Flouridated Multivitamins Annals of Allergy, Asthma and Immunology, 123 (5 Supplement)(#issue#), S67	Irrelevant exposure
L1	Samuel, A. R., Thomas, T. (2016). Management of sensitivity after dental bleaching - A review International Journal of Pharmacy and Technology, 8(3), 4857-4864	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Sato, M.,Hanmoto, T.,Yachiguchi, K.,Tabuchi, Y.,Kondo, T.,Endo, M.,Kitani, Y.,Sekiguchi, T.,Urata, M.,Hai, T. N.,Srivastav, A. K.,Mishima, H.,Hattori, A.,Suzuki, N. (2016). Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassius auratus Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 189(#issue#), 54-60	Irrelevant exposure
L1	Savchenkov, M. F.,Efimova, N. V.,Manueva, R. S.,Nikolaeva, L. A.,Shin, N. S. (2016). Thyroid gland pathology in children population exposed to the combination of iodine deficiency and fluoride pollution of environment Gigiena i Sanitariya, #volume#(No.12), 1201-1205	Irrelevant exposure
L1	Schafer, D.,Zlatopolskiy, B. D.,Ermert, J.,Neumaier, B. (2017). A practical two-step synthesis of 5- [¹⁸ F]fluoro-L-tryptophan (5- [¹⁸ F]FTrp) via alcohol-enhanced Cu- mediated radiofluorination Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S105	Irrelevant exposure
L1	Seyedmonİr, E.,Yİlmaz, F.,Icgen, B. (2016). Methicillin-resistant bacteria inhabiting surface waters monitored by mecA-targeted oligonucleotide probes Bulletin of Environmental Contamination and Toxicology, 97(2), 261-271	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Sheng, N.,Zhou, X.,Zheng, F.,Pan, Y.,Guo, X.,Guo, Y.,Sun, Y.,Dai, J. (2017). Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice Arch Toxicol, 91(8), 2909-2919	Irrelevant exposure
L1	Shukurov, R.,Balashov, M.,Dadashov, Z.,Valiyev, M.,Mehdi, E.,Novruzov, F. (2019). Application of production and quality control procedures of 18F- PSMA-1007: Dominant in diagnosis of prostate cancer, through Synthera V2 European Journal of Nuclear Medicine and Molecular Imaging, 46 (1 Supplement 1)(#issue#), S737-S738	Irrelevant exposure
L1	Shweta, Sharma, Sharma, K. P., Subhasini, Sharma (2016). Role of Spirulina in mitigating hemato- toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride Environmental Science and Pollution Research, 23(24), 25280-25287	Irrelevant exposure
L1	Silva, V. H. O.,Batista, A. P. dos S.,Teixeira, A. C. S. C.,Borrely, S. I. (2016). Degradation and acute toxicity removal of the antidepressant Fluoxetine (Prozac®) in aqueous systems by electron beam irradiation Environmental Science and Pollution Research, 23(12), 11927-11936	Irrelevant exposure
L1	Singh, V. P,Yadav, S,Yadava, N. R (2018). Environmental Pollution: Select Proceedings of ICWEES-2016 #journal#, #volume#(77), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Sivarasan, Ganesan, Mohankumar, Amirthalingam, Pugazhendhi, Arivalagan, Shanmugam, Govindan, Sundararaj, Palanisamy, Lingassamy, A. P., Ponnusamy, V. K. (2019). Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique Journal of Environmental Management, 245(#issue#), 409-417	Irrelevant exposure
L1	Sofia Khalid, S ,Shoukat, M ,Khurshid, S ,Shah, R,Adrees, M ,Ahmad, M (2019). Determination of Fluoride Contents in Commercially Available Beverages in Rawalpindi City, Pakistan XXXIVth Conference of the International Society For Fluoride Research, 52(1), 96	Irrelevant exposure
L1	Sofilić, T. (2018). Metallurgy as factor of environmental pollution of the city of Zenica by dioxins and furans #journal#, #volume#(#issue#), 277-298	Irrelevant exposure
L1	Soldani, Francesca A.,Lamont, Thomas,Jones, Kate,Young, Linda,Walsh, Tanya,Lala, Rizwana,Clarkson, Janet E. (2018). One-to-one oral hygiene advice provided in a dental setting for oral health Cochrane Database of Systematic Reviews, #volume#(10), #Pages#	Irrelevant exposure
L1	Soloviev, D.,Lewis, D. Y.,Ros, S.,Hu, D. E.,D'Santos, P.,Brindle, K. M. (2016). Simplified synthesis of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	[18F]tetrafluoroborate for NIS reporter imaging by PET Molecular Imaging and Biology, 18 (2 Supplement)(#issue#), S1197-S1198	
L1	Souza, M. S., Diniz, L. F., Vogt, L., Carvalho, P. S., D'Vries, R. F., Ellena, J. (2018). Avoiding irreversible 5-fluorocytosine hydration: Via supramolecular synthesis of pharmaceutical cocrystals New Journal of Chemistry, 42(18), 14994- 15005	Irrelevant exposure
L1	Stafford, R. (2017). The spin-echo sequence; K- space Medical Physics, 44 (6)(#issue#), 3094	Irrelevant exposure
L1	Steen, J.,Denk, C.,Norregaard, K.,Jorgensen, J.,Rossin, R.,Svatunek, D.,Edem, P.,Robillard, M.,Kjaer, A.,Kristensen, J.,Mikula, H.,Herth, M. (2018). Towards the dual click ¹⁸ F- labeling of Antibodies Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Stepanova, N. V., Valeeva, E. R., Ziyatdinova, A. I., Fomina, S. F. (2016). Peculiarities of chidren's risk assessment on ingestion of chemicals with drinking water Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(3), 1677-1681	Irrelevant exposure
L1	Su, ChunMing (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	literature Journal of Hazardous Materials, 322(Part A), 48-84	
L1	Su, Linjing,Zhang, Zhi,Xiong, Yuhao (2018). Water dispersed two-dimensional ultrathin Fe(iii)-modified covalent triazine framework nanosheets: peroxidase like activity and colorimetric biosensing applications Nanoscale, 10(43), 20120-20125	Irrelevant exposure
L1	Subhadharsini, S., Pradeep, S. (2016). Glass ionomer dental cement - a review Research Journal of Pharmacy and Technology, 9(9), 1513-1515	Irrelevant exposure
L1	Surraya, Shahab,Ghulam, Mustafa,Imran, Khan,Muhammad, Zahid,Maimoona, Yasinzai,Nosheen, Ameer,Nazia, Asghar,Ikram, Ullah,Akhtar, Nadhman,Afaq, Ahmed,Iqbal, Munir,Adnan, Mujahid,Tajamal, Hussain,Ahmad, M. N.,Ahmad, S. S. (2017). Effects of fluoride ion toxicity on animals, plants, and soil health: a review Fluoride, 50(4), 393-408	Irrelevant exposure
L1	Sweileh, Waleed M.,Zyoud, Sa'ed H.,Al-Jabi, Samah W.,Sawalha, Ansam F.,Shraim, Naser Y. (2016). Drinking and recreational water-related diseases: a bibliometric analysis (1980-2015) Annals of occupational and environmental medicine, 28(1), 40-40	Irrelevant exposure
L1	Taddei, C.,Pike, V. (2019). Radiofluorination of a COX-1 specific ligand based on two nucleophilic addition strategies Journal of Labelled Compounds	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S115-S116	
L1	Tago, T.,Toyohara, J.,Fujimaki, R.,Hirano, K.,Iwai, K.,Ishibashi, K.,Tanaka, H. (2019). A simple SPE purification method for ¹⁸ F- radiolabeling: Proof-of-concept study in stilbene amyloid-beta ligands with a neopentyl labeling group Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S163-S164	Irrelevant exposure
L1	Takahashi, R.,Ota, E.,Hoshi, K.,Naito, T.,Toyoshima, Y.,Yuasa, H.,Mori, R.,Nango, E. (2017). Fluoride supplementation (with tablets, drops, lozenges or chewing gum) in pregnant women for preventing dental caries in the primary teeth of their children Cochrane Database of Systematic Reviews, 2017 (10) (no pagination)(CD011850), #Pages#	Irrelevant exposure
L1	Takamizawa, T.,Tsujimoto, A.,Ishii, R.,Ujiie, M.,Kawazu, M.,Hidari, T.,Suzuki, T.,Miyazaki, M. (2019). Laboratory evaluation of dentin tubule occlusion after use of dentifrices containing stannous fluoride Journal of oral science, 61(2), 276-283	Irrelevant exposure
L1	Talpos, S. (2019). They persisted Science, 364(6441), 622-626	Irrelevant exposure
L1	Tambe, V.,Thakkar, S.,Raval, N.,Sharma, D.,Kalia, K.,Tekade, R. K. (2017). Surface Engineered	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Dendrimers in siRNA Delivery and Gene Silencing Curr Pharm Des, 23(20), 2952-2975	
L1	Tan, Haiping,Richards, Lindsay,Walsh, Tanya,Worthington, Helen V.,Clarkson, Jan E.,Wang, Linda,Mattar de Amoedo Campos Velo, Marilia (2017). Interventions for managing root caries Cochrane Database of Systematic Reviews, #volume#(8), #Pages#	Irrelevant exposure
L1	 Tanifum, E. A., Devkota, L., Ngwa, C., Badachhape, A. A., Ghaghada, K. B., Romero, J., Pautler, R. G., Annapragada, A. V. (2018). A Hyperfluorinated Hydrophilic Molecule for Aqueous ¹⁹F MRI Contrast Media Contrast Media and Molecular Imaging, 2018 (no pagination)(1693513), #Pages# 	Irrelevant exposure
L1	Tctr, (2018). Effective Delivery of Topical Fluoride Gel as an Alternative to Trayon http://www.who.int/trialsearch/Trial2.aspx?TrialID=T CTR20180710004., #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Temple, N. J,Wilson, T,Bray, G. A (2017). Nutrition Guide for Physicians and Related Healthcare Professionals #journal#, #volume#(#issue#), #Pages#	Irrelevant exposure
L1	Tibrewala, R.,Bahroos, E.,Mehrebian, H.,Foreman, S. C.,Link, T. M.,Pedoia, V.,Majumdar, S. (2019). [¹⁸ F]-sodium fluoride PET-MR imaging reveals bone-cartilage interactions in hip	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	osteoarthritis Osteoarthritis and Cartilage, 27 (Supplement 1)(#issue#), S145-S147	
L1	Toyohara, J.,Furumoto, S.,Tago, T. (2017). Fully automated radiosynthesis of [¹⁸ F]THK- 5351 for clinical use Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S447	Irrelevant exposure
L1	Tsai, Wen-Ting K.,Collins, Jeffrey,Zettlitz, Kirstin A.,Wu, Anna M.,Tavaré, Richard,Ha, Noel S.,van Dam, R. Michael,Yamada, Reiko E.,Timmerman, John M. (2019). 18F-labeled anti-human CD20 cys- diabody for same-day immunoPET in a model of aggressive B cell lymphoma in human CD20 transgenic mice European Journal of Nuclear Medicine & Molecular Imaging, 46(2), 489-500	Irrelevant exposure
L1	Tubert-Jeannin, Stephanie, Auclair, Candy, Amsallem, Emmanuel, Tramini, Paul, Gerbaud, Laurent, Ruffieux, Christiane, Schulte, Andreas G., Koch, Martin J., Rege-Walther, Myriam, Ismail, Amid (2019). Fluoride supplements (tablets, drops, lozenges or chewing gums) for preventing dental caries in children Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure
L1	Usuda, K.,Ueno, T.,Ito, Y.,Dote, T.,Yokoyama, H.,Kono, K.,Tamaki, J. (2016). Risk assessment study of fluoride salts: probability-impact matrix of	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	renal and hepatic toxicity markers Biological Trace Element Research, 173(1), 154-160	
L1	Valdora, F.,Houssami, N.,Rossi, F.,Calabrese, M.,Tagliafico, A. S. (2018). Rapid review: radiomics and breast cancer Breast Cancer Res Treat, 169(2), 217-229	Irrelevant exposure
L1	 Van Den Berg, S. A. A., De Groot, M. J. M., Salden, L. P. W., Draad, P. J. G. J., Dijkstra, I. M., Lunshof, S., Van Thiel, S. W., Boonen, K. J. M., Thelen, M. H. M. (2016). How to perform pregnancy diabetes screening correctly Nederlands Tijdschrift voor Klinische Chemie en Laboratoriumgeneeskunde, 41(3), 198-199 	Irrelevant exposure
L1	Varsha, Dhurvey, Mangala, Thakare (2016). The effect of sodium fluoride intoxication on the estrous cycle and ovarian hormones in rats Fluoride, 49(3 Part 1), 223-232	Irrelevant exposure
L1	Venault, A.,Lin, K. H.,Tang, S. H.,Dizon, G. V.,Hsu, C. H.,Maggay, I. V. B.,Chang, Y. (2019). Zwitterionic electrospun PVDF fibrous membranes with a well- controlled hydration for diabetic wound recovery Journal of Membrane Science, (no pagination)(117648), #Pages#	Irrelevant exposure
L1	Vergote, T.,Otabashi, M.,Vriamont, C.,Desfours, C.,Morelle, J.,Philippart, G. (2017). Fully automated 18F-FAZA production on AllInOne (Trasis) at commercial scale European Journal of Nuclear	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	Medicine and Molecular Imaging, 44 (2 Supplement 1)(#issue#), S518-S519	
L1	Vieira, A. M.,Neto, F.,Carvalho, P.,Manso, A. C. (2019). Erosive potential of medication on human enamel and posterior remineralization capacity Annals of Medicine, 51 (Supplement 1)(#issue#), S107-S109	Irrelevant exposure
L1	Wagner, O., Thiele, J., Weinhart, M., Mazutis, L., Weitz, D. A., Huck, W. T., Haag, R. (2016). Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants Lab Chip, 16(1), 65-9	Irrelevant exposure
L1	Wallat, J. D., Harrison, J. K., Pokorski, J. K. (2018). pH Responsive Doxorubicin Delivery by Fluorous Polymers for Cancer Treatment Mol Pharm, 15(8), 2954-2962	Irrelevant exposure
L1	Walsh, Tanya,OliveiraNeto, Jeronimo M.,Moore, Deborah (2015). Chlorhexidine treatment for the prevention of dental caries in children and adolescents Cochrane Database of Systematic Reviews, #volume#(4), #Pages#	Irrelevant exposure
L1	Walsh, Tanya, Worthington, Helen V., Glenny, Anne- Marie, Marinho, C. C. Valeria, Jeroncic, Ana (2019). Fluoride toothpastes of different concentrations for preventing dental caries Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Wang, H. X.,Zhu, L. N.,Guo, F. Q. (2019). Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays Environ Sci Pollut Res Int, 26(33), 33847-33855	Irrelevant exposure
L1	Wang, J.,Holloway, T.,Van Dam, R. M. (2019). Using a microdroplet reactor for rapid, nucleophilic synthesis of [¹⁸ F]FDOPA Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S337-S339	Irrelevant exposure
L1	Waugh, D. T.,Godfrey, M.,Limeback, H.,Potter, W. (2017). Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand J Environ Public Health, 2017(#issue#), 5120504	Irrelevant exposure
L1	Waugh, D. T.,Potter, W.,Limeback, H.,Godfrey, M. (2016). Risk assessment of fluoride intake from tea in the republic of ireland and its implications for public health and water fluoridation International Journal of Environmental Research and Public Health, 13 (3) (no pagination)(259), #Pages#	Irrelevant exposure
L1	Wei, GaoLiang,Quan, Xie,Fan, XinFei,Chen, Shuo,Zhang, YaoBin (2017). Carbon-nanotube- based sandwich-like hollow fiber membranes for expanded microcystin-LR removal applications Chemical Engineering Journal, 319(#issue#), 212- 218	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	West, N. X.,Seong, J.,Hellin, N.,Macdonald, E. L.,Jones, S. B.,Creeth, J. E. (2018). Assessment of tubule occlusion properties of an experimental stannous fluoride toothpaste: A randomised clinical in situ study Journal of dentistry, 76(#issue#), 125- 131	Irrelevant exposure
L1	 Wilhelm-Buchstab, T., Thelen, C., Leitzen, C., Schmeel, L. C., Mudder, T., Oberste-Beulmann, S., Schuller, H., Rohner, F., Garbe, S., Schoroth, F., Simon, B., Schild, H. H. (2016). Protective effect on tissue using dental waterjet and dexpanthenol rinsing solution during radiotherapy in head and neck tumor patients Strahlentherapie und Onkologie, 192 (1 Supplement 1)(#issue#), 66 	Irrelevant exposure
L1	Worthington, Helen V.,MacDonald, Laura,Poklepovic Pericic, Tina,Sambunjak, Dario,Johnson, Trevor M.,Imai, Pauline,Clarkson, Janet E. (2019). Home use of interdental cleaning devices, in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries Cochrane Database of Systematic Reviews, #volume#(4), #Pages#	Irrelevant exposure
L1	Yang, D.,Liu, Y.,Chu, Y.,Yang, Q.,Jiang, W.,Chen, F.,Li, D.,Qin, M.,Sun, D.,Yang, Y.,Gao, Y. (2016). Association between Vitamin D receptor gene Fokl polymorphism and skeletal fluorosis of the brick-tea type fluorosis: A cross sectional, case control study	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	BMJ Open, 6 (11) (no pagination)(e011980), #Pages#	
L1	Yang, F.,Cui, M. (2019). Technetium-99m labeled phenylquinoxaline derivatives as potential tau- selective imaging probes for diagnosis of Alzheimer's disease Nuclear Medicine and Biology, 72-73 (Supplement 1)(#issue#), S56	Irrelevant exposure
L1	Yang, K.,Yang, X.,Zhao, X.,Lamy de la Chapelle, M.,Fu, W. (2019). THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent Anal Chem, 91(1), 785-791	Irrelevant exposure
L1	Yang, M.,Lin, H.,Jiang, R.,Zheng, G. (2016). Effects of desensitizing toothpastes on the permeability of dentin after different brushing times: An in vitro study American journal of dentistry, 29(6), 345-351	Irrelevant exposure
L1	Yang, Q.,Chu, Y.,Jiang, W.,Li, J.,Li, Y.,Boo, Y.,Chen, F.,Li, B.,Yang, Y.,Guo, Y. (2017). Effects of different doses of sodium fluoride on cartilage lesion and expression of interleukin-6 in Balb/c mice. [Chinese] Chinese Journal of Endemiology, 36(6), 408-413	Irrelevant exposure
L1	Yang, Y.,Zhao, Q.,Liu, Y.,Liu, X.,Chu, Y.,Yan, H.,Fan, Y.,Huo, S.,Wang, L.,Lou, Q.,Guo, N.,Sun, D.,Gao, Y. (2018). FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China Archives of Toxicology, 92(7), 2217-2225	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	Yao, X.,Zha, Z.,Zhao, R.,Choi, S. R.,Ploessl, K.,Liu, F.,Zhu, L.,Kung, H. F. (2019). Optimization of solid- phase extraction (SPE) in the preparation of [¹⁸ F]D3FSP: A new PET imaging agent for mapping Abeta plaques Nuclear medicine and biology, 71(#issue#), 54-64	Irrelevant exposure
L1	Ye, Zhuo,Duan, Chong,Sheng, RuiLong,Xu, JunChao,Wang, HongYing,Zeng, LinTao (2018). A novel colorimetric and ratiometric fluorescent probe for visualizing SO2 derivatives in environment and living cells Talanta, 176(#issue#), 389-396	Irrelevant exposure
L1	Yeung, Albert C., Chong, Lee-Yee, Glenny, Anne- Marie (2018). Fluoridated milk for preventing dental caries Cochrane Database of Systematic Reviews, #volume#(5), #Pages#	Irrelevant exposure
L1	Yildirim, S.,Ekin, S.,Huyut, Z.,Oto, G.,Comba, A.,Uyar, H.,Sengul, E.,Cinar, D. A. (2018). Effect of chronic exposure to sodium fluoride and 7,12- dimethylbenz[a]anthracene on some blood parameters and hepatic, renal, and cardiac histopathology in rats Fluoride, 51(3), 278-290	Irrelevant exposure
L1	Yim, C. B.,Mikkola, K.,Nuutila, P.,Solin, O. (2016). Synthesis of pancreatic beta cell-specific [¹⁸ F]fluoro-exendin-4 via strain- promoted aza-dibenzocyclooctyne/azide cycloaddition EJNMMI Radiopharmacy and Chemistry. Conference: 18th European Symposium	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	on Radiopharmacy and Radiopharmaceuticals. Austria., 1(Supplement 1), #Pages#	
L1	Yiming, Li,Suprono, Montry,Mateo, Luis R.,Yun-Po, Zhang,Denis, Jean,D'Ambrogio, Robert,Sullivan, Richard,Thomson, Paul (2019). Solving the problem with stannous fluoride: Extrinsic stain Journal of the American Dental Association (JADA), 150(#issue#), S38-S46	Irrelevant exposure
L1	Yoshimoto, M.,Honda, N.,Takahashi, K.,Kurihara, H.,Fujii, H. (2019). Synthesis of 4-borono-2- ¹⁸ F-fluoro-phenylalanine using copper- mediated nucleophilic radiofluorination Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant exposure
L1	 Yu, Q.,Liu, H.,Liu, Z.,Peng, Y.,Cheng, X.,Ma, K.,Ji, Y. (2017). Comparison of nanofluoridated hydroxyapatite of varying fluoride content for dentin tubule occlusion American Journal of Dentistry, 30(2), 109-115 	Irrelevant exposure
L1	Zhang, HuiXin,Zhao, LuPing,Sun, DongXue,Cai, ZhiYue,Zhang, Jie,Han, Xu,Guo, XiaoHui,Cui, ManLi,Xie, DuanDuan (2016). A study on fluorescence properties of carboxymethyl-quaternary ammonium oligochitosan and its performances as a tracing agent Water Science and Technology, 74(10), 2427-2436	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
L1	 Zhang, X. J., Sun, T. C., Liu, Z. W., Wang, F. J., Wang, Y. D., Liu, J. (2017). Effects of Tianmagouteng particles on brain cognitive function in spontaneously hypertensive rats with hyperactivity of liver-yang: A [F-18] FDG micro-PET imaging study Biomed Pharmacother, 95(#issue#), 1838-1843 	Irrelevant exposure
L1	Zhang, Y.,Zhang, L.,Wu, Z.,Yang, J.,Ploessl, K.,Zha, Z.,Fei, L.,Zhu, H.,Zhu, L.,Yang, Z.,Kung, H. (2019). Automated radiosynthesis of (2S,4R)-4- [¹⁸ F]fluoroglutamine for clinical application Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S322-S323	Irrelevant exposure
L1	Zhang, Y.,Zhang, L.,Yang, J.,Wu, Z.,Ploessl, K.,Zha, Z.,Liu, F.,Xu, X.,Zhu, H.,Yang, Z.,Zhu, L.,Kung, H. F. (2019). Initial experience in synthesis of (2S,4R)-4- [(18) F]fluoroglutamine for clinical application J Labelled Comp Radiopharm, 62(5), 209-214	Irrelevant exposure
L1	Zhao, DanDan,Yu, Yang,Wang, ChengHong,Chen, J. P. (2016). Zirconium/PVA modified flat-sheet PVDF membrane as a cost-effective adsorptive and filtration material: a case study on decontamination of organic arsenic in aqueous solutions Journal of Colloid and Interface Science, 477(#issue#), 191- 200	Irrelevant exposure
L1	Zhong, B.,Wang, L.,Liang, T.,Xing, B. (2017). Pollution level and inhalation exposure of ambient	Irrelevant exposure

Le vel	Bibliography	Reason for exclusion
	aerosol fluoride as affected by polymetallic rare earth mining and smelting in Baotou, north China Atmospheric Environment, 167(#issue#), 40-48	
L1	Zhou, D.,Chu, W.,Katzenellenbogen, J. (2018). Exploration of alcohol-enhanced Cu-mediated radiofluorination towards practical labeling Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 59(Supplement 1), #Pages#	Irrelevant exposure
L1	Zong, Y.,Shea, C.,Maffucci, K.,Ojima, I. (2017). Computational Design and Synthesis of Novel Fluoro-Analogs of Combretastatins A-4 and A-1 J Fluor Chem, 203(#issue#), 193-199	Irrelevant exposure
L1	Zorc, B.,Pavic, K. (2018). Organofluorine drugs. [Croatian] Farmaceutski Glasnik, 74(5), 351-360	Irrelevant exposure
L1	Abtahi, M.,Dobaradaran, S.,Jorfi, S.,Koolivand, A.,Mohebbi, M. R.,Montazeri, A.,Khaloo, S. S.,Keshmiri, S.,Saeedi, R. (2018). Age-sex specific and sequela-specific disability-adjusted life years (DALYs) due to dental caries preventable through water fluoridation: An assessment at the national and subnational levels in Iran, 2016 Environ Res, 167(#issue#), 372-385	Irrelevant outcome
L1	ACTRN12609000330246 (2009). A controlled longitudinal study of caries prevention in children aged 2 to 4 years #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
L1	 Allukian, M., Carter-Pokras, O. D., Gooch, B. F., Horowitz, A. M., Iida, H., Jacob, M., Kleinman, D. V., Kumar, J., Maas, W. R., Pollick, H., Rozier, R. G. (2018). Science, Politics, and Communication: The Case of Community Water Fluoridation in the US Annals of Epidemiology, 28(6), 401-410 	Irrelevant outcome
L1	American Academy of Pediatric Dentistry, (2018). Oral Health Policies: Use of Fluoride The Reference Manual of Pediatric Dentistry, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Angulo, Marina, Cuitiño, Eduardo, Molina-Frechero, Nelly, Emilson, Claes-Göran (2020). The association between the prevalence of dental fluorosis and the socio-economic status and area of residence of 12- year-old students in Uruguay Acta odontologica Scandinavica, 78(1), 26-30	Irrelevant outcome
L1	Armfield, Jason M. (2005). Public water fluoridation and dental health in New South Wales Australian and New Zealand Journal of Public Health, 29(5), 477-483	Irrelevant outcome
L1	Armfield, Jason Mathew P. H. D. (2010). Community Effectiveness of Public Water Fluoridation in Reducing Children's Dental Disease Public Health Reports, 125(5), 655	Irrelevant outcome
L1	Arnold, Francis A., et al., (1956). Effect of fluoridated public water supplies on dental caries prevalence:	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	tenth year of the Grand Rapids-Muskegon [Mich.] study Public Health Reports, 71(#issue#), 652-658	
L1	Ast, David B., et al., (1965). Time and cost factors to provide regular, periodic dental care for children in a fluoridated and nonfluoridated area: Newburgh and Kingston, N.Y.; first two years [of a six-year study now in progress; address] American Journal of Public Health and the Nation's Health, 55(#issue#), 811-820	Irrelevant outcome
L1	Ast, David B., Schlesinger, Edward R. (1956). The conclusion of a ten-year study of water fluoridation: résumé of the Newburgh-Kingston [N.Y.] caries- fluorine study American Journal of Public Health and the Nation's Health, 46(#issue#), 265-271	Irrelevant outcome
L1	Aung, Y. M., Tin Tin, S., Jelleyman, T., Ameratunga, S. (2019). Dental caries and previous hospitalisations among preschool children: Findings from a population-based study in New Zealand New Zealand Medical Journal, 132(1493), 44-53	Irrelevant outcome
L1	Bachanek, T.,Hendzel, B.,Wolanska, E.,Samborski, D.,Jarosz, Z.,Pitura, K. M.,Dzida, K.,Podymniak, M.,Tymczyna-Borowicz, B.,Niewczas, A.,Shybinskyy, V.,Zimenkovsky, A. (2019). Condition of mineralized tooth tissuein a population of 15-year-old adolescents living in a region of ukraine with slightly exceeded fluorine concentration in the water Annals	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	of Agricultural and Environmental Medicine, 26(4), 623-629	
L1	Bailie, Ross S., Stevens, Matthew, Armfield, Jason M., Ehsani, Jonathan P., Beneforti, Mary, Spencer, John (2009). Association of natural fluoride in community water supplies with dental health of children in remote Indigenous communities - implications for policy Australian and New Zealand Journal of Public Health, 33(3), 205	Irrelevant outcome
L1	Beltrán-Aguilar, Eugenio D.,Barker, Laurie,Sohn, Woosung,Wei, Liang (2015). Water Intake by Outdoor Temperature among Children Aged 1-10 Years: Implications for Community Water Fluoridation in the U.S Public Health Reports, 130(4), 362-371	Irrelevant outcome
L1	Binns, Colin,Howat, Peter,Smith, James A.,Jancey, Jonine (2016). Children, poverty and health promotion in Australia Health Promotion Journal of Australia, 27(3), 181-183	Irrelevant outcome
L1	Bomfim, R. A., Herrera, D. R., De-Carli, A. D. (2017). Oral health-related quality of life and risk factors associated with traumatic dental injuries in Brazilian children: A multilevel approach Dent Traumatol, 33(5), 358-368	Irrelevant outcome
L1	Calabrese, Edward J. (2017). Revival: Safe Drinking Water Act (1989) #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
L1	Carstairs, Catherine (2015). Debating WATER FLUORIDATION Before Dr. Strangelove American Journal of Public Health, 105(8), 1559-1569	Irrelevant outcome
L1	Celeste, Roger Keller,Luz, Patricia Blaya (2016). Independent and Additive Effects of Different Sources of Fluoride and Dental Fluorosis Pediatric Dentistry, 38(3), 233-238	Irrelevant outcome
L1	Demelash, Habtamu,Beyene, Abebe,Abebe, Zewdu,Melese, Addisu (2019). Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: systematic review and meta-analysis BMC Public Health, 19(1), N.PAG-N.PAG	Irrelevant outcome
L1	Englander, Harold R., Wallace, Donald A. (1962). Effects of naturally fluoridated water on dental caries in adults: Aurora-Rockford, Illinois, Study III [based on address] Public Health Reports, 77(#issue#), 887-893	Irrelevant outcome
L1	Escobar-Garcia, D.,Mejia-Saavedra, J.,Jarquin- Yanez, L.,Molina-Frechero, N.,Pozos-Guillen, A. (2016). Collagenase 1A2 (COL1A2) gene A/C polymorphism in relation to severity of dental fluorosis Community Dent Oral Epidemiol, 44(2), 162-8	Irrelevant outcome
L1	Gillies, J. Z. (1955). What fluoridation means to you: here is one of the most remarkable discoveries of	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	modern timesa way to prevent dental decay! Municipal World, 65(#issue#), 49-50	
L1	Harris, W. Leslie (1955). Fluoridation's decade of dental gains in Grand Rapids [Mich.]: nation's most carefully watched fluoridation program rolls up a continuing record of benefits and meets with no opposition or problems American City, #volume#(#issue#), 96-98	Irrelevant outcome
L1	Hayes, Richard L., et al., (1957). Posteruptive effects of fluoridation on first permanent molars of children in Grand Rapids, Michigan American Journal of Public Health and the Nation's Health, 47(#issue#), 192-199	Irrelevant outcome
L1	Horowitz, Herschel S., et al., (1965). Effect of school water fluoridation on dental caries, St. Thomas, V.I. [based on a study of children at the Lincoln school in Charlotte Amalie, 1954-1962; address] Public Health Reports, 80(#issue#), 381-388	Irrelevant outcome
L1	Ibiyemi, O.,Zohoori, F. V.,Valentine, R. A.,Kometa, S.,Maguire, A. (2018). Prevalence and extent of enamel defects in the permanent teeth of 8-year-old Nigerian children Community Dentistry and Oral Epidemiology, 46(1), 54-62	Irrelevant outcome
L1	Iheozor-Ejiofor, Zipporah,Worthington, Helen V.,Walsh, Tanya,O'Malley, Lucy,Clarkson, Jan E.,Macey, Richard,Alam, Rahul,Tugwell, Peter,Welch, Vivian,Glenny, Anne-Marie (2015).	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	Water fluoridation for the prevention of dental caries Cochrane Database of Systematic Reviews, #volume#(9), #Pages#	
L1	Ilankizhai, R. J. (2016). Dental fluorosis and its management - A review Research Journal of Pharmacy and Technology, 9(7), 967-971	Irrelevant outcome
L1	Kumar, N.,Gauba, K.,Goyal, A.,Kapur, A. (2018). Comparative evaluation of three different recording criteria of dental fluorosis in a known endemic fluoride area of Haryana Indian Journal of Medical Research, 147(6), 567-572	Irrelevant outcome
L1	Kumbargere Nagraj, Sumanth,Eachempati, Prashanti,Uma, Eswara,Singh, Pal Vijendra,Ismail, Mastura Noorliza,Varghese, Eby (2019). Interventions for managing halitosis Cochrane Database of Systematic Reviews, #volume#(12), #Pages#	Irrelevant outcome
L1	Leavy, Justine E.,Heyworth, Jane,Middleton, Aves,Rosenberg, Michael,Woloszyn, Magdalene (2012). Tap into Good Teeth - a Western Australian pilot study of children's drinking patterns Health Promotion Journal of Australia, 23(1), 42-7	Irrelevant outcome
L1	Li, J.,Liang, P.,Zheng, L. (2017). Investigation and analysis on the fluorine source and fluorotic teeth epidemic factors in wumeng mountain coal-burning contaminated area Biomedical Research (India), 2017(Special Issue	Irrelevant outcome

Le	Pibliography	Peecen for evolution
vel	Bibliography	Reason for exclusion
	ArtificialIntelligentTechniquesforBioMedicalSignalPro cessingEdition-I), S187-S192	
L1	Macey, R.,Tickle, M.,MacKay, L.,McGrady, M.,Pretty, I. A. (2018). A comparison of dental fluorosis in adult populations with and without lifetime exposure to water fluoridation Community Dent Oral Epidemiol, 46(6), 608-614	Irrelevant outcome
L1	Manthra Prathoshni, S. M., Vishnu Priya, V., Sohara Parveen, N. (2017). Awareness of dental fluorosis among children - A survey Journal of Pharmaceutical Sciences and Research, 9(4), 459-461	Irrelevant outcome
L1	Martignon, S.,Opazo-Gutierrez, M. O.,Velasquez- Riano, M.,Orjuela-Osorio, I. R.,Avila, V.,Martinez- Mier, E. A.,Gonzalez-Carrera, M. C.,Ruiz-Carrizosa, J. A.,Silva-Hermida, B. C. (2017). Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia) Environ Monit Assess, 189(6), 264	Irrelevant outcome
L1	Martinez-Acuna, M. I.,Mercado-Reyes, M.,Alegria- Torres, J. A.,Mejia-Saavedra, J. J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, Mexico Environ Monit Assess, 188(8), 476	Irrelevant outcome
L1	McClure, F. J. (1962). Fluoride drinking waters: a selection of Public health service papers on dental	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	fluorosis and dental caries; physiological effects, analysis and chemistry of fluoride (Public health service. Pubn. no. 825), #volume#(#issue#), vi+636	
L1	McLaren, L., Singhal, S. (2016). Does cessation of community water fluoridation lead to an increase in tooth decay? A systematic review of published studies J Epidemiol Community Health, 70(9), 934- 40	Irrelevant outcome
L1	McLaren, Lindsay,Patterson, Steven,Thawer, Salima,Faris, Peter,McNeil, Deborah,Potestio, Melissa,Shwart, Luke (2016). Measuring the short- term impact of fluoridation cessation on dental caries in Grade 2 children using tooth surface indices Community Dentistry & Oral Epidemiology, 44(3), 274-282	Irrelevant outcome
L1	McNeil, Donald R. (1957). How fluoridation began: the exciting discovery of an effective weapon for dental health Today's Health, #volume#(#issue#), 26-27	Irrelevant outcome
L1	Mohd Nor, Nor Azlida, Cardiff, University (2017). The impact of the downward adjustment of fluoride concentration in the Malaysian public water supply on dental fluorosis and caries #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Montanha-Andrade, K.,Maia, W.,Pimentel, A. C. P.,Arsati, Ybol,Santos, J. N. D.,Cury, P. R. (2019). Dental health status and its indicators in adult	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	Brazilian Indians without exposition to drinking water fluoridation: a cross-sectional study Environmental Science & Pollution Research, 26(33), 34440-34447	
L1	Nathan, Harriet,Scott, Stanley (1974). Fluoridation in California: a new look at a persistent issue [reports recent findings on the relationship between fluoridation and dental health] Public Affairs Report, 15(#issue#), 1-9	Irrelevant outcome
L1	Neeti, Rustagi,Rathore, A. S.,Meena, J. K.,Ankita, Chugh,Ranabir, Pal (2017). Neglected health literacy undermining fluorosis control efforts: a pilot study among schoolchildren in an endemic village of rural Rajasthan, India Journal of Family Medicine and Primary Care, 6(3), 533-537	Irrelevant outcome
L1	Nelson, T. M,Webb, J. R (2019). Dental Care for Children with Special Needs: A Clinical Guide #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	New Jersey Department of Health, (2017). Children's Oral Health #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Opydo-Szymaczek, J.,Gerreth, K.,Borysewicz- Lewicka, M.,Pawlaczyk-Kamienska, T.,Torlinska- Walkowiak, N.,Sniatala, R. (2018). Enamel defects and dental caries among children attending primary schools in Poznan, Poland Advances in Clinical and Experimental Medicine, 27(11), #Pages#	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
L1	Palczewska-Komsa, M.,Barczak, K.,Kotwas, A.,Sikora, M.,Chlubek, D.,Buczkowska-Radlińska, J. (2019). Fluoride concentration in dentin of human permanent teeth Fluoride, 52(4), 489-496	Irrelevant outcome
L1	Pollick, H. (2018). The Role of Fluoride in the Prevention of Tooth Decay Pediatric Clinics of North America, 65(5), 923-940	Irrelevant outcome
L1	Pretty, I. A.,Boothman, N.,Morris, J.,MacKay, L.,Liu, Z.,McGrady, M.,Goodwin, M. (2016). Prevalence and severity of dental fluorosis in four English cities Community Dent Health, 33(4), 292-296	Irrelevant outcome
L1	Public Health Agency of Canada, (2016). Community water fluoridation #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Public Health Agency of, Canada (2018). The state of community water fluoridation across Canada : 2017 report #journal#, #volume#(#issue#), #Pages#	Irrelevant outcome
L1	Ramesh, M.,Narasimhan, M.,Krishnan, R.,Aruna, R. M.,Kuruvilla, S. (2017). The effect of fluorosis on human teeth under light microscopy: A cross- sectional study J Oral Maxillofac Pathol, 21(3), 345- 350	Irrelevant outcome
L1	Ranasinghe, N.,Kruger, E.,Tennant, M. (2019). Spatial distribution of groundwater fluoride levels and population at risk for dental caries and dental fluorosis in Sri Lanka Int Dent J, 69(4), 295-302	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
L1	Ranasinghe, Nirosha, Kruger, Estie, Chandrajith, Rohana, Tennant, Marc (2019). The heterogeneous nature of water well fluoride levels in Sri Lanka: An opportunity to mitigate the dental fluorosis Community Dentistry & Oral Epidemiology, 47(3), 236-242	Irrelevant outcome
L1	Riggs, Elisha, Kilpatrick, Nicky, Slack-Smith, Linda, Chadwick, Barbara, Yelland, Jane, Muthu, M. S., Gomersall, Judith C. (2019). Interventions with pregnant women, new mothers and other primary caregivers for preventing early childhood caries Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant outcome
L1	Rorty, James (1956). The case against fluoridation: despite intensive propaganda by sugar interests and fluorine suppliers, competent authorities see no evidence that the program cuts down tooth decay New Leader, #volume#(#issue#), 9-12	Irrelevant outcome
L1	Russell, A. L. (1957). Fluoride domestic water and periodontal disease American Journal of Public Health and the Nation's Health, 47(#issue#), 688-694	Irrelevant outcome
L1	Russell, A. L., White, Carl L. (1961). Dental caries in Maryland children after seven years of fluoridation Public Health Reports, 76(#issue#), 1087-1093	Irrelevant outcome
L1	Sabti, M. Y.,Al-Yahya, H.,Al-Sumait, N.,Akbar, A. A.,Qudeimat, M. A. (2019). Dental and medical	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	practitioners' perception of community water fluoridation as a caries preventive measure European archives of paediatric dentistry, 20(1), 53- 61	
L1	Sami, E., Vichayanrat, T., Satitvipawee, P. (2016). Caries with Dental Fluorosis and Oral Health Behaviour Among 12-Year School Children in Moderate-Fluoride Drinking Water Community in Quetta, Pakistan J Coll Physicians Surg Pak, 26(9), 744-7	Irrelevant outcome
L1	Schultz, Dodi (1992). Flouride: cavity-fighter on tap FDA Consumer, 26(#issue#), 34-38	Irrelevant outcome
L1	Sebastian, S. T., Soman, R. R., Sunitha, S. (2016). Prevalence of dental fluorosis among primary school children in association with different water fluoride levels in Mysore district, Karnataka Indian Journal of Dental Research, 27(2), 151-4	Irrelevant outcome
L1	Snerghalatha, Duraiswami,Yen, V. A. (2017). Prevalence of dental fluorosis and its association with fluoride content of drinking water in the rural area of Dharmapuri district, Tamilnadu Journal of Evolution of Medical and Dental Sciences, 6(76), 5457-5462	Irrelevant outcome
L1	Spencer, A. J.,Do, L. G. (2016). Caution needed in altering the 'optimum' fluoride concentration in drinking water Community Dentistry and Oral Epidemiology, 44(2), 101-108	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
L1	Taylor, Frederick (1960). Fluoridation fight: new local votes near on treatment of water to curb tooth decay; issue is heated in Saginaw, Cincinnati. other cities; handbills warn: "poison"; medical groups push program Wall Street Journal, 156(#issue#), 1	Irrelevant outcome
L1	Ubell, Earl (1956). Why public health men favor fluoridation: a number of careful experiments establish its safety and effectiveness in reducing tooth decay New Leader, #volume#(#issue#), 10-12	Irrelevant outcome
L1	US Public Health Service, (2015). Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries Public Health Reports, 130(4), 318-331	Irrelevant outcome
L1	VanBuren, John,Cavanaugh, Joseph,Marshall, Teresa,Warren, John,Levy, Steven M. (2017). AIC identifies optimal representation of longitudinal dietary variables Journal of Public Health Dentistry, 77(4), 360-371	Irrelevant outcome
L1	Zhang, B.,Li, M.,Zhou, S.,Dai, X.,Xiong, P.,Zhu, S. (2016). A dental fluorosis trend analysis of children aged 8 to 12 in drinking-water-type endemic fluorosis areas of Hubei Province from 2010 to 2014. [Chinese] Chinese Journal of Endemiology, 35(9), 664-667	Irrelevant outcome
L1	Zilbovicius, Celso,Ferreira, Regina Glaucia Lucena Aguiar,Narvai, Paulo Capel (2018). Água e saúde: fluoretação e revogação da Lei Federal n.	Irrelevant outcome

Le vel	Bibliography	Reason for exclusion
	6.050/1974 Revista de Direito Sanitário = Journal of Health Law, 18(3), 104	
L1	Zwicker, Jennifer D.,Dudley, Carolyn,Emery, J. C. Herbert (2016). It's Not Just About Baby Teeth: Preventing Early Childhood Caries The School of Public Policy Publications (SPPP), 9(#issue#), #Pages#	Irrelevant outcome
L1	 Abdel-Rahman, G. H., El-Hallawany, H. A., Dohreig, R. A. (2018). Effect of excess fluoride on reproductive potentials in farm animals (ovine) Alexandria Journal of Veterinary Sciences, 57(2), 41-57 	Irrelevant population
L1	Achla, Rani,Rajeev, Sharma,Archana, Tomar (2018). Removal of fluoride from water by bioadsorbents: a review International Journal for Research in Applied Science and Engineering Technology, 6(8), 469-476	Irrelevant population
L1	 Adedara, I. A., Abolaji, A. O., Idris, U. F., Olabiyi, B. F., Onibiyo, E. M., Ojuade, T. D., Farombi, E. O. (2017). Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats Chemico-Biological Interactions, 261(#issue#), 1-10 	Irrelevant population
L1	Adedara, I. A.,Ojuade, T. J. D.,Olabiyi, B. F.,Idris, U. F.,Onibiyo, E. M.,Ajeigbe, O. F.,Farombi, E. O. (2017). Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically	Irrelevant population

Le		
vel	Bibliography	Reason for exclusion
	Exposed to Fluoride Biol Trace Elem Res, 175(2), 388-395	
L1	Adedara, I. A.,Olabiyi, B. F.,Ojuade, T. J. D.,Idris, U. F.,Onibiyo, E. M.,Farombi, E. O. (2017). Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats North American Journal of Physiology and Pharmacology, 95(9), 1019-1029	Irrelevant population
L1	Adejumobi, O.,Omobowale, T.,Oyagbemi, A.,Ayenuro, O.,Ola-Davies, O.,Adedapo, A.,Yakubu, M. (2017). Amelioration of sodium fluorideinduced hypertension, cardio-renal oxidative stress and genotoxicity by azadirachta indica through antioxidant and extracellular signalregulated kinase (erk) 1/2 signal-ling FASEB Journal. Conference: Experimental Biology, 31(1 Supplement 1), #Pages#	Irrelevant population
L1	Adimalla, N. (2019). Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA) Environmental Geochemistry & Health, 17(#issue#), 17	Irrelevant population
L1	Afolabi, J. M.,Oyagbemi, A. A.,Omobowale, T. O.,Asenuga, E. R.,Ajibade, T. O.,Adejumobi, O. A.,Hassan, F. O.,Adedapo, A. A.,Yakubu, M. A. (2017). Quercetin attenuates Sodium fluoride (NaF)-	Irrelevant population

Le	
	Bibliography

vel

induced hypertension through reduction in oxidative stress and heat shock proteins (HSP 70)/extracellular signal regulated kinase (ERK) pathways in rats FASEB Journal. Conference: Experimental Biology, 31(1 Supplement 1), #Pages# L1 Ahmad, K. R., Shazia, Noor, Shamsa, Jabeen, Tooba, Irrelevant population Nauroze, Kanwal, M. A., Kausar, Raees, Tahir, Abbas (2017). Amelioration by jambul fruit extract of fluoride-induced hepato-nephronal histopathologies and impaired neuromotor capacity in mice Fluoride, 50(1 Part 1), 2-14 L1 Ahmad, M. A., Haleema, Bibi, Igbal, Munir, Ahmad, M. Irrelevant population N., Afia, Zia, Ghulam, Mustafa, Ikram, Ullah, Imran, Khan (2018). Fluoride toxicity and its effect on two varieties of Solanum lycopersicum Fluoride, 51(3), 267-277 L1 Ahmadi, S., Rahdar, S., Igwegbe, C. A., Rahdar, Irrelevant population A., Shafighi, N., Sadeghfar, F. (2019). Data on the removal of fluoride from aqueous solutions using synthesized P/gamma-Fe₂O₃ nanoparticles: A novel adsorbent MethodsX, 6(#issue#), 98-106 L1 Akafu, T., Chimdi, A., Gomoro, K. (2019). Removal of Irrelevant population Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide J Anal Methods Chem, 2019(#issue#), 4831926

Le vel	Bibliography	Reason for exclusion
L1	Akimov, O. Y., Mischenko, A. V., Kostenko, V. O. (2019). Influence of combined nitrate and fluoride intoxication on connective tissue disorders in rats gastric mucosa Archives of the Balkan Medical Union, 54(3), 417-421	Irrelevant population
L1	Alaiwa, M. A.,Hilkin, B.,Akurathi, V.,Watkins, G.,Stoltz, D.,Sunderland, J.,Welsh, M.,Dick, D. (2019). Imaging mucociliary clearance using F-18 alumina PET: A proof in concept study Journal of Nuclear Medicine. Conference, 60(Supplement 1), #Pages#	Irrelevant population
L1	Ali, S. M.,Nawfal, A. J.,Al-Okaily, B. N. (2019). Protective effects of coenzyme Q10 against sodium fluoride-induced reproductive disorders in male rats Iraqi Journal of Veterinary Sciences, 33(1), 143-149	Irrelevant population
L1	Alkurdi, S. S. A., Al-Juboori, R. A., Bundschuh, J., Hamawand, I. (2019). Bone char as a green sorbent for removing health threatening fluoride from drinking water Environment International, 127(#issue#), 704-719	Irrelevant population
L1	Altine, B.,Gai, Y.,Han, N.,Jiang, Y.,Ji, H.,Fang, H.,Niyonkuru, A.,Bakari, K. H.,Rajab Arnous, M. M.,Liu, Q.,Zhang, Y.,Lan, X. (2019). Preclinical Evaluation of a Fluorine-18 ((18)F)-Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging Mol Pharm, 16(11), 4563-4571	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Ameer, N., Mustafa, G., Khan, I., Zahid, M., Yasinzai, M., Shahab, S., Asghar, N., Ullah, I., Ahmad, A., Munir, I., Khan, H., Badshah, S., Shahid, I., Ahmad, M. N., Zia, A., Ahmad, S. (2018). Chemical sensors: Promising tools for the online monitoring of fluorides Fluoride, 51(3), 252-266	Irrelevant population
L1	Anacletus, F. C.,Onyegeme-Okerenta, B. M.,Iheka, C. U. (2016). Management of fluoride toxicity on adult male wistar rats' fecundity using some selected antioxidants FASEB Journal. Conference: Experimental Biology, 30(Meeting Abstracts), #Pages#	Irrelevant population
L1	Andleeb, S.,Ata-ul-Mustafa, Fahid,Dilawari, U. F.,Arshad, M.,Ara, C. (2018). Attenuation of sodium fluoride induced nephrotoxicity by fresh orange juice in mice JAPS, Journal of Animal and Plant Sciences, 28(6), 1709-1716	Irrelevant population
L1	Aparna, Singh,Ragini, Gothalwal (2018). A reappraisal on biodegradation of fluoride compounds: role of microbes Water and Environment Journal, 32(3), 481-487	Irrelevant population
L1	Apshankar, K. R.,Sudha, Goel (2018). Review and analysis of defluoridation of drinking water by electrocoagulation Journal of Water Supply: Research and Technology - Aqua, 67(4), 297-316	Irrelevant population
L1	Araujo, T. T.,Pereira, H. A. B. S.,Dionizio, A.,Sanchez, C. do C.,Carvalho, T. de S.,Fernandes,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	M. da S.,Buzalaf, M. A. R. (2019). Changes in energy metabolism induced by fluoride: insights from inside the mitochondria Chemosphere, 236(#issue#), 124357	
L1	Arnold, W. H.,Groger, Ch,Bizhang, M.,Naumova, E. A. (2016). Dentin abrasivity of various desensitizing toothpastes Head & face medicine, 12(#issue#), 16	Irrelevant population
L1	Asare, M. L.,Cobbina, S. J.,Akpabey, F. J.,Duwiejuah, A. B.,Abuntori, Z. N. (2018). Heavy metal concentration in water, sediment and fish species in the bontanga reservoir, Ghana Toxicology and Environmental Health Sciences, 10(1), 49-58	Irrelevant population
L1	Attia, K.,Visser, T.,Steven, J.,Slart, R.,Antunes, I.,Van Der Hoek, S.,Elsinga, P.,Heerspink, H. (2019). Synthesis and evaluation of [¹⁸ F] canagliflozin for imaging SGLT-2-transporters in diabetic patients Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S27-S29	Irrelevant population
L1	Baba, N.,Raina, R.,Verma, P.,Sultana, M. (2016). Free radical-induced nephrotoxicity following repeated oral exposure to chlorpyrifos alone and in conjunction with fluoride in rats Turkish Journal of Medical Sciences, 46(2), 512-517	Irrelevant population
L1	Babaei Zarch, A.,Fallah Huseini, H.,Kianbakht, S.,Changaei, P.,Mirjalili, A.,Salehi, J. (2017). Malva	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	sylvestris L. Protects from Fluoride Nephrotoxicity in Rat Journal of Medicinal Plants, 16(61), 21-32	
L1	Babini, M. S.,Bionda, C. L.,Salas, N. E.,Martino, A. L. (2016). Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles Environmental Monitoring and Assessment, 188 (8) (no pagination)(459), #Pages#	Irrelevant population
L1	Baguet, T., Verhoeven, J., De Lombaerde, S., Piron, S., Descamps, B., Vanhove, C., Beyzavi, H., De Vos, F. (2019). Radiosynthesis, in vitro and in vivo evaluation of [¹⁸ F]Fluorphenylglutamine and [¹⁸ F]Fluorbiphenylglutamine as novel ASCT-2 directed tumor tracers Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S500-S502	Irrelevant population
L1	Bartos, M.,Gumilar, F.,Gallegos, C. E.,Bras, C.,Dominguez, S.,Mónaco, N.,Carmen Esandi, M. del,Bouzat, C.,Cancela, L. M.,Minetti, A. (2018). Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: involvement of the α 7 nicotinic receptor and oxidative stress Reproductive Toxicology, 81(#issue#), 108- 114	Irrelevant population
L1	Beekam, Kebede, Abebe, Beyene, Fekadu, Fufa, Moa, Megersa, Behm, M. (2016). Experimental evaluation	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	of sorptive removal of fluoride from drinking water using iron ore Applied Water Science, 6(1), 57-65	
L1	Berger, T.,Mathurin, F. A.,Drake, H.,Astrom, M. E. (2016). Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks Science of the Total Environment, 569-570(#issue#), 948-960	Irrelevant population
L1	 Bermejo, I. A., Usabiaga, I., Companon, I., Castro-Lopez, J., Insausti, A., Fernandez, J. A., Avenoza, A., Busto, J. H., Jimenez-Barbero, J., Asensio, J. L., Peregrina, J. M., Jimenez-Oses, G., Hurtado-Guerrero, R., Cocinero, E. J., Corzana, F. (2018). Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition J Am Chem Soc, 140(31), 9952-9960 	Irrelevant population
L1	Bhattacharya, Shantanu,Gupta, Akhilendra Bhushan,Gupta, Ankur,Pandey, Ashok (2018). Water Remediation #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Bondu, J. D.,Selvakumar,,Seshadri, M. S.,Fleming, J. J. (2017). Do vitamin D deficiency and renal dysfunction play a role in the pathogenesis of fluorotoxic metabolic bone disease (FMBD)? Indian Journal of Clinical Biochemistry, 32 (1 Supplement 1)(#issue#), S106	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Bondu, J. D., Seshadri, M. S., Selvakumar, R., Fleming, J. J. (2019). Effects of Fluoride on Bone in an Animal Model of Vitamin D Deficiency Indian J Clin Biochem, 34(1), 60-67	Irrelevant population
L1	Bongarzone, S.,Basagni, F.,Sementa, T.,Singh, N.,Gakpetor, C.,Faugeras, V.,Bordoloi, J.,Gee, A. D. (2018). Development of [¹⁸ F]FAMTO: A novel fuorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands European Journal of Nuclear Medicine and Molecular Imaging, 45 (Supplement 1)(#issue#), S191-S192	Irrelevant population
L1	Bongarzone, S.,Faugeras, V.,Sementa, T.,Gakpetor, C.,Gee, A. D. (2017). Novel ¹⁸ F- labelled Metomidate analogues for targeting CYP11B2 beta hydroxylase - Towards a new PET radiotracer for managing personalised treatments for aldosteronoma-mediated hypertension Journal of Labelled Compounds and Radiopharmaceuticals, 60 (Supplement 1)(#issue#), S73	Irrelevant population
L1	Bonotto, D. M.,Oliveira, A. M. M. A. D. (2017). Mobility indices and doses from ²¹⁰ Po and ²¹⁰ Pb activity concentrations data in Brazilian spas groundwaters Journal of Environmental Radioactivity, 172(#issue#), 15-23	Irrelevant population
L1	Boxi, S. S., Paria, S. (2016). Fluorometric selective detection of fluoride ions in aqueous media using Ag	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	doped CdS/ZnS core/shell nanoparticles Dalton transactions (Cambridge, England : 2003), 45(2), 811-819	
L1	Braga, T. M.,Braga, D. N.,Moreno-Carvalho, E.,Bauer, J. O.,Turssi, C. P. (2019). Calcium Pre- Rinse: Effect on permeability of dentin tubules by fluoride rinse Journal of Clinical & Experimental Dentistry, 11(4), e303-e309	Irrelevant population
L1	Breen, Sarah-Patricia (2018). Exploring a New Regionalism-Based Approach to Managing Drinking Water Systems in Rural Regions Society & Natural Resources, 31(6), 698-716	Irrelevant population
L1	Brooks, A.,Burris, S.,Scott, P. (2017). Binding of [¹⁸ F]N-Methyl lansoprazole to tau aggregates in post-mortem brain sections from alzheimer's disease and progressive supranuclear palsy patients Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI, 58(Supplement 1), #Pages#	Irrelevant population
L1	Buckley, H. L., Molla, N. J., Cherukumilli, K., Boden, K. S., Gadgil, A. J. (2018). Addressing technical barriers for reliable, safe removal of fluoride from drinking water using minimally processed bauxite ores Dev Eng, 3(#issue#), 175-187	Irrelevant population
L1	Cai, L.,Liow, J. S.,Morse, C.,Davies, R.,Frankland, M.,Zoghbi, S.,Innis, R.,Pike, V. (2019). Synthesis	Irrelevant population

Le	Bibliography
vel	Disnography

and evaluation in rats of [¹¹C] NR2B-Me as a PET radioligand for NR2B subunits in NMDA receptors Journal of Labelled Compounds and Radiopharmaceuticals, 62 (Supplement 1)(#issue#), S75-S77

- L1 Camargo, J. A., Alonso, Á (2017). Ecotoxicological Irrelevant population assessment of the impact of fluoride (F-) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent Environmental Science and Pollution Research, 24(18), 15667-15677
- L1 Cao, J., Chen, Y., Chen, J., Yan, H., Li, M., Wang, J. Irrelevant population (2016). Fluoride exposure changed the structure and the expressions of Y chromosome related genes in testes of mice Chemosphere, 161(#issue#), 292-299
- L1 Cao, K.,Xiang, J.,Dong, Y. T.,Xu, Y.,Li, Y.,Song, Irrelevant population H.,Zeng, X. X.,Ran, L. Y.,Hong, W.,Guan, Z. Z. (2019). Exposure to fluoride aggravates the impairment in learning and memory and neuropathological lesions in mice carrying the APP/PS1 double-transgenic mutation Alzheimer's Research and Therapy, 11 (1) (no pagination)(35), #Pages#
- L1 Cardenas-Gonzalez, M.,Jacobo Estrada, Irrelevant population T.,Rodriguez-Munoz, R.,Barrera-Chimal, J.,Bobadilla, N. A.,Barbier, O. C.,Del Razo, L. M.

Le vel	Bibliography	Reason for exclusion
	(2016). Sub-chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin Journal of Applied Toxicology, 36(2), 309-319	
L1	Castillo, A. S. R., Guihéneuf, S., Guével, R. le, Biard, P. F., Paquin, L., Amrane, A., Couvert, A. (2016). Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor Journal of Hazardous Materials, 307(#issue#), 221- 230	Irrelevant population
L1	Chai, L.,Dong, S.,Zhao, H.,Deng, H.,Wang, H. (2016). Effects of fluoride on development and growth of Rana chensinensis embryos and larvae Ecotoxicology and Environmental Safety, 126(#issue#), 129-137	Irrelevant population
L1	Chai, L.,Wang, H.,Zhao, H.,Dong, S. (2017). Chronic Effects of Fluoride Exposure on Growth, Metamorphosis, and Skeleton Development in Bufo gargarizans Larvae Bull Environ Contam Toxicol, 98(4), 496-501	Irrelevant population
L1	Chaithra, B.,Sarjan, H. N.,Shivabasavaiah, (2019). A Comparative Analysis of Fluoride-Contaminated Groundwater and Sodium Fluoride-Induced Reproductive Toxicity and Its Reversibility in Male Rats Biological Trace Element Research., #volume#(#issue#), #Pages#	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Chaithra, B.,Sarjan, H. N.,Shivabasavaiah, (2019). Sodium Fluoride and Fluoride Contaminated Ground Water Induced Altered Reproductive Performances in Male Rats Biological Trace Element Research., #volume#(#issue#), #Pages#	Irrelevant population
L1	Chaithra, B.,Sarjan, H. N.,Shivabasavaiah, (2019). Time-dependent effect of ground water fluoride on motility, abnormality and antioxidant status of spermatozoa: An in vitro study Toxicology and Industrial Health, 35(5), 368-377	Irrelevant population
L1	Chander, V.,Sharma, B.,Negi, V.,Aswal, R. S.,Singh, P.,Singh, R.,Dobhal, R. (2016). Pharmaceutical compounds in drinking water Journal of Xenobiotics, 6 (1) (no pagination)(5774), #Pages#	Irrelevant population
L1	Chao, W.,Zhang, Y.,Chai, L.,Wang, H. (2018). Transcriptomics provides mechanistic indicators of fluoride toxicology on endochondral ossification in the hind limb of Bufo gargarizans Aquat Toxicol, 201(#issue#), 138-150	Irrelevant population
L1	Chen, JianJie,Xue, WenJuan,Cao, JinLing,Song, Jie,Jia, RuHui,Li, MeiYan (2016). Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio) Aquatic Toxicology, 171(#issue#), 48-58	Irrelevant population
L1	Chen, XiuWen,Wan, ChangWu,Xie, Chun,Wei, Yan,Wu, Yu,Wan, Wen (2016). Fluoride inhibits expressions of Notch3 and Jag1 proteins in rat bone	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	tissues Journal of Environmental & Occupational Medicine, 33(5), 494-498	
L1	Chen, Y.,Shen, C.,Rashid, S.,Li, S.,Ali, B. A.,Liu, J. (2017). Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water J Colloid Interface Sci, 491(#issue#), 207-215	Irrelevant population
L1	Chiba, F. Y., Tsosura, T. V. S., Pereir, R. F., Mattera, M. S. L. C., Dos Santos, R. M., Marani, F., Garbin, C. A. S., Moimaz, S. A. S., Sumida, D. H. (2019). Mild chronic NaF intake promotes insulin resistance and increase in inflammatory signaling in the white adipose tissue of rats Fluoride, 52(1), 18-28	Irrelevant population
L1	Choi, Y. E.,Seo, D. Y.,Lee, J. E.,Ha, Y.,Park, A. H.,Jeong, J. W.,Kwon, O. W.,Kim, Y. J. (2018). Comparative toxicity of Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanesulfonamide (PFOSA) in fish hepatoma cell line, PLHC-1 Toxicology and Environmental Health Sciences, 10 (4)(#issue#), S58	Irrelevant population
L1	Choong, C. E., Wong, K. T., Jang, S. B., Nah, I. W., Choi, J., Ibrahim, S., Yoon, Y., Jang, M. (2020). Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: Implications for their application in water treatment Chemosphere, 239 (no pagination)(124765), #Pages#	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Choubisa, S. L. (2018). A brief and critical review on hydrofluorosis in diverse species of domestic animals in India Environ Geochem Health, 40(1), 99-114	Irrelevant population
L1	Chowdhury, C. R., Shahnawaz, K., Kumari, D., Chowdhury, A., Bedi, R., Lynch, E., Harding, S., Grootveld, M. (2016). Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects Perspectives in Public Health, 136(6), 353-360	Irrelevant population
L1	Copeland, Ari, American Water Works, Association (2016). Water fluoridation principles and practices #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Costa, A. B. da,Rodrigues, G. S.,Baumann, L.,Santos, R. B. dos,Klamt, R. A.,Carvalho, F. S. de,Kirst, A.,Lobo, E. A. (2018). Defluoridation of groundwater by adsorption and precipitation by contact with activated bone charcoal Caderno de Pesquisa, Série Biologia, 30(Especial), 22-28	Irrelevant population
L1	Cox, K. D.,English, J. C.,Bhat, V. (2017). Use of "read-across" and threshold of toxicological concern approaches to establish allowable concentrations in drinking water: A case study Toxicology Letters, 280 (Supplement 1)(#issue#), S101	Irrelevant population
L1	Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., Vengosh, A. (2019). Co-occurrence of geogenic and anthropogenic contaminants in groundwater	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	from Rajasthan, India Sci Total Environ, 688(#issue#), 1216-1227	
L1	Cristóvão, R. O., Pinto, V. M. S., Gonçalves, A., Martins, R. J. E., Loureiro, J. M., Boaventura, R. A. R. (2016). Fish canning industry wastewater variability assessment using multivariate statistical methods Process Safety and Environmental Protection, 102(#issue#), 263-276	Irrelevant population
L1	Cui, Y. S.,Zhong, Q.,Li, W. F.,Liu, Z. H.,Wang, Y.,Hou, C. C. (2017). Effects of fluoride exposure on thyroid hormone level and intelligence in rats Chinese journal of industrial hygiene and occupational diseases, 35(12), 888-892	Irrelevant population
L1	Dahi, E. (2016). Africa's U-turn in defluoridation policy: From the Nalgonda technique to bone char Fluoride, Part 1. 49(4), 401-416	Irrelevant population
L1	Dai, YouGang,Chen, XuanHao,Yang, LuHui,Zhang, Hua,Wei, Yan (2019). Effects of six-month sodium fluoride exposure via drinking water on osteogenic activity markers in rat bone tissues Journal of Environmental & amp; Occupational Medicine, 36(8), 725-730	Irrelevant population
L1	Dai, YouGang,Wei, Yan,Chen, XuanHao,Qi, ZhongDa,Zhang, Hua (2019). Changes in bone histomorphometry and microRNA-23a expression in rats exposed to sodium fluoride Journal of	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Environmental & amp; Occupational Medicine, 36(3), 254-260	
L1	Daiwile, A. P., Prashant, Tarale, Saravanadevi, Sivanesan, Naoghare, P. K., Amit, Bafana, Devendra, Parmar, Krishnamurthi, Kannan (2019). Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis Ecotoxicology and Environmental Safety, 169(#issue#), 410-417	Irrelevant population
L1	De Oliveira, F. A., Pereira, A. A., Da Silva Ventura, T., Buzalaf, M., De Oliveira, R. C., Peres-Buzalaf, C. (2016). Fluoride regulates osteoclastogenesis in a strain-specific manner Journal of Bone and Mineral Research. Conference, 31(Supplement 1), #Pages#	Irrelevant population
L1	Debia, K.,Janda, K.,Siwiec, E.,Wolska, J.,Baranowska-Bosiacka, I.,Jakubczyk, K.,Chlubek, D.,Gutowska, I. (2018). Do brewing temperature and the morphological part of the ground elder plant have an influence on the fluoride content of ground elder infusions? Fluoride, 51(2), 153-163	Irrelevant population
L1	Dec, K.,Lukomska, A.,Baranowska-Bosiacka, I.,Pilutin, A.,Maciejewska, D.,Skonieczna-Zydecka, K.,Derkacz, R.,Goschorska, M.,Wasik, A.,Rebacz- Maron, E.,Gutowska, I. (2018). Pre-and postnatal exposition to fluorides induce changes in rats liver morphology by impairment of antioxidant defense mechanisms and COX induction Chemosphere, 211(#issue#), 112-119	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Dec, K.,Lukomska, A.,Skonieczna-Zydecka, K.,Kolasa-Wolosiuk, A.,Tarnowski, M.,Baranowska- Bosiacka, I.,Gutowska, I. (2019). Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures NeuroToxicology, 74(#issue#), 81-90	Irrelevant population
L1	Deepak, Kumar,Anshuman, Singh,Jha, R. K. (2018). Spatial distribution of uranium and basic water quality parameter in the capital of Bihar and consequent ingestion dose Environmental Science and Pollution Research, 25(18), 17901-17914	Irrelevant population
L1	Dehghani, M. H.,Haghighat, G. A.,Yousefi, M. (2018). Data on fluoride concentration in drinking water resources in Iran: A case study of Fars province; Larestan region Data in Brief, 19(#issue#), 842-846	Irrelevant population
L1	Deng, H.,Ikeda, A.,Cui, H.,Bartlett, J. D.,Suzuki, M. (2019). MDM2-mediated p21 proteasomal degradation promotes fluoride toxicity in ameloblasts Cells, 8 (5) (no pagination)(436), #Pages#	Irrelevant population
L1	Dhurvey, V.,Thakarea, M. (2016). The effect of sodium fluoride intoxication on the estrous cycle and ovarian hormones in rats Fluoride, Part 1. 49(3), 223-232	Irrelevant population
L1	Dian, B. J.,Selvakumar, R.,Fleming,,Joseph, J. (2016). Does Vitamin D deficiency and renal	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	dysfunction play a role in the pathogenesis of Fluorotoxic Metabolic Bone Disease (FMBD) Indian Journal of Clinical Biochemistry, 31 (1 Supplement 1)(#issue#), S30	
L1	Dias, I. N.,Bassin, J. P.,Dezotti, M.,Vilar, V. J. P. (2018). Fluorene oxidation by solar-driven photo- Fenton process: toward mild pH conditions Environ Sci Pollut Res Int, 25(28), 27808-27818	Irrelevant population
L1	Diwan, V.,Sar, S. K.,Biswas, S.,Dewangan, R.,Baghel, T. (2019). Uranium in ground water of Rajnandgaon District of Central India Journal of Radioanalytical and Nuclear Chemistry, 321(1), 293- 302	Irrelevant population
L1	Dong, H.,Lu, G.,Yan, Z.,Liu, J.,Yang, H.,Zhang, P.,Jiang, R.,Bao, X.,Nkoom, M. (2020). Distribution, sources and human risk of perfluoroalkyl acids (PFAAs) in a receiving riverine environment of the Nanjing urban area, East China Journal of Hazardous Materials, 381 (no pagination)(120911), #Pages#	Irrelevant population
L1	Dong, Y. T., Wei, N., Qi, X. L., Liu, X. H., Chen, D., Zeng, X. X., Guana, Z. Z. (2017). Attenuating effect of vitamin e on the deficit of learning and memory of rats with chronic fluorosis: The mechanism may involve muscarinic acetylcholine receptors Fluoride, 50(3), 354-364	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Dutta, J. (2016). Assessment of fluoride, arsenic and other heavy metals in the ground water of tea gardens belt of Sonitpur district, Assam, India International Journal of ChemTech Research, 9(2), 71-79	Irrelevant population
L1	Ebrahim, F. M.,Nguyen, T. N.,Shyshkanov, S.,Gladysiak, A.,Favre, P.,Zacharia, A.,Itskos, G.,Dyson, P. J.,Stylianou, K. C. (2019). Selective, Fast-Response, and Regenerable Metal-Organic Framework for Sampling Excess Fluoride Levels in Drinking Water Journal of the American Chemical Society, 141(7), 3052-3058	Irrelevant population
L1	Elfikrie, N.,Ho, Y. B.,Zaidon, S. Z.,Juahir, H.,Tan, E. S. S. (2020). Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia Science of the Total Environment, 712 (no pagination)(136540), #Pages#	Irrelevant population
L1	Elumalai, V.,Nwabisa, D. P.,Rajmohan, N. (2019). Evaluation of high fluoride contaminated fractured rock aquifer in South Africa - Geochemical and chemometric approaches Chemosphere, 235(#issue#), 1-11	Irrelevant population
L1	Family, L.,Zheng, G.,Cabezas, M.,Cloud, J.,Hsu, S.,Rubin, E.,Smith, L. V.,Kuo, T. (2019). Reasons	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	why low-income people in urban areas do not drink tap water J Am Dent Assoc, 150(6), 503-513	
L1	Fan, XiMin,Luo, Ying,Xu, Jie,Wu, Qin,Liu, Jie,Fan, QiYuan (2017). Effects of manganese chloride on mitochondrial damage, dopamine secretion, and expression of PARK2 in human bone marrow neuroblastoma cells Journal of Environmental & amp; Occupational Medicine, 34(8), 707-711, 717	Irrelevant population
L1	Ferrari, C. R.,Nascimento, H. de A. F. do,Rodgher, S.,Almeida, T.,Bruschi, A. L.,Nascimento, M. R. L. do,Bonifácio, R. L. (2017). Effects of the discharge of uranium mining effluents on the water quality of the reservoir: an integrative chemical and ecotoxicological assessment Scientific Reports, 7(1), 13919	Irrelevant population
L1	Flueck, W. T. (2016). The impact of recent volcanic ash depositions on herbivores in Patagonia: a review Rangeland Journal, 38(1), 27-34	Irrelevant population
L1	Foka, F. E. T.,Yah, C. S.,Bissong, M. E. A. (2018). Physico-chemical properties and microbiological quality of borehole water in four crowded areas of benin city, nigeria, during rainfalls Shiraz E Medical Journal, 19 (11) (no pagination)(e68911), #Pages#	Irrelevant population
L1	Frawley, R. P., Smith, M., Cesta, M. F., Hayes- Bouknight, S., Blystone, C., Kissling, G. E., Harris, S., Germolec, D. (2018). Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	(PFDA) on female Harlan Sprague-Dawley rats and B ₆ C ₃ F ₁ /N mice when administered by oral gavage for 28 days Journal of Immunotoxicology, 15(1), 41-52	
L1	Freitas, A. S., Fontes Cunha, I. M., Andrade-Vieira, L. F., Techio, V. H. (2016). Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L Ecotoxicology and Environmental Safety, 124(#issue#), 426-434	Irrelevant population
L1	Fromme, H.,Wockner, M.,Roscher, E.,Volkel, W. (2017). ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany Int J Hyg Environ Health, 220(2 Pt B), 455-460	Irrelevant population
L1	Gama-Dominguez, Y.,Jacobo-Estrada, T.,Lopez- Ventura, D.,Moreno-Licona, N. J.,Trevino, S.,Barbier, O. (2016). Effect of renal ischemia on sub- chronically exposed rats to fluoride evaluated by the expression of hypoxia-inducible factor 1alpha (HIF- 1alpha) Toxicology Letters, 259 (Supplement 1)(#issue#), S241-S242	Irrelevant population
L1	Gao, X.,Luo, W.,Luo, X.,Li, C.,Zhang, X.,Wang, Y. (2019). Indigenous microbes induced fluoride release from aquifer sediments Environmental Pollution, 252(#issue#), 580-590	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Gayatri, Singh,Babita, Kumari,Geetgovind, Sinam,Kriti,,Navin, Kumar,Shekhar, Mallick (2018). Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective- a review Environmental Pollution, 239(#issue#), 95-108	Irrelevant population
L1	Ge, YaMing,Chen, LingLi,Yin, ZhiHong,Song, XiaoChao,Ruan, Tao,Hua, LiuShuai,Liu, JunWei,Wang, JunDong,Ning, HongMei (2018). Fluoride-induced alterations of synapse-related proteins in the cerebral cortex of ICR offspring mouse brain Chemosphere, 201(#issue#), 874-883	Irrelevant population
L1	Greenwood, H. (2017). High throughput PET/CT imaging using a multiple mouse imaging system Molecular Imaging and Biology, 19 (1 Supplement 1)(#issue#), S540	Irrelevant population
L1	Güner, Ş,Uyar-Bozkurt, S.,Haznedaroğlu, E.,Menteş, A. (2016). Dental fluorosis and catalase immunoreactivity of the brain tissues in rats exposed to high fluoride pre- and postnatally Biological Trace Element Research, 174(1), 150-157	Irrelevant population
L1	Guo, Chao,Song, Hui,Liang, Feng,Zeng, QiaoLi,Miao, Yue,Zhen, Dong,Zhang, AiLong (2018). The study on the optimization of extraction technology and fluorescence labeling of Flammulina velutipes polysaccharides Journal of Fungal Research, 16(1), 43-50	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Gupta, A. R., Dey, S., Saini, M., Swarup, D. (2016). Toxic effect of sodium fluoride on hydroxyproline level and expression of collagen-1 gene in rat bone and its amelioration by Tamrindus indica L. fruit pulp extract Interdiscip Toxicol, 9(1), 12-16	Irrelevant population
L1	Hadipuro, W.,Indriyanti, N. Y. (2009). Typical urban water supply provision in developing countries: a case study of Semarang City, Indonesia Water Policy, 11(1), 55-66	Irrelevant population
L1	Han, YongLi,Yu, YuXiang,Liang, Chen,Shi, Yan,Zhu, YuChen,Zheng, HePing,Wang, JunDong,Zhang, JianHai (2019). Fluoride-induced unrestored arrest during haploid period of spermatogenesis via the regulation of DDX25 in rats Environmental Pollution, 253(#issue#), 538-551	Irrelevant population
L1	Hardie, Julia, University of, Otago, Department of, History, University of, Otago (2016). There's something in the water : following Timaru's water fluoridation debate, 1957-1985 : dissertation submitted for the degree of Bachelor of History with Honours #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Hariri, Mehran, Mirvaghefi, Alireza, Farahmand, Hamid, Taghavi, Lobat, Shahabinia, Amir-Reza (2018). In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	fario) Environmental toxicology and pharmacology, 58(#issue#), 59-69	
L1	Hayat, E.,Baba, A. (2017). Quality of groundwater resources in Afghanistan Environmental Monitoring and Assessment, 189 (7) (no pagination)(318), #Pages#	Irrelevant population
L1	He, XinJin,Sun, ZiLong,Manthari, R. K.,Wu, PanHong,Wang, JunDong (2018). Fluoride altered rat's blood testis barrier by affecting the F-actin via IL-1α Chemosphere, 211(#issue#), 826-833	Irrelevant population
L1	 Hoffman, B. L., Felter, E. M., Chu, K. H., Shensa, A., Hermann, C., Wolynn, T., Williams, D., Primack, B. A. (2019). It's not all about autism: The emerging landscape of anti-vaccination sentiment on Facebook Vaccine, 37(16), 2216-2223 	Irrelevant population
L1	Holmquist, H.,Schellenberger, S.,van der Veen, I.,Peters, G. M.,Leonards, P. E. G.,Cousins, I. T. (2016). Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing Environment International, 91(#issue#), 251-264	Irrelevant population
L1	Hosokawa, M.,Sugaya, C.,Tsunoda, M.,Kodama, Y.,Sugita-Konishi, Y.,Ohta, H.,Yokoyama, K. (2016). The effects of fluoride on the bones and teeth from ICR-derived glomerulonephritis (ICGN) mice and ICR mice after subacute exposure Fluoride, Part 1. 49(4), 417-428	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Hossain, M.,Patra, P. K. (2019). Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types Environ Pollut, #volume#(#issue#), 113646	Irrelevant population
L1	Huang, Y.,Wang, J.,Tan, Y.,Wang, L.,Lin, H.,Lan, L.,Xiong, Y.,Huang, W.,Shu, W. (2018). Low-mineral direct drinking water in school may retard height growth and increase dental caries in schoolchildren in China Environment International, 115(#issue#), 104-109	Irrelevant population
L1	Hunt, Elizabeth (1996). Water and turf: Fluoridation and the 20th-century fate of waterworks engineers American Journal of Public Health, 86(9), 1310-7	Irrelevant population
L1	Hussain, I., Ahamad, K. U., Nath, P. (2017). Low- Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water Analytical chemistry, 89(1), 767-775	Irrelevant population
L1	Hussien, H. M., Abd-Elmegied, A., Ghareeb, D. A., Hafez, H. S., Ahmed, H. E. A., El-Moneam, N. A. (2018). Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats Food and Chemical Toxicology, 111(#issue#), 432-444	Irrelevant population
L1	Idowu, O. S.,Duckworth, R. M.,Valentine, R. A.,Zohoori, F. V. (2020). Biomarkers for the	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Assessment of Fluoride Exposure in Children Caries Res, #volume#(#issue#), 1-10	
L1	Imran, Uzma, Chandio, T. A. (2017). Analysis of drinking water quality for presence of heavy metals and its impacts on health of local population in Sibi District European Journal of Sustainable Development, 6(4), 32-40	Irrelevant population
L1	Interlandi, V.,Fontanetti, P. A.,Ponce, R. H.,Gallara, R. V.,Centeno, V. A. (2018). Chronic Exposure to Fluoride During Gestation and Lactation Increases Mandibular Bone Volume of Suckling Rats Biol Trace Elem Res, 185(2), 395-403	Irrelevant population
L1	Izuagie, A. A., Gitari, W. M., Gumbo, J. R. (2016). Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: Towards fluorosis mitigation Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 51(10), 810-824	Irrelevant population
L1	Jaishabanu, Ameeramja,Azhwar, Raghunath,Ekambaram, Perumal (2018). Tamarind seed coat extract restores fluoride-induced hematological and biochemical alterations in rats Environmental Science and Pollution Research, 25(26), 26157-26166	Irrelevant population
L1	Jaishabanu, Ameeramja,Ekambaram, Perumal (2018). Possible modulatory effect of tamarind seed	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	coat extract on fluoride-induced pulmonary inflammation and fibrosis in rats Inflammation, 41(3), 886-895	
L1	Jaishabanu, Ameeramja,Kanagaraj, V. V.,Ekambaram, Perumal (2018). Protocatechuic acid methyl ester modulates fluoride induced pulmonary toxicity in rats Food and Chemical Toxicology, 118(#issue#), 235-244	Irrelevant population
L1	Jana, L.,Maity, P. P.,Perveen, H.,Dash, M.,Jana, S.,Dey, A.,De, S. K.,Chattopadhyay, S. (2018). Attenuation of utero-toxicity, metabolic dysfunction and inflammation by soy protein concentrate in rats exposed to fluoridated water: consequence of hyperlipidemia in parallel with hypohomocysteinemia Environ Sci Pollut Res Int, 25(36), 36462-36473	Irrelevant population
L1	Jena, C. K., Gupta, A. R., Patra, R. C. (2016). Osteo- dental fluorosis in cattle reared in villages on the periphery of the aluminium smelter in Odisha, India Fluoride, 49(4 Part 2), 503-508	Irrelevant population
L1	Jetti, R.,Raghuveer, C. V.,Mallikarjuna, R. C. (2016). Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride Toxicology and Industrial Health, 32(1), 183- 187	Irrelevant population
L1	Jia, H.,Qian, H.,Qu, W.,Zheng, L.,Feng, W.,Ren, W. (2019). Fluoride occurrence and human health risk in drinkingwaterwells from southern edge of Chinese	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	loess plateau International Journal of Environmental Research and Public Health, 16 (10) (no pagination)(1683), #Pages#	
L1	Jiang, FeiFei,Lei, PingGui,Chen, YiJia,Zou, Xun,Luo, Peng,Pan, XueLi (2017). Quantitative computed tomography measurement skeletal fluorosis rabbits bone density and the correlation with bone injury Chinese Journal of Endemiology, 36(6), 414-417	Irrelevant population
L1	Jiang, N ,Xu, H ,Guo, F ,Zhang, X (2019). Role of PTH on the Fluoride-Affected Osteoclastic Diffrentiation Induced by Co-culture with Osteocytes XXXIVth Conference of the International Society For Fluoride Research, 52(1), 84-85	Irrelevant population
L1	Jiang, ShanShan,Liang, Chen,Gao, Yan,Liu, Yu,Han, YongLi,Wang, JunDong,Zhang, JianHai (2019). Fluoride exposure arrests the acrosome formation during spermatogenesis via down- regulated Zpbp1, Spaca1 and Dpy19l2 expression in rat testes Chemosphere, 226(#issue#), 874-882	Irrelevant population
L1	Jianjie, C.,Wenjuan, X.,Jinling, C.,Jie, S.,Ruhui, J.,Meiyan, L. (2016). Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio) Aquatic Toxicology, 171(#issue#), 48-58	Irrelevant population
L1	Johnson, J. K.,Hoffman, C. M., Jr.,Smith, D. A.,Xia, Z. (2019). Advanced Filtration Membranes for the Removal of Perfluoroalkyl Species from Water ACS Omega, 4(5), 8001-8006	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera- Calderon, E., Torres-Palma, R. A. (2017). Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes Science of the Total Environment, 575(#issue#), 1228-1238	Irrelevant population
L1	Kaisam, J. P.,Kawa, Y. K.,Moiwo, J. P.,Lamboi, U. (2016). State of well-water quality in Kakua Chiefdom, Sierra Leone Water Science and Technology: Water Supply, 16(5), 1243-1254	Irrelevant population
L1	Kanwal, M. A., Ahmad, K. R., Tahir, Abbas, Kausar, Raees, Sadia, Suleman, Khalida, Jabeen (2016). Alleviating properties of strawberry fruit pulp extract on fluoride-induced fetal anomalies in mice Fluoride, 49(3 Part 2), 303-312	Irrelevant population
L1	Kaur, L.,Rishi, M. S. (2018). Data on fluoride contamination in potable water in alluvial plains of district Panipat, Haryana, India Data in Brief, 20(#issue#), 1844-1849	Irrelevant population
L1	Kazi, T. G.,Brahman, K. D.,Afridi, H. I.,Faheem, Shah,Arain, M. B. (2018). Effects of high fluoride content in livestock drinking water on milk samples of different cattle in endemic area of Pakistan: risk assessment for children Environmental Science and Pollution Research, 25(13), 12909-12914	Irrelevant population
L1	Keily, Elizabeth J. (2019). Groundwater quality assessment of the Piney Point aquifer in the Virginia	Irrelevant population

	-	-
Le vel	Bibliography	Reason for exclusion
	Coastal plain #journal#, #volume#(#issue#), #Pages#	
L1	Khan, H., Verma, Y., Rana, S. V. S. (2018). Oxidative stress induced by co-exposure to arsenic and fluoride in Wistar rat Cancer Medicine, 7 (Supplement 1)(#issue#), 33	Irrelevant population
L1	 Khan, Z. N., Sabino, I. T., de Souza Melo, C. G., Martini, T., da Silva Pereira, H. A. B., Buzalaf, M. A. R. (2019). Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water Biological Trace Element Research, 187(1), 107- 119 	Irrelevant population
L1	Khandare, A. L., Vakdevi, Validandi, Munikumar, Manne, Reddy, G. B., Putcha, U. K., Gourineni, S. R., Balakrishna, Nagalla (2018). Tamarind fruit extract ameliorates fluoride toxicity by upregulating carbonic anhydrase II: a mechanistic study Fluoride, 51(2), 137-152	Irrelevant population
L1	Khanum, Z., Suleman, S., Mustanser, A., Ul Hassan, M. W., Raees, K., Kanwal, M. A., Zia, A., Ahmad, K. R. (2019). Comparative teratological outcomes of fluoride ions and a fluoridated insecticide (Bifenthrin) in chick embryos Fluoride, 52(1), 59-65	Irrelevant population
L1	KheradPisheh, Z.,Ehrampoush, M. H.,Montazeri, A.,Mirzaei, M.,Mokhtari, M.,Mahvi, A. H. (2016).	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Fluoride in drinking water in 31 provinces of Iran Exposure and Health, 8(4), 465-474	
L1	Kichana, E., Minyila, S., Quarcoo, G. (2019). The lethal effect of groundwater fluoride on the germination and growth of maize (Zea mays) and rice (Oryza sativa) seeds and plants Fluoride, 52(3 Part 1), 284-288	Irrelevant population
L1	Kido, T.,Sugaya, C.,Yanagisawa, H.,Sugita-Konishi, Y.,Itai, K.,Tsunoda, M. (2017). The effects on renal function, in institute of cancer research-derived glomerulonephritis (ICGN) mice, of the subacute administration of the fluoride ion in drinking water Fluoride, 50(1 Part 2), 161-174	Irrelevant population
L1	Kido, T.,Tsunoda, M.,Sugaya, C.,Hano, H.,Yanagisawa, H. (2017). Fluoride potentiates tubulointerstitial nephropathy caused by unilateral ureteral obstruction Toxicology, 392(#issue#), 106- 118	Irrelevant population
L1	Kong, LingChao,Tian, Yu,Pang, Zheng,Huang, XiaoHong,Li, Ming,Yang, RuoChen,Li, Ning,Zhang, Jun,Zuo, Wei (2019). Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites Chemical Engineering Journal, 371(#issue#), 893- 902	Irrelevant population
L1	Koriem, K. M. M.,Shamsuri, R. B.,Ubaidillah, A. M. (2016). Evaluation of sodium fluoride toxicity in	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Schistosoma infected snails: assessment of antioxidants, antiapoptotic, hypoprotein and hypocholesterol activities Journal of Parasitic Diseases, 40(4), 1451-1458	
L1	Kuang, P.,Deng, H.,Cui, H.,Chen, L.,Fang, J.,Zuo, Z.,Deng, J.,Wang, X.,Zhao, L. (2017). Sodium fluoride (NaF) causes toxic effects on splenic development in mice Oncotarget, 8(3), 4703-4717	Irrelevant population
L1	Kurtdede, E.,Pekcan, M.,Karagul, H. (2017). Fluorosis problem in Turkey and biochemical interaction of fluorine. [Turkish] Ataturk Universitesi Veteriner Bilimleri Dergisi, 12(3), 320-326	Irrelevant population
L1	Kurtdede, E., Pekcan, M., Karagul, H. (2018). Free radicals, reactive oxygen species and relationship with oxidative stress. [Turkish] Ataturk Universitesi Veteriner Bilimleri Dergisi, 13(3), 373-379	Irrelevant population
L1	Leslie, D. L.,Lyons, W. B. (2018). Variations in dissolved nitrate, chloride, and sulfate in precipitation, reservoir, and tap waters, Columbus, Ohio Int J Environ Res Public Health, 15(8), #Pages#	Irrelevant population
L1	Li, J ,Zhao, Q ,Yang, Y ,Sun, D ,Gao, Y (2019). Effect of Exposure to Fluoride on Bone Development of Zebrafish XXXIVth Conference of the International Society For Fluoride Research, 52(1), 92-93	Irrelevant population
L1	Li, Shuo,Zhang, GuangShan,Zhang, Wen,Zheng, HeShan,Zhu, WeiYu,Sun, Nan,Zheng,	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	YongJie,Wang, Peng (2017). Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst Chemical Engineering Journal, 326(#issue#), 756-764	
L1	Li, X.,Zhang, J.,Niu, R.,Manthari, R. K.,Yang, K.,Wang, J. (2019). Effect of fluoride exposure on anxiety- and depression-like behavior in mouse Chemosphere, 215(#issue#), 454-460	Irrelevant population
L1	Li, Y.,Wang, S.,Prete, D.,Xue, S.,Nan, Z.,Zang, F.,Zhang, Q. (2017). Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China Sci Total Environ, 595(#issue#), 344-351	Irrelevant population
L1	Li, YanYan,Bian, ShengTai,Wang, JinMing,Wang, JunDong (2016). Effects of fluoride and chitosan on the gene expressions of bone morphogenic protein 2 and collagen type-1 alpha 1 chain in the mouse femur Fluoride, 49(1), 47-55	Irrelevant population
L1	Li, Yue,Li, JunJun,Bao, Ying,Li, BingYang,Huo, SiMeng,Fan, YuMei,Yon, HuaZhu,Yang, YanMei,Gao, YanHui (2018). Role of fibroblast growth factor-23 in bone injury induced by fluoride in mice Chinese Journal of Endemiology, 37(4), 259-	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Liang, Chen,Gao, Yan,He, YuYang,Han, YongLi,Manthari, R. K.,Chiranjeevi, Tikka,Chen, ChenKai,Wang, JunDong,Zhang, JianHai (2020). Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: in vivo and in vitro studies Environmental Pollution, 256(#issue#), 113438	Irrelevant population
L1	Lim, MinHwa,Sadhasivam, T.,Jung, DoSung,Lim, HanKwon,Ryi, ShinKun,Jung, HoYoung (2018). Removal of hazardous hydrogen fluoride (HF) from water through homogeneous nanostructured CaO- SiO2 sorbents: optimization of binder Water, Air, and Soil Pollution, 229(8), 278	Irrelevant population
L1	Limon-Pacheco, J. H., Jimenez-Cordova, M. I., Cardenas-Gonzalez, M., Sanchez Retana, I. M., Gonsebatt, M. E., Del Razo, L. M. (2018). Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children Annals of Global Health, 84(2), 257-273	Irrelevant population
L1	Linhares, D. P. S.,Garcia, P. V.,Amaral, L.,Ferreira, T.,Cury, J. A.,Vieira, W.,Rodrigues, A. D. S. (2016). Sensitivity of two biomarkers for biomonitoring exposure to fluoride in children and women: A study in a volcanic area Chemosphere, 155(#issue#), 614- 620	Irrelevant population
L1	Liu, H.,Hou, C.,Zeng, Q.,Zhao, L.,Cui, Y.,Yu, L.,Wang, L.,Zhao, Y.,Nie, J.,Zhang, B.,Wang, A.	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	 (2016). Role of endoplasmic reticulum stress- induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide Environmental Toxicology and Pharmacology, 46(#issue#), 277- 285 	
L1	Liu, J.,Wang, H. W.,Zhao, W. P.,Li, X. T.,Lin, L.,Zhou, B. H. (2019). Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure Toxicol Ind Health, 35(1), 43-52	Irrelevant population
L1	Liu, Y,Guan, Z (2019). The Role of MAPK Signal Transduction Pathway and ECM in Pathogenesis of Brain Damage of Rats with Chronic Fluorosis XXXIVth Conference of the International Society For Fluoride Research, 52(1), 90-92	Irrelevant population
L1	Liu, Z.,Goodwin, M.,Ellwood, R. P.,Pretty, I. A.,McGrady, M. (2018). Automatic detection and classification of dental fluorosis in vivo using white light and fluorescence imaging J Dent, 74 Suppl 1(#issue#), S34-s41	Irrelevant population
L1	Lombarte, M., Fina, B. L., Lupion, P. M., Lupo, M., Rigallia, A. (2016). In vivo measurement of fluoride effects on glucose homeostasis: An explanation for the decrease in intelligence quotient and insulin resistance induced by fluoride Fluoride, Part 1. 49(3), 204-210	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Luo, Yu,Xie, Chun,Zhang, Hua,Tan, Ying,Ge, QiDi (2019). Effects of chronic fluoride exposure on hippocampal structure and spatial learning and memory of F2 rats Journal of Environmental & amp; Occupational Medicine, 36(8), 767-772	Irrelevant population
L1	Ma, Y.,Yao, Y.,Zhong, N.,Angwa, L. M.,Pei, J. (2020). The dose-time effects of fluoride on the expression and DNA methylation level of the promoter region of BMP-2 and BMP-7 in rats Environmental Toxicology and Pharmacology, 75 (no pagination)(103331), #Pages#	Irrelevant population
L1	Ma, YanQin,Ma, ZhenHua,Yin, ShuQin,Yan, XiaoYan,Wang, JunDong (2017). Arsenic and fluoride induce apoptosis, inflammation and oxidative stress in cultured human umbilical vein endothelial cells Chemosphere, 167(#issue#), 454-461	Irrelevant population
L1	Machado, I.,Buhl, V.,Manay, N. (2019). Total arsenic and inorganic arsenic speciation in groundwater intended for human consumption in Uruguay: Correlation with fluoride, iron, manganese and sulfate Science of the Total Environment, 681(#issue#), 497-502	Irrelevant population
L1	Madiha, Tariq,Umar, Farooq,Makshoof, Athar,Salman, M.,Muqaddas, Tariq,Shabnam, Shahida,Farooqi, Z. H. (2019). Fluoride removal using simple protonated and xanthate modified protonated Ficus religiosa branch powder in a fixed-	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	bed column Desalination and Water Treatment, 150(#issue#), 204-212	
L1	Maheswari, E., Arumugham, I. M., Kumar, R. P., Sakthi, D. S. (2017). Fluoride content in various sources of drinking water in Chennai Journal of Advanced Pharmacy Education and Research, 7(2), 142-145	Irrelevant population
L1	Maleki, A.,Zandsalimi, Y.,Rezaei, R.,Rostami, M.,Moayeri, A.,Bahmani, P.,Nuri, A.,Zandi, S.,Sadeghi, S.,Ghahramani, E. (2017). Fluoride concentration in rural drinking water resources of Divandareh County using geographic information system (GIS) HOZAN, 2(1), 25-35	Irrelevant population
L1	Malone Rubright, S. L., Pearce, L. L., Peterson, J. (2017). Environmental toxicology of hydrogen sulfide Nitric Oxide - Biology and Chemistry, 71(#issue#), 1-13	Irrelevant population
L1	Malvezzi, Mapn,Pereira, Habs,Dionizio, A.,Araujo, T. T.,Buzalaf, N. R.,Sabino-Arias, I. T.,Fernandes, M. S.,Grizzo, L. T.,Magalhaes, A. C.,Buzalaf, M. A. R. (2019). Low-level fluoride exposure reduces glycemia in NOD mice Ecotoxicol Environ Saf, 168(#issue#), 198-204	Irrelevant population
L1	Manne, M., Validandi, V., Khandare, A. L. (2018). Reduction of fluoride toxicity by tamarind components: An in silico study Fluoride, 51(2), 122- 136	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	McPherson, C. A.,Zhang, G.,Gilliam, R.,Brar, S. S.,Wilson, R.,Brix, A.,Picut, C.,Harry, G. J. (2018). An Evaluation of Neurotoxicity Following Fluoride Exposure from Gestational Through Adult Ages in Long-Evans Hooded Rats Neurotoxicity Research, 34(4), 781-798	Irrelevant population
L1	Megha, Mittal, Sreemoyee, Chatterjee, Flora, S. J. S. (2018). Combination therapy with vitamin C and DMSA for arsenic-fluoride co-exposure in rats Metallomics, 10(9), 1291-1306	Irrelevant population
L1	Mehta, D.,Mondal, P.,Saharan, V. K.,George, S. (2018). In-vitro synthesis of marble apatite as a novel adsorbent for removal of fluoride ions from ground water: An ultrasonic approach Ultrasonics Sonochemistry, Part A. 40(#issue#), 664-674	Irrelevant population
L1	Mena, V. F.,Betancor-Abreu, A.,Gonzalez, S.,Delgado, S.,Souto, R. M.,Santana, J. J. (2019). Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations Journal of Environmental Management, 246(#issue#), 472-483	Irrelevant population
L1	Michalke, B (2018). Selenium #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Mihanovic, D.,Negovetic-Vranic, D. (2016). In vitro changes in the value of fluoride ions, and PH of artificial saliva due to the influence of erosive drinks	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	in artificial saliva Acta Stomatologica Croatica, 50 (1)(#issue#), 90	
L1	Misra, A. K.,Nikita, Gupta,Anupriya, Gupta,Ankur, Shivhare,Manav, Wadhwa (2016). Designing and testing of a portable filter for groundwater defluoridation and desalination, equipped with non- woven geotextiles Desalination and Water Treatment, 57(23), 10593-10603	Irrelevant population
L1	Mitta, Raghavendra, Ravindra, R. K., Raghuveer, Y. P., Narasimha, J. K., Uma, M. R. V., Polu, Navakishor (2016). Alleviatory effects of hydroalcoholic extract of cauliflower (Brassica oleracea var. botrytis) on thyroid function in fluoride intoxicated rats Fluoride, 49(1), 84-90	Irrelevant population
L1	Mittal, M., Chatterjee, S., Flora, S. J. S. (2018). Combination therapy with vitamin C and DMSA for arsenic-fluoride co-exposure in rats Metallomics, 10(9), 1291-1306	Irrelevant population
L1	Mohamed, N. E. (2016). The role of calcium in ameliorating the oxidative stress of fluoride in rats Biological Trace Element Research, 170(1), 128- 144	Irrelevant population
L1	Mohammadi, A. A., Yousefi, M., Mahvi, A. H. (2017). Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature Data in Brief, 13(#issue#), 312-315	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Moumita, Dutta, Prem, Rajak, Salma, Khatun, Sumedha, Roy (2017). Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure Chemosphere, 166(#issue#), 255-266	Irrelevant population
L1	Munikumar, Manne, Vakdevi, Validandi, Khandare, A. L. (2018). Reduction of fluoride toxicity by tamarind components: an in silico study Fluoride, 51(2), 122- 136	Irrelevant population
L1	Murtaza, B.,Natasha,,Amjad, M.,Shahid, M.,Imran, M.,Shah, N. S.,Abbas, G.,Naeem, M. A.,Amjad, M. (2019). Compositional and health risk assessment of drinking water from health facilities of District Vehari, Pakistan Environ Geochem Health, #volume#(#issue#), #Pages#	Irrelevant population
L1	Nadei, O. V., Khvorova, I. A., Agalakova, N. I. (2019). Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling Biological Trace Element Research., #volume#(#issue#), #Pages#	Irrelevant population
L1	Nag, A,Kumar, C (2019). Fabrication and Study on A domestic Defluoridator Using Burnt Brick Chips of Specific Composition as Filter Material XXXIVth Conference of the International Society For Fluoride Research, 52(1), 98	Irrelevant population
L1	Nagabhushana, S. R.,Sunilkumar,,Suresh, S.,Sannappa, J.,Srinivasa, E. (2019). Study on	Irrelevant population

Le	Diblicgroup
vel	Bibliography

	activity of radium, radon and physicochemical parameters in ground water and their health hazards around Tumkur industrial area Journal of Radioanalytical and Nuclear Chemistry., #volume#(#issue#), #Pages#	
L1	Nagaraju, A., Thejaswi, A., Sun, L. (2016). Statistical analysis of high fluoride groundwater hydrochemistry in Southern India: Quality assessment and implications for source of fluoride Environmental Engineering Science, 33(7), 471-477	Irrelevant population
L1	Nageshwar, M.,Sudhakar, K.,Reddy, K. P. (2018). Quercetin ameliorates oxidative stress, neural damage of brain and behavioral impairment of rat with fluoride exposure International Journal of Pharmaceutical Sciences and Research, 9(8), 3247- 3256	Irrelevant population
L1	Nakahara, Y.,Ozaki, K.,Matsuura, T. (2017). Long- term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents Diabetes, 66(11), 2868-2874	Irrelevant population
L1	Ndambiri, Hilary,Rotich, Emmy (2018). Valuing excess fluoride removal for safe drinking water in Kenya Water Policy, 20(5), 953-965	Irrelevant population
L1	Nelson, E. A.,Halling, C. L.,Buikstra, J. E. (2019). Evidence of Skeletal Fluorosis at the Ray Site, Illinois, USA: a pathological assessment and	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	discussion of environmental factors International Journal Of Paleopathology, 26(#issue#), 48-60	
L1	Nguyen, T. N. ,Gaol, L. F ,Hong, T. P ,Trawiński, B (2019). Intelligent Information and Database Systems Proceedings of the 11th Asian Conference, ACIIDS April 8–11, 2019, Part I, #volume#(#issue#), #Pages#	Irrelevant population
L1	Ni, J.,Zhong, Z.,Zhang, W.,Liu, B.,Shu, R.,Li, Y. (2020). Fluoride resistance in fibroblasts is conferred via reduced susceptibility to oxidative stress and apoptosis FEBS Open Bio., #volume#(#issue#), #Pages#	Irrelevant population
L1	Nilotpal, Das,Sarma, K. P.,Patel, A. K.,Deka, J. P.,Aparna, Das,Abhay, Kumar,Shea, P. J.,Manish, Kumar (2017). Seasonal disparity in the co- occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, northeast India Environmental Earth Sciences, 76(4), 183	Irrelevant population
L1	Niu, Q. (2018). Neurotoxicity of Aluminum #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Niu, Q. (2018). Overview of the Relationship Between Aluminum Exposure and Health of Human Being Advances in Experimental Medicine and Biology, 1091(#issue#), 1-31	Irrelevant population
L1	Niu, R ,Sun, Z,Wang, J X,Li, R ,Guo, Z,Wang, J M,Zhang, J,Wang J D (2019). Effect of Physical Exercise on Bone Remodeling and Neurogenesis in	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Mice Exposed to Fluoride XXXIVth Conference of the International Society For Fluoride Research, 52(1), 93-94	
L1	Nkpaa, K. W., Onyeso, G. I. (2018). Rutin attenuates neurobehavioral deficits, oxidative stress, neuro- inflammation and apoptosis in fluoride treated rats Neuroscience Letters, 682(#issue#), 92-99	Irrelevant population
L1	NTP-National Toxicology Program, (2016). Systematic literature review on the effects of fluoride on learning and memory in animal studies. NTP Research Report 1 National Toxicology Program. Research Triangle Park, NC, #volume#(#issue#), #Pages#	Irrelevant population
L1	NTP-National Toxicology Program, (2019). Draft NTP monograph on the systematic review of fluoride exposure and neurodevelopmental and cognitive health effects U.S Department of Health and Human Services, National Toxicology Program. Research Triangle Park, NC, #volume#(#issue#), #Pages#	Irrelevant population
L1	Obeid, Grace,Do, Giao,Kirby, Lisa,Hughes, Carolyn,Sbidian, Emilie,Le Cleach, Laurence (2020). Interventions for chronic palmoplantar pustulosis Cochrane Database of Systematic Reviews, #volume#(1), #Pages#	Irrelevant population
L1	O'Connell, Joan,Rockell, Jennifer,Ouellet, Judith,Tomar, Scott L.,Maas, William (2016). Costs And Savings Associated With Community Water	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Fluoridation In The United States Health Affairs, 35(12), 2224-2232	
L1	Olivera, S., Chaitra, K., Krishna, Venkatesh, Muralidhara, H. B., Inamuddin,, Asiri, A. M., Ahamed, M. I. (2018). Cerium dioxide and composites for the removal of toxic metal ions Environmental Chemistry Letters, 16(4), 1233-1246	Irrelevant population
L1	Oner, A. C.,Komuroglu, A. U.,Dede, S.,Yur, F.,Oner, A. (2017). The effect of vitamin C and vitamin E on oxidative damage in ratswith fluorosis Turkish Journal of Biochemistry, 42 (Supplement 1)(#issue#), 24	Irrelevant population
L1	Oner, A. C., Yur, F., Oner, A., Komuroglu, A. U., Dede, S. (2017). Effect of vitamin C and vitamin E on serum biochemistry for protection inflorosis Turkish Journal of Biochemistry, 42 (Supplement 1)(#issue#), 50	Irrelevant population
L1	Osterman, John W. (1990). Evaluating the Impact of Municipal Water Fluoridation on the Aquatic Environment American Journal of Public Health, 80(10), 1230-5	Irrelevant population
L1	Owumi, S. E., Aliyu-Banjo, N. O., Danso, O. F. (2019). Fluoride and diethylnitrosamine coexposure enhances oxido-inflammatory responses and caspase-3 activation in liver and kidney of adult rats J Biochem Mol Toxicol, 33(7), e22327	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Palczewska-Komsa, M.,Wilk, A.,Stogiera, A.,Chlubek, D.,Buczkowska-Radlińska, J.,Wiszniewska, B. (2016). Animals in biomonitoring studies of environmental fluoride pollution Fluoride, 49(3 Part 2), 279-292	Irrelevant population
L1	Palipoch, S. (2018). Special Issue: Biomedical sciences Walailak Journal of Science and Technology, 15(2), 107-177	Irrelevant population
L1	Palmeira, Aroa, da Silva, Vath, Dias Junior, F. L., Stancari, R. C. A., Nascentes, G. A. N., Anversa, L. (2019). Physicochemical and microbiological quality of the public water supply in 38 cities from the midwest region of the State of Sao Paulo, Brazil Water Environment Research, 91(8), 805-812	Irrelevant population
L1	Palmieri, M. J., Andrade-Vieira, L. F., Campos, J. M. S., dos Santos Gedraite, L., Davide, L. C. (2016). Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays Ecotoxicology and Environmental Safety, 133(#issue#), 442-447	Irrelevant population
L1	Palomino Cabello, C.,Font Picó, M. F.,Maya, F.,Rio, M. del,Turnes Palomino, G. (2018). UiO-66 derived etched carbon/polymer membranes: high- performance supports for the extraction of organic pollutants from water Chemical Engineering Journal, 346(#issue#), 85-93	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Pandey, P.,Khan, F.,Mishra, R.,Singh, S. K. (2020). Elucidation of the potential of Moringa oleifera leaves extract as a potent alternate to the chemical coagulant in water treatment process Water Environ Res, #volume#(#issue#), #Pages#	Irrelevant population
L1	Pandith, M.,Malpe, D. B.,Rao, A. D.,Rao, P. N. (2016). Aquifer wise seasonal variations and spatial distribution of major ions with focus on fluoride contamination-Pandharkawada block, Yavatmal district, Maharashtra, India Environmental Monitoring and Assessment, 188(2), 1-20	Irrelevant population
L1	 Panziera, W.,Schwertz, C. I.,da Silva, F. S.,Taunde, P. A.,Pavarini, S. P.,Driemeier, D. (2018). Acute sodium fluorosilicate poisoning in cattle. [Portuguese] Acta Scientiae Veterinariae, 46 (Supplement) (no pagination)(280), #Pages# 	Irrelevant population
L1	Patel, R. K.,Kumar, S.,Chawla, A. K.,Mondal, P.,Neelam,,Teychene, B.,Pandey, J. K. (2019). Elimination of fluoride, arsenic, and nitrate from water through adsorption onto nano-adsorbent: A review Current Nanoscience, 15(6), 557-575	Irrelevant population
L1	Paul, C. J., Jeuland, M. A., Godebo, T. R., Weinthal, E. (2018). Communities coping with risks: Household water choice and environmental health in the Ethiopian Rift Valley Environmental Science and Policy, 86(#issue#), 85-94	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Pei, J.,Yao, Y.,Li, B.,Wei, W.,Gao, Y.,Darko, G. M.,Sun, D. (2017). Excessive fluoride stimulated osteoclast formation through up-regulation of receptor activator for nuclear factor-kappaB ligand (RANKL) in C57BL/6 mice International Journal of Clinical and Experimental Medicine, 10(11), 15260- 15268	Irrelevant population
L1	 Pereira, A. G., Chiba, F. Y., de Lima Coutinho Mattera, M. S., Pereira, R. F., de Cassia Alves Nunes, R., Tsosura, T. V. S., Okamoto, R., Sumida, D. H. (2017). Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats J Trace Elem Med Biol, 39(#issue#), 140-146 	Irrelevant population
L1	Perera, T.,Ranasinghe, S.,Alles, N.,Waduge, R. (2018). Effect of fluoride on major organs with the different time of exposure in rats Environmental Health and Preventive Medicine, 23 (1) (no pagination)(17), #Pages#	Irrelevant population
L1	Pérez-Jiménez, M.,Hernández-Munuera, M.,Zapata, M. C. P.,López-Ortega, G.,Amor, F. M. del (2017). Two minuses can make a plus: waterlogging and elevated CO2 interactions in sweet cherry (Prunus avium) cultivars Physiologia Plantarum, 161(2), 257- 272	Irrelevant population
L1	Peterson, E., Shapiro, H., Li, Y., Minnery, J. G., Copes,	Irrelevant population

R. (2016). Arsenic from community water

Le vel	Bibliography	Reason for exclusion
	fluoridation: quantifying the effect J Water Health, 14(2), 236-42	
L1	Pigna, M.,Dynes, J. J.,Violante, A.,Sommella, A.,Caporale, A. G. (2016). Sorption of arsenite on Cu-Al, Mg-Al, Mg-Fe, and Zn-Al layered double hydroxides in the presence of inorganic anions commonly found in aquatic environments Environmental Engineering Science, 33(2), 98-104	Irrelevant population
L1	Pollo, F. E.,Grenat, P. R.,Otero, M. A.,Salas, N. E.,Martino, A. L. (2016). Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine Ecotoxicol Environ Saf, 133(#issue#), 466-74	Irrelevant population
L1	Pollo, F. E., Grenat, P. R., Salinas, Z. A., Otero, M. A., Salas, N. E., Martino, A. L. (2017). Evaluation in situ of genotoxicity and stress in South American common toad Rhinella arenarum in environments related to fluorite mine Environmental science and pollution research international, 24(22), 18179-18187	Irrelevant population
L1	Prabhakar, Singh,Das, T. K. (2019). Ultrastructural localization of 4-hydroxynonenal adducts in fluoride-exposed cells: protective role of dietary antioxidants Fluoride, 52(1), 49-58	Irrelevant population
L1	Prabhu, S. M.,Pawar, R. R.,Sasaki, K.,Park, ChangMin (2019). A mechanistic investigation of	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	highly stable nano ZrO2 decorated nitrogen-rich azacytosine tethered graphene oxide-based dendrimer for the removal of arsenite from water Chemical Engineering Journal, 370(#issue#), 1474- 1484	
L1	Pradhan, R. M.,Biswal, T. K. (2018). Fluoride in groundwater: a case study in Precambrian terranes of Ambaji region, North Gujarat, India Proceedings of the International Association of Hydrological Sciences, 379(#issue#), 351-356	Irrelevant population
L1	Prasad, Neha, Pushpaangaeli, Bernadette, Anumala, Ram, Maimanuku, Leenu (2018). Fluoride concentration in drinking water samples in Fiji Australian and New Zealand Journal of Public Health, 42(4), 372-374	Irrelevant population
L1	 Puntoriero, M. L., Cirelli, A. F., Volpedo, A. V. (2018). Histopathological changes in liver and gills of Odontesthes bonariensis inhabiting a lake with high concentrations of arsenic and fluoride (Chasicó Lake, Buenos Aires Province) Revista Internacional de Contaminación Ambiental, 34(1), 69-77 	Irrelevant population
L1	Qi, HongJuan,Hu, XiaoFeng,Wang, LiLi,Zhang, Can,An, DaiZhi,Zhang, ChuanFu,Wang, Qiang,Jin, LianQun,Liu, XueLin (2018). Comparison of physicochemical profiles of drinking water sampled from 3 border defense regions in China Journal of Third Military Medical University, 40(20), 1815-1819	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Qin, J. H.,Dilinuer, A.,Saimire, S.,Kalibinuer, A.,Yusufu, M.,Yirizhati, A.,Cui, S. S.,Nuersimanguli, M.,Chen, W. J.,Bai, S. B. (2017). [Excessive fluoride increases the expression of osteocalcin in the mouse testis] Zhong Hua Nan Ke Xue, 23(9), 782-785	Irrelevant population
L1	Qing-Feng, S.,Tian-Tong, X.,Ying-Peng, X. (2019). Matrix metalloproteinase-9 and p53 involved in chronic fluorosis induced blood-brain barrier damage and neurocyte changes Archives of Medical Science, 15(2), 457-466	Irrelevant population
L1	 Qu, RuiJuan,Liu, JiaoQin,Li, ChenGuang,Wang, LianSheng,Wang, ZunYao,Wu, JiChun (2016). Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids Water Research (Oxford), 104(#issue#), 34-43 	Irrelevant population
L1	 Qu, W.,Zheng, W.,Spencer, P.,Zheng, J.,Yang, L.,Han, F.,Yan, L.,Ma, W.,Zhou, Y.,Zheng, Y.,Wang, Y. (2017). Public health concerns arising from interventions designed to circumvent polluted surface drinking water in Shenqiu County, Henan, China The Lancet, 390 (SPEC.ISS 1)(#issue#), 87 	Irrelevant population
L1	Quadria, J ,Sarwara, S ,Shariffa, A (2019). Fluoride Induces Alteration in Gut Chemistry XXXIVth Conference of the International Society For Fluoride Research, 52(1), 94	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Rajkamal, Mohan, Bora, A. J., Dutta, R. K. (2018). Fluoride removal from water by lime-sludge waste Desalination and Water Treatment, 112(#issue#), 19-33	Irrelevant population
L1	 Raju, S., Sivanesan, S. K., Gudemalla, K. (2019). Cognitive enhancement effect of ginkgo biloba extract on memory and learning impairments induced by fluoride neurotoxicity International Journal of Research in Pharmaceutical Sciences, 10(1), 129-134 	Irrelevant population
L1	Raju, S., Sivanesan, S., Gudemalla, K., Mundugaru, R., Swaminathan, M. (2019). Effect of ginkgo biloba extract on hematological and biochemical alterations in fluoride intoxicated wistar rats Research Journal of Pharmacy and Technology, 12(8), 3839-3846	Irrelevant population
L1	Ramesh, M. V.,Naveenkumar, P. G.,Prashant, G. M.,Sakeenabi, B.,Allamaprabhu,,Vijetha, K. (2016). Evaluation of effect of brushite-calcite and two indigenous herbs in removal of fluoride from water Journal of Clinical and Diagnostic Research, 10(6), ZC83-ZC85	Irrelevant population
L1	Rameshrad, M.,Razavi, B. M.,Hosseinzadeh, H. (2017). Protective effects of green tea and its main constituents against natural and chemical toxins: A comprehensive review Food and Chemical Toxicology, 100(#issue#), 115-137	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Rango, T., Vengosh, A., Jeuland, M., Whitford, G. M., Tekle-Haimanot, R. (2017). Biomarkers of chronic fluoride exposure in groundwater in a highly exposed population Science of the Total Environment, #volume#(#issue#), 1-11	Irrelevant population
L1	Ray, S. P. Sinha (2019). Ground Water Development - Issues and Sustainable Solutions #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Rebhun, R. B.,Kass, P. H.,Kent, M. S.,Watson, K. D.,Withers, S. S.,Culp, W. T. N.,King, A. M. (2017). Evaluation of optimal water fluoridation on the incidence and skeletal distribution of naturally arising osteosarcoma in pet dogs Veterinary and Comparative Oncology, 15(2), 441-449	Irrelevant population
L1	Renu, Singh, Srivastava, A. K., Gangwar, N. K. (2017). Clinico-pathological studies on the co- exposure of cypermethrin and fluoride in experimental rats with ameliorative action of vitamin E Veterinary Practitioner, 18(2), 207-210	Irrelevant population
L1	Rezaeinia, S.,Nasseri, S.,Binesh, M.,Dezfuli, F. G.,Abdolkhani, S.,Gholami, M.,Jaafarzadeh, N. (2018). Qualitative and health-related evaluation of point-of-use water treatment equipment performance in three cities of Iran Journal of Environmental Health Science & amp; Engineering, 16(2), 265-275	Irrelevant population
L1	Richardson, B. A.,Boyd, A. A.,Tobiasson, T.,Germino, M. J. (2018). Spectrophotometry of	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Artemisia tridentata to quantitatively determine subspecies Rangeland Ecology & amp; Management, 71(1), 87-90	
L1	Roger Lee, Mendoza (2011). Fluoride-treated water and the problem of merit goods Water Policy, 13(1), 38-52	Irrelevant population
L1	Roy, Swapnila (2016). Remediation of Fluoride in Waste Water #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Rubina, Sahin,Kavita, Tapadia,Ashima, Sharma (2016). Kinetic and isotherm studies on adsorption of fluoride by limonite with batch technique Journal of Environmental Biology, 37(5), 919-926	Irrelevant population
L1	Rubio, C.,Rodriguez, I.,Jaudenes, J. R.,Gutierrez, A. J.,Paz, S.,Burgos, A.,Hardisson, A.,Revert, C. (2020). Fluoride levels in supply water from a volcanic area in the Macaronesia region Environmental science and pollution research international., 22(#issue#), #Pages#	Irrelevant population
L1	Sabarathinam, Chidambaram,Alagappan, Ramanathan (2016). Fluoride removal in community water supply using natural materials #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sadhasivam, T.,Lim, MinHwa,Jung, DoSung,Lim, HanKwon,Ryi, ShinKun,Jung, HoYoung (2019). A novel structured nanosized CaO on nanosilica surface as an alternative solid reducing agent for	Irrelevant population
888		

Le vel	Bibliography	Reason for exclusion
	hydrogen fluoride removal from industrial waste water Journal of Environmental Management, 231(#issue#), 1076-1081	
L1	Saha, Dipankar,Marwaha, Sanjay,Mukherjee, Arunangshu (2018). Clean and Sustainable Groundwater in India #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sakizadeh, M.,Ahmadpour, E.,Sharafabadi, F. M. (2019). Spatial analysis of chromium in southwestern part of Iran: probabilistic health risk and multivariate global sensitivity analysis Environ Geochem Health, 41(5), 2023-2038	Irrelevant population
L1	Salifu, Abdulai (2017). Fluoride Removal from Groundwater by Adsorption Technology : the occurrence, adsorbent synthesis, regeneration and disposal #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sanchez-Gutierrez, M.,Martinez-Loredo, E.,Madrigal- Santillan, E. O.,Betanzos-Cabrera, G.,Hernandez- Zavala, A.,Mojica-Villegas, M. A.,Izquierdo-Vega, J. A. (2019). Exposure of fluoride with streptozotocin- induced diabetes aggravates testicular damage and spermatozoa parameters in mice Journal of Toxicology, 2019 (no pagination)(5269380), #Pages#	Irrelevant population
L1	Sankannavar, R.,Chaudhari, S. (2019). An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	hydroxyapatite dissolution in defluoridation Journal of Environmental Management, 245(#issue#), 230-237	
L1	Santos, M. S. F., Franquet-Griell, H., Alves, A., Lacorte, S. (2018). Development of an analytical methodology for the analysis of priority cytostatics in water Science of the Total Environment, 645(#issue#), 1264-1272	Irrelevant population
L1	Sarinana-Ruiz, Y. A.,Vazquez-Arenas, J.,Sosa- Rodriguez, F. S.,Labastida, I.,Armienta, M. A.,Aragon-Pina, A.,Escobedo-Bretado, M. A.,Gonzalez-Valdez, L. S.,Ponce-Pena, P.,Ramirez- Aldaba, H.,Lara, R. H. (2017). Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico Chemosphere, 178(#issue#), 391-401	Irrelevant population
L1	Sarwar, S,Quadri, J ,Singh, S,Das, P ,Nag, T,Roy, T,Shariff, A (2019). Fluoride-Induced Glial Cell Changes in the Myenteric Plexus of Neonatal Rats XXXIVth Conference of the International Society For Fluoride Research, 52(1), 87-88	Irrelevant population
L1	Saumya, S. M.,Basha, P. M. (2017). Fluoride exposure aggravates the testicular damage and sperm quality in diabetic mice: protective role of ginseng and banaba Biological Trace Element Research, 177(2), 331-344	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Schur, Emilie Louise, Wilder, Margaret L., Bauer, Carl J., Liverman, Diana (2017). Household Water Security within a Transboundary Aquifer Basin: A Comparative Study in the US-Mexico Borderlands #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Shah, N. S.,Rizwan, A. D.,Khan, J. A.,Murtaza, Sayed,Zia-ul-Haq, Khan,Behzad, Murtaza,Iqbal, J.,Salah ud, Din,Muhammad, Imran,Muhammad, Nadeem,Al-Muhtaseb, A. H.,Nawshad, Muhammad,Khan, H. M.,Moinuddin, Ghauri,Gohar, Zaman (2018). Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H2O2 based advanced oxidation processes Process Safety and Environmental Protection, 117(#issue#), 473-482	Irrelevant population
L1	Shahab, S.,Mustafa, G.,Khan, I.,Zahid, M.,Yasinzai, M.,Ameer, N.,Asghar, N.,Ullah, I.,Nadhman, A.,Ahmed, A.,Munir, I.,Mujahid, A.,Hussain, T.,Ahmad, M. N.,Ahmad, S. S. (2017). Effects of fluoride ion toxicity on animals, plants, and soil health: A review Fluoride, 50(4), 393-408	Irrelevant population
L1	Sharma, A., John, P. J., Bhatnagar, P. (2019). Combination of fluoride and endosulfan induced teratogenicity and developmental toxicity in Swiss albino mice exposed during organogenesis Toxicology and Industrial Health, 35(9), 604-613	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Sharma, C.,Suhalka, P.,Bhatnagar, M. (2018). Curcumin and resveratrol rescue cortical- hippocampal system from chronic fluoride-induced neurodegeneration and enhance memory retrieval International Journal of Neuroscience, 128(11), 1007-1021	Irrelevant population
L1	Sharma, S.,Upadhyay, D.,Singh, B.,Shrivastava, D.,Kulshreshtha, N. M. (2019). Defluoridation of water using autochthonous bacterial isolates Environmental Monitoring & Assessment, 191(12), 781	Irrelevant population
L1	Shashi, A.,Khan, I. (2017). Efficacy of Boerhaavia diffusa L. on disruption of gonadotropins and testosterone in fluoride intoxicated male rats Asian Journal of Pharmaceutical and Clinical Research, 10(12), 68-73	Irrelevant population
L1	Shashikant, Kahu,Anita, Shekhawat,Saravanan, D.,Ravin, Jugade (2017). Stannic chloride impregnated chitosan for defluoridation of water International Journal of Biological Macromolecules, 104(Part B), 1528-1538	Irrelevant population
L1	Shin, W.,Oh, J.,Choung, S.,Cho, B. W.,Lee, K. S.,Yun, U.,Woo, N. C.,Kim, H. K. (2016). Distribution and potential health risk of groundwater uranium in Korea Chemosphere, 163(#issue#), 108-115	Irrelevant population
L1	Shraboni, Mukherjee,Gopinath, Halder (2018). A review on the sorptive elimination of fluoride from	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	contaminated wastewater Journal of Environmental Chemical Engineering, 6(1), 1257-1270	
L1	Shreeya, Kalidindi,Mounica, Vecha,Arkamitra, Kar,Trishikhi, Raychoudhury (2017). Aluminum- cerium double-metal impregnated activated carbon: a novel composite for fluoride removal from aqueous solution Water Science and Technology: Water Supply, 17(1), 115-124	Irrelevant population
L1	Shukla, V,Kumar, N (2020). Environmental Concerns and Sustainable Development: Volume 1: Air, Water and Energy Resources #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sikdar, P K (2019). Groundwater Development and Management : Issues and Challenges in South Asia #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	 Simon, M. J. K.,Beil, F. T.,Riedel, C.,Lau, G.,Tomsia, A.,Zimmermann, E. A.,Koehne, T.,Ueblacker, P.,Ruther, W.,Pogoda, P.,Ignatius, A.,Amling, M.,Oheim, R. (2016). Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure Clin Oral Investig, 20(9), 2361-2370 	Irrelevant population
L1	Singh, A. K., Das, S., Singh, S., Pradhan, N., Gajamer, V. R., Kumar, S., Lepcha, Y. D., Tiwari, H. K. (2019). Physicochemical parameters and alarming coliform count of the potable water of Eastern Himalayan state Sikkim: An indication of severe fecal	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	contamination and immediate health risk Frontiers in Cell and Developmental Biology, 7 (AUG) (no pagination)(174), #Pages#	
L1	Singh, A.,Saha, D,Tyagi, A. C (2019). Water Governance: Challenges and Prospects #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Singh, B,Singh, K (2019). Integrated Fluorosis Mitigation Programme for Abatement of Fluorosis in Selected Fluorosis Endemic Villages of Nawada District, Bihar XXXIVth Conference of the International Society For Fluoride Research, 52(1), 82	Irrelevant population
L1	Singh, N. B.,Nagpal, G.,Agrawal, S.,Rachna, (2018). Water purification by using adsorbents: a review Environmental Technology & amp; Innovation, 11(#issue#), 187-240	Irrelevant population
L1	Singh, P,Singh, R. P,Srivastava, V (2020). Contemporary Environmental Issues and Challenges in Era of Climate Change #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Singh, P.,Das, T. K. (2019). Ultrastructural localization of 4-hydroxynonenal adducts in fluoride- exposed cells: Protective role of dietary antioxidants Fluoride, 52(1), 49-58	Irrelevant population
L1	Singh, R.,Hussain, M. A.,Kumar, J.,Kumar, M.,Kumari, U.,Mazumder, S. (2017). Chronic fluoride exposure exacerbates headkidney pathology	Irrelevant population
894		

Le vel	Bibliography	Reason for exclusion
	and causes immune commotion in Clarias gariepinus Aquat Toxicol, 192(#issue#), 30-39	
L1	Singh, R.,Khatri, P.,Srivastava, N.,Jain, S.,Brahmachari, V.,Mukhopadhyay, A.,Mazumder, S. (2017). Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections Fish Shellfish Immunol, 63(#issue#), 314- 321	Irrelevant population
L1	Singh, R., Srivastava, A. K., Gangwar, N. K. (2017). Clinico-pathological studies on the co-exposure of cypermethrin and fluoride in experimental rats with ameliorative action of Vitamin E Veterinary Practitioner, 18(2), 207-210	Irrelevant population
L1	Singh, S. T., Dua, K., Gupta, D. K., Randhawa, S. S., Bansal, B. K. (2017). Bovine fluorosis and its effects on essential minerals, haemogram and biochemical status in the fluoride endemic South-West Punjab of India Indian Journal of Animal Sciences, 87(6), 718-722	Irrelevant population
L1	Singh, V. P,Yadav, S,Yadava, N. R (2018). Water Resource Management: Select Proceedings of ICWEES-2016 #journal#, #volume#(78), #Pages#	Irrelevant population
L1	Singh, Vijay P.,Yadav, Shalini,Yadava, Ram Narayan (2018). Water Quality Management : Select Proceedings of ICWEES-2016 #journal#, #volume#(#issue#), #Pages#	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Sivasankar, Venkataraman (2016). Surface Modified Carbons as Scavengers for Fluoride from Water #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Sm, S.,Mahaboob Basha, P. (2017). Fluoride Exposure Aggravates the Testicular Damage and Sperm Quality in Diabetic Mice: Protective Role of Ginseng and Banaba Biological Trace Element Research, 177(2), 331-344	Irrelevant population
L1	Snyder, Wesley M.,Oregon State, University (2016). Public Proof : Science Communication, Weak Theory, and the Nonrational #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Spellman, Frank R. (2017). The Drinking Water Handbook, Third Edition #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Spencer, K. F., Limeback, H. (2018). Blood is thicker than water: Flaws in a National Toxicology Program study Medical Hypotheses, 121(#issue#), 160-163	Irrelevant population
L1	Sriroop, Chaudhuri, Mimi, Roy (2017). Rural-urban spatial inequality in water and sanitation facilities in India: a cross-sectional study from household to national level Applied Geography, 85(#issue#), 27- 38	Irrelevant population
L1	Stalter, D.,O'Malley, E.,Gunten, U. von,Escher, B. I. (2016). Point-of-use water filters can effectively remove disinfection by-products and toxicity from chlorinated and chloraminated tap water	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Environmental Science: Water Research & amp; Technology, 2(5), 875-883	
L1	Sudhakar, K.,Reddy, K. P. (2018). Protective effects of Abelmoschus moschatus seed extract on neurotransmitter system of developing brain of Wistar rats with gestational and post-natal exposure of sodium fluoride International Journal of Green Pharmacy, 12(1 Supplement), S131-S139	Irrelevant population
L1	Sun, G,Li, Y,Wang, D,Dong, L,Li, X,Li, B,Zheng, Q,Dong, L (2019). Simultaneous Removal Fluoride and Arsenic From Drinking Water Using a New Nano-Micro Ceramic Materials XXXIVth Conference of the International Society For Fluoride Research, 52(1), 96-97	Irrelevant population
L1	Sun, Z.,Zhang, Y.,Xue, X.,Niu, R.,Wang, J. (2018). Maternal fluoride exposure during gestation and lactation decreased learning and memory ability, and glutamate receptor mRNA expressions of mouse pups Human & amp; Experimental Toxicology, 37(1), 87-93	Irrelevant population
L1	Sun, ZiLong,Li, SuJuan,Guo, ZhenZhen,Li, Rui,Wang, JiXiang,Niu, RuiYan,Wang, JunDong (2018). Effects of fluoride on SOD and CAT in testis and epididymis of mice Biological Trace Element Research, 184(1), 148-153	Irrelevant population
L1	Susanta, Ray,Roy, P. K.,Arunabha, Majumder (2016). Quality of packaged drinking water in	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Kolkata city, India and risk to public health Desalination and Water Treatment, 57(59), 28734- 28742	
L1	Suzuki, M.,Everett, E. T.,Whitford, G. M.,Bartlett, J. D. (2017). 4-phenylbutyrate Mitigates Fluoride- Induced Cytotoxicity in ALC Cells Front Physiol, 8(#issue#), 302	Irrelevant population
L1	Szyperska, A.,Gutowska, I.,Machoy-Mokrzynska, A.,Rak, J.,Baranowska-Bosiacka, I.,Machoy, Z. (2017). A study of an hypothesis linking aluminum fluoride to alzheimer disease: The affinity of amino acids occurring in Beta-amyloid to [Al(H <inf>2</inf> O) <inf>6</inf>] ³⁺ Fluoride, 50(4), 468-474	Irrelevant population
L1	Tan, Lynn,Lin, Caleb Zhiliang,Ma, Stefan,Romero, Lorena,Warrier, Satish (2018). Bowel preparation for colonoscopy Cochrane Database of Systematic Reviews, #volume#(11), #Pages#	Irrelevant population
L1	 Tan, Y. H.,Goh, P. S.,Ismail, A. F.,Ng, B. C.,Lai, G. S. (2017). Decolourization of aerobically treated palm oil mill effluent (AT-POME) using polyvinylidene fluoride (PVDF) ultrafiltration membrane incorporated with coupled zinc-iron oxide nanoparticles Chemical Engineering Journal, 308(#issue#), 359-369 	Irrelevant population
L1	Tang, Y. S. C., Davis, R. A., Ganguly, T., Sutcliffe, J. L. (2019). Identification, Characterization, and Optimization of Integrin alphavbeta(6)-Targeting	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Peptides from a One-Bead One-Compound (OBOC) Library: Towards the Development of Positron Emission Tomography (PET) Imaging Agents Molecules, 24(2), #Pages#	
L1	 Tanu, Sharma, Arvesh, Sharma, Inderpreet, Kaur, Mahajan, R. K., Litoria, P. K., Sahoo, S. K., Bajwa, B. S. (2019). Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India Chemosphere, 219(#issue#), 607-616 	Irrelevant population
L1	Teng, Y.,Zhang, J.,Zhang, Z.,Feng, J. (2018). The Effect of Chronic Fluorosis on Calcium Ions and CaMKIIalpha, and c-fos Expression in the Rat Hippocampus Biological Trace Element Research, 182(2), 295-302	Irrelevant population
L1	Thammitiyagodage, M. G.,Gunatillaka, M. M.,Ekanayaka, N.,Rathnayake, C.,Horadagoda, N. U.,Jayathissa, R.,Gunaratne, U. K.,Kumara, W. G.,Abeynayake, P. (2017). Ingestion of dug well water from an area with high prevalence of chronic kidney disease of unknown etiology (CKDu) and development of kidney and liver lesions in rats Ceylon Medical Journal, 62(1), 20-24	Irrelevant population
L1	Thangarajan, M.,Singh, V. P. (2016). Groundwater assessment, modeling, and management #journal#, #volume#(#issue#), #Pages#	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Thomas, S.,Ravishankaran, S.,Johnson Amala Justin, N. A.,Asokan, A.,Maria Jusler Kalsingh, T.,Mathai, M. T.,Valecha, N.,Eapen, A. (2016). Does fluoride influence oviposition of Anopheles stephensi in stored water habitats in an urban setting? Malaria journal, 15(1), 1-9	Irrelevant population
L1	Thompson, S.,Fleming, I. N.,O'Hagan, D. (2016). Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase Org Biomol Chem, 14(11), 3120-9	Irrelevant population
L1	Tian, X,Dong, N,Feng, J,Yan, X (2019). RNA Deep Sequencing Analysis of the Rat Heart Exposed to Fluoride XXXIVth Conference of the International Society For Fluoride Research, 52(1), 89	Irrelevant population
L1	 Tian, X.,Xie, J.,Chen, X.,Dong, N.,Feng, J.,Gao, Y.,Tian, F.,Zhang, W.,Qiu, Y.,Niu, R.,Ren, X.,Yan, X. (2019). Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring Archives of Toxicology., #volume#(#issue#), #Pages# 	Irrelevant population
L1	Tian, XiaoLin,Feng, Jing,Dong, NiSha,Lyu, Yi,Wei, CaiLing,Li, Ben,Ma, YanQin,Xie, JiaXin,Qiu, YuLan,Song, GuoHua,Ren, XueFeng,Yan, XiaoYan (2019). Subchronic exposure to arsenite and fluoride from gestation to puberty induces oxidative stress and disrupts ultrastructure in the kidneys of rat	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	offspring Science of the Total Environment, 686(#issue#), 1229-1237	
L1	Tian, Y.,Xiao, Y.,Wang, B.,Sun, C.,Tang, K.,Sun, F. (2018). Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways Bioscience Reports, 38 (4) (no pagination)(BSR20171003), #Pages#	Irrelevant population
L1	Torres, L.,August, A. (2018). Does perfluorooctane sulfonic acid (PFOS) affect the mouse immune system? FASEB Journal. Conference: Experimental Biology, 32(1 Supplement 1), #Pages#	Irrelevant population
L1	 Tran, H. N.,Nguyen, H. C.,Woo, S. H.,Nguyen, T. V.,Vigneswaran, S.,Hosseini-Bandegharaei, A.,Rinklebe, J.,Kumar Sarmah, A.,Ivanets, A.,Dotto, G. L.,Bui, T. T.,Juang, R. S.,Chao, H. P. (2019). Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review Critical Reviews in Environmental Science and Technology, 49(23), 2155-2219 	Irrelevant population
L1	Trishikhi, Raychoudhury,Boindala, S. P.,Shreeya, Kalidindi (2017). Performance evaluation of metal impregnated activated carbon composite for removal of fluoride under varying solution chemistry Water Science and Technology: Water Supply, 17(5), 1377-1385	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Tsunoda, M,Kido, T,Sugaya, C ,Yanagisawa, H (2019). Fluoride Deteriorates Tubulointestinal Nephropathy of Rats caused by Unilateral Obstruction as an Experimental Model XXXIVth Conference of the International Society For Fluoride Research, 52(1), 83	Irrelevant population
L1	Uddin, M. K., Ahmed, S. S., Naushad, M. (2019). A mini update on fluoride adsorption from aqueous medium using clay materials Desalination and Water Treatment, 145(#issue#), 232-248	Irrelevant population
L1	Udhayakumari, D. (2019). Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015-2019 Spectrochimica acta, Part A, Molecular and biomolecular spectroscopy.(#issue#), 117817	Irrelevant population
L1	Validandi, V.,Gourineni, S. R.,Dheeravath, S.,Nagalla, B.,Khandarea, A. L. (2017). Tamarind supplementation ameliorates fluoride-induced glucose intolerance and insulin resistance in rats Fluoride, 50(3), 314-323	Irrelevant population
L1	Vesga, F. J., Moreno, Y., Ferrús, M. A., Campos, C., Trespalacios, A. A. (2018). Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques International Journal of Hygiene and Environmental Health, 221(4), 595-601	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Vivar, M., Pichel, N., Fuentes, M., Martinez, F. (2016). An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict Sci Total Environ, 550(#issue#), 534-546	Irrelevant population
L1	Volenzo, T. E.,Odiyo, J. (2018). Ecological public health and participatory planning and assessment dilemmas: The case of water resources management International Journal of Environmental Research and Public Health, 15 (8) (no pagination)(1635), #Pages#	Irrelevant population
L1	Wallace, Anna Rose, Southern Methodist, University (2016). A study of the release and sorption of phosphate and fluoride in green infrastructure for stormwater management #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Wang, C.,Chen, Y.,Manthari, R. K.,Wang, J. (2018). Abnormal spermatogenesis following sodium fluoride exposure is associated with the downregulation of CREM and ACT in the mouse testis Toxicology and Industrial Health, 34(4), 219-227	Irrelevant population
L1	Wang, F.,Hou, T. Z.,Li, J. J.,Li, Z. Z.,Tang, C. F. (2016). Effect of magnesium and selenium on the expression of matrix metalloproteinases-20 and kallikrein 4 in fluorosis mice. [Chinese] Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	zazhi = Chinese journal of stomatology, 51(9), 546- 551	
L1	Wang, H. W.,Zhao, W. P.,Tan, P. P.,Liu, J.,Zhao, J.,Zhou, B. H. (2017). The MMP-9/TIMP-1 System is Involved in Fluoride-Induced Reproductive Dysfunctions in Female Mice Biological Trace Element Research, 178(2), 253-260	Irrelevant population
L1	Wang, HongWei,Liu, Jing,Zhao, WenPeng,Zhang, ZiHao,Li, SiQi,Li, SiHan,Zhu, ShiQuan,Zhou, BianHua (2019). Effect of fluoride on small intestine morphology and serum cytokine contents in rats Biological Trace Element Research, 189(2), 511- 518	Irrelevant population
L1	Wang, J (2019). Fluoride-Induced Reproductive Toxicity XXXIVth Conference of the International Society For Fluoride Research, 52(1), 81	Irrelevant population
L1	 Wang, M.,Svatunek, D.,Rohlfing, K.,Liu, Y.,Wang, H.,Giglio, B.,Yuan, H.,Wu, Z.,Li, Z.,Fox, J. (2016). Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation Theranostics, 6(6), 887-95 	Irrelevant population
L1	Wang, Mei,Li, Xiang,He, WenYan,Li, JinXin,Zhu, YanYuan,Liao, YuLiang,Yang, JinYan,Yang Xiao, E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	phosphate industrial area, southwest China Environmental Pollution, 249(#issue#), 423-433	
L1	Wang, Y.,McKee, M.,Torbica, A.,Stuckler, D. (2019). Systematic Literature Review on the Spread of Health-related Misinformation on Social Media Soc Sci Med, 240(#issue#), 112552	Irrelevant population
L1	Wang, Y.,Yu, R.,Zhu, G. (2019). Evaluation of physicochemical characteristics in drinking water sources emphasized on fluoride: A case study of Yancheng, China International Journal of Environmental Research and Public Health, 16(6), 1030	Irrelevant population
L1	Wasana, H. M., Perera, G. D., Gunawardena, P. S., Fernando, P. S., Bandara, J. (2017). WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues Scientific Reports, 7(#issue#), 42516	Irrelevant population
L1	Washington,,Office of Drinking, Water,Washington,,Department of, Health (2018). Monthly operations report guidance #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Waugh, D. T. (2019). Fluoride exposure induces inhibition of sodium/iodide symporter (NIS) contributing to impaired iodine absorption and iodine deficiency: molecular mechanisms of inhibition and implications for public health International Journal of	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	Environmental Research and Public Health, 16(6), 1086	
L1	 Wei, N.,Dong, Y. T.,Deng, J.,Wang, Y.,Qi, X. L.,Yu, W. F.,Xiao, Y.,Zhou, J. J.,Guan, Z. Z. (2018). Changed expressions of N-methyl-D-aspartate receptors in the brains of rats and primary neurons exposed to high level of fluoride Journal of Trace Elements in Medicine and Biology, 45(#issue#), 31-40 	Irrelevant population
L1	Wei, R.,Luo, G.,Sun, Z.,Wang, S.,Wang, J. (2016). Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice Chemosphere, 153(#issue#), 419-25	Irrelevant population
L1	Wei, Y.,Zeng, B.,Zhang, H.,Chen, C.,Wang, N.,Wu, Y.,Shen, L. (2016). ITRAQ-based proteomics analysis of serum proteins in wistar rats treated with sodium fluoride: Insight into the potential mechanism and candidate biomarkers of fluorosis International Journal of Molecular Sciences, 17 (10) (no pagination)(1644), #Pages#	Irrelevant population
L1	Wen, Yan,Wan, YiZhen,Qiao, ChunXia,Xu, XiaoFeng,Wang, Jun,Shen, Yi (2019). Immunoregenerative effects of the bionically cultured Sanghuang mushrooms (Inonotus sanghuagn) on the immunodeficient mice Journal of Ethnopharmacology, 245(#issue#), 112047	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Whyman, R. A., Mahoney, E. K., Borsting, T. (2016). Community water fluoridation: attitudes and opinions from the New Zealand Oral Health Survey Aust N Z J Public Health, 40(2), 186-92	Irrelevant population
L1	 Wierichs, R. J., Rupp, K., Meyer-Lueckel, H., Apel, C., Esteves-Oliveira, M. (2019). Effects of Dentifrices Differing in Fluoride Content on Remineralization Characteristics of Dentin in vitro Caries research, #volume#(#issue#), 1-12 	Irrelevant population
L1	Wong, E. Y., Stenstrom, M. K. (2018). Onsite defluoridation system for drinking water treatment using calcium carbonate Journal of Environmental Management, 216(#issue#), 270-274	Irrelevant population
L1	 Wong, Y. M., Li, R., Lee, C. K. F., Wan, H. T., Wong, C. K. C. (2017). The measurement of bisphenol A and its analogues, perfluorinated compounds in twenty species of freshwater and marine fishes, a time-trend comparison and human health based assessment Mar Pollut Bull, 124(2), 743-752 	Irrelevant population
L1	World Health Organization, (2017). Inheriting a sustainable world? Atlas on children's health and the environment. Licence: CC BY-NC-SA 3.0 IGO. #journal#, #volume#(#issue#), xvii + 139 pp.	Irrelevant population
L1	Wu, K.,Zhang, N.,Liu, T.,Ma, C.,Jin, P.,Zhang, F.,Zhang, J.,Wang, X. (2017). Competitive adsorption behaviors of arsenite and fluoride onto manganese-aluminum binary adsorbents Colloids	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	and Surfaces A: Physicochemical and Engineering Aspects, 529(#issue#), 185-194	
L1	 Wu, P.,Sun, Z.,Lv, X.,Pei, X.,Manthari, R. K.,Wang, J. (2019). Fluoride induces autoimmune orchitis involved with enhanced IL-17A secretion in mice testis Journal of Agricultural and Food Chemistry, 67(48), 13333-13343 	Irrelevant population
L1	 Wu, T.,Li, X.,Yang, T.,Sun, X.,Mielke, H. W.,Cai, Y.,Ai, Y.,Zhao, Y.,Liu, D.,Zhang, X.,Li, X.,Wang, L.,Yu, H. (2017). Multi-Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment Int J Environ Res Public Health, 14(10), #Pages# 	Irrelevant population
L1	Xie, DongHua,Gu, Yue,Wang, HaoJie,Wang, YongChuang,Qin, WenXiu,Wang, GuoZhong,Zhang, HaiMin,Zhang, YunXia (2019). Enhanced fluoride removal by hierarchically porous carbon foam monolith with high loading of UiO-66 Journal of Colloid and Interface Science, 542(#issue#), 269- 280	Irrelevant population
L1	Xie, Y. L.,Zhang, B.,Jing, L. (2018). MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia- reperfusion injury by targeting p53 Neurol Res, 40(10), 828-837	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Xu, XiaoTing,Li, YaHe,Wang, Dong,Xu, NianJun (2016). Effects of simulated acid rain on the photosynthetic physiological characteristics in Ulva fasciata under salt stress Journal of Fisheries of China, 40(5), 731-739	Irrelevant population
L1	Xu, Y.,Wang, S.,Jiang, L.,Wang, H.,Yang, Y.,Li, M.,Wang, X.,Zhao, X.,Xie, K. (2016). Identify melatonin as a novel therapeutic reagent in the treatment of 1-bromopropane(1-BP) intoxication Medicine (United States), 95 (3) (no pagination)(e2203), #Pages#	Irrelevant population
L1	Yadav, K. K.,Neha, Gupta,Vinit, Kumar,Khan, S. A.,Amit, Kumar (2018). A review of emerging adsorbents and current demand for defluoridation of water: bright future in water sustainability Environment International, 111(#issue#), 80-108	Irrelevant population
L1	Yadu, B., Chandrakar, V., Meena, R. K., Keshavkant, S. (2017). Glycinebetaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L South African Journal of Botany, 111(#issue#), 68-75	Irrelevant population
L1	Yan, N.,Liu, Y.,Liu, S.,Cao, S.,Wang, F.,Wang, Z.,Xi, S. (2016). Fluoride-Induced Neuron Apoptosis and Expressions of Inflammatory Factors by Activating Microglia in Rat Brain Mol Neurobiol, 53(7), 4449-60	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Yang, M.,Ren, Z.,Zhou, B.,Guan, Z.,Yu, W. (2017). Expression of endonuclease G in the brain tissue of rats with chronic fluorosis. [Chinese] Chinese Journal of Endemiology, 36(5), 327-332	Irrelevant population
L1	Yao, Y.,Ma, Y.,Zhong, N.,Pei, J. (2019). The Inverted U-Curve Association of Fluoride and Osteoclast Formation in Mice Biological Trace Element Research, 191(2), 419-425	Irrelevant population
L1	You, H.,Fu, S.,Qin, X.,Yu, Y.,Yang, B.,Zhang, G.,Sun, X.,Feng, Y.,Chen, Y.,Wu, J. (2016). A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma Colloids Surf B Biointerfaces, 140(#issue#), 150-160	Irrelevant population
L1	Yu, Fang,Zhou, YanMei,Cao, KunXia,Gao, WenLi,Gao, Bin,Sun, Li,Liu, ShengJian,Wang, Lin,Ding, YanTing (2018). Phytotoxicity of ionic liquids with different structures on wheat seedlings and evaluation of their toxicity attenuation at the presence of modified biochar by adsorption effect Chemosphere, 196(#issue#), 331-338	Irrelevant population
L1	Yu, Q,Shao, D,OuYang, W ,Zhang, Z (2019). Effect of Drinking Water Fluorosis on L-Type Calcium Channel of Hippocampal Neurons in Mice XXXIVth Conference of the International Society For Fluoride Research, 52(1), 88-89	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Yu, Q.,Shao, D.,Zhang, R.,Ouyang, W.,Zhang, Z. (2019). Effects of drinking water fluorosis on L-type calcium channel of hippocampal neurons in mice Chemosphere, 220(#issue#), 169-175	Irrelevant population
L1	 Yu, Y., Wang, X., Ge, C., Wang, B., Cheng, C., Gan, Y. H. (2017). Effects of rinsing with arginine bicarbonate and urea solutions on initial enamel lesions in situ Oral diseases, 23(3), 353-359 	Irrelevant population
L1	Yu, Z.,Xu, C.,Yuan, K.,Gan, X.,Feng, C.,Wang, X.,Zhu, L.,Zhang, G.,Xu, D. (2018). Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal J Hazard Mater, 346(#issue#), 82-92	Irrelevant population
L1	Zeng, XiaoXiao,Deng, Jie,Xiang, Jie,Dong, YangTing,Cao, Kun,Liu, XianHong,Chen, Dan,Ran, LongYan,Yang, Ye,Guan, ZhiZhong (2019). Resveratrol attenuated the increased level of oxidative stress in the brains and the deficit of learning and memory of rats with chronic fluorosis Fluoride, 52(2), 149-160	Irrelevant population
L1	Zhang, C.,Huo, S.,Fan, Y.,Gao, Y.,Yang, Y.,Sun, D. (2020). Autophagy May Be Involved in Fluoride- Induced Learning Impairment in Rats Biological Trace Element Research, 193(2), 502-507	Irrelevant population
L1	Zhang, GuangHe,Han, TianLong,Wang, Min,Wan, ShuangXiu,Chen, Yan,Wang, JunDong (2017). Decreased percentage of CD4+CD25+ regulatory T	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	cells and GITR gene expression in the spleen of fluorosed male mice Fluoride, 50(1 Part 1), 29-40	
L1	Zhang, J.,Zhang, Y.,Liang, C.,Wang, N.,Zheng, H.,Wang, J. (2016). Choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and MEK expression in mice Toxicology and Applied Pharmacology, 310(#issue#), 205-214	Irrelevant population
L1	Zhang, J.,Zhu, Y.,Liang, C.,Qie, M.,Niu, R.,Sun, Z.,Wang, J. (2017). Effects of Fluoride on Expression of P450, CREM and ACT Proteins in Rat Testes Biological Trace Element Research, 175(1), 156-160	Irrelevant population
L1	Zhang, JianHai,Li, ZhiHui,Qie, MingLi,Zheng, RuiBo,Jagathpala, Shetty,Wang, JunDong (2016). Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice Food and Chemical Toxicology, 94(#issue#), 103- 111	Irrelevant population
L1	Zhang, LiZhu,Tan, Wei,Wang, Rui,Yang, YongJun,Yang, Min,Wang, HongBin (2018). The characterization of mesoporous silica (Ms) supporting cerium carbonate (Ms-Ce) and its adsorption performance for defluorination in aqueous solutions Desalination and Water Treatment, 135(#issue#), 362-371	Irrelevant population

Le vel	Bibliography	Reason for exclusion
L1	Zhang, Rui,Liao, QiuXia,Ke, LuLu,Ouyang, Wei,Zhang, ZiGui (2017). The molecular mechanisms of the renal injury in fluorosis induced by drinking water with a high fluoride ion content and the effects of selenium intervention Fluoride, 50(1 Part 2), 105-120	Irrelevant population
L1	Zhang, Rui,Liao, QiuXia,Ke, LuLu,Zhang, SiMeng,Ouyang, Wei,Zhang, ZiGui (2017). Effects of calcium on mitochondrial injury of kidney in offspring rats with maternal fluoride exposure Journal of Environmental & amp; Occupational Medicine, 34(2), 154-159	Irrelevant population
L1	Zhang, Shun,Niu, Qiang,Gao, Hui,Ma, RuLin,Lei, RongRong,Zhang, Cheng,Xia, Tao,Li, Pei,Xu, ChunYan,Wang, Chao,Chen, JingWen,Dong, LiXing,Zhao, Qian,Wang, AiGuo (2016). Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride Environmental Pollution, 212(#issue#), 97-104	Irrelevant population
L1	Zhang, X.,Gao, X.,Li, C.,Luo, X.,Wang, Y. (2019). Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China Scientific reports, 9(1), 14488	Irrelevant population
L1	Zhang, X.,Miao, J.,Hu, B. X.,Liu, H.,Zhang, H.,Ma, Z. (2017). Hydrogeochemical characterization and groundwater quality assessment in intruded coastal	Irrelevant population

Le vel	Bibliography	Reason for exclusion
	brine aquifers (Laizhou Bay, China) Environmental science and pollution research international, 24(26), 21073-21090	
L1	Zhang, Y.,Xie, L.,Li, X.,Chai, L.,Chen, M.,Kong, X.,Wang, Q.,Liu, J.,Zhi, L.,Yang, C.,Wang, H. (2018). Effects of fluoride on morphology, growth, development, and thyroid hormone of Chinese toad (Bufo gargarizans) embryos Environmental and Molecular Mutagenesis, 59(2), 123-133	Irrelevant population
L1	Zhao, Q.,Niu, Q.,Chen, J.,Xia, T.,Zhou, G.,Li, P.,Dong, L.,Xu, C.,Tian, Z.,Luo, C.,Liu, L.,Zhang, S.,Wang, A. (2019). Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats and children Archives of Toxicology, 93(3), 709-726	Irrelevant population
L1	Zhao, W.,Wang, H.,Tan, P.,Liu, J.,Zhang, C.,Zhou, B. (2018). Fluoride exposure changed the structure and the function of sperm in the testis and epididymis of male rats Fluoride, 51(4), 340-354	Irrelevant population
L1	Zhao, Wen,Alcantar, N.,Durham, D. R.,Ergas, Sarina Joy,Ghebremichael, Kebreab,Thomas, Sylvia,Zhang, Qiong (2017). The control of water contaminants assisted by natural materials #journal#, #volume#(#issue#), #Pages#	Irrelevant population
L1	Zhao, Y.,Zhao, J.,Wang, J. (2017). Fluoride exposure changed the structure and the expressions	Irrelevant population

914

Le vel	Bibliography	Reason for exclusion
	of HSP related genes in testes of pubertal rats Chemosphere, 184(#issue#), 1080-1088	
L1	Zheng, X.,Sun, Y.,Ke, L.,Ouyang, W.,Zhang, Z. (2016). Molecular mechanism of brain impairment caused by drinking-acquired fluorosis and selenium intervention Environmental Toxicology and Pharmacology, 43(#issue#), 134-139	Irrelevant population
L1	Zhong, Nan,Yao, YingJie,Ma, YongZheng,Pei, JunRui (2019). Effects of fluoride on oxidative damage of protein in rat plasma Chinese Journal of Endemiology, 38(9), 692-696	Irrelevant population
L1	Zigui, Z.,Xiaoyu, W.,Weiwei, N.,Qiuxia, L.,Rui, Z.,Wei, O. (2017). Effects of calcium on drinking fluorosis-induced hippocampal synaptic plasticity impairment in the offspring of rats Translational Neuroscience, 8(1), 191-200	Irrelevant population
L1	Zubedah, Khanum,Sadia, Suleman,Aqsa, Mustanser,Muhammad, Waqar-ul-Hassana,Kausar, Raees,Kanwal, M. A.,Afia, Zia,Ahmad, K. R. (2019). Comparative teratological outcomes of fluoride ions and a fluoridated insecticide (bifenthrin) in chick embryos Fluoride, 52(1), 59-65	Irrelevant population
L1	Anonymous (1955). Can we end our toothaches? most experts endorse fluoridation, insist it helps prevent tooth decay and does not endanger health United States News & World Report, #volume#(#issue#), 30-32	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Anonymous (1955). Fluoridation: report, [in accordance with] House resolution no.167, 1953. (Assembly Interim com. repts., 1953-1955, v.9, no.4) (Assembly Interim com. repts., 1953-1955, v.9, no.4), #volume#(#issue#), 24	Irrelevant publication date
L1	Anonymous (1955). Report [by a committee of the City club of Portland, Portland, Ore.] on fluoridation of the public water supply Portland City Club Bulletin, 35(#issue#), 343-358	Irrelevant publication date
L1	Anonymous (1956). American communities reported adopting, then rescinding fluoridation (including two which have reinstated fluoridation) #journal#, #volume#(#issue#), 10+4	Irrelevant publication date
L1	Anonymous (1956). Fluoridation of New York city water supply #journal#, #volume#(#issue#), 9	Irrelevant publication date
L1	Anonymous (1956). Fluoridation of New York city water supply [reports of the Committee on city affairs and the Committee on public health, Chamber of commerce of the state of New York, Feb. 9, 1956] Monthly Bulletin, 47(#issue#), 496-505	Irrelevant publication date
L1	Anonymous (1956). Report to the mayor on fluoridation for New York city #journal#, #volume#(#issue#), 52	Irrelevant publication date
L1	Anonymous (1956). Supplement to Fluoridation of public water supplies: annotated references #journal#, #volume#(#issue#), 8	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Anonymous (1956). Why some stopped fluoridation [summary of a survey by the Bureau of municipal research, Syracuse, N.Y.] American City, #volume#(#issue#), 175-176	Irrelevant publication date
L1	Anonymous (1958). First report (Tech. rept. ser. no. 146), #volume#(#issue#), 25	Irrelevant publication date
L1	Anonymous (1959). What is the present status of fluoridation? Public Health News, 40(#issue#), 79-81	Irrelevant publication date
L1	Anonymous (1974). Whatever happened to fluoridation issue: still hotly fought U.S. News & World Report, 76(#issue#), 94	Irrelevant publication date
L1	Arnold, Francis A. (1957). Grand Rapids [Mich.] fluoridation studyresults pertaining to the eleventh year of fluoridation American Journal of Public Health and the Nation's Health, 47(#issue#), 539- 545	Irrelevant publication date
L1	Auermann, E.,Lingelbach, H. (1964). Status and prospects of fluoridation in Europe: for the purpose of preventing dental caries American Journal of Public Health and the Nation's Health, 54(#issue#), 1545-1550	Irrelevant publication date
L1	Bain, Rob E. S., Gundry, Stephen W., Wright, JimA., Yang, Hong, Pedley, Steve, Bartram, Jamie K.(2012). Accounting for water quality in monitoringaccess to safe drinking-water as part of theMillennium Development Goals: lessons from five	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	countries World Health Organization. Bulletin of the World Health Organization, 90(3), 228-235A	
L1	Benavides, José R. (1972). El programa de fluoruración del agua en las principales ciudades del país [México; conference paper] Salud Publica de Mexico, 14(#issue#), 99-102	Irrelevant publication date
L1	Boudewyns, Celestin (1953). The fluoridation racket #journal#, #volume#(#issue#), 58+4	Irrelevant publication date
L1	Brand, J. A. (1971). The politics of fluoridation: a community conflict [based on interviews with officials in forty of the fifty-six authorities in Scotland which had considered the issue of fluoridation] Political Studies, 19(#issue#), 430-439	Irrelevant publication date
L1	Brier, Alan P. (1970). The decision process in local government: a case study of fluoridation in Hull [Eng.] Public Administration, 48(#issue#), 153-168	Irrelevant publication date
L1	Broadbent, Jonathan M., Thomson, W. Murray, Ramrakha, Sandhya, Moffitt, Terrie E., Zeng, Jiaxu, Foster Page, Lyndie A., Poulton, Richie (2015). Community Water Fluoridation and Intelligence: Prospective Study in New Zealand American journal of public health, 105(1), 72-76	Irrelevant publication date
L1	Buckley, Priscilla L. (1956). Freedom from fluoridation: mass fluoridation of water supplies is not a plot of big business or a communist conspiracy to	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	ruin American health; but there is a case against it National Review, #volume#(#issue#), 15-17	
L1	CADTH (2011). Silver Diamine Fluoride for the Prevention and Arresting of Dental Caries or Hypersensitivity: A Review - Summary of the Evidence CADTH Report / Project in Briefs, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Centers for Disease Control, (2013). Bottled Water #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Cheyne, Christine, Comrie, Margie (2002). Enhanced legitimacy for local authority decision making: challenges, setbacks and innovation Policy and Politics, 30(4), 469-482	Irrelevant publication date
L1	Clark, C ,Wulf, C ,Easley, M (1984). The fluoridation controversy: understanding the opposition and effectively meeting the challenge [conference paper] Health Matrix, 2(2), 65-77	Irrelevant publication date
L1	Clark, Duncan W. (1957). The issue of fluoridation and the public health Public Health News, 38(#issue#), 3-9	Irrelevant publication date
L1	Cohn, Perry D. (1992). An epidemiologic report on drinking water and fluoridation #journal#, #volume#(#issue#), 17+10	Irrelevant publication date
L1	Committee on Agriculture and Environment-New Jersey Legislature-General Assembly, (1976). Public hearing before Assembly Agriculture and	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	Environment Committee on Senate, no. 976 (fluoridation) held May 26, 1976, Assembly Chamber, State House, Trenton, New Jersey. #journal#, #volume#(#issue#), 48+102	
L1	Committee to Protect Our Children's Teeth Inc., (1957). Our children's teeth: a digest of expert opinion based on studies of the use of fluorides in public water supplies, submitted to the mayor and the Board of estimate of the city of New York [N.Y.], March 6, 1957 #journal#, #volume#(#issue#), vi+104	Irrelevant publication date
L1	Congressional Research Service-Library of Congress, (1991). Major Issues Forum: Water quality and resources. 102d Congress, 1st Session CRS Review, 12(#issue#), 1-23	Irrelevant publication date
L1	Crain, Robert L., et al., (1969). The politics of community conflict: the fluoridation decision; with preface by James Q. Wilson (Advanced study in sociol.), #volume#(#issue#), xix+269	Irrelevant publication date
L1	Crain, Robert L.,Rosenthal, Donald B. (1966). Executive leadership and community innovation: the fluoridation experience [position taken on fluoridation in the various surveyed cities by the mayor, city- manager or other chief executive, and effects on the community's decision] Urban Affairs Quarterly, 1(#issue#), 39-57	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Crain, Robert L.,Rosenthal, Donald B. (1966). Structure and values in local political systems: the case of fluoridation decisions Journal of Politics, 28(#issue#), 169-195	Irrelevant publication date
L1	Creighton, W. E., et al., (1964). Effect of fluoridated water in schools upon dental caries susceptibility Public Health Reports, 79(#issue#), 778-780	Irrelevant publication date
L1	Davis, Ellen (1963). Fluoridationyes or no? (Special topics no. 1), #volume#(#issue#), 11	Irrelevant publication date
L1	Davis, Morris (1960). Community attitudes toward fluoridation [publicity and politics] Public Opinion Quarterly, 23(#issue#), 474-482	Irrelevant publication date
L1	Diesendorf, Mark,Colquhoun, John,Spittle, Bruce J.,Everingham, Douglas N.,Clutterbuck, Frederick W. (1997). New evidence on fluoridation Australian and New Zealand Journal of Public Health, 21(2), 187- 190	Irrelevant publication date
L1	Division of Dental Health-US Public Health Service, (1967). Fluoridation census, 1966 (Pubn. no. 1670), #volume#(#issue#), 42	Irrelevant publication date
L1	Division of Dental Health-US Public Health Service, (1970). Fluoridation census 1969 #journal#, #volume#(#issue#), iii+72	Irrelevant publication date
L1	Division of Dental Public Health, (1958). Status of controlled fluoridation in the United States, 1945-57. Report by the Division of Dental Public Health,	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	Bureau of State Services, Public Health Service. Public Health Reports, 73(#issue#), 634-635	
L1	Division of dental public health, (1965). Fluoridation census, 1965 #journal#, #volume#(#issue#), 30+10	Irrelevant publication date
L1	Do, Loc,Spencer, A. John (2015). Contemporary multilevel analysis of the effectiveness of water fluoridation in Australia Australian and New Zealand Journal of Public Health, 39(1), 44-50	Irrelevant publication date
L1	Dobbs, Geoffrey (1957). Can we be sure that fluoridation is safe [some studies and recommendations in Great Britain] Municipal Journal, Public Works Engineer and Contractors' Guide, 65(#issue#), 1483	Irrelevant publication date
L1	Doessel, Darrel P.,Karunaratne, Neil D. (1979). Temporal and spatial diffusion of water fluoridation in Australia Economic Activity, 22(#issue#), 33-46	Irrelevant publication date
L1	Dublin, Louis I. (1957). Water fluoridation: facts, not myths (Public Affairs pam. no.251), #volume#(#issue#), 28	Irrelevant publication date
L1	Dunning, James M. (1962). What's all the fuss about fluoridation? New Englander, #volume#(#issue#), 10-11	Irrelevant publication date
L1	Easley, Michael W. (1990). The status of community water fluoridation in the United States Public Health Reports, 105(#issue#), 348-353	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Environmental Protection Agency, (2005). Bottled Water Basics #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Environmental Protection Agency, (2005). WATER ON TAP what you need to know #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Esty, Geoffrey W. (1961). Safety of fluoridation from a medical standpoint [address] Public Health News, 42(#issue#), 81-84	Irrelevant publication date
L1	Etchie, Ayotunde T.,Etchie, Tunde O.,Adewuyi, Gregory O.,Krishnamurthi, Kannan,Devi, S. Saravana,Wate, Satish R. (2013). Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach World Health Organization. Bulletin of the World Health Organization, 91(8), 553-561J	Irrelevant publication date
L1	Exner, F. B. (1962). The real issue behind fluoridation [individual responsibility for health care] American Opinion, 5(#issue#), 9-14	Irrelevant publication date
L1	Exner, F. B.,Waldbott, G. L. (1957). The American fluoridation experiment #journal#, #volume#(#issue#), viii+277	Irrelevant publication date
L1	Family Practice Network, (2008). Goiter #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Family Practice Network, (2013). Fluoride Toxicity #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Family Practice Network, (2014). Community Water Fluoridation in Canada – Trends, Benefits, and Risks #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Flemming, AS (1959). Fluoridation: statement by Arthur S. Flemming, secretary of health, education, and welfare; report on fluoridation in the United States; statements on proposed alternatives to fluoridation of water supplies Public Health Reports, 74(#issue#), 511-520	Irrelevant publication date
L1	Fordham Law Review, (1955). Fluoridation: is it constitutional? [review of decisions on both sides] #journal#, 24(#issue#), 657-684	Irrelevant publication date
L1	Freeze, R. A.,Lehr, J. H (2009). The Fluoride Wars: How a Modest Public Health Measure Became America's Longest-Running Political Melodrama #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Frias, Antonio,Narvai, Paulo C.,De Araujo, Maria E.,Zilbovicius, Celso,Antunes, Jose L. F. (2006). Custo da fluoretagao das aguas de abastecimento publico, estudo de caso - Municipio de Sao Paulo, Brasil, periodo de 1985-2003 Cadernos de Saude Publica, 22(6), 1237-1246	Irrelevant publication date
L1	Gamson, W A, Mueller, J (1968). Fluoridation attitude change, by John E. Mueller; Commentary on "Fluoridation attitude change," by William A. Gamson; Reply by Dr. Mueller [Combined Title]	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	American Journal of Public Health and the Nation's Health, 58(#issue#), 1876-1882	
L1	Gamson, William A. (1961). The fluoridation dialogue: is it an ideological conflict? [based on interviewing 141 of a probability sample of 190 registered voters shortly after the Cambridge, Mass. referendum of Nov., 1959] Public Opinion Quarterly, 25(#issue#), 526-537	Irrelevant publication date
L1	Gelberg, Kitty H., Fitzgerald, Edward F., Hwang, Syni- an, Dubrow, Robert (1995). Fluoride exposure and childhood osteosarcoma: A case-control study American Journal of Public Health, 85(12), 1678-83	Irrelevant publication date
L1	Government of Ireland, (1960). Health (Fluoridation of Water Supplies) Act #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Grace, Linwood G. (1960). Fluoridation [claims that despite opposition fluoridation has been endorsed by twentyfive national scientific societies and will eventually be as widespread as chlorination] Pennsylvania League of Cities, 25(#issue#), 5	Irrelevant publication date
L1	Grace, Linwood G.,et al., (1957). Fluoridation of a public water supply Authority, #volume#(#issue#), 10-12	Irrelevant publication date
L1	Gramm, Classen J., Jr. (1962). Fluoridation of water supplies Notre Dame Lawyer, 38(#issue#), 71-78	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Grandjean, Philippe,Choi, Anna L.,Broadbent, Jonathan M.,Thomson, W. Murray,Moffitt, Terrie E.,Poulton, Richie (2015). COMMUNITY WATER FLUORIDATION AND INTELLIGENCE/BROADBENT ET AL. RESPOND American Journal of Public Health, 105(4), E3-E4	Irrelevant publication date
L1	Griffiths, Joel (1992). Fluoride: commie plot or capitalist ploy Covert Action Information Bulletin, #volume#(#issue#), 26-30	Irrelevant publication date
L1	Gulick, L (1957). "Who are we to believe?" [letter from Luther Gulick to Abe Stark, president of the New York city council, discussing pros and cons of fluoridation for New York, N.Y.] Public Administration Review, 17(#issue#), 106-110	Irrelevant publication date
L1	Hass, Robert L. (1966). The case for fluoridation: not one legitimate, documented, medically established original study detrimental to fluoridation is recorded American Journal of Nursing, 66(#issue#), 328-331	Irrelevant publication date
L1	Health Canada, (2010). Guidelines for North American Drinking Water Quality: Guideline Technical Document - Fluoride Water, Air and Climate Change Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, (Catalogue No. H128-1/11-647E- PDF)(#issue#), #Pages#	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Helmholz, H. F. (1954). Views of the National congress of parents and teachers in regard to fluoridation American Journal of Public Health and The Nation's Health, 44(#issue#), 884-887	Irrelevant publication date
L1	Hooper, W. E. (1954). Get ready for fluoridation: what is involved in satisfying the public's demand for this dental-health measurewhether or not water- works men like it Alabama Municipal Journal, #volume#(#issue#), 16-17	Irrelevant publication date
L1	Isaacs, Stephen L.,Schroeder, Steven A. (2003). Quiet victories: what we can learn from success stories in health Responsive Community, 13(#issue#), 60-71	Irrelevant publication date
L1	Jacobsen, Steven J.,O Fallon, W. Michael,Melton, L. Joseph, III (1993). Hip fracture incidence before and after the fluoridation of the public water supply, Rochester, Minnesota American Journal of Public Health, 83(5), 743-5	Irrelevant publication date
L1	Klerer, M. (1956). The fluoridation experiment [review of various experiments throughout the United States] Contemporary Issues, 7(#issue#), 119-167	Irrelevant publication date
L1	Klerer, Melvin, Ubell, Earl (1956). "Why the furor over fluoridation?" radio discussion Town Meeting, #volume#(#issue#), 1-12	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Knutson, John W. (1960). Fluoridation: where are we today? American Journal of Nursing, 60(#issue#), 196-198	Irrelevant publication date
L1	Larson, Donn (1965). Fluoridation: how we lost in Duluth [Minn.; losing campaign that preceded the Apr. 6, 1965, referendum; excerpts from address] Minnesota Municipalities, 50(#issue#), 308-309	Irrelevant publication date
L1	Leitch, Gordon B. (1956). Fluoridated water: pap on tap! or is it poison? Freeman, #volume#(#issue#), 2-7	Irrelevant publication date
L1	Leonard, Richard C. (1963). Flouridation in Maryland (Mo. bul. v. 35, no. 5), #volume#(#issue#), 4	Irrelevant publication date
L1	Levy, S. M. (2008). Findings and recommendations of the Fluoride Expert Panel (January 2007) #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Levy, Steven M., Muchow, Gary (1992). Provider Compliance with Recommended Dietary Fluoride Supplement Protocol American Journal of Public Health, 82(2), 281-3	Irrelevant publication date
L1	Loe, Harald (1986). The fluoridation status of U.S. public water supplies Public Health Reports, 101(#issue#), 157-162	Irrelevant publication date
L1	Mahoney, Martin C.,Nasca, Philip C.,et al., (1991). Bone Cancer Incidence Rates in New York State:	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	Time Trends and Fluoridated Drinking Water American Journal of Public Health, 81(4), 475-9	
L1	Martin, Brian (1991). Scientific knowledge in controversy: the social dynamics of the fluoridation debate SUNY ser. in sci., technol., and society, #volume#(#issue#), vii+266	Irrelevant publication date
L1	Masterton, George (1963). A study of responses to a questionnaire on fluoridation: a study is reported in five communities which indicates that a majority in each of these favors fluoridation of water supplies American Journal of Public Health and the Nation's Health, 53(#issue#), 1243-1251	Irrelevant publication date
L1	Matter, L. D. (1960). Present status of water fluoridation in Pennsylvania [based on address] Authority, 18(#issue#), 14-16	Irrelevant publication date
L1	Mazur, Allan (1975). Opposition to technological innovation [illustrated through the opposition to fluoridation of water supplies and the location of nuclear plants: United States] Minerva, 13(#issue#), 58-81	Irrelevant publication date
L1	Mazur, Allan (2001). Looking back at fluoridation Risk: Health, Safety & Environment, 12(1/2), 59-65	Irrelevant publication date
L1	McCauley, H. B. (1954). How fluoridation facts were presented to the citizens of Baltimore, Md American Journal of Public Health and The Nation's Health, 44(#issue#), 892-898	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	McClure, Frank J. (1970). Water fluoridation: the search and the victory #journal#, #volume#(#issue#), xi+302	Irrelevant publication date
L1	McNeil, Donald R. (1957). The fight for fluoridation #journal#, #volume#(#issue#), x+241	Irrelevant publication date
L1	McNeil, Donald R. (1985). America's longest war: the fight over fluoridation, 1950 Wilson Quarterly, 9(#issue#), 140-153	Irrelevant publication date
L1	Medline Plus, (2015). Fluoride and Water #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Metz, A. Stafford (1966). An analysis of some determinants of attitude toward fluoridation [four variables: education, income, age, and number of children] Social Forces, 44(#issue#), 477-484	Irrelevant publication date
L1	Mitchell, Austin (1960). Fluoridation in Dunedin [N.Z.]: a study of pressure groups and public opinion Political Science, 12(#issue#), 71-93	Irrelevant publication date
L1	Mitchell, Bruce (1972). Fluoridation bibliography: referendums, public participation in decision-making, and methodologies for attitude perception studies (Exchange bibl. 268), #volume#(#issue#), 26	Irrelevant publication date
L1	Mueller, John E. (1966). The politics of fluoridation in seven California cities Western Political Quarterly, 19(#issue#), 54-67	Irrelevant publication date
L1	Mummery, W. Kerry, Mitchell, Duncan, Kift, Ryan (2007). Socio-economic differences in public opinion	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	regarding water fluoridation in Queensland Australian and New Zealand Journal of Public Health, 31(4), 336-339	
L1	Murphy, G,Cunningham, J (2009). Fluoridated water for cavity prevention: a review of the clinical- effectiveness, cost-effectiveness, and guidelines (Structured abstract) North American Agency for Drugs and Technologies in Health (CADTH),, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	N. H. S. Centre for Reviews & Dissemination, Bader, J. D., Rozier, G., Harris, R., Lohr, K. N., Murphy, G., Cunningham, J. (2000). A systematic review of public water fluoridation (Structured abstract) #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Nathan, Harriet, Scott, Stanley (1966). Fluoridation in California: an unresolved public policy issue Public Affairs Report, 7(#issue#), 1-6	Irrelevant publication date
L1	National Cancer Institute, (2010). Contaminants in Drinking Water #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	National Research Council, (2006). Fluoride in Drinking Water: A Scientific Review of EPA's Standards National Academies Press, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Nelson, Elizabeth A.,Kirchhoff, Claire,University of North, Texas,Health Science Center at Fort, Worth (2015). Possible fluoride toxicity in North America : a	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	paleopathological assessment and discussion of modern occurrence #journal#, #volume#(#issue#), #Pages#	
L1	New Jersey Fluoridation study committee, (1973). Final report to the governor and the Legislature (pursuant to J. R. 3, 1971) #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	New York Department of Health (1954). Fluoridation of New York city water supply [resolution recommending steps to facilitate introduction of fluoridation, what it is, where it is used] Monthly Bulletin, 46(#issue#), 159-164	Irrelevant publication date
L1	Panizzi, Mirvaine, Peres, Marco Aurelio (2008). Ten Years of External Control over Water Fluoridation in Chapeco, Santa Catarina State, Brazil Cadernos de Saude Publica, 24(9), 2021-2031	Irrelevant publication date
L1	Peckham, Stephen (2012). Slaying sacred cows: is it time to pull the plug on water fluoridation Critical Public Health, 22(2), 159-177	Irrelevant publication date
L1	Petersen, Lyle R., Denis, Diane, Brown, David, Hadler, James L., Helgerson, Steven D. (1988). Community Health Effects of a Municipal Water Supply Hyperfluoridation Accident American Journal of Public Health, 78(6), 711-3	Irrelevant publication date
L1	Plaut, Thomas F. A. (1959). Analysis of voting behavior on a fluoridation referendum [Cambridge,	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	Mass.] Public Opinion Quarterly, 23(#issue#), 213- 222	
L1	Pratt, Edwin, Jr., Rawson, Raymond D., Rubin, Mark (2002). Fluoridation at fifty: What have we learned? The Journal of Law, Medicine & Ethics, 30(3), 117- 121	Irrelevant publication date
L1	Reinemer, Vic (1955). Is fluoridation a Marxist plot? [various charges made by the opponents of fluoridation] Reporter, #volume#(#issue#), 28-30	Irrelevant publication date
L1	Rocha-Amador, Diana, Navarro, Maria Elena, Carrizales, Leticia, Morales, Raul, Calderon, Jacqueline (2007). Decreased Intelligence in Children and Exposure to Fluoride and Arsenic in Drinking Water Cadernos de Saude Publica, 23(supplement 4), S579-S587	Irrelevant publication date
L1	Roemer, Ruth (1965). Water fluoridation: public health responsibility and the democratic process: the constitutionality of fluoridation legislation, the scope and role of referenda, and the possibilities of state- wide legislation: implications for public health American Journal of Public Health and the Nation's Health, 55(#issue#), 1337-1348	Irrelevant publication date
L1	Ross, Milton R., et al., (1960). Results of five years of fluoridation in 21 Monmouth county [N.J.] municipalities Public Health News, 41(#issue#), 174- 176	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Sapolsky, Harvey M. (1969). The fluoridation controversy: an alternative explanation Public Opinion Quarterly, 33(#issue#), 240-248	Irrelevant publication date
L1	Sapora, Myrtle K. (1990). The case against fluoridation Illinois Issues, 16(#issue#), 32-33	Irrelevant publication date
L1	Saul, H,A. A. London (1954). Water fluoridation: the pro and con: Advantages of fluoridation of community water supplies; Hazards of fluoridation of community water supplies [Combined Title] New Jersey Municipalities, #volume#(#issue#), 16-24	Irrelevant publication date
L1	Schlesinger, Edward R.,et al., (1956). Study of children drinking fluoridated and nonfluoridated water [Newburgh and Kingston, N.Y.] Journal of the American Medical Association, 160(#issue#), 21-24	Irrelevant publication date
L1	Shaw, J. H. (1954). Fluoridation as a public health measure #journal#, #volume#(#issue#), v+232	Irrelevant publication date
L1	Shaw, James H. (1956). Should fluorides be added to public water supplies? Public Health News, 37(#issue#), 331-342	Irrelevant publication date
L1	Silva, Josiene Saibrosa da,Val, Cinthya Melo do,Costa, Juliana Noleto,Moura, Marcoeli Silva de,Silva, Thais Alves Elias,Sampaio, Fabio Correia (2007). Monitoring Water Fluoridation in Three Cities in Piaui^FAC State, Brazil Cadernos de Saude Publica, 23(5), 1083-1088	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Simmel, A,David, B,Sanders, I,Vogt, J (1962). Some correlates of opinion on fluoridation: why do some people oppose fluoridation? role of hostility to the medical profession and to public health is analyzed and the consequences for improvement are presented, by Arnold Simmel and David B. Ast: The involvement of health professionals and local officials in fluoridation controversies in ten Massachusetts towns, by Irwin T. Sanders; The role of the public health engineer in fluoridation: advancing the fluoridation of community water supplies, by John E. Vogt [Combined Title] American Journal of Public Health and the Nation's Health, 52(#issue#), 1288- 1292	Irrelevant publication date
L1	Singh, Nandita (2013). Translating human right to water and sanitation into reality: a practical framework for analysis Water Policy, 15(6), 943-960	Irrelevant publication date
L1	Stallsmith, W. P., Jr. (1955). Legal aspects of the fluoridation of public drinking water George Washington Law Review, 23(#issue#), 343-357	Irrelevant publication date
L1	Striffler, David F. (1958). Criteria to consider when supplementing fluoride-bearing water [address] American Journal of Public Health and the Nation's Health, 48(#issue#), 29-37	Irrelevant publication date
L1	Suarez-Almazor, Maria E.,Flowerdew, Gordon,Saunders, Duncan,Soskolne, Colin L.,Russell, Anthony S. (1993). The fluoridation of	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	drinking water and hip fracture hospitalization in two North American communities American Journal of Public Health, 83(5), 689-93	
L1	Tiemann, Mary (2006). Fluoride in drinking water: a review of fluoridation and regulation issues CRS Report for Congress, #volume#(#issue#), 13	Irrelevant publication date
L1	Tiemann, Mary,Library of, Congress,Congressional Research, Service (2013). Fluoride in drinking water : a review of regulatory issues and developments #journal#, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	United States Congress Committee on Interstate and Foreign Commerce, (1954). Fluoridation of water: Hearings, May 25-27, 1954, on H.R.2341, a bill to protect the public health from the dangers of fluorination of water (83d Congress, 2d sess.), #volume#(#issue#), vi+491	Irrelevant publication date
L1	United States Indian Health Service, (1999). Water fluoridation policy issuance IHS circ. no. 99-01, #volume#(#issue#), #Pages#	Irrelevant publication date
L1	US Public Health Service (2015). U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries Public Health Reports, 130(4), 318	Irrelevant publication date
L1	US Public Health Service, (1959). Natural fluoride content of communal water supplies in the United States. PHS Publication no. 655, c1959 PHS	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
	Publication no. 655, c1959, #volume#(#issue#), xvi+111	
L1	US Public Health Service, (1966). 1966 national dental health assembly, emphasis: fluoridation: summary and recommendations, sponsored by the U.S. public health service and the American dental association, February 6-8, 1966, Arlington, Va (Public health service. Pubn. no. 1552), #volume#(#issue#), vi+22	Irrelevant publication date
L1	US Public Health Service, (1967). A guide to reading on fluoridation: annotated (Pubn. no. 1680), #volume#(#issue#), 11	Irrelevant publication date
L1	US Public Health Service, (1992). Review of fluoride benefits and risks: report of the Ad Hoc Subcommittee on Fluoride of the Committee to Coordinate Environmental Health and Related Programs, February 1991 #journal#, #volume#(#issue#), 134+	Irrelevant publication date
L1	Walsh, Diana Chapman (1992). Public Health At A Crossroads Health Affairs, 11(2), 225-227	Irrelevant publication date
L1	Weissman, A. M. (1997). Bottled water use in an immigrant community: a public health issue? [letter] American Journal of Public Health, 87(8), 1379-80	Irrelevant publication date
L1	Whitlock, Robin (1999). Water fluoridation: the truth they don't want you to know Ecologist, 29(#issue#), 39-41	Irrelevant publication date

Le vel	Bibliography	Reason for exclusion
L1	Wild, Russell (1984). Fluoride: miracle cure or public menace? [possible dangers to humans of fluoridated water] Environmental Action, 16(#issue#), 14-19	Irrelevant publication date
L1	Williams, Lloyd (1957). Big gains in '56more to come in '57: fluoridation across Canada Civic Administration, #volume#(#issue#), 73-74	Irrelevant publication date
L1	Winstanley, Ann (2005). The not-so-hidden politics of fluoridation Policy and Politics, 33(3), 367-385	Irrelevant publication date
L1	Worsnop, Richard L. (1994). Water quality: should safety standards for drinking water be tougher in the U.S.? CQ Researcher, 4(#issue#), 123-143	Irrelevant publication date
L1	Wright, Charles L. (1970). Water fluoridation (Research rept. no. 58), #volume#(#issue#), v+73	Irrelevant publication date
L1	Wright, J. T.,Grange, D. K.,Fete, M. (1993). Hypohidrotic Ectodermal Dysplasia GeneReviews((R)), #volume#(#issue#), #Pages#	Irrelevant publication date
L1	Wright, Janice C.,Bates, Michael N.,Cutress, Terry,Lee, Martin (2001). The cost-effectiveness of fluoridating water supplies in New Zealand Australian and New Zealand Journal of Public Health, 25(2), 170-178	Irrelevant publication date
L1	Bobak, M.,Dunn, J. R. (2017). Editorial note: Peckham versus Newton Journal of epidemiology and community health, 71(4), 317	Irrelevant study type
L1	Fabreau, Gabriel E.,Bauman, Paul,Coakley, Annalee L.,Johnston, Kelly,Kennel, Kurt A.,Gifford, Jessica	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
	L.,Sadrzadeh, Hossein Mh,Whitford, Gary M.,Whyte, Michael P.,Kline, Gregory A. (2019). Skeletal fluorosis in a resettled refugee from Kakuma refugee camp Lancet (London, England), 393(10168), 223- 225	
L1	Farooqi, A.,Zafar, M. I. (2016). Response to "Co- occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment" by Rasool et al. 2015 Environ Sci Pollut Res Int, 23(13), 13578-80	Irrelevant study type
L1	Friedman, Jay W. D. D. S. M. P. H. (2016). DEBUNKING DEBATING WATER FLUORIDATION/CARSTAIRS RESPONDS American Journal of Public Health, 106(2), 211-212	Irrelevant study type
L1	Gesser-Edelsburg, A.,Shir-Raz, Y. (2018). Communicating risk for issues that involve 'uncertainty bias': what can the Israeli case of water fluoridation teach us? Journal of Risk Research, 21(4), 395-416	Irrelevant study type
L1	Hahn, Robert A. PhD M. P. H. (2019). Two Paths to Health in All Policies:The Traditional Public Health Path and the Path of Social Determinants American Journal of Public Health, 109(2), 253-254	Irrelevant study type
L1	Honkanen, I.,Hock, L.,Bettendorf, B.,Fiordellisi, W. (2018). An unlikely source of periostitis Journal of	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
	General Internal Medicine, 33 (2 Supplement 1)(#issue#), 464	
L1	Klotz, A.,Hughes, K.,McCabe, D.,Cole, J. (2018). Let's Iron OutVR What is Toxic in Here Clinical Toxicology, 56 (10)(#issue#), 1072-1073	Irrelevant study type
L1	Levallois, P.,Villanueva, C. M. (2019). Drinking water quality and human health: An editorial International Journal of Environmental Research and Public Health, 16 (4) (no pagination)(631), #Pages#	Irrelevant study type
L1	Lyke, K. (2016). Global water fluoridation: what is holding us back? Alternative Therapies in Health & Medicine, 22(1), 6-7	Irrelevant study type
L1	Morabia, Alfredo (2016). Community Water Fluoridation: Open Discussions Strengthen Public Health American Journal of Public Health, 106(2), 209-210	Irrelevant study type
L1	National Center for Fluoridation Policy and Research, (2016). Fluoridation News: Information about Fluoridation for the Public & the Media NCFPR, #volume#(#issue#), #Pages#	Irrelevant study type
L1	Newbrun, Ernest, Carstairs, Catherine (2016). HISTORIC EARLY ENDORSEMENT OF COMMUNITY WATER FLUORIDATION/CARSTAIRS RESPONDS American Journal of Public Health, 106(2), 210-212	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
L1	Newton, J. N., Verne, J., Dancox, M., Young, N. (2017). Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? Comments on the authors' response to earlier criticism Journal of epidemiology and community health, 71(4), 315-316	Irrelevant study type
L1	O'Neill, Brenda, Kapoor, Taruneek, McLaren, Lindsay (2019). Politics, Science, and Termination: A Case Study of Water Fluoridation Policy in Calgary in 2011 Review of Policy Research, 36(1), 99-120	Irrelevant study type
L1	Osmunson, Bill,Limeback, Hardy,Neurath, Chris,Broadbent, Jonathan M.,Thomson, W. Murray,Moffitt, Terrie E.,Poulton, Richie (2016). STUDY INCAPABLE OF DETECTING IQ LOSS FROM FLUORIDE/BROADBENT ET AL. RESPOND American Journal of Public Health, 106(2), 212-214	Irrelevant study type
L1	Peckham, S.,Lowery, D.,Spencer, S. (2017). Fluoride levels in drinking water and hypothyroidism: Response to Grimes and Newton et al Journal of epidemiology and community health, 71(4), 313-314	Irrelevant study type
L1	Perrott, K. W. (2018). Fluoridation and attention deficit hyperactivity disorder - a critique of Malin and Till (2015) British dental journal, 223(11), 819-822	Irrelevant study type
L1	Pitts, S,Gordon, C. M (2018). A Practical Approach to Adolescent Bone Health: A Guide for the Primary Care Provider #journal#, #volume#(#issue#), #Pages#	Irrelevant study type

Le vel	Bibliography	Reason for exclusion
L1	Quadri, J. A., Alam, M. M., Sarwar, S., Ghanai, A., Shariff, A., Das, T. K. (2016). Multiple Myeloma- Like Spinal MRI Findings in Skeletal Fluorosis: An Unusual Presentation of Fluoride Toxicity in Human Front Oncol, 6(#issue#), 245	Irrelevant study type
L1	Spittle, B. (2017). The effect of the fluoride ion on reproductive parameters and an estimate of the safe daily dose of fluoride to prevent female infertility and miscarriage, and foetal neurotoxicity Fluoride, 50(3), 287-291	Irrelevant study type
L1	Susan, J.,Sebastian, S. (2019). An unusual cause of back pain in South India: Case report Turkish Journal of Gastroenterology, 30 (Supplement 3)(#issue#), S190-S191	Irrelevant study type
L1	Wright, J. V. (2016). Global water fluoridation: what is holding us back? Alternative Therapies in Health & Medicine, 22(1), 6	Irrelevant study type
L2	AlKhaddar, R,Singh, K,Dutta, S,Kumari, M (2018). Advances in Water Resources Engineering and Management Select Proceedings of TRACE, #volume#(#issue#), #Pages#	Book
L2	Alley, W ,Alley, R (2017). High and Dry: Meeting the Challenges of the World's Growing Dependence on Groundwater #journal#, #volume#(#issue#), #Pages#	Book

Le vel	Bibliography	Reason for exclusion
L2	Chelmow, D,Blanchard, A ,Learman, L (2017). The Well-Woman Visit #journal#, #volume#(#issue#), #Pages#	Book
L2	Cotruvo, Joseph (2018). Drinking Water Quality and Contaminants Guidebook #journal#, #volume#(#issue#), #Pages#	Book
L2	Gallico, M & Buhner, SH (2018). The Hidden Cause of Acne : How Toxic Water Is Affecting Your Health and What You Can Do about It #journal#, #volume#(#issue#), #Pages#	Book
L2	Gupta, A. K. ,Ayoob, S (2016). Fluoride in drinking water: status, issues and solutions #journal#, #volume#(#issue#), #Pages#	Book
L2	Johansen, Erling (2019). Continuing Evaluation of the Use of Fluorides #journal#, #volume#(#issue#), #Pages#	Book
L2	Kurisu, F, Ramanathan, A, Kazmi, A. A, Kumar, M (2017). Trends in Asian Water Environmental Science and Technology #journal#, #volume#(#issue#), #Pages#	Book
L2	Leal Filho, W,Noyola-Cherpitel, R,Medellín-Milán, P,Ruiz Vargas, V (2018). Sustainable Development Research and Practice in Mexico and Selected Latin American Countries #journal#, #volume#(#issue#), #Pages#	Book

Le vel	Bibliography	Reason for exclusion
L2	Luo, Y,Tu, C (2018). Twenty Years of Research and Development on Soil Pollution and Remediation in China #journal#, #volume#(#issue#), #Pages#	Book
L2	Mukherjee, A. (2018). Groundwater of South Asia #journal#, #volume#(#issue#), #Pages#	Book
L2	Nath, K. J,Sharma, P. V (2017). Water and Sanitation in the New Millennium #journal#, #volume#(#issue#), #Pages#	Book
L2	Pardhe, Nilesh,Vijay, Pradkhshana,Singhal, Ishank (2016). Fluoride: Recent concepts #journal#, #volume#(#issue#), #Pages#	Book
L2	Anonymous, (2016). Global water fluoridation: what is holding us back? Reply Alternative Therapies in Health & Medicine, 22(1), 7	Commentary/communica tion/editorial/letter
L2	Cragoe, D (2019). False Reporting of Water Fluoridation Data and Fabricated Statements Regarding Fluoridation Safety by the US Centers for Disease Control XXXIVth Conference of the International Society For Fluoride Research, 52(1), 93	Commentary/communica tion/editorial/letter
L2	Nicole, W. (2019). Comparing fluoride exposures in pregnant North American women: Fluoridated versus nonfluoridated drinking water Environmental Health Perspectives, 127 (7) (no pagination)(074002), #Pages#	Commentary/communica tion/editorial/letter

Le vel	Bibliography	Reason for exclusion
L2	Scott Stewart (2016). Community Water Fluoridation At the Levels Recommended By The U.S. Department of Health and Human Services Have Not Been Shown To Have An Effect On Children's Neurological Development #journal#, #volume#(#issue#), #Pages#	Commentary/communica tion/editorial/letter
L2	Washington,,Department of, Health (2018). Recommended actions following fluoride overfeed #journal#, #volume#(#issue#), #Pages#	Commentary/communica tion/editorial/letter
L2	Barbier, O.,Cardenas-Gonzalez, M.,Parada-Cruz, B.,Lopez, V. D.,Jimenez-Cordova, M.,Solis-Angeles, S.,Del Razo, L. M. (2016). Fluoride: An underestimated nephrotoxic Toxicology Letters, 259 (Supplement 1)(#issue#), S13	Conference abstract/poster/presentat ion/report
L2	Khandare, A. L. (2016). Report on the XXXIIIRD conference of the international society for fluoride research, debilitating fluorosis: Current status, health challenges, and mitigation measures, Hyderabad, India, November 9-11, 2016 Fluoride, Part 2. 49(4), 467-470	Conference abstract/poster/presentat ion/report
L2	Kumar, R,Kumar, V (2019). Fluorosis Management Through Plants in Some Endemic Villages of Bihar XXXIVth Conference of the International Society For Fluoride Research, 52(1), 89-90	Conference abstract/poster/presentat ion/report
L2	Murti, B.,Agustin, D. A.,Ayuningrum, I. Y.,Putri, S. I.,Halu, S. A. N. (2017). Oral and poster	Conference abstract/poster/presentat ion/report

Le vel	Bibliography	Reason for exclusion
	presentation: topic I: epidemiology and public health #journal#, #volume#(#issue#), 81-124	
L2	Rahman, Z ,Khan, B ,Khan, H ,Brusseau, M ,Iqbal Ahmad (2019). Assessment of Fluoride Contamination in Groundwater of District Mardan in Pakistan XXXIVth Conference of the International Society For Fluoride Research, 52(1), 95	Conference abstract/poster/presentat ion/report
L2	 Rahman, Z. U.,Khan, B.,Ahmada, I.,Mian, I. A.,Saeed, A.,Afaq, A.,Khan, A.,Smith, P.,Mianh, A. A. (2018). A review of groundwater fluoride contamination in Pakistan and an assessment of the risk of fluorosis Fluoride, 51(2), 171-181 	Conference abstract/poster/presentat ion/report
L2	Singh, V. P,Yadav, S,Yadava, N. R (2018). Groundwater: Select Proceedings of ICWEES-2016 #journal#, #volume#(76), #Pages#	Conference abstract/poster/presentat ion/report
L2	Struneckà, A (2019). Health Risks of Fluoride: From Molecules to Disease XXXIVth Conference of the International Society For Fluoride Research, 52(1), 77-78	Conference abstract/poster/presentat ion/report
L2	Sun, D,Gao, Y ,Zhao, L (2019). Epidemic and Control of Endemic Fluorosis in China XXXIVth Conference of the International Society For Fluoride Research, 52(1), 79-80	Conference abstract/poster/presentat ion/report
L2	Arshad, N.,Imran, S. (2017). Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and	Exposure assessment

Le vel	Bibliography	Reason for exclusion
	other districts in Punjab, Pakistan Environ Sci Pollut Res Int, 24(3), 2449-2463	
L2	Bondu, J. D., Selvakumar, R., Fleming, J. J. (2017). Validating a High Performance Liquid Chromatography-Ion Chromatography (HPLC-IC) Method with Conductivity Detection After Chemical Suppression for Water Fluoride Estimation Indian journal of clinical biochemistry, 33(1), 86-90	Exposure assessment
L2	Chuah, C. J., Lye, H. R., Ziegler, A. D., Wood, S. H., Kongpun, C., Rajchagool, S. (2016). Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand Sci Total Environ, 545-546(#issue#), 266-79	Exposure assessment
L2	Goankar, S. M.,Kalashetti, M. B.,Kalshetty, B. M. (2017). Fluoride toxicity on human health from water resources available at granite mine in Bagalkot district, Karnataka, India Rasāyan Journal of Chemistry, 10(1), 165-175	Exposure assessment
L2	Hewavithana, P. B., Jayawardhane, W. M., Gamage, R., Goonaratna, C. (2018). Skeletal fluorosis in Vavuniya District: an observational study Ceylon Medical Journal, 63(3), 139-142	Exposure assessment
L2	Khare, P. (2017). A large-scale investigation of the quality of groundwater in six major districts of Central India during the 2010-2011 sampling campaign Environmental Monitoring and Assessment, 189 (9) (no pagination)(429), #Pages#	Exposure assessment

Le vel	Bibliography	Reason for exclusion
L2	Ocak, E.,Kose, S. (2018). Determination of fluoride in water, milk, and dairy products Fluoride, 51(2), 182-192	Exposure Assessment
L2	Podgorski, J. E.,Labhasetwar, P.,Saha, D.,Berg, M. (2018). Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India Environmental Science & Technology, 52(17), 9889-9898	Exposure assessment
L2	 Rocha, R. A., Calatayud, M., Devesa, V., Velez, D. (2017). Evaluation of exposure to fluoride in child population of North Argentina Environmental Science & Pollution Research, 24(27), 22040-22047 	Exposure assessment
L2	Sharmila, C., Subramanian, S. P. (2019). Endemic fluorosis in vellore district, tamil nadu - a bio- geochemical approach International Journal of Pharmaceutical Sciences Review and Research, 54(2), 58-66	Exposure assessment
L2	 Till, C.,Green, R.,Grundy, J. G.,Hornung, R.,Neufeld, R.,Martinez-Mier, E. A.,Ayotte, P.,Muckle, G.,Lanphear, B. (2018). Community water fluoridation and urinary fluoride concentrations in a national sample of pregnant women in Canada Environmental Health Perspectives, 126 (10) (no pagination)(107001), #Pages# 	Exposure assessment
L2	Centers for Disease Control, (2019). Community Water Fluoridation #journal#, #volume#(#issue#), #Pages#	General information

Le vel	Bibliography	Reason for exclusion
L2	Centers for Disease Control, (2019). Private Wells #journal#, #volume#(#issue#), #Pages#	General information
L2	Centers for Disease Control, (2020). Water Fluoridation Basics #journal#, #volume#(#issue#), #Pages#	General information
L2	Medline Plus, (2018). Bowlegs #journal#, #volume#(#issue#), #Pages#	General information
L2	Medline Plus, (2019). Fluoride in diet #journal#, #volume#(#issue#), #Pages#	General information
L2	National Cancer Institute, (2017). Fluoridated Water #journal#, #volume#(#issue#), #Pages#	General information
L2	National Institute of Arthritis and Musculoskeletal and Skin Diseases, (2016). Spinal Stenosis #journal#, #volume#(#issue#), #Pages#	General information
L2	National Institute of Dental and Craniofacial Research, (2018). Story of Fluoridation #journal#, #volume#(#issue#), #Pages#	General information
L2	National Institute of Dental and Craniofacial Research, (2018). ToxGuide for Fluorides, Hydrogen Fluoride, and Fluorine #journal#, #volume#(#issue#), #Pages#	General information
L2	North Carolina Division of Public Health (2019). Fluoride & private wells #journal#, #volume#(#issue#), #Pages#	General information
L2	Aggeborn, Linuz,Öhman, Mattias,Ifau, (2017). The Effects of Fluoride in the Drinking Water, IFAU	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	Working Paper 2017:20 #journal#, #volume#(#issue#), #Pages#	
L2	Archer, N. P., Napier, T. S., Villanacci, J. F. (2016). Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas Cancer Causes Control, 27(7), 863-8	Examined in CADTH 2019
L2	 Barberio, A. M., Hosein, F. S., Quinonez, C., McLaren, L. (2017). Fluoride exposure and indicators of thyroid functioning in the North American population: implications for community water fluoridation Journal of epidemiology and community health, 71(10), 1019-1025 	Examined in CADTH 2019
L2	Barberio, A. M., Quinonez, C., Hosein, F. S., McLaren, L. (2017). Fluoride exposure and reported learning disability diagnosis among North American children: Implications for community water fluoridation North American journal of public health = Revue canadienne de sante publique, 108(3), e229-e239	Examined in CADTH 2019
L2	CADTH (2019). Community Water Fluoridation Exposure: A Review of Neurological and Cognitive Effects CADTH Rapid Response Reports, #volume#(#issue#), #Pages#	Examined in CADTH 2019
L2	CADTH (2019). Community Water Fluoridation Programs: A Health Technology Assessment — Review of Dental Caries and Other Health Outcomes (CADTH technology review; no. 12) CADTH Technology Review, #volume#(#issue#), #Pages#	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
L2	Chafe, R.,Aslanov, R.,Sarkar, A.,Gregory, P.,Comeau, A.,Newhook, L. A. (2018). Association of type 1 diabetes and concentrations of drinking water components in Newfoundland and Labrador, Canada BMJ Open Diabetes Research and Care, 6 (1) (no pagination)(e000466), #Pages#	Examined in CADTH 2019
L2	Fluegge, K. (2016). Community water fluoridation predicts increase in age-adjusted incidence and prevalence of diabetes in 22 States from 2005 and 2010 Journal of Water and Health, 14(5), 864-877	Examined in CADTH 2019
L2	Green, R.,Lanphear, B.,Hornung, R.,Flora, D.,Martinez-Mier, E. A.,Neufeld, R.,Ayotte, P.,Muckle, G.,Till, C. (2019). Association between maternal fluoride exposure during pregnancy and IQ scores in offspring in Canada JAMA pediatrics, 173(10), 940-948	Examined in CADTH 2019
L2	Guissouma, W.,Hakami, O.,Al-Rajab, A. J.,Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia Chemosphere, 177(#issue#), 102-108	Examined in CADTH 2019
L2	Jack, B.,Ayson, M.,Lewis, S.,Irving, A. ,Agresta, B.,Ko, H. ,Stoklosa, A. (2016). Health Effects of Water Fluoridation: Technical Report National Health and Medical Research Council, #volume#(#issue#), #Pages#	Examined in CADTH 2019
L2	Kebede, A.,Retta, N.,Abuye, C.,Whiting, S. J.,Kassaw, M.,Zeru, T.,Tessema, M.,Kjellevold, M.	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	(2016). Dietary fluoride intake and associated skeletal and dental fluorosis in school age children in rural Ethiopian Rift Valley International Journal of Environmental Research and Public Health, 13 (8) (no pagination)(756), #Pages#	
L2	Khandare, A. L.,Gourineni, S. R.,Vakdevi, Validandi (2017). Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India Environmental Monitoring and Assessment, 189(11), 579	Examined in CADTH 2019
L2	Khandare, A. L.,Validandi, V.,Gourineni, S. R.,Gopalan, V.,Nagalla, B. (2018). Dose-dependent effect of fluoride on clinical and subclinical indices of fluorosis in school going children and its mitigation by supply of safe drinking water for 5 years: an Indian study Environmental Monitoring and Assessment, 190 (3) (no pagination)(110), #Pages#	Examined in CADTH 2019
L2	Kheradpisheh, Z.,Mirzaei, M.,Mahvi, A. H.,Mokhtari, M.,Azizi, R.,Fallahzadeh, H.,Ehrampoush, M. H. (2018). Impact of drinking water fluoride on human thyroid hormones: A case-control study Scientific Reports, 8(1), 2674	Examined in CADTH 2019
L2	Li, M.,Gao, Y.,Cui, J.,Li, Y.,Li, B.,Liu, Y.,Sun, J.,Liu, X.,Liu, H.,Zhao, L.,Sun, D. (2016). Cognitive Impairment and Risk Factors in Elderly People Living	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	in Fluorosis Areas in China Biological Trace Element Research, 172(1), 53-60	
L2	Ma, Qiang,Huang, Hui,Sun, Long,Zhou, Tong,Zhu, JingYuan,Cheng, XueMin,Duan, Lijv,Li, ZhiYuan,Cui, LiuXin,Ba, Yue (2017). Gene-environment interaction: does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms? Chemosphere, 188(#issue#), 525- 531	Examined in CADTH 2019
L2	Mani, Arulkumar,Raji, Vijayan,Sakayanathan, Penislusshiyan,Palanivel, Sathishkumar,Jayaraman, Angayarkanni,Thayumanavan, Palvannan (2017). Alteration of paraoxonase, arylesterase and lactonase activities in people around fluoride endemic area of Tamil Nadu, India Clinica Chimica Acta, 471(#issue#), 206-215	Examined in CADTH 2019
L2	Meena, C.,Dwivedi, S.,Rathore, S.,Gonmei, Z.,Toteja, G. S.,Bala, K.,Mohanty, S. S. (2017). Assessment of skeletal fluorosis among children in two blocks of rural area, Jaipur District, Rajasthan, India Asian Journal of Pharmaceutical and Clinical Research, 10(9), 322-325	Examined in CADTH 2019
L2	Moghaddam, V. K.,Yousefi, M.,Khosravi, A.,Yaseri, M.,Mahvi, A. H.,Hadei, M.,Mohammadi, A. A.,Robati, Z.,Mokammel, A. (2018). High Concentration of Fluoride Can Be Increased Risk of Abortion	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	Biological Trace Element Research, 185(2), 262- 265	
L2	Mohammadi, A. A., Yousefi, M., Yaseri, M., Jalilzadeh, M., Mahvi, A. H. (2017). Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran Scientific Reports, 7(1), 17300	Examined in CADTH 2019
L2	Mondal, D.,Dutta, G.,Gupta, S. (2016). Inferring the fluoride hydrogeochemistry and effect of consuming fluoride-contaminated drinking water on human health in some endemic areas of Birbhum district, West Bengal Environmental Geochemistry and Health, 38(2), 557-576	Examined in CADTH 2019
L2	Mondal, D.,Gupta, S.,Reddy, D. V.,Dutta, G. (2017). Fluoride enrichment in an alluvial aquifer with its subsequent effect on human health in Birbhum district, West Bengal, India Chemosphere, 168(#issue#), 817-824	Examined in CADTH 2019
L2	Nasman, P.,Granath, F.,Ekstrand, J.,Ekbom, A.,Sandborgh-Englund, G.,Fored, C. M. (2016). Natural fluoride in drinking water and myocardial infarction: A cohort study in Sweden Science of the Total Environment, 562(#issue#), 305-311	Examined in CADTH 2019
L2	NHMRC-National Health and Medical Research Council, (2017). Information paper – Water fluoridation: dental and other human health outcomes, report prepared by the Clinical Trials	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	Centre at University of Sydney NHMRC, #volume#(#issue#), #Pages#	
L2	Patel, P.,Zulf, M.,Yagnik, B.,Kajale, N.,Mandlik, R.,Khadilkar, V.,Chiplonkar, S.,Phanse, S.,Patwardhan, V.,Joshi, P.,Patel, A.,Khadilkar, A. (2017). Association of dental and skeletal fluorosis with calcium intake and serum Vitamin D concentration in adolescents from a region endemic for fluorosis Indian Journal of Endocrinology and Metabolism, 21(1), 190-195	Examined in CADTH 2019
L2	Ramesh, M.,Malathi, N.,Ramesh, K.,Aruna, R.,Kuruvilla, S. (2017). Comparative evaluation of dental and skeletal fluorosis in an endemic fluorosed district, Salem, Tamil Nadu Journal of Pharmacy and Bioallied Sciences, 9(5 Supplement 1), S88-S91	Examined in CADTH 2019
L2	Sahu, B. L.,Banjare, G. R.,Shobhana, Ramteke,Patel, K. S.,Matini, L. (2017). Fluoride contamination of groundwater and toxicities in Dongargaon block, Chhattisgarh, India Exposure and Health, 9(2), 143-156	Examined in CADTH 2019
L2	Shruthi, M. N.,Santhuram, A. N.,Arun, H. S.,Kishore Kumar, B. N. (2016). A comparative study of skeletal fluorosis among adults in two study areas of Bangarpet taluk, Kolar Indian journal of public health, 60(3), 203-209	Examined in CADTH 2019
L2	Valdez Jimenez, L.,Lopez Guzman, O. D.,Cervantes Flores, M.,Costilla-Salazar, R.,Calderon Hernandez,	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	J.,Alcaraz Contreras, Y.,Rocha-Amador, D. O. (2017). In utero exposure to fluoride and cognitive development delay in infants NeuroToxicology, 59(#issue#), 65-70	
L2	Wasana, H. M., Aluthpatabendi, D., Kularatne, W. M., Wijekoon, P., Weerasooriya, R., Bandara, J. (2016). Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water Environmental Geochemistry & Health, 38(1), 157- 68	Examined in CADTH 2019
L2	Wickramarathna, S.,Balasooriya, S.,Diyabalanage, S.,Chandrajith, R. (2017). Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach Journal of Trace Elements in Medicine and Biology, 44(#issue#), 298-306	Examined in CADTH 2019
L2	Yousefi, M.,Mohammadi, A. A.,Yaseri, M.,Mahvi, A. H. (2017). Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: An ecological study in west Azerbaijan province, poldasht county, Iran Fluoride, 50(3), 343-353	Examined in CADTH 2019
L2	Zhang, L.,Huang, D.,Yang, J.,Wei, X.,Qin, J.,Ou, S.,Zhang, Z.,Zou, Y. (2017). Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic	Examined in CADTH 2019

Le vel	Bibliography	Reason for exclusion
	fluorosis areas Environmental Pollution, 222(#issue#), 118-125	
L2	Alimohammadi, M.,Nabizadeh, R.,Yaghmaeian, K.,Mahvi, A. H.,Foroohar, P.,Hemmati, S.,Heidarinejad, Z. (2018). Data on assessing fluoride risk in bottled waters in Iran Data Brief, 20(#issue#), 825-830	Methods paper
L2	Azhdarpoor, A.,Radfard, M.,Rahmatinia, M.,Hashemi, H.,Hashemzadeh, B.,Nabavi, S.,Akbari, H.,Akbari, H.,Adibzadeh, A. (2018). Data on health risk assessment of fluoride in drinking water in the Khash city of Sistan and Baluchistan province, Iran Data Brief, 21(#issue#), 1508-1513	Methods paper
L2	Alberta Health, (2019). Position Statement on Community Water Fluoridation #journal#, #volume#(#issue#), #Pages#	Narrative review
L2	Atta, Rasool,Abida, Farooqi,Xiao, TangFu,Waqar, Ali,Sifat, Noor,Abiola, O.,Salar, Ali,Wajid, Nasim (2018). A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation Environmental Geochemistry and Health, 40(4), 1265-1281	Narrative review
L2	Botchey, S; Ouyang, J; Vivekanantham, S (2016). Global water fluoridation: what is holding us back? Reply Alternative therapies in health and medicine, 22(1), 1-7	Narrative review

Le vel	Bibliography	Reason for exclusion
L2	Chakraborti, D.,Rahman, M. M.,Chatterjee, A.,Das, D.,Das, B.,Nayak, B.,Pal, A.,Chowdhury, U. K.,Ahmed, S.,Biswas, B. K.,Sengupta, M. K.,Lodh, D.,Samanta, G.,Chakraborty, S.,Roy, M. M.,Dutta, R. N.,Saha, K. C.,Mukherjee, S. C.,Pati, S.,Kar, P. B. (2016). Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches J Trace Elem Med Biol, 38(#issue#), 33-45	Narrative review
L2	Choubisa, S. L. (2018). A brief and critical review of endemic hydrofluorosis in Rajasthan, India Fluoride, 51(1), 13-34	Narrative review
L2	Costa-Vieira, D.,Monteiro, R.,Martins, M. J. (2019). Metabolic syndrome features: Is there a modulation role by mineral Water consumption? a review Nutrients, 11 (5) (no pagination)(1141), #Pages#	Narrative review
L2	Dharmaratne, R. W. (2019). Exploring the role of excess fluoride in chronic kidney disease: A review Human and Experimental Toxicology, 38(3), 269- 279	Narrative review
L2	Dipankar, Chakraborti,Rahman, M. M.,Amit, Chatterjee,Dipankar, Das,Bhaskar, Das,Biswajit, Nayak,Arup, Pal,Chowdhury, U. K.,Sad, Ahmed,Biswas, B. K.,Sengupta, M. K.,Dilip, Lodh,Gautam, Samanta,Sanjana, Chakraborty,Roy, M. M.,Dutta, R. N.,Saha, K. C.,Mukherjee, S.	Narrative review

Le	Bibliography
vel	Dibilography

C.,Shyamapada, Pati,Kar, P. B. (2016). Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: magnitude, health, socioeconomic effects and mitigation approaches Journal of Trace Elements in Medicine and Biology, 38(#issue#), 33-45

- L2 Dissanayake, C. B.,Rohana, Chandrajith (2017). Narrative review Groundwater fluoride as a geochemical marker in the etiology of chronic kidney disease of unknown origin in Sri Lanka Ceylon Journal of Science, 46(2), 3-12
- L2 FSAI (2018). FSAI Publishes Total Diet Study on Narrative review Dietary Exposure to Fluoride World Food Regulation Review, 27(11), 9
- L2 Heck, Brandon (2016). Essays on health, education, Narrative review and consumer information #journal#, #volume#(#issue#), #Pages#
- L2 Kabir, H., Gupta, A. K., Tripathy, S. (2020). Fluoride Narrative review and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity Critical Reviews in Environmental Science and Technology., 50(11), 1116-1193
- L2 Kurdi, M. S. (2016). Chronic fluorosis: The disease Narrative review and its anaesthetic implications Indian Journal of Anaesthesia, 60(3), 157-162

Le vel	Bibliography	Reason for exclusion
L2	Kurwadkar, S. (2019). Occurrence and distribution of organic and inorganic pollutants in groundwater Water Environment Research, 91(10), 1001-1008	Narrative review
L2	Lacson, C. F. Z.,Lu, M. C.,Huang, Y. H. (2020). Fluoride network and circular economy as potential model for sustainable development-A review Chemosphere, 239 (no pagination)(124662), #Pages#	Narrative review
L2	Lash, L. H. (2019). Environmental and Genetic Factors Influencing Kidney Toxicity Seminars in Nephrology, 39(2), 132-140	Narrative review
L2	Mondal, P.,Chattopadhyay, A. (2019). Environmental exposure of arsenic and fluoride and their combined toxicity: A recent update Journal of Applied Toxicology., #volume#(#issue#), #Pages#	Narrative review
L2	Mukherjee, I; Singh, U (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context Environmental Geochemistry and Health, 40(6), 2259-2301	Narrative review
L2	Patil, M. M.,Lakhkar, B. B.,Patil, S. S. (2018). Curse of Fluorosis Indian Journal of Pediatrics, 85(5), 375- 383	Narrative review
L2	Pinto, U.,Thoradeniya, B.,Maheshwari, B. (2019). Water quality and chronic kidney disease of unknown aetiology (CKDu) in the dry zone region of Sri Lanka: impacts on well-being of village	Narrative review

Le vel	Bibliography	Reason for exclusion
	communities and the way forward Environmental science and pollution research international., 10(#issue#), #Pages#	
L2	Rasool, A.,Farooqi, A.,Xiao, T.,Ali, W.,Noor, S.,Abiola, O.,Ali, S.,Nasim, W. (2018). A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation Environ Geochem Health, 40(4), 1265-1281	Narrative review
L2	Sharma, D.,Singh, A.,Verma, K.,Paliwal, S.,Sharma, S.,Dwivedi, J. (2017). Fluoride: A review of pre- clinical and clinical studies Environ Toxicol Pharmacol, 56(#issue#), 297-313	Narrative review
L2	Spittle, B (2019). The importance of timing in fluoride-induced developmental neurotoxicity Fluoride, 52(4), 483-488	Narrative review
L2	Spittle, B. (2018). Fluoride, IQ, emotion, and children's school performance Fluoride, 51(2), 98-101	Narrative review
L2	Spittle, B. (2018). Fluoride-induced developmental disorders and iodine deficiency disorders as examples developmental disorders due to disturbed thyroid hormone metabolism Fluoride, 51(4), 307- 318	Narrative review

Le vel	Bibliography	Reason for exclusion
L2	Spittle, B. (2018). International differences in the recognition of non-skeletal Fluorosis: A comparison of India and New Zealand Fluoride, 51(3), 199-205	Narrative review
L2	Spittle, B. (2018). The diagnosis of chronic fluoride intoxication including the use of serum and urinary fluoride ion levels and a forearm radiograph in the diagnosis of stage II and III skeletal fluorosis Fluoride, 51(1), 3-12	Narrative review
L2	Spittle, B. (2019). The effects of fluoride on inflammation and cancer Fluoride, 52(1), 7-8	Narrative review
L2	Strunecka, A., Strunecky, O. (2019). Chronic fluoride exposure and the risk of autism spectrum disorder International Journal of Environmental Research and Public Health, 16 (18) (no pagination)(3431), #Pages#	Narrative review
L2	Strunecká, A., Strunecký, O., Guan, ZhiZhong (2019). The resemblance of fluorosis pathology to that of autism spectrum disorder: a mini-review Fluoride, 52(2), 105-115	Narrative review
L2	Susheela, A. K.,Toteja, G. S. (2018). Prevention & control of fluorosis & linked disorders: Developments in the 21 st century - Reaching out to patients in the community & hospital settings for recovery Indian Journal of Medical Research, 148(5), 539-547	Narrative review
L2	Wimalawansa, S. J. (2016). The role of ions, heavy metals, fluoride, and agrochemicals: critical	Narrative review

Le vel	Bibliography	Reason for exclusion
	evaluation of potential aetiological factors of chronic kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication Environmental Geochemistry and Health, 38(3), 639-678	
L2	Yadav, K. K.,Kumar, S.,Pham, Q. B.,Gupta, N.,Rezania, S.,Kamyab, H.,Yadav, S.,Vymazal, J.,Kumar, V.,Tri, D. Q.,Talaiekhozani, A.,Prasad, S.,Reece, L. M.,Singh, N.,Maurya, P. K.,Cho, J. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review Ecotoxicol Environ Saf, 182(#issue#), 109362	Narrative review
L2	Aziz, S. A. ,Mehta, R (2016). Technical Aspects of Toxicological Immunohistochemistry: System Specific Biomarkers #journal#, #volume#(#issue#), #Pages#	No human subjects
L2	Dec, K.,Lukomska, A.,Maciejewska, D.,Jakubczyk, K.,Baranowska-Bosiacka, I.,Chlubek, D.,Wasik, A.,Gutowska, I. (2017). The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System Biological Trace Element Research, 177(2), 224-234	No human subjects
L2	Dharma-Wardana, M. W. C. (2018). Chronic kidney disease of unknown etiology and the effect of multiple-ion interactions Environmental geochemistry and health, 40(2), 705-719	No human subjects

Le vel	Bibliography	Reason for exclusion
L2	Hussain, C. M (2019). Fluoride Contamination in Groundwater and the Source Mineral Releasing Fluoride in Groundwater of Indo-Gangetic Alluvium, India. In Handbook of Environmental Materials Management #journal#, #volume#(#issue#), 210- 245	No human subjects
L2	Zhao, Q,Niu, Q,Chen, J,Xia, T,Zhou, G,Li, P ,Dong, L,Xu, C,Tian, Z,Luo, C,Liu, L,Zhang, S,Wang, A (2019). Mitochondrial Fission Inhibition induces Deffective Autophagy and Excessive Apoptosis Contributing to Developmental Fluoride Neurotoxicity XXXIVth Conference of the International Society For Fluoride Research, 52(1), 86-87	No human subjects
L2	Alipour, S.,Hemmati, A. (2016). Distribution maps and origin of fluoride anomalies in water bodies of Bazargan-Poldasht, NW. of Iran Journal of Natural Environment, 69(1), 107-129	No pdf available
L2	Allwood-Newhook, L. A., Chafe, R., Aslanov, R., Clarke, J., Gregory, P., Gill, N., Sarkar, A. (2017). The association of type 1 diabetes mellitus and concentrations of drinking water components in Newfoundland and Labrador, Canada Pediatric Diabetes, 18 (Supplement 25)(#issue#), 64	No pdf available
L2	Arumugam, T.,Kunhikannan, S.,Radhakrishnan, P. (2019). Assessment of fluoride hazard in groundwater of Palghat District, Kerala: A GIS	No pdf available

Le vel	Bibliography	Reason for exclusion
	approach International Journal of Environment and Pollution, 66(1-3), 187-211	
L2	Babcock, T. A.,Liu, X. Z. (2018). Otosclerosis: From Genetics to Molecular Biology Otolaryngologic Clinics of North America, 51(2), 305-318	No pdf available
L2	Datta, A. S., Singh, R., Basu, D., Lahiri, S. C. (2016). Preliminary clinical investigation on fluoride contamination in Nalhati subdivision (West Bengal);possible structural changes of water due to fluoride ion and related clinical aspects Journal of the Indian Chemical Society, 93(12), 1383-1388	No pdf available
L2	Duan, YiMin,Wang, ChenChen,Pu, Dan,Lin, Qin,Huang, Jia,Zhang, Ling (2018). Drinking tea type of endemic fluorosis in Xinjiang in 2014-2016 Chinese Journal of Endemiology, 37(4), 316-318	No pdf available
L2	Dutta, V.,Fatima, N.,Kumar, N. (2019). Excessive fluoride in groundwater of Central Ganga Alluvial Plain: a case study of Fatehpur, north India International Journal of Environmental Science and Technology, 16(12), 7791-7798	No pdf available
L2	Goyal, N.,Dulawat, M. S.,Dulawat, S. S. (2019). Effects of fluoride on human health in Rajasthan Advanced Science, Engineering and Medicine, 11(1- 2), 21-23	No pdf available
L2	Hari Kumar, K. V. S.,Singh, Y. (2019). Visual vignette Endocrine Practice, 25(10), 1082	No pdf available

Le vel	Bibliography	Reason for exclusion
L2	Jarquin-Yanez, L.,Mejia-Saavedra, J.,Molina- Frechero, N.,Pozos-Guillen, A.,Alvarez, G. (2016). Risk assessment by exposure to fluorine through water consumption, by determining susceptibility biomarkers and effect in child population of San Luis Potosi Toxicology Letters, 259 (Supplement 1)(#issue#), S123-S124	No pdf available
L2	Jimenez-Cordova, M. I.,Gonzalez-Horta, M. C.,Aguilar-Madrid, G.,Barrera-Hernandez, A.,Sanchez-Pena, L. C.,Barbier, O. C.,Del Razo, L. M. (2016). Evaluation of KIM-1, Cystatin-C and glomerular filtration rate in schoolchildren exposed to inorganic fluoride Toxicology Letters, 259 (Supplement 1)(#issue#), S131	No pdf available
L2	Karak, P. (2017). Health effects of ground water fluoride contamination in Bankura district of West Bengal, India International Journal of Pharma and Bio Sciences, 8(3), B195-B203	No pdf available
L2	Rathore, S.,Meena, C.,Gonmei, Z.,Toteja, G. S.,Bala, K. (2018). Study of excess fluoride ingestion and effect on liver enzymes in children living in Jodhpur district of Rajasthan Indian Journal of Public Health Research and Development, 9(1), 412-416	No pdf available
L2	Solis-Angeles, S.,Cardenas Gonzalez, M.,Jimenez- Cordova, M. I.,Villarreal-Vega, E.,Aguilar-Madrid, G.,Gonzalez-Horta, M. C.,Del Razo, L. M.,Barbier, O.	No pdf available

Le vel	Bibliography	Reason for exclusion
	 (2016). Comparative urinary miRNAs expression and cystatin C level in adults chronically exposed to fluoride through drinking water Toxicology Letters, 259 (Supplement 1)(#issue#), S115 	
L2	Strunecka, A.,Blaylock, R. L.,Strunecky, O. (2016). Fluoride, aluminum, and aluminofluoride complexes in pathogenesis of the autism spectrum disorders: A possible role of immunoexcitotoxicity Journal of Applied Biomedicine, 14(3), 171-176	No pdf available
L2	Tunakova, J.,Galimova, A.,Fajzullin, R.,Valiev, V. (2016). Assessment of health risks of the child population in the consumption of drinking water, taking into account secondary pollution on the example of Kazan Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(1), 1114-1117	No pdf available
L2	Valdez-Jimenez, L.,Lopez-Guzman, O. D.,Cervantes-Flores, M.,Costilla-Salazar, R.,Calderon-Hernandez, J.,Alcaraz-Contreras, Y.,Rocha-Amador, D. O. (2016). In utero exposure to fluoride through drinking water and cognitive development delay in children Toxicology Letters, 259 (Supplement 1)(#issue#), S206	No pdf available
L2	Walsh, Christine E., Jackson, Mark E., Central Connecticut State, University, Department of, Biology (2018). Community Water Fluoridation in the United	No pdf available

Le vel	Bibliography	Reason for exclusion
	States and the Possible Threat of Neurotoxicity to Humans #journal#, #volume#(#issue#), #Pages#	
L2	 Wang, X. L., Ming, J., Qiu, B., Liao, Y. F., Liao, Y. D., Wei, S. F., Tu, C. L., Pan, X. L. (2019). [Relationship between fluoride exposure, orthopedic injuries and bone formation markers in patients with coal-burning fluorosis] Yingyong Shengtai Xuebao, 30(1), 43-48 	No pdf available
L2	Zhou, Yuan,Yon, RuiXia,Xu, Rui,Zhang, Juan,Li, YanGuo,Liu, MingQing (2019). Effects of water- borne iodine and fluoride on thyroid diseases Chinese Journal of Endemiology, 38(3), 249-252	No pdf available
L2	Abouleish, M. Y. (2016). Evaluation of fluoride levels in bottled water and their contribution to health and teeth problems in the United Arab Emirates Saudi Dent J, 28(4), 194-202	No relevant health outcomes
L2	Abtahi, M.,Dobaradaran, S.,Jorfi, S.,Koolivand, A.,Khaloo, S. S.,Spitz, J.,Saeedi, H.,Golchinpour, N.,Saeedi, R. (2019). Age-sex specific disability- adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: A national and subnational study in Iran, 2017 Water Research, 157(#issue#), 94-105	No relevant health outcomes
L2	Academy of Medical Sciences, (2016). Improving the health of the public by 2040 #journal#, #volume#(#issue#), #Pages#	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
L2	Actrn, (2019). Water Quality and the Microy - TUMS http://www.who.int/trialsearch/Trial2.aspx?TrialID=A CTRN12619000458134., #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Aghapour, S.,Bina, B.,Tarrahi, M. J.,Amiri, F.,Ebrahimi, A. (2018). Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS Environ Monit Assess, 190(3), 137	No relevant health outcomes
L2	Amouei, A. I., Faraji, H., Khalilpour, A., Fallah, S. H., Asgharnia, H. A. (2016). Fluoride Concentration in Drinking Water Resources; North of Iran International Archives of Health Sciences, 3(1), 19- 22	No relevant health outcomes
L2	Anim-Gyampo, M.,Anornu, G. K.,Appiah-Adjei, E. K.,Agodzo, S. K. (2019). Quality and health risk assessment of shallow groundwater aquifers within the Atankwidi basin of Ghana Groundwater for Sustainable Development, 9(#issue#), 100217	No relevant health outcomes
L2	Arya, S.,Subramani, T.,Vennila, G.,Karunanidhi, D. (2019). Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India Environmental geochemistry and health., 18(#issue#), #Pages#	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
L2	Aslani, H.,Zarei, M.,Taghipour, H.,Khashabi, E.,Ghanbari, H.,Ejlali, A. (2019). Monitoring, mapping and health risk assessment of fluoride in drinking water supplies in rural areas of Maku and Poldasht, Iran Environ Geochem Health, 41(5), 2281-2294	No relevant health outcomes
L2	Bhattacharya, P.,Samal, A. C.,Banerjee, S.,Pyne, J.,Santra, S. C. (2017). Assessment of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India Environ Sci Pollut Res Int, 24(25), 20300- 20314	No relevant health outcomes
L2	North American Paediatric Society, (2019). Position Statement: The use of fluoride in infants and children #journal#, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Dahi, E (2019). Database Management of Defluoridation Work as an Essential Tool in Minimising Exposure to Fluoride Through Water XXXIVth Conference of the International Society For Fluoride Research, 52(1), 97	No relevant health outcomes
L2	Das, N.,Das, A.,Sarma, K. P.,Kumar, M. (2018). Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain Chemosphere, 194(#issue#), 755-772	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
L2	Deavenport-Saman, A.,Britt, A.,Smith, K.,Jacobs, R. A. (2017). Milestones and controversies in maternal and child health: Examining a brief history of micronutrient fortification in the US Journal of Perinatology, 37(11), 1180-1184	No relevant health outcomes
L2	Ding, L.,Yang, Q.,Yang, Y.,Ma, H.,Martin, J. D. (2020). Potential risk assessment of groundwater to address the agricultural and domestic challenges in Ordos Basin Environ Geochem Health, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Emenike, C. P., Tenebe, I. T., Jarvis, P. (2018). Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk Ecotoxicol Environ Saf, 156(#issue#), 391-402	No relevant health outcomes
L2	Fallahzadeh, R. A., Miri, M., Taghavi, M., Gholizadeh, A., Anbarani, R., Hosseini-Bandegharaei, A., Ferrante, M., Conti, G. O. (2018). Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water Food and Chemical Toxicology, 113(#issue#), 314-321	No relevant health outcomes
L2	Farooqi, A., Sultana, J., Masood, N. (2017). Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications Toxicol Ind Health, 33(8), 655- 672	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
L2	Fonkwe, Merline L. d (2016). A Framework for Better Understanding Drinking Water Quality in Happy Valley-Goose Bay Labrador : Indications for Optimization and Protection of Municipally Supplied Water #journal#, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Ganyaglo, S. Y.,Gibrilla, A.,Teye, E. M.,Owusu- Ansah, E. D. G. J.,Tettey, S.,Diabene, P. Y.,Asimah, S. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana Chemosphere, 233(#issue#), 862-872	No relevant health outcomes
L2	Ghaderpoori, M.,Najafpoor, A. A.,Ghaderpoury, A.,Shams, M. (2018). Data on fluoride concentration and health risk assessment of drinking water in Khorasan Razavi province, Iran Data in Brief, 18(#issue#), 1596-1601	No relevant health outcomes
L2	Hanse, A.,Chabukdhara, M.,Gohain Baruah, S.,Boruah, H.,Gupta, S. K. (2019). Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India Environ Monit Assess, 191(12), 782	No relevant health outcomes
L2	Jayasinghe, S.,Zhu, Y. G. (2020). Chronic kidney disease of unknown etiology (CKDu): Using a system dynamics model to conceptualize the multiple environmental causative pathways of the epidemic Science of the Total Environment, 705 (no pagination)(135766), #Pages#	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
L2	Kanagaraj, G.,Elango, L. (2019). Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: Implications from stable isotopic ratio δ53Cr/δ52Cr, geochemical and geostatistical modelling Chemosphere, 220(#issue#), 943-953	No relevant health outcomes
L2	 Karunanidhi, D., Aravinthasamy, P., Roy, P. D., Praveenkumar, R. M., Prasanth, K., Selvapraveen, S., Thowbeekrahman, A., Subramani, T., Srinivasamoorthy, K. (2020). Evaluation of non- carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of south India Environ Monit Assess, 192(2), 102 	No relevant health outcomes
L2	Kaur, L.,Rishi, M. S.,Siddiqui, A. U. (2020). Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India Environ Pollut, 259(#issue#), 113711	no relevant health outcomes
L2	Kazi, T. G.,Brahman, K. D.,Baig, J. A.,Afridi, H. I. (2019). Bioaccumulation of arsenic and fluoride in vegetables from growing media: health risk assessment among different age groups Environ Geochem Health, 41(3), 1223-1234	No relevant health outcomes
L2	Keramati, H.,Miri, A.,Baghaei, M.,Rahimizadeh, A.,Ghorbani, R.,Fakhri, Y.,Bay, A.,Moradi,	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	M.,Bahmani, Z.,Ghaderpoori, M.,Mousavi Khaneghah, A. (2019). Fluoride in Iranian Drinking Water Resources: a Systematic Review, Meta- analysis and Non-carcinogenic Risk Assessment Biol Trace Elem Res, 188(2), 261-273	
L2	Kumar, S.,Singh, R.,Venkatesh, A. S.,Udayabhanu, G.,Sahoo, P. R. (2019). Medical Geological assessment of fluoride contaminated groundwater in parts of Indo-Gangetic Alluvial plains Sci Rep, 9(1), 16243	No relevant health outcomes
L2	Li, Y.,Wang, S.,Nan, Z.,Zang, F.,Sun, H.,Zhang, Q.,Huang, W.,Bao, L. (2019). Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China Sci Total Environ, 663(#issue#), 307-314	No relevant health outcomes
L2	Marghade, D., Malpe, D. B., Subba Rao, N. (2019). Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India Environ Geochem Health, #volume#(#issue#), #Pages#	No relevant health outcomes
L2	Mejare, I. (2018). Current Guidance for Fluoride Intake: Is It Appropriate? Advances in dental research, 29(2), 167-176	No relevant health outcomes
L2	Mirzabeygi Rad Fard, M.,Yousefi, M.,Soleimani, H.,Mohammadi, A. A.,Mahvi, A. H.,Abbasnia, A.	No relevant health outcomes

	-	-
Le vel	Bibliography	Reason for exclusion
vei		
	 (2018). The concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran Data Brief, 18(#issue#), 40-46 	
L2	Mukherjee, I.,Singh, U. K.,Patra, P. K. (2019). Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India Chemosphere, 233(#issue#), 164-173	No relevant health outcomes
L2	Narsimha, A.,Sanda, Rajitha (2018). Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India Human and Ecological Risk Assessment, 24(8), 2119-2132	No relevant health outcomes
L2	Narsimha, A.,Sudarshan, V. (2018). Data on fluoride concentration levels in semi-arid region of Medak, Telangana, South India Data in Brief, 16(#issue#), 717-723	No relevant health outcomes
L2	Narsimha, A.,Sudarshan, V. (2018). Drinking water pollution with respective of fluoride in the semi-arid region of Basara, Nirmal district, Telangana State, India Data Brief, 16(#issue#), 752-757	No relevant health outcomes
L2	Noda, Grace (2016). The Controversy over Community Water Fluoridation : an Analysis of its	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	Effects and Reasons Behind the Arguments #journal#, #volume#(#issue#), #Pages#	
L2	Qasemi, M.,Afsharnia, M.,Zarei, A.,Farhang, M.,Allahdadi, M. (2019). Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: a case study Human and Ecological Risk Assessment, 25(5), 1222-1233	No relevant health outcomes
L2	Radfard, M.,Rahmatinia, M.,Akbari, H.,Hashemzadeh, B.,Akbari, H.,Adibzadeh, A. (2018). Data on health risk assessment of fluoride in water distribution network of Iranshahr, Iran Data Brief, 20(#issue#), 1446-1452	No relevant health outcomes
L2	Samuel, O. A., PraiseGod, E. C., Theophilus, T. I., Omolola, K. C. (2018). Human health risk assessment data of trace elements concentration in tap water-Abeokuta South, Nigeria Data Brief, 18(#issue#), 1416-1426	No relevant health outcomes
L2	Singh, G.,Kumari, B.,Sinam, G.,Kriti,,Kumar, N.,Mallick, S. (2018). Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective- a review Environ Pollut, 239(#issue#), 95-108	No relevant health outcomes
L2	Singh, G.,Rishi, M. S.,Herojeet, R.,Kaur, L.,Sharma, K. (2019). Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	arid region of northern India Environ Geochem Health, #volume#(#issue#), #Pages#	
L2	Sisay, T.,Beyene, A.,Alemayehu, E. (2017). Spatiotemporal variability of drinking water quality and the associated health risks in southwestern towns of Ethiopia Environ Monit Assess, 189(11), 569	no relevant health outcomes
L2	Valeeva, E. R., Ismagilova, G. A., Stepanova, N. V., Serazetdinova, F. I., Saifullin, R. R., Iliasova, A. R. (2017). Assessment of adolescents' exposure to non-carcinogenic risk associated with drinking water Journal of Pharmacy Research, 11(10), 1209-1213	No relevant health outcomes
L2	Yadav, K. K.,Kumar, V.,Gupta, N.,Kumar, S.,Rezania, S.,Singh, N. (2019). Human health risk assessment: Study of a population exposed to fluoride through groundwater of Agra city, India Regul Toxicol Pharmacol, 106(#issue#), 68-80	No relevant health outcomes
L2	Yousefi, M.,Asghari, F. B.,Zuccarello, P.,Conti, G. O.,Ejlali, A.,Mohammadi, A. A.,Ferrante, M. (2019). Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: A case study in an endemic fluorosis region of northwest Iran International Journal of Environmental Research and Public Health, 16 (4) (no pagination)(564), #Pages#	No relevant health outcomes
L2	Yousefi, M.,Ghalehaskar, S.,Asghari, F. B.,Ghaderpoury, A.,Dehghani, M. H.,Ghaderpoori,	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
	M.,Mohammadi, A. A. (2019). Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran Regul Toxicol Pharmacol, 107(#issue#), 104408	
L2	Yousefi, M.,Ghoochani, M.,Hossein Mahvi, A. (2018). Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran Ecotoxicol Environ Saf, 148(#issue#), 426-430	No relevant health outcomes
L2	Yu, J.,Zhou, J.,Long, A.,He, X.,Deng, X.,Chen, Y. (2019). A comparative study of water quality and human health risk assessment in longevity area and adjacent non-longevity area International Journal of Environmental Research and Public Health, 16 (19) (no pagination)(3737), #Pages#	No relevant health outcomes
L2	Yuan, L.,Fei, W.,Jia, F.,Jun-Ping, L.,Qi, L.,Fang-Ru, N.,Xu-Dong, L.,Shu-Lian, X. (2020). Health risk in children to fluoride exposure in a typical endemic fluorosis area on Loess Plateau, north China, in the last decade Chemosphere, 243(#issue#), 125451	No relevant health outcomes
L2	Zhang, L.,Zhao, L.,Zeng, Q.,Fu, G.,Feng, B.,Lin, X.,Liu, Z.,Wang, Y.,Hou, C. (2020). Spatial distribution of fluoride in drinking water and health risk assessment of children in typical fluorosis areas in north China Chemosphere, 239(#issue#), 124811	No relevant health outcomes

Le vel	Bibliography	Reason for exclusion
L2	Kanduti, D.,Sterbenk, P.,Artnik, B. (2016). The use of fluoride and its effect on health. [Slovene] Zdravniski Vestnik, 85(5-6), 348-353	Non-English reference
L2	Ortega-Romero, M. S.,Hernandez Sanchez, A. M.,Medeiros-Domingo, M.,Barbier, O. (2016). Evaluation of risk factors for renal disease in a pediatric Mexican meztizo population from Apizaco in Tlaxcala Mexico Toxicology Letters, 259 (Supplement 1)(#issue#), S242	Non-English reference
L2	Yan, RuiXia,Xu, Rui,Zhou, Yuan,Li, YanGuo,Pang, YaXian,Liu, Jia,Hu, XiaoHong,Yang, FengYan,Wen, SongChen,Zhang, LiPing,Ren, JianLi,Liu, MingQing (2019). Effects of iodine and fluoride content in drinking water on prevalence of adults thyroid nodules in Cangzhou, Hebei Chinese Journal of Endemiology, 38(6), 472-475	Non-English reference
L2	Yan, RuiXia,Zhou, Yuan,Li, YanGuo,Xu, Rui,Li, ShuZhen,Wen, SongChen,Li, XiaoMei,Zhang, LiPing,Meng, YuJun,Ren, JianLi,Liu, MingQing (2019). Detection of thyroid nodules in children from areas with different drinking water iodine and fluoride contents in Cangzhou, Hebei Province Journal of Environmental & amp; Occupational Medicine, 36(5), 470-473, 478	Non-English reference
L2	Abdur, Rashid,Guan, DongXing,Abida, Farooqi,Sardar, Khan,Salman, Zahir,Shah, Jehan,Khattak, S. A.,Khan, M. S.,Raees, Khan	Only dental outcome

Le vel	Bibliography	Reason for exclusion
	 (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan Science of the Total Environment, 635(#issue#), 203-215 	
L2	Li, Z., Yang, K., Xie, C., Yang, Q., Lei, X., Wang, H. (2019). Assessment of potential health risk of major contaminants of groundwater in a densely populated agricultural area Environ Geochem Health, #volume#(#issue#), #Pages#	Only dental outcome
L2	Rashid, A.,Farooqi, A.,Gao, X.,Zahir, S.,Noor, S.,Khattak, J. A. (2020). Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub- district Dargai, Pakistan Chemosphere, 243(#issue#), 125409	Only dental outcome
L2	Sezgin, B. I.,Onur, S. G.,Mentes, A.,Okutan, A. E.,Haznedaroglu, E.,Vieira, A. R. (2018). Two-fold excess of fluoride in the drinking water has no obvious health effects other than dental fluorosis J Trace Elem Med Biol, 50(#issue#), 216-222	Only dental outcome
L2	Alaska Nurses Association, (2018). An Emerging Threat to Drinking Water and Public Health: Forever Chemicals Alaska Nurse, 69(1), 5-8	Other fluoride/water type
L2	Chang, W.,Wang, L.,Zhang, Y.,Wang, M.,Wang, Y.,Li, P. (2019). A review of sources, multimedia distribution and health risks of novel fluorinated	Other fluoride/water type

Le vel	Bibliography	Reason for exclusion
	alternatives Ecotoxicology and Environmental Safety, 182 (no pagination)(109402), #Pages#	
L2	Chubaka, Chirhakarhula (2019). Roof Harvested Rainwater in the Adelaide Region, South Australia #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Duan, Q ,Li, Y ,Lei, P ,Chen, X ,Guan, Z (2019). Skeletal Features of Children Living in the Area of Coal-Burning Type of Endemic Fluorosis Detected by X-Ray Imaging XXXIVth Conference of the International Society For Fluoride Research, 52(1), 86	Other fluoride/water type
L2	Fan, Z.,Gao, Y.,Wang, W.,Gong, H.,Guo, M.,Zhao, S.,Liu, X.,Yu, B.,Sun, D. (2016). Prevalence of Brick Tea-Type Fluorosis in the Tibet Autonomous Region J Epidemiol, 26(2), 57-63	Other fluoride/water type
L2	 Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K. (2018). Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India Chemosphere, 207(#issue#), 626-636 	Other fluoride/water type
L2	Guan, Z ,Wang, Y ,Duan, Q,Liu, R ,Li, F,Xu, S ,Yang, G ,Deng, J ,Li, Y ,Wu, C ,Liu, Y We, N ,Dong, Y,Qi, X ,Yu, W (2019). Basic Investigation and Clinic Treatment for the Coal-Burning Type of Endemic Fluorosis in Guizhou, China XXXIVth Conference of	Other fluoride/water type

Le vel	Bibliography	Reason for exclusion
	the International Society For Fluoride Research, 52(1), 83-84	
L2	Iarc Working Group on the Evaluation of Carcinogenic Risk to Humans (2017). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Some Chemicals Used as Solvents and in Polymer Manufacture, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Mastrantonio, M.,Bai, E.,Uccelli, R.,Cordiano, V.,Screpanti, A.,Crosignani, P. (2018). Drinking water contamination from perfluoroalkyl substances (PFAS): an ecological mortality study in the Veneto Region, Italy Eur J Public Health, 28(1), 180-185	Other fluoride/water type
L2	Medline Plus, (2017). Fluoride #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Medline Plus, (2017). Fluoride Overdose #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Medline Plus, (2018). Osteosclerosis #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Negm, A. M (2017). The Nile Delta #journal#, #volume#(#issue#), #Pages#	Other fluoride/water type
L2	Spitz, J (2019). Genetic, Epigenetic and Environmental Factors: The Triangle of Health XXXIVth Conference of the International Society For Fluoride Research, 52(1), 78-79	Other fluoride/water type

Le vel	Bibliography	Reason for exclusion
L2	Struneckà, A ,Strunecky, O (2019). Neurotoxicity of Fluoride: Autism Spectrum Disorders XXXIVth Conference of the International Society For Fluoride Research, 52(1), 77	Other fluoride/water type
L2	Davoudi, M ,Mahvi, A H,Barjasteh-Askari, F Bazrafshan, E,Sarmadi, M,Ghorbani, M,Yaseri, M (2019). Relationship of fluoride in drinking water with hypertension prevalence and blood pressure. PROSPERO 2019 CRD42019138629 #journal#, #volume#(#issue#), #Pages#	Research protocol
L2	Frazão, P,Belotti, L (2019). Effectiveness of fluoridation of public water supply in Brazil - systematic review. PROSPERO 2019 CRD42019142050 #journal#, #volume#(#issue#), #Pages#	Research protocol
L2	Rosário, H,Rosário, B,Vieira, W,Cericato, G,Nóbrega, D,Paranhos, L R (2019). External control of fluoride concentration in public water supply in Brazilian cities: a meta-analysis. PROSPERO 2019 CRD42019120870 #journal#, #volume#(#issue#), #Pages#	Research protocol
L2	Alarcon-Herrera, M. T.,Martin-Alarcon, D. A.,Gutierrez, M.,Reynoso-Cuevas, L.,Martin- Dominguez, A.,Olmos-Marquez, M. A.,Bundschuh, J. (2020). Co-occurrence, possible origin, and health- risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data	Used reference concentration

Le vel	Bibliography	Reason for exclusion
	visualization Sci Total Environ, 698(#issue#), 134168	
L2	Bai, X.,Song, K.,Liu, J.,Mohamed, A. K.,Mou, C.,Liu, D. (2019). Health risk assessment of groundwater contaminated by oil pollutants based on numerical modeling International Journal of Environmental Research and Public Health, 16 (18) (no pagination)(3245), #Pages#	Used reference concentration
L2	Jolović, B., Stevanović, A., Nogić, M. (2017). Causes of increased concentration of fluorides in groundwater in Srebrenica municipality Journal of Engineering & amp; Processing Management, 9(1), 69-75	Used reference concentration
L2	Levine, K. E.,Redmon, J. H.,Elledge, M. F.,Wanigasuriya, K. P.,Smith, K.,Munoz, B.,Waduge, V. A.,Periris-John, R. J.,Nalini, Sathiakumar,Harrington, J. M.,Womack, D. S.,Rajitha, Wickremasinghe (2016). Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka - a multimedia laboratory analysis of biological, food, and environmental samples Environmental Monitoring and Assessment, 188(10), 548	Used reference concentration
L2	Li, Y.,Wang, F.,Feng, J.,Lv, J. P.,Liu, Q.,Nan, F. R.,Zhang, W.,Qu, W. Y.,Xie, S. L. (2019). Long term	Used reference concentration

spatial-temporal dynamics of fluoride in sources of

Le vel	Bibliography	Reason for exclusion
	drinking water and associated health risks in a semiarid region of Northern China Ecotoxicol Environ Saf, 171(#issue#), 274-280	
L2	Odiyo, J. O.,Makungo, R. (2018). Chemical and microbial quality of groundwater in Siloam village, implications to human health and sources of contamination International Journal of Environmental Research and Public Health, 15(2), 317	Used reference concentration
L2	Ranasinghe, N.,Kruger, E.,Chandrajith, R.,Tennant, M. (2018). Groundwater fluoride in Sri Lanka: opportunities to mitigate the risk at maximum contaminant level Ceylon Med J, 63(4), 174-179	Used reference concentration

Supplementary Material 4. Included animal studies

This supplement lists all animal studies eligible for inclusion in the systematic review, categorized by endpoint and tier of relevance. A tiered approach was employed to determine and select studies with key information relevant to the study objectives. This approach categorized studies into three tiers, with tier-1 containing all key information for the review and tier-2 containing supporting information. Studies in tier-1 underwent full data abstraction and quality assessment, as they tended to be guideline studies (according to the Office of Economic Collaboration and Development [OECD] or subject to Good Laboratory Practices [GLP]) that assessed potential health effects via the oral route of exposure at relevant concentrations (≤ 20ppm). A limited data extraction with no quality assessment was performed for studies placed in tier-2. No data abstraction or quality assessment was undertaken for tier-3 studies. To supplement the description of animal evidence in the main manuscript, a longer summary of evidence is included below.

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
	n= 0	n= 34	n= 59	n= 46	n= 13	n= 18	n= 7	n= 1	n= 18	n= 11	n= 15	n= 27	n= 5	n= 47
Adedara 2017 107					√							1		
Ahmad 2012 108				✓										
Akimov 2020 <u>109</u>														Oxidative stress
Al-Sabaawy 2020				√										
Ali 2019 111				✓										

4.1. List of included animal studies, by reported endpoints

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Altindag 2021 112				✓										
Altintas 2010 113														Oxidative stress
Baba 2016 114												1		
Balaha 2021 <u>115</u>													✓	
Balaji 2015 <u>116</u>			√											
Bartos 2018 117				1										
Basha 2013 118												~		
Basha 2011 119			√		✓									
Basha 2011 120														Oxidative stress
Basha 2012 121														Oxidative stress
Bataineh 2006 122														
Bharti 2011 123														Oxidative stress
Bharti 2011 124														Oxidative stress
Birkner 2006 125												~		Oxidative stress
Blaszczyk 2012 126		1												
Blaszczyk 2009 127														Oxidative stress
Bondu 2017 128		1												-
Bondu 2019 129		✓												

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Bouaziz 2007 130														Oxidative stress
Bulduk 2020 131							1							
Cao 2016 132				✓										
Cao 2019 133			√											
Cao 2021 134			1											
Cárdenas- González 2013 135												1		
Cenesiz 2008 136										✓				
Chaithra 2019a 137				~										
Chaithra 2019b 138				1										
Chattopadhyay 2011 139									1			✓		
Chaudhary 2010 14														Metabolism
Chen 2013 141		✓												
Cheng 2008 <u>142</u>		4												
Choudhary 2020		1		1										
Chiba 2010 144						✓								
Chiba 2015 145						1								
Chiba 2019 146						✓								Metabolism
Chioca 2008 147			1											

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Chouhan 2013 148														Oxidative stress
Chu 2020 149		1												
Das 2006a 150				1										
Das 2006b 151										√				
de Cássia Alves Nunes 2016 152		✓				✓								
Dec 2018 153									~					Oxidative stress
Dec 2019 ¹⁵⁴			1											
Dey 2021 155		1												
Dhurvey 2016 156				✓										
Dong 2015 157			1											
Dong 2017 158			✓											
Faruk 2021 159					1									
Feng 2012 160														Oxidative stress
Ferreira 2021 161											1			Oxidative stress
Foda 2021 162					✓									
Gao 2009 <u>163</u>			1											
Garcia-Montalvo 2009 164						✓								
Ge 2018 ¹⁶⁵			1											

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Geng 2014 166				1										Oxidative stress
Grucka-Mamczar 2009 <u>167</u>														Oxidative stress
Gupta 2016 168		✓												
Gupta 2015 <u>169</u>		✓												
Gutierrez-Salinas 2010 170										1				
Han 2014 171			~											
Hosokawa 2010 172												~		
Hosokawa 2016 ¹⁷³		1												
Hosokawa 2015 ¹⁷⁴										1				
Hu 2012 <u>175</u>						4								
Inkielewicz- Stepniak 2012 176														Oxidative stress
Interlandi 2018				1										
Izquierdo-Vega 2008 178				1										
Jaiswal 2020 179			✓											Oxidative stress
Jana 2018 180				✓		✓				1				
Jetti 2016 181			✓											
Jiang 2014 182				✓										
Jiang 2014 183			1											

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Kanagaraj 2015 184									1					
Kanbur 2009 185														Oxidative stress
Kant 2010 186														Blood bi chemistr
Karadeniz 2008														Blood bi
Kaya 2012 <u>¹⁸⁸</u>		✓												
Khan 2019 ¹⁸⁹									✓					
Khandare 2011														
Khandare 2007						✓								
Kido 2017 192												1		
Kido 2017 193												~		
Kivrak 2012 ^{<u>194</u>}			1											
Kobayashi 2014		~												
Kobayashi 2011														Urine analysis
Kobayashi 2009 ¹⁹⁷												1		
Krishnamoorthy 2015 ¹⁹⁸										✓				
Kuang 2017 <u>199</u>										1				
Leite Ade 2007											1			
Li 2017 ²⁰¹		~												

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Li 2019 202			~											
Li X 2021 203		✓	✓	1					✓			1	1	
Li Y 2021 204		1								1				
Liang 2020a 205				1										
Liang 2020b 206				1										
Lima Leite 2014						4								
Liu 2014 208			1											
Liu 2012 ²⁰⁹					4									
Liu 2016 ²¹⁰					1									
Liu 2008 211				✓										
Liu 2019 ²¹²										1	1			
Liu 2015 ²¹³				1										
Liu 2010 214			1											
Liu 2020 215											1			
Liu 2021 216				✓										
Lobo 2015 ²¹⁷						√								
Lombarte 2016						√								
Lopes 2020 219			√											

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Lou 2013 220			~											
Lu 2014 221				1										
Łukomska 2020 222			~								~			
Lupo 2011 223						√								
Ma 2020 224		1												
Madhusudhan 2009 225				✓										
Mahaboob Basha 2013 ²²⁶			✓											
Mahaboob Basha 2013 227												1		
Malvezzi 2019 228						✓								
Mandic 2020 229			✓						✓		✓			
Martin-Pardillos 2014 230		1												
McPherson 2018 231			✓		1									
Miao 2013 232									✓					
Min 2021 233				1							1			
Mohamed 2016 234														Oxidative stress
Mrvelj 2020 235					√									
Mujahid 2015 236							✓							
Nabavi 2013 237												1		

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Nadei 2019 ²³⁸			1											
Nageshwar 2018			~											
Niu 2009 240			✓											
Nkpaa 2018 241			✓											
Oka 2020 <u>242</u>														Autophagy
Ola-Davies 2018 243									✓			1		Hypertension
Omóbòwálé 2018 ²⁴⁴							4							
Oncu 2006 245								✓						Lipid
Oncu 2007 246				✓							1			
Oner 2020 247									~					
Owumi 2019 ²⁴⁸									✓			✓		
Oyagbemi 2018 249							✓							Hypertension
Oyagbemi 2018 250							✓							
Oyagbemi 2021 251				1			1				1			Oxidative stress
Pei 2017 252		✓												
Pereira 2011 253			✓											
Pereira 2017 254		1				✓								
Perera 2018 255									✓			1		

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Podder 2011 256											✓			
Podder 2008 257											✓			
Puranik 2015 258					√									
Qing-Feng 2019 259			✓											
Radovanovic 2021 ²⁶⁰			1						1	~	~			
Raju 2019 <u>²⁶¹</u>			~											
Raju 2020 262									✓			✓		
Ran 2021 263			4											Proteomic, dental fluorosis
Ranjan 2009 <u>264</u>									✓			1		Oxidative stress
Ray 2020 265				1										Oxidative stress
Reddy 2014 266														Oxidative stress
Sakallioglu 2014		✓												
Sanchez- Gutierrez 2019 268				✓										
Sarkar 2014 269					1									
Shalini 2015 270			✓											
Shankar 2013 271		1												
Shankar 2021 272		✓									1			Serum bio- chemistry
Sharma 2018 273			√											

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Sharma 2019 274				✓										
Sharma 2021 275														Bodyweight
Sharma 2021 276		4	~											Antioxidants, blood bio- chemistry
Shashi 2017 277				1							1			
Saumya 2017 278				1										
Song 2014 279											1	1		
Song 2013 280									1			1		
Song 2011 281		1												
Stawiarska-Pieta 2012 282									4					
Stawiarska-Pieta 2009 283														Oxidative stress
Sudhakar 2018 284			~											
Sun 2010 ²⁸⁵			~											
Sun 2014 286											1			
Sun 2009 ²⁸⁷				1										
Sun 2020 ²⁸⁸			✓								1		1	Antioxidants, stool bacteria
Teng 2018 289			✓											
Tian 2019 290				✓										
Tian 2019 ²⁹¹												√		

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Trivedi 2012 292			1											
Turkekul 2020 293		✓												
Usuda 2016 294									1			✓		
Validandi 2017						4								
Vasant 2010 296						1								
Vasant 2012 297						1								
Vasant 2011 298						4								
Wan 2006 ²⁹⁹				✓										
Wang 2018 300				✓										
Wang 2009 301					√									
Wang 2019 302													1	
Wang 2017 303				1										
Wang 2021 304			✓								✓			
Wasana 2015 305												✓		
Wei 2018 306			✓											
Wei R 2016 307				1							1			
Wei Y 2016 308														biomarkers of fluorosis
Whitford 2009 309			✓											

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Wu 2008 <u>310</u>				~										
Wu 2019 311				1							1			
Xin 2020 312			✓								1			Serum bio- chemistry
Xin 2021 313			~								4		1	Serum bio- chemistry, gut flora
Xu 2007 <u>314</u>												1		
Xu 2010 315					✓									
Yan 2007 316		✓												
Yan 2011 317		✓												
Yan 2016 318			√											
Yang 2015 319		✓												
Yang 2013 320												1		
Yao 2019 321		✓												
Yildirim 2018 322							✓		✓			1		
Yildiz 2006 323		✓												
Yu 2013 324		✓												
Yu 2019 325			✓											
Yue 2020 326														Metabolism
Zhang 2020 327			✓											

Study	Canc er	Bone / Skeletal	Neuro/ Cognitive	Developme ntal/ Reproducti ve	Endocrin e including thyroid	Diabetes or Glucose or Lipid Metaboli sm	Cardiov ascular	Respi ratory	Hepatic	lmmun otoxicit y	Genoto xicity	Renal/ Kidne y	Intestin al/ GIT	Others
Zhang 2013 328			1											
Zhang 2012 329										1				
Zhang 2016 330				✓										
Zhang 2013 331			√											
Zhang 2011 332			√											
Zhang 2017 333				1							✓			
Zhang 2015 334			√											
Rui 2017 335												1		
Zhang 2013 336				1										
Zhang 2008 337			√											
Zhao 2017 338				1										
Zhao 2018 339				~										
Zhao 2019 340			✓											
Zhao 2021 341		~									✓			Blood bio- chemistry, urine fluoride
Zheng 2016 342			1											
Zhou 2013 343				*										
Zhu 2014 344											1			
Zhu 2011 345			✓											

Developme Endocrin Study Canc Bone / Neuro/ ntal/ e er Skeletal Cognitive Reproducti including ve thyroid	Diabetes or Glucose Cardiov Respi Hepatic otoxicit Genoto or Lipid ascular ratory Y Metaboli sm
--	--

Zigui 2017 346

4.2. Characteristics of the included tier-1 animal studies

✓

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality	
		Reproductive toxicity			
Cao 2016 <u>132</u>					
Oral (drinking	Exposure	D-R relationship: increase in all reproductive	"NaF did have toxic	1	
water), subchronic	Sodium fluoride (NaF)	endpoints assessed with increase in NaF concentration	effects on male		
 mice study 8- weeks-old Kunming mice, males only 10 animals per group, 4 groups 	 0, 2, 4, 8 mg/kg bw/day (0, 11, 22, 44 mg F/ L) Vehicle – drinking water 11 weeks of exposure Outcomes assessed Reproductive toxicity Specific outcomes: Organ weights (femur, epididymis, testis) 	 Results: Overall growth: animals in all NaF-treated groups showed poor development, rough coats and even rough teeth with dark brown stains Bone F levels: significantly increased in all treatment groups Sperm quality: significant decrease in sperm count and significant increase in the deformity ratio of sperm and sperm head of higher treatment groups (50 and 100 	reproductive system, which reduced the testosterone content and sperm number, and increased the abnormality ratio of sperm and sperm head, supported by the damages of the testicular structure, as a		
	- Histological examination of testis	mg/L).	consequence of depressed HSF2 level,		

^{xxxix} When not reported by authors, exposure concentrations (mg/L or ppm fluoride) are converted into doses (indicated with an asterisk '*') using the following default conversion factors, as recommended by Health Canada (1994) 347. Canada H. Human health risk assessment for priority substances. Ottawa, ON: Ministry of Health. Health Canada; 1994.: 1 ppm or mg/L chemical in water equals to 0.14 mg/kg bw/day in rats or 0.20 mg/kg bw/day in mice.

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
	- Testosterone concentration	- Testis histology: tissues of all treated mice showed a	which resulted in the	
	in blood and testis	few vacuoles in seminiferous tubules, irregular	downregulation of Ssty2	
	-Sperm count	arrangement and decreased layers of spermatogenic	and Sly mRNA and	
	- Expression levels of	cells with most obvious damage in 100 mg/L NaF that	protein."	
	spermatogenesis related	includes abnormal arrangement and morphological		
	genes (qPCR) and proteins	malformations of spermatogenic cells, and decreased		
	(ELISA)	number of sperm in the lumen; overall histological		
		examination indicated aggravated testicular tissue		
		damage in all treatment groups.		
		- Testosterone levels in serum and testis: both levels		
		were significantly decreased in higher treatment		
		groups (50 and 100 mg/L).		
		- Gene and Protein expression: the mRNA expressions		
		of spermiogenesis specific genes (Ssty2, Sly, HSF2)		
		corresponding protein levels were changed markedly		
		in higher treatment groups (50 and 100 mg/L).		
Chaithra 2019 137				
Oral (gavage),	Exposure	D-R relationship: increase in several reproductive	"Exposure to F-	2
subchronic rat	 Sodium fluoride (NaF) 	parameters with increase in dose	contaminated	
study	• 0, 0.45, 2.26, 4.5 mg/kg	Results:	groundwater affects	
 Adult Wistar rats, 	bw/day	- Body or tissues weights: significant decrease in testis,	spermatozoa,	
males only	 Vehicle – de-ionized water 	epididymis and seminal vesicle tissue weight	steroidogenesis, and	
• 5 animals/ group,	 52 days of exposure 	(relative) of 5 and 10 mg/kg bw groups; and decrease	spermatogenesis by	
4 groups		in % body weight gain in all treated animals	inducing oxidative	
	Outcomes assessed		stress. The alterations	

induced by NaF on the

• Reproductive toxicity- Sperm count: significant reduction in sperm count and increase in abnormal spermatozoa of all treated animalsmale reproductive system are dose- dependent and increased concentration• Sperm count, motility, and abnormality- Testosterone levels: serum testosterone levels were significantly reduced with increase in NaF dose; 3β- hydroxysteroidof NaF causes severe damage to the system.• Activity of testicular 3β- hydroxysteroidmg/kg bw/day groups.Further, the study• BSDH- Histology: distorted & shrunken seminiferous tubulesreveals that F-induced alterations in• Serum testosterone conc.and loss of spermatogonial cells with increasealterations in• Histology of testis (germ spermatogenesis)severity (complete loss) in highest dosed animals. A reproductive system are reversible."reversible."• Activity of oxidative stress markers (superoxide dismutase SOD, catalase- Antioxidant enzymes: significant morease in testicular MDA levels of 5 and 10 mg/kg bw/day groups- Antioxidant enzymes	Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
		 Specific outcomes: Sperm count, motility, and abnormality Activity of testicular 3β- hydroxysteroid dehydrogenase (3β- HSDH) Serum testosterone conc. Histology of testis (germ cell count in spermatogenesis) Activity of oxidative stress markers (superoxide dismutase SOD, catalase CAT and malondialdehyde 	 increase in abnormal spermatozoa of all treated animals Testosterone levels: serum testosterone levels were significantly reduced with increase in NaF dose; 3β-HSDH levels were significantly reduced in 5 and 10 mg/kg bw/day groups. Histology: distorted & shrunken seminiferous tubules and loss of spermatogonial cells with increased severity (complete loss) in highest dosed animals. A significant dose-dependent decrease in counts of various germ cell types of spermatogenesis. Antioxidant enzymes: significant dose-dependent reduction in testicular SOD and CAT enzymatic levels; significant increase in testicular MDA levels of 	system are dose- dependent and increased concentration of NaF causes severe damage to the system. Further, the study reveals that F-induced alterations in reproductive system are	

- Oral (drinking water and gavage) reproductive/ developmental toxicity rat study
- Adult Wistar rats, males only

Exposure

- Sodium fluoride (NaF)
- 0, 0.7*, 10 mg/kg bw/day
- Vehicle deionized water
- 52 days of exposure
- Outcomes assessed

D-R relationship: significant increase in several reproductive parameters at both doses tested

- Results:
- Sperm motility: significant decrease in 10 mg/kg bw and 5 mg/L group
- "F exposure affected the 2 reproductive performances of male rats. The present study further revealed the fact that F-induced decline in testosterone levels, reduced sperm motility,

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
• 25 animals/ group, 3 groups	 Reproductive toxicity Specific outcomes: Sperm Parameters Serum Concentration of Testosterone Histology of Testis Fertility indices Number of pups delivered 	 Sperm abnormality: significant increase in NaF 10 mg/kg bw and 5 mg/L group Serum testosterone concentration: significant decrease in 10 mg/kg bw and 5 mg/L group Histology of the Testis: distorted and shrunken seminiferous tubules with loss of different stages of spermatogonial cells and Leydig cells, especially in the 5 mg/L group Fertility indexes: significant decrease in 10 mg/kg bw group Number of pups delivered: significant decrease in 10 mg/kg bw and 5 mg/L group 	and loss of spermatogonial cells affected the reproductive performances of male rats."	
Liang 2020a 205				
Oral (drinking water) subchronic mice study • 8-weeks old C57BL-6 mice, males only • 10 animals/ group, 4 groups	Exposure • Sodium fluoride (NaF) • 0, 2.2, 4.5, 9 mg/kg bw/day* (0, 25, 50, 100 mg/L NaF) • Vehicle – deionized water • 90 days of exposure Outcomes assessed • Reproductive toxicity • Specific outcomes:	 D-R relationship: higher F doses induced mitochondrial impairment and mitophagy in testicular cells Results: The altered mitochondrial structures in various degrees were observed either in germ cells or Sertoli cells in NaF treated groups. In spermatogenic cells, the mitochondrial cristae and the membranes of mitochondrion disintegrated in all NaF-treated groups. 	"Fluoride can induce mitochondrial impairment and mitophagy in testicular cells, especially in Leydig cells, and PINK1/Parkin mediated mitophagy participants in this process, which will contribute to the mechanisms of F-induced	2

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
	 Mitochondrial structural impairment and mitophagy in mice testes Expressions of mitophagy key proteins PHB2 and PINK1 in mice testes 	 The expressions of PHB2, both in mRNA and protein levels, were increased significantly in testes, especially in the Leydig cells from fluoride-treated groups. The mRNA expressions of PINK1 increased significantly in the 2.4 mM NaF group. PINK1 protein levels in the 1.2 and 2.4 mM NaF groups with a dose-dependent manner. 	male reproductive toxicity."	
Liang 2020b ²⁰⁶				
Oral (drinking water) subchronic mice study • ICR mice, males only • 10 animals/ group, 4 groups	 Exposure Sodium fluoride (NaF) 0, 2.2, 4.5, 9 mg/kg bw/day* (0, 25, 50, 100 mg/L NaF) Vehicle – deionized water 8 weeks of exposure Outcomes assessed Reproductive toxicity Specific outcomes: testicular morphology ultra-structure of the sperm genes expressions of spermatozoa and testis 	D-R relationship: higher F doses caused changes in testicular morphology and ultra-structure of the sperm • Results: - Testicular morphology: In 25 mg/L group, the intervals among seminiferous tubules were widened; in the 50 and 100 mg/L groups, the pattern of the seminiferous epithelial cells were disordered, the spermatogenic cells at different development stages were reduced and the boundary was blurred, and many spermatogenic cells fell off into the lumen. Vacuolar-like lesions appeared in 100 mg/L NaF group indicating spermatogenesis and sperm structure were affected by fluoride exposure - Ultra-structure of the sperm: No abnormal changes were seen in 25 mg/L group. Fiber sheath was thin and	"In summary, our study revealed that fluoride exposure altered the structures of the fibrous sheathes and axonemal in sperm flagellum via down-regulating the mRNA and protein expression levels of AKAP3, AKAP4, CFAP43, CFAP44, and HYDIN, which provides a new insight of fluorine alters the structure of sperm flagella"	2

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
		 irregular, and defective structure or even multiple fractures were observed in the 50 and 100 mg/L NaF- treated group. mRNA and protein expression levels of Akap3 and Akap4 were significantly decreased in the 100 mg/L group. Ultra-structure of spermatozoa flagellum axoneme: in the 50 and 100 mg/L groups, the center pairs were irregular and absent, the "9" in the axial filament were not clearly arranged between the outer twinned microtubules, and some microtubules were irregular in shape. The mRNA expressions of Cfap 43, Cfap44 and Hydin were significantly decreased in the testis of mice from 100 mg/L treatment group. CFAP44 and HYDIN protein levels of testis were 		
		significantly decreased in the 50 and 100 mg/L		
Min 2021 233				
Oral (drinking water) chronic study: • Male mice • 13 animals per group, 4 groups	 Exposure: Sodium Fluoride (NaF) 0, 2, 4, 8 mg F/kg bw/day Drinking water 90 days of exposure 	 D-R relationship: increase in sperm deformity rate, decrease in sperm survival Results: 50 mg/L NaF exposure at 90 days significantly reduced the organ coefficient of testis in mice compared to the control. No significant change in 25 mg/L or 100 mg/L NaF groups 	 The reduction of testicular organ coefficients, semen quality, serum testosterone levels, and changes in the testicular microstructure of mice given 50 or 100 mg/L 	1

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion Qualit	
Sun 2010 ²⁸⁵	 Reproductive toxicity Organ coefficient of testis Sperm count and deformity rate Histopathological analysis Serum testosterone Identification of gene expression 	 Sperm count: Significant decrease in sperm counts in 50 mg/L NaF group Sperm deformity: Significant increases in sperm deformity rate in 25, 50, and 100 mg/L NaF groups Sperm viability: Significant decrease in sperm viability in 50 and 100 mg/L NaF groups Serum testosterone: Significant decrease in serum testosterone in 50 and 100 mg/L NaF groups Histopathological changes: the quantity of spermatogenic cells and spermatozoa presented strikingly decreased trend and the gap between spermatogenic tubules increased significantly, especially in 50 and 100 mg/L NaF group Differentially expressed piRNAs: In the 50 mg/L NaF group, there were 1047 up-regulated and 1080 down-regulated piRNAs compared to control Expression analysis: the target genes expression of Ap4e1, Gga2, Gla and Ap1s3 were increased gradually in 50 and or 100 mg/L NaF group 	of NaF in water for 90 days showed that these exposures can cause significant testicular damage. Fluoride can induce testicular damage through altered piRNA expression in the testes	
Oral (drinking	Exposure	D-R relationship: Inhibition of sperm hyperactivation	In summary, this study 1	
water) subchronic		in a dose-dependent manner	demonstrated that sperm	
mice study	 Sodium fluoride (NaF) 	 m fluoride (NaF) Results: 		

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Adult Kunming	• 0, 2.84, 6.28, 14.18 mg/kg	- Sperm quality: sperm motility significantly decreased	mice administrated with	
mice, males only	bw/day (0, 30, 70, 150	by 15.24 and 18.43%, respectively, in 70 and 150 mg/L	70 and 150 mg/l NaF in	
• 60 animals/ group,	mg/L NaF)	groups. Sperm count and survival significantly reduced in	drinking water for 49	
4 groups	 Vehicle – distilled water 	150 mg/L group.	days, along with the	
	 49 days of exposure 	- Sperm hyperactivation: 70 and 150 mg/L F	decreased Ca2+	
	Outcomes assessed	concentrations significantly inhibited sperm	concentration, CAMK2	
		hyperactivation by 21.70 and 29.73%, respectively,	protein expression, and	
	 Reproductive toxicity 	showing a dose-dependent manner.	CatSper1 mRNA level in	
	- Sperm quality evaluation	- · ·	sperm. It may be one of	
	and assessment of	- Sperm Ca2+ levels: significant decrease in sperm Ca2+ concentrations by 16.92% and 30.1% in 70 mg/L and	the mechanism by which	
	hyperactivation	150 mg/L groups, respectively.	excessive F induced	
	- Ca2+ concentration		male infertility.	
	([Ca2+]) in spermatozoa	- A significant reduction in sperm CAMK2, but not in		
		CALM. Protein expression was observed in 70 and 150		
	- Gene/protein expression	mg/L groups		
	changes in sperm			

Sun 2014 286

Oral (drinking	Exposure	D-R relationship: sperm abnormalities were	In summary, this study
water) subchronic	 Sodium fluoride (NaF) 	significantly enhanced with increasing NaF	presents evidence that
mice study	• 0, 2.84, 6.28, 14.18 mg/kg	concentration	NaF adversely affected
 Adult Kunming mice, males only 20 animals/ group, 4 groups 	bw/day (0, 30, 70, 150 mg/L NaF)	 Results: Sperm abnormalities: a significant increase in sperm head abnormality was observed in 150 mg/l group; and 	mice sperm chromatin
			structure in a dose
			dependent manner.
			Reduced P1 and P2
. <u>9</u>		significant tail abnormality was found in 70 and 150	mRNA expression and
	Outcomes assessed	mg/L group.	altered histones and

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
	 Reproductive toxicity Sperm quality, morphology and DNA integrity Sperm gene and thiol group changes 	 Sperm DNA integrity: % DNA denaturation was significantly increased in 70 and 150 mg/L group. 	total thiol groups levels could contribute to the sperm damage resulted from F exposure	
Wang 2018 300				
Oral (drinking water) subchronic mice study • 30-day old Kunming mice, males only • 10 animals/ group, 4 groups	 Exposure Sodium fluoride (NaF) 0, 4.52, 9, 13.5 mg/kg bw/day* (0, 50, 100, 150 mg/L NaF) Vehicle – water 90 days of exposure Outcomes assessed Reproductive toxicity Sperm quality evaluation Total RNA extraction and quantitative real-time polymerase chain reaction Immunohistochemistry for CREM and ACT 	 D-R relationship: the sperm count and viability and the percentage of malformed sperm were increased in a dose-dependent manner Results: A significant decrease in testis weight was observed in the 100 and 150 mg/L groups; no significant differences in the average epididymis weights The sperm count and sperm viability were decreased in all F-treated mice and a statistically significant increase in the percentage of malformed sperm was noted in 100 and 150 mg/L groups Protein expression of CREM and ACT: CREM protein expression levels were significantly decreased in a dose-dependent manner. The protein expression levels of ACT were decreased significantly in all treatment groups 	"In conclusion, our results demonstrate that after 90 days of exposure in mice, F impairs sperm quality, which was associated with the downregulation of the testicular transcription factors CREM and ACT. Thus, this could represent one of the molecular mechanisms underlying the effect of F on the male reproductive system."	1

Wei 2016a 307

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Oral (drinking	Exposure	D-R relationship: sperm quality was altered in a dose-	Taken together, our	1
water) chronic	 Sodium fluoride (NaF) 	dependent manner (between 50 – 100 mg/L)	results demonstrated	
mice study	. ,	Results:	that, after 180 days	
 Adult Kunming mice, males only 20 animals/ group, 4 groups 	 0, 2.2, 4.5, 9 mg/kg bw/day* (0, 25, 50, 100 mg/L NaF) Vehicle – distilled water 180 days of exposure Outcomes assessed Reproductive toxicity Sperm quality Testicular histopathology Gene and protein expression analysis (testicular interleukin-17(IL- 17), interleukin-17 receptor C (IL-17RC), tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6)) Concentration of nitric oxide (NO) in testis 	 Results: Sperm quality: sperm count, and abnormality were significantly altered with increasing concentrations of NaF at 50 mg/L and above Testis histopathology: at the 25 mg/L dose, spermatogenic cells changed disorganization and denudation; at the 50 mg/L dose, there were a lot of vacuoles in seminiferous tubules; at the 100 mg/L dose, testicular histological alterations included loss and shedding of sperm cells within the lumen Gene expression: NaF treatment (100 mg/L) altered mRNA levels of f IL-17, IL-17RC, TNFa and IL-6 but not f IL21, TGF-b and IL-1b. Similarly, IL17 and TNFa protein contents were significantly increased in the testicular fluid of 100 mg/L dose compared to controls NO levels: a significant increase in iNOS mRNA in 50 and 100 mg/L NaF groups and a significant increase in NO content of 100 mg/L NaF group was observed 	exposure to mice, fluoride could induce testicular toxicity, which was associated with up- regulation of testicular inflammatory mediators including IL-17, TNF-a and NO.	

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Oral (drinking	Exposure	D-R relationship: higher F doses altered testicular	Based on this study	1
water) chronic	 Sodium fluoride (NaF) 	histology and sperm quality	results, authors confirm	
nice study	• 0, 2.2, 4.5, 9 mg/kg	Results:	that NaF induces adverse	
8-week-old BLB/c	bw/day * (0, 25, 50, 100		effects on testis including	
mice, males only	mg/L NaF)	- Sperm quality: Sperm motility and viability were	testicular inflammation.	
20 animals/ group,	Vehicle – distilled water	significantly reduced in 100 mg/L NaF groups, relative	The presence of specific	
4 groups		controls	Antis-perm autoantibodies	
4 groups	 150 days of exposure 	- Testicular histopathology: normal histological structure	in anti-testicular auto-	
	Outcomes assessed	was observed in testis of controls and 25 mg/L group	antibodies and the	
	Reproductive toxicity	mice. However, a different degree of infiltration status in	notable recruitment of	
		different immune cells, sloughing of cells and vacuolation	immunocyte, these key	
	- Sperm Quality	of spermatogenic epithelium, a reduction of sperms in	factors of autoimmune	
	- Testicular Histopathology	seminiferous tubule and significant reduction in	orchitis, are observed in	
	- Influence on Inflammation	spermatogenic score was noted in testis of 50 and 100	NaF groups. These	
	Cytokines	mg/L group mice.	results indicate that	
		- Inflammation cytokines: relative controls, expression of	testicular inflammation	
	- Status of Immunocyte and	IL-6, IL-17A, TNF- α and IFN- γ were significantly	induced by excessive F	
	Cytokines in Testis	increased in 100 mg/L group mice.	exposure is associated	
		increased in 100 mg/L group mice.	with autoimmune orchitis.	
			And IL-17A is a key	
			cytokine to play an	
			important role in this	

Renal or Kidney Toxicity

inflammation.

Chattopadhyay 2011 139

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Oral (drinking water) subchronic mice study • 8 weeks old, Swiss albino mice, males only • 8 animals/ group, 4 groups	Exposure • Sodium fluoride (NaF) • 0, 1.35, 13.5 mg/kg bw/day* (0, 15 and 150 mg/L NaF) • Vehicle – water • 30 or 90 days of exposure Outcomes assessed • Hepatotoxicity and Renal or Kidney Toxicity - Organo-somatic index (OSI) • Liver function tests • Glutathione (GSH) • Glutathione (GSH) • Glutathione-s-transferase (GST) • Thiobarbituric acid reactive substances (TBARS)	 D-R relationship: severe alteration of renal histological structures, liver enzyme levels in both F treatment groups Results: No death or clinical symptoms; no significant difference in water consumption rate or body weight (weight gain) No significant difference in the OSI of liver and kidney Liver function: GPT level increased significantly in all the treatment groups whereas GOT level increased significantly in Gr III (65%) and VI (73%) GSH-GST response and TBARS production: a significant decrease (32%) in GST of the liver of group II mice; MDA production increased significantly Gr-IV mice. TBARS level increased significantly in the kidneys of Gr-II mice Histopathology of liver: Gr II mice showed extensive vacuolar degeneration in the cytoplasm and loss of integrity in the epithelium lining of central vein; Gr IV mice showed hepatocellular hypertrophy, cytoplasmic vacuolization and extensive hepatic sinusoidal dilation Histopathology of kidney: severe alteration of renal histological structures, atrophy of glomeruli, blood-filled 	"The present study clearly indicates that F induces hepatotoxicity and nephrotoxicity in mice evidenced by oxidative stress, histopathological changes in the liver and kidney with concomitant effects on normal hepatic function."	1

Cárdenas-González 2013 ¹³⁵		 spaces and varying degree of degeneration of tubular epithelium were noticed in Gr-II and Gr-IV mice Heat shock protein 70 profile: elevated expression of Hsp 70 in kidneys of group II and group IV than group III; liver Hsp 70 reduced gradually dose and time 		
Cárdenas-González 2013 ¹³⁵		Hsp 70 in kidneys of group II and group IV than group		
Cárdenas-González 2013 135		dependent manner		
	<u>i</u>			
rat study • 0, 2, 7 • Weanling Wistar rats, males only • 12 animals/ group, 3 groups Outcom • Rena - Urina creat - Urina biom	um fluoride (NaF) 7 mg/kg bw/day * (0, 0 ppm F) cle – water ays of exposure nes assessed al or Kidney Toxicity ary and serum tinine (Cre) ary glomerular filtration (eGFR) ary kidney injury harkers: Kim-1, Clu, N, B2M and CysC	 D-R relationship: urinary creatinine and several kidney injury biomarkers were altered at highest F doses Results: A small non-significant dose-dependent increase in the serum creatinine levels in 15 and 50ppm groups. A small non-significant dose-dependent decrease in the eGFR in 15 and 50 ppm groups. Urinary kidney injury biomarkers: significant increase in Kim-1, Clu, OPN, B2M and CysC in 50ppm group. mRNA expression: significant increase in levels of Kim, Clu and OPN in the renal cortex in 50ppm group. 	In summary, our results revealed that the sub- chronic fluoride exposure at environmentally relevant concentrations induces PT injury. This was clearly demonstrated by the increase of early and sensitive kidney injury biomarkers such as Kim- 1, Clu, OPN, Hsp72, B2M and CysC at stages were renal function was not altered.	1

Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
 mRNA expression levels of Kim, Clu and OPN in the renal cortex Histological analysis 	 Histological analysis: fluoride exposure induced tubular injury characterized by tubular flattening, loss of proximal tubule brush border, cell detachment and loss of the tubular epithelium continuity. Tubular flattening was observed in both 15 and 50 ppm groups; additionally, 50 ppm group had tubular cell detachment. There was a non- significant dose-dependent increase in percentage of injured tubules 		
 Sodium fluoride (NaF) 0, 0.3, 3 mg/kg bw/day* (0, 5, 50 ppm NaF) Vehicle – deionized water 60 days of exposure Outcomes assessed Renal or Kidney toxicity Renal histopathology Proteomics 	 histological changes in kidneys Results: Renal histopathology: No marked abnormal changes were seen kidneys of controls or 5 ppm group rats (except mild vascular congestion in 5 ppm rats). Kidneys of 50 ppm group rats had markedly increased blood vessels, larger glomerular & medullar capillaries engorged with erythrocytes. Renal proteomic changes: protein levels related to detoxification, metabolism and endoplasmic reticulum were significantly changed in treated rats, especially in 50 ppm group. Between control vs 50 ppm F, and 	histological analysis revealed no damage in kidneys induced by F, except for a vascular congestion in the high- dose group. The differentially (down- regulated) expressed kidney proteins in F dose groups belong to 3 main functional categories i.e. detoxification-related proteins, metabolism-	
	 mRNA expression levels of Kim, Clu and OPN in the renal cortex Histological analysis Histological analysis Exposure Sodium fluoride (NaF) 0, 0.3, 3 mg/kg bw/day* (0, 5, 50 ppm NaF) Vehicle – deionized water 60 days of exposure Outcomes assessed Renal or Kidney toxicity Renal histopathology 	 mRNA expression levels of Kim, Clu and OPN in the renal cortex Histological analysis: fluoride exposure induced tubular injury characterized by tubular flattening, loss of proximal tubule brush border, cell detachment and loss of the tubular epithelium continuity. Tubular flattening was observed in both 15 and 50 ppm groups; additionally, 50 ppm group had tubular cell detachment. There was a non- significant dose-dependent increase in percentage of injured tubules D-R relationship: 50 ppm F dose induced marked histological changes in kidneys Results: Sodium fluoride (NaF) Qo 3, 3 mg/kg bw/day* (0, 5, 50 ppm NaF) Vehicle – deionized water Renal histopathology: No marked abnormal changes were seen kidneys of controls or 5 ppm group rats (except mild vascular congestion in 5 ppm rats). Kidneys of 50 ppm group rats had markedly increased blood vessels, larger glomerular & medullar capillaries engorged with erythrocytes. Renal proteomic changes: protein levels related to detoxification, metabolism and endoplasmic reticulum were significantly changed in treated rats, especially in 	 mRNA expression levels of Kim, Clu and OPN in the renal cortex Histological analysis: fluoride exposure induced tubular injury characterized by tubular flattening, loss of proximal tubule brush border, cell detachment and loss of the tubular epithelium continuity. Tubular flattening was observed in both 15 and 50 ppm groups; additionally, 50 ppm group had tubular cell detachment. There was a non- significant dose-dependent increase in percentage of injured tubules D-R relationship: 50 ppm F dose induced marked histological changes in kidneys Mesults: Renal histopathology Renal histopathology Renal histopathology Proteomics Renal proteomic changes: protein levels related to detoxification, metabolism and endoplasmic reticulum were significantly changed in treated rats, especially in

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
		proteins, mainly related with metabolism, detoxification and housekeeping, were successfully identified. At the high F group, pyruvate carboxylase, a protein involved in the formation of oxaloacetate was found to be downregulated, while enoyl coenzyme A hydratase, involved in fatty acids oxidation, was found to be upregulated."	endoplasmic reticulum proteins.	
Wasana 2015 ³⁰⁵				
Oral (drinking water) chronic mice study • 7-8 months old, ICR mice, females only • 6 animals/ group, 4 groups	 Exposure Sodium fluoride (NaF) 0, 0.012, 0.35, 2.3 mg/kg bw/day (0, 0.05, 1.5, 10 mg/L F) Vehicle – drinking water 295 days of exposure Outcomes assessed Renal/ kidney toxicity Gross examination Kidney histopathology F content in kidneys 	 D-R relationship: no significant changes in any outcomes assessed Results: No treatment related deaths or abnormal behavior or visible signs (appetite, depression, lethargy etc.). No adverse effect on kidney functions due to treatment as indicated by blood urea nitrogen (BUN) and creatinine blood levels. F treatment didn't induce any histopathological changes in kidney tissues related to CKD including degeneration, necrosis of glomeruli and tubules, atrophy of glomeruli and glomerular capsules, and tubular dilation with leakage 	Based on the absence of abnormal histopathological changes and no significant change in blood BUN and creatinine levels, authors conclude that chronic treatment of mice with F in drinking water, within the concentration range of 0.07–15 mg/L, had no adverse effects on kidneys.	1

Hosokawa 2010 172

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Oral (drinking	Exposure	D-R relationship: highest dose tested caused increase	In conclusion, all the	2
water) subchronic	 Sodium fluoride (NaF) 	in BUN levels of ICGN mice, not in ICR mice	kidney impaired ICGN	
mice study	• 0, 5, 10, 20, 30 mg/kg	Results:	mice exposed to 150 ppm F died in less than	
 ICGN mice (ICR derived animal model for congenital nephrotic syndrome) with blood urea nitrogen (BUN) ≥36.0 mg/dL in ≥36.0 mg/dL in were used as animals with impaired kidney function, and healthy ICR mice used as controls with normal kidney function 11-14 weeks old mice, males only 	 bw/day* (0, 25, 50, 100 and 150 ppm F) Vehicle – water 4 weeks of exposure Outcomes assessed Renal/ Kidney toxicity Change in body and tissue weights Change in kidney function measured by blood urea nitrogen (BUN) and creatinine (CRE) levels 	 100% of 150 ppm and 40% of 100 ppm ICGN mice were died within 24 days of treatment. No deaths in 150 ppm ICR mice were recorded. Relative liver weight was significantly decreased in 150 ppm ICGN mice. Significant increase in BUN levels were measured in 150 ppm ICGN mice only (increases were rapid just prior to death). No increase in lower dose levels or in any ICR mice was noted. Significant increase in CRE levels of 150 ppm ICGN mice was reported. 	ppm F died in less than a month, and the kidney function in this group deteriorated significantly, since the mean values of BUN and CRE in the serum were dramatically increased. No death or alteration in BUN or CRE levels were noted in ICR mice (with normal kidney function) under same treatment conditions. People with renal insufficiently should therefore be careful to avoid excessive exposure to F.	
• 3-9 animals/ group, 5 groups				
Perera 2018 255				

Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Exposure	D-R relationship: a dose-response relationship was	"Fluoride exposure	1
 Sodium fluoride (NaF) 	observed for serum AST and ALP	impaired hepatocytes and	
	Results:	hepatic function, which	
bw/day * (0, 0.5, 5, 20 ppm	- Relative organ weight: no significant difference in the	was strongly supported by the necrosis and portal	
,	relative kidney and liver weights	inflammation	
 15 or 30 or 60 days of 	- Hepatic inflammation: mild portal inflammation with lytic necrosis in 0.5 ppm group, multiple areas of focal	histopathologically and increased serum AST,	
exposure Outcomes assessed	necrosis and various degrees of portal inflammation appeared in 5 and 20 ppm groups	ALT, and ALP activities. Further, it has been	
 Hepatotoxicity Relative organ weight Hepatic inflammation Serum creatinine Serum AST, ALP, and ALT 	 Serum creatinine: no difference in 15 and 30 days. Significant increase in 20ppm group after 60 days Serum AST, ALP, and ALT: serum AST activity was higher in 20 ppm group, no significant differences in serum ALT in 15 and 30 days while significantly higher in 5 ppm and 20 ppm after 60 days 	demonstrated that there is a possibility of inducing renal damage by high fluoride levels for longer period of administration due to elevated creatinine	
	Exposure • Sodium fluoride (NaF) • 0, 0.03, 0.3, 1.26 mg/kg bw/day* (0, 0.5, 5, 20 ppm NaF) • Vehicle – distilled water • 15 or 30 or 60 days of exposure Outcomes assessed • Hepatotoxicity - Relative organ weight - Hepatic inflammation - Serum creatinine	ExposureD-R relationship: a dose-response relationship was observed for serum AST and ALP• Sodium fluoride (NaF)• Results: • Results: • Relative organ weight: no significant difference in the relative kidney and liver weights• Vehicle – distilled water• Relative organ weight: no significant difference in the relative kidney and liver weights• Vehicle – distilled water• Hepatic inflammation: mild portal inflammation with lytic necrosis in 0.5 ppm group, multiple areas of focal necrosis and various degrees of portal inflammation appeared in 5 and 20 ppm groups• Hepatotoxicity • Relative organ weight • Hepatic inflammation · Serum creatinine • Serum AST, ALP, and ALT• Serum AST, ALP, and ALT• Serum AST, ALP, and ALT• Serum ALT in 15 and 30 days while significantly higher	ExposureD-R relationship: a dose-response relationship was observed for serum AST and ALP"Fluoride exposure• Sodium fluoride (NaF)• Results:impaired hepatocytes and hepatic function, which was strongly supported by the necrosis and portal inflammation• O, 0.03, 0.3, 1.26 mg/kg bw/day* (0, 0.5, 5, 20 ppm NaF)• Results:was strongly supported by the necrosis and portal inflammation• Vehicle – distilled water• Relative organ weight: no significant difference in the relative kidney and liver weights• Hepatic inflammation: mild portal inflammation with lytic necrosis in 0.5 ppm group, multiple areas of focal necrosis and various degrees of portal inflammation appeared in 5 and 20 ppm groupshistopathologically and increased serum AST, ALT, and ALP activities.• Hepatotoxicity • Relative organ weight • Hepatic inflammation · Hepatic inflammation · Serum creatinine · Serum AST, ALP, and ALT: · Serum AST, ALP, and ALT: · Serum AST, ALP, and ALT: · Serum AST, ALP, and ALT: · Serum AST, ALP, and ALT:

Endocrine and thyroid related effects

Liu 2016 ²¹⁰				
Oral (drinking	Exposure	D-R relationship:	"Fluoride can damage	1
water) chronic rat	 Sodium fluoride (NaF) 	Results:	thyroid structure and	
study	• 0, 0.3, 0.6, 1.26 mg/kg		function, including	
 One-month old 	bw/day * (0, 5, 10, 20 mg/L	- Thyroid weight and organ coefficient: no obvious changes.	thyroid weight and organ	
Wistar rats, males	NaF)		coefficient changes,	
and females	,		morphological	
	 Vehicle – water 			

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Study design • 20 animals/ group, 4 groups	 Exposure^{xxxix} & Outcomes 2 or 8 months of exposure Outcomes assessed Endocrine and thyroid related effects Thyroid weight and organ coefficient Thyroid tissue morphology Serum T3, T4, FT3, FT4, and TSH Apoptosis rate of thyroid cells GRP78, IRE1, sXBP-1 and CHOP mRNA expression in rat thyroid tissue 	 Results Thyroid tissue morphology: the treatment groups displayed smaller and irregular follicular cavity, or even cell mass without a cavity. Serum T3, T4, FT3, FT4, and TSH: 2 months – No change in serum T3, FT3, and TSH; however, serum T4 and FT4 levels were increased in 10 and 20 mg/L groups. T3/T4 ratios showed a dose- dependent reduction 8 months – No change in serum T3, FT3, T4, and FT4; however, TSH levels were reduced in 10 and 20 mg/L groups. T3/T4 ratios decreased only at in 20 mg/L group. Apoptosis rate of thyroid cells: no significant changes at 2 months. Higher apoptosis rates at 8 months in all groups. GRP78, IRE1, sXBP-1 and CHOP mRNA expression in rat thyroid tissue: no significant changes at 2 months. Higher GRP78, IRE1, and CHOP protein expression in rat thyroid 	Authors' conclusion abnormalities in thyroid tissue, alteration of thyroid hormone levels, and an increased apoptosis rate of thyroid cells. ER stress-induced apoptosis is involved in the damage of rat thyroid cells caused by excess fluoride."	Quality
		tissue: increased in treatment groups.		
McPherson 2018 231				
Oral (drinking water) chronic rat study	 Exposure Sodium fluoride (NaF) 0, 1.4, 2.8 mg/kg bw/day* (0, 10, or 20 ppm F) 	 D-R relationship: None Results: Serum T3, T4, and TSH: no significant differences were observed across groups for serum T3 or T4 or TSH 	"Serum triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) levels	1

observed across groups for serum T3 or T4 or TSH

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
GD4 Long-Evans	 Vehicle – drinking water 	levels; compared to rats maintained on a standard chow	were not altered as a	
hooded rats,	 Varying contents F in diet (a 	diet, TSH levels were significantly lower in rats	function of 10 or 20 ppm	
males only	standard diet with 20.5 ppm	maintained on low-F- chow	F- in the drinking water"	
• six animals/ group,	F or a low F diet with 3.24			
4 groups	ppm F)			
	Exposure from GD6 through			
	PND56			
	Outcomes assessed			
	 Endocrine and thyroid 			
	related effects			
	- Serum T3, T4, and TSH			

Immunotoxicity

Gutiérrez-Salinas 20	010 ^{<u>170</u>}			
Oral (drinking	Exposure	D-R relationship: the dose intervals are too large to	"Exposure of rats to NaF	2
water) subchronic	 Sodium fluoride (NaF) 	find a dose-dependent trend – only highest dose	modifies the expression	
rat study	• 0, 0.124, 6.1 mg/kg bw/day	showed significant changes	of p53, bcl-2, and	
 Adult Wistar rats, 	(0, 1, 50 ppm F)	Results:	caspase-3 and causes	
males only	 Vehicle – drinking water 	 Metabolic activity of leukocytes: no significant 	general metabolic	
• 25 animals/ group,	Varying contents (low or	changes in their metabolic activity in 1 ppm group;	changes to leukocytes, which are indicators of	
3 groups	high) of protein and calcium	50-ppm dose produced a significant decrease (p <	changes to normal	
	in diet	0.05)	0	
	 8 weeks of exposure 	- Expression of Proteins p-53, bcl-2, and Caspase-3: a	pattern of apoptosis"	
	Outcomes assessed	statistically significant increase in p53 and caspase-3		

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
	Immunotoxicity	protein levels of 50 ppm group only. No statistically		
	 Specific outcomes: 	significant change in bcl-2 expression levels		
	-Metabolic activity of			
	leukocytes			
	-Expression of Proteins p-			
	53, bcl-2, and Caspase-3			

Bone/skeletal related toxicity

Hosokawa 2016 173			
Oral (drinking	Exposure	D-R relationship: highest test dose induced changes	"In the present study with 3
water) subchronic	 Sodium fluoride (NaF) 	in bone mineral content and bone mineral density of	mice, 150 ppm of F in
mice study	• 0, 5, 10, 20 mg/kg bw/day*	the left femur	drinking water induced
 ICR-derived 	(0, 25, 50, and 100 ppm F)	Results:	bone and dental effects."
glomerulonephritis	 Vehicle – water 		However, authors note
(ICGN) mice,	4 weeks of exposure	- Microdensitometry of femurs: no significant increase in	that "work on rodents
males and females		any bone indexes; bone mineral content and bone	does not relate to humans
• 5 males and 4 or 7	Outcomes assessed	mineral density of the left femur from the male ICR 150	because higher levels of
females/ group, 4	 Bone/ Skeletal related 	ppm group were significantly higher.	fluoride are required to
groups	toxicity		get bone and dental
9.0000	- Microdensitometry		affects similar to those in
	examination of the femurs		humans; the ability of
			rodents to excrete or
			metabolize F more

efficiently than humans are able to explains the discrepancy in the F

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
			concentrations that induce osteofluorosis between humans and these experimental animals" and it's worthwhile to examine effects of F on osteofluorosis for a period	
			of more than 2 months.	
Kobayashi 2014 ¹⁹⁵				
Oral (drinking water) subchronic mice study • Weanling mice of 129P3/J and A/J strains, males only • 16 per strain/ group, 3 groups	 Exposures Sodium fluoride (NaF) 0, 2, 10 mg/kg bw/day* (0, 10, 50 ppm F) Vehicle – drinking water 8 weeks of exposure Outcomes assessed Bone/ Skeletal related toxicity Bone morphology (micro CT analysis) Bone formation (mineral apposition rate MAR) 	 D-R relationship: Dose-specific and strain-specific changes only in proteomics data was noted. Strain specific, but not dose-specific, changes in bone formation. Results: Bone morphology: no significant treatment-related differences in bone mineral density (BMD) or other bone parameters of any bone type (femurs, tibiae and lumbar vertebrae) among all treated groups. Bone formation: Slight dose-dependent increase in new bone deposition (MAR) was observed only in 129P3/J mice. Bone modeling: As indicated by plasma ALP activity, no statistical differences were observed among the F treatments for either strain. 	F in drinking water for 8 weeks didn't induce any significant changes in BMD or bone modeling of either strain mice.	1

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
	 Bone modeling (Plasma alkaline phosphatase activity) Proteomics 	 Collagen expression: based on western blotting data, no statistically significant differences in collagen type 1 protein levels of femur were found in any treated mice. Proteomics: Significant changes in several bone proteins (related to osteogenesis and osteoclastogenesis) were found among the F treatment groups within and between each strain indicating an influence of genetic background in bone cell responses to F exposure. 		
Song 2011 281				
Oral (drinking water) subchronic rat study • Wistar rats, males only • 12 animals/ group, 4 groups Human spot study: Eighty-six adult male workers at an aluminum factory in Hubei province, China, without liver, kidney, or bone	 Exposure Sodium fluoride (NaF) 0, 1.4, 21, 56 mg/kg bw/day* (0, 10, 150, 400 mg/L F) Vehicle – water 15 or 30 or 90 days of exposure Human study Age (years), serum F (mg/L), urinary F (mg/L) and air F (mg/m3) of participants in Human study: 	 D-R relationship: Serum ALP, BALP and BGP levels were affected at highest dose groups Results: Serum alkaline phosphatase activity: serum ALP was significantly increased in 10 and 150 ppm groups on days 15 and 30, but significantly reduced in the 400 ppm group on day 15 Serum bone alkaline phosphatase activity: only in the 150 ppm group on day 30 did the vitality of serum BALP showed a significant difference Serum osteocalcin: the BGP content was lower in 400 ppm group on days 30 and 90; but it was higher in the 150 ppm group on day 90 	"In conclusion, changes in serum ALP and BALP activity BGP content are important reference indicators of fluoride exposure. We therefore suggest that serum fluoride, serum ALP activity, and BGP content may be important reference indications of fluoride exposure."	2

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
related diseases	- Fluoride-exposed (n= 58)	- In the spot study, the activity of serum ALP and BGP		
were selected	38.35±14.24, 0.46±0.22,	content were higher in the medium working-age group		
	2.72±0.16, 2.08±1.01;	(10 years < working-age \leq 20 years) than in the short		
	- Non-exposure controls	working-age group (≤ 10 years). However, compared		
	(n=28) : 39.70±13.90,	with the medium working-age group, the content of		
	0.16±0.07, 0.63±0.16,	BGP was lower in the long working-age group (>20		
	0.10±0.06, respectively.	years).		
	- Spot blood samples			
	Outcomes assessed			
	 Bone/ Skeletal related toxicity 			
	 Serum alkaline phosphatase (ALP) 			
	- Serum bone alkaline			
	phosphatase (BALP)			
	- Serum osteocalcin (BGP)			
		Cardiovascular toxicity		

Oral (drinking	Exposure	D-R relationship: increased MVC and active	Authors conclude that F	2
water) chronic rat	 Sodium fluoride (NaF) 	calcification of the arteries was found in animals	significantly increased	
study	• 0, 0.123 and 1.31 mg/kg	exposed to WHO's recommended F concentration	medial vascular	
• 2-months old	bw/day (0, 1.5, 15 mg/L F)	Results:	calcification (MVC) in	
Wistar rats, CKD	 Vehicle – drinking water 	• Results.	animals with CKD and	

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
disease models	• 4.5 months of exposure	- CKD: F treatment influenced CKD of the Nx animals	hyperphosphatemia by	
(5/6-	Outcomes assessed	(1.2% Pi in diet); 1.5 mg/L and 15 mg/L group animals	exacerbating the renal	
nephrectomized		had higher urea and creatinine levels than controls and	damage; and suggest	
(Nx) or sham-	 Cardiovascular toxicity 	sham-operated rats (1.2% Pi diet). (S-1.2Pi).	"adding [F] to municipal	
operated controls),	- Calcium and phosphate	- Calcification of aortas: Nx animals (1.2% Pi diet) of both	drinking water, should be	
males only	deposits in the heart and	1.5 and 15 mg/L group had calcium accumulation in	reconsidered and should	
	complete aorta	abdominal and thoracic aorta. These calcified spots or	be replaced by a	
		lesions were compatible with stage 2 and stage 3 of	fluoridation policy based	
		vascular calcification in 1.5 and 15 mg/L groups,	on the health status of	
		respectively.	individuals."	

Metabolism (diabetes/glucose or lipid metabolism) related-outcomes

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
	-Rate of fluoride uptake by	sham-operated rats or with different F-treatment		
	bone tissue	levels		
	- Parameters of renal			
	insufficiency			
Lobo 2015 217				
Oral (drinking	Exposure	D-R relationship: F exposure significantly lowered	"After 22 days of	2
water) subchronic	 Sodium fluoride (NaF) 	plasma insulin levels in Diabetic animals, but not in	treatment, no alterations	
rat study	• 0, 1.4, 7 mg/kg bw/day* (0,	non-Diabetic counterparts, with no dose-response	in glycemia, insulinemia,	
Weanling Wistar	10, 50 ppm F)	trend	KITT, and HOMA2-IR	
rats (diabetic D	Vehicle – water	Results:	(homeostasis model	
and nondiabetic	 22 days of exposure 		assessment 2 of insulin	
ND; diabetes was induced with streptozotocin), males only • 9 animals/ group, 6 groups	 Outcomes assessed Metabolism (diabetes/ glucose or lipid metabolism) related toxicity Insulin tolerance test Plasma Glucose Plasma Insulin Insulin resistance 	 Plasma glucose: Plasma glucose concentration was significantly higher in Diabetes animals compared with non-Diabetes animals but was not influenced by the treatment with Fluoride. Diabetic animals had significantly lower plasma insulin levels compared with non-Diabetic counterparts. Exposure to F did not alter plasma insulin levels in non-Diabetes animals. However, in Diabetes animals, plasma insulin concentrations were significantly reduced upon exposure to F, but no dose-response relationship was observed. 	resistance) were seen for ND. F-exposure of D rats led to significantly lower insulinemia, without alterations in glycemia"	
		- Glucose Disappearance Rate was lower in Diabetic animals compared with their non-Diabetic counterparts, despite the difference being significant only for the		

1024

animals treated with water containing 0 or 10 ppm

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
		fluoride. In addition, Kitt was not significantly changed upon exposure to fluoride, both in non-Diabetic and Diabetic animals.		
		- Exposure to F significantly increased %S in Diabetic animals, and this effect was more pronounced for the rats treated with water containing 10 ppm fluoride.		
Malvezzi 2019 228				
Oral (drinking water) subchronic mice study • 35–60-day-old non-diabetic (NOD) mice, males only • 8 animals/ group, 3 groups	 Exposure Sodium fluoride (NaF) 0, 0.9, 4.5 mg/kg bw/day* (0, 10, 50 ppm NaF) Vehicle – water 21 days of exposure Outcomes assessed Metabolism related (diabetes/ glucose or lipid metabolism) toxicity Evaluation of plasma glucose and insulin levels and insulin resistance (IR) Proteomic analysis of liver and gastrocnemius 	 D-R relationship: Low F exposures reduced plasma glucose levels Results: 10 ppm group had a significant reduction in the plasma glucose levels and a significant increase in the β-cell function (%B). No significant difference among the treatment groups were seen regarding plasma insulin or HOMA2-IR. Proteomic analysis: in the muscle tissues of 10 ppm F group, increased expression of proteins involved in energy metabolism, and in the 50 ppm F group, increased expression of proteins related to muscle contraction, differentiation of brown adipose tissue and apoptosis were found. 	In summary, our results suggest that early treatment with low F concentration seems to prevent or at least delay the onset of T1D, probably by increasing the antioxidant defense. However, it should be noted that despite rodent models have greatly contributed to our understanding of T1D, differences between humans and rodents must be acknowledged	1
	muscle	increase in proteins involved in energy metabolism and protein synthesis, and in the 50-ppm group, proteins	when interpreting the	

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
		related to ROS metabolism and energetic metabolism	results obtained using	
		were altered. Additionally, western blotting confirmed an	animal models.	
		increase in isoforms of Glutathione S transferase in 100		
		ppm group liver tissues.		

Genotoxicity

Chattopadhyay 200	8 257			
Oral (drinking water) subchronic mice study • 2-3 months old, Swiss albino mice, males only • 4-6 animals/ group, 6 groups	Exposure • Sodium fluoride (NaF) • 0, 0.7, 1.4, 2.7, 9, 13.6 mg/kg bw/day* (0, 7.5, 15, 30, 100, and 150 mg/L NaF) • Vehicle – drinking water • 30 or 90 days of exposure Outcomes assessed • Genotoxicity • Organ weights • Mitotic inhibition, • Chromosomal aberrations • Chromatid breaks • Femur bone marrow cell count	 D-R relationship: inconsistent Results: No treatment related changes in the percentage of mitotic indices (MI) of bone marrow cells a significant increase in the percentage of aberrant metaphases and chromatid breaks in all treatment groups with highest in 15 mg/L group. The total number of nucleated cells per femur or percentage of bone marrow cells at different phases didn't change across any treatment groups 	"F in vivo is actually more genotoxic at certain lower concentrations (15mg/L) than at higher concentrations (100 or 150 mg/L)."	3

Leite Ade 2007 200

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Oral (gavage)	Exposure	Results:	"In conclusion, even	2
Acute rat studyAdult Wistar rats, males only	 Sodium fluoride (NaF) 0, 10, 20, 40, 60, 80 and 100 mg/kg bw 	 No DNA damage observed in blood, liver, kidney, urinary bladder and thyroid gland cells, regardless of the fluoride dose administered. 	acute lethal doses of fluoride administered to rats were unable to	
 5 animals/ group, 7 groups 	 Vehicle – deionized water Single dose (killed after 2 hours of administration) Outcomes assessed 		induce genotoxicity in all cell types tested, as depicted by the single cell comet assay. Since DNA damage is an	
	 Genotoxicity DNA damage in blood, liver, kidney, thyroid gland and urinary bladder 		important step in events leading from carcinogen exposure to cancer, this study represents a relevant contribution to the correct evaluation of	
			the potential health risk associated with chemical exposure."	

Neurotoxicity

Nadei 2019 238			
Oral (drinking	Exposure	D-R relationship: all three doses caused an	"The results of our work 1
water) chronic rat	 Sodium fluoride (NaF) 	impairment in the processes of spatial learning and	have shown that long-
study	• 0, 0.7, 2.8, 7 mg/kg	formation of long-term memory	term consumption of
PND42 Wistar	bw/day * (0, 5, 20, 50 ppm	Results:	excessive F- doses
rats, males only	F)		exerts pronounced
1027			

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
• 10 animals/ group,	Vehicle – water	- Novel object recognition: in 1 hour session, a significant	negative impact on	
4 groups	 12 months of exposure 	decline in DI (discrimination index), an index of	cognitive capacities of	
	Outcomes assessed	recognition memory, in rats exposed to 50 ppm fluoride	rats and on their	
		was noted; the decline noted in 5 and 20 ppm groups	hippocampal cells.	
	Neurotoxicity	was not statistically significant. In 24 hour after training,	Although the formation of	
	- Short-term and long-term	the rats from all three fluoride groups were not able to	short-term memory was	
	memory (using novel object	discriminate between new and familiar object, with DI	sensitive to 50 ppm F-	
	recognition (NOR) test)	being a few times less than that of control rats for	only, all three F- doses	
		animals given 20 and 50 ppm fluoride.	induced the deficit of long-	
	(using Morris water maze	- Morris water maze test: Following everyday training,	term memory." And,	
	test)	escape latency substantially decreased in all groups of	"altered expression of	
	- Expression of Calpain	animals. However, starting from day 3, efficiency for spatial learning was significantly lower for rats in 5 and	signaling molecules of	
	proteins in hippocampus		calpain-1 cascade at	
		50 ppm whereas inconsistent in 20 ppm group. In spatial	background of stable	
		probe test (day 6), the rats from 20 ppm fluoride group	activity of calpain-2 and	
		had lesser number of visits to target quadrant and,	its effectors, observed in	
		accordingly, spent less time and swam shorter distance	rat hippocampus after	
		within this quadrant. The distance traveled in target	long-term F- intoxication,	
		zone by the animals exposed to 50 ppm fluoride was	suggests the disruption of	
		also shorter. No statistical difference in these	link between early and	
		parameters was revealed for rats from 5 ppm group.	late LTP phases, i.e.,	
			between induction and	
		- A dose-dependent decline of calpain-1 content in	consolidation of memory,	
		cytoplasm of hippocampus, but significant increase of its	leading to decline in	
		expression in membrane fractions in comparison to	cognitive capacities of	
		control	animals."	

Study design	Exposure ^{xxxix} & Outcomes	Results	Authors' conclusion	Quality
Гeng 2018 ²⁸⁹				
Teng 2018 ²⁸⁹ Oral (drinking water) chronic rat study • Weanling SD rats, males only • 13 animals/ group, 4 groups	Exposure • Sodium fluoride (NaF) • 0, 0.9, 1.9, 3.8 mg/kg bw/day* (0, 15, 30, 60 mg/L NaF) • Vehicle – water • 18 months of exposure Outcomes assessed • Neurotoxicity • Ca2+ concentration in rats' hippocampus • CaMKIIα expression • c-fos expression • Histology and Immunochemistry of brain	 D-R relationship: Results: [Ca2+] increased in all treatment groups, with significant increases noted in the 30 and 60 mg/L groups CaMKIIa increased significantly in the 30 and 60 mg/L groups c-fos increased significantly in the 30 and 60 mg/L groups 	 "In conclusion, our data showed fluorosis could lead to the enhancement of [Ca2+] and the expression level of CaMKIIα and c-fos in the rat hippocampal CA3 region. The results support the idea that fluorosis can exert neurotoxic effects by changing the [Ca2+] in nerve cells. Calcium overload in the hippocampus may be the initiating factor of neuronal apoptosis induced by fluoride. We deduce that Ca2+/ CaMKIIα/c-fos channel 	1

Zhang 2020 327

rat study

Oral (drinking water) subchronic

• Four-weeks-old

rats, males and

• 10 /sex/ group, 4

females only

groups

• Sodium fluoride (NaF)

Exposure

- 0, 3.5, 7, 14 mg/kg bw/day*
- (0, 25, 50, 100 mg/L F) SPF-level Wistar
 - Vehicle distilled water
 - 90 days of exposure Outcomes assessed
 - Neurotoxicity
 - Learning Impairment
 - Neuronal Autophagy

D-R relationship: An increase in learning impairment with increase in F exposure

• Results:

Results

- Learning Impairment ((Morris water maze): the average escape latency had an increasing trend with the increase of fluoride exposure indicating fluorideinduced learning impairment. The escape latency of the rats in the 100 ppm group was significantly longer.
- Neuronal Autophagy: the expression of Beclin-1 increased with the concentration of fluoride. Beclin-1 expression was significantly higher in the 50 and 100 ppm group.
- Ultrastructural Abnormalities: lipofuscins increased in all groups with an increasing trend with the increase of fluoride exposure. Number of liposomes increased while the number of organelles decreased in the 100 ppm group.

"This study shows that 2 excessive intake of fluoride via drinking water would impair the learning ability of rats. The impairment of the ability of the hippocampus to collect and respond to external information may be related to a large amount of autophagy in the hippocampal CA1 and DG region neuron."

Authors' conclusion Quality

4.3. Quality assessment of the included tier-1 animal studies^{x1}

Study	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were experimental conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure characteri zation?	Can we be confident in the outcome assessme nt?	Were all measured outcomes reported?	Were there any other potential threats to internal validity	Quality
Cao 2016 ^[104]	+	NR	++	NR	++	+	+	++	+	1
Cárdenas- González 2013 [106]	+	NR	+	÷	+	+	+	+	+	1
Chaithra 2019a [108]	NR	NR	+	NR	+	-	-	++	++	2
Chaithra 2019b [109]	-	NR	NR	NR	++	+	++	++	+	2
Chattopadhyay 2011 ^[110]	+	NR	++	NR	++	+	+	++	+	1
Gutierrez-Salinas 2010 ^[134]	+	NR	+	NR	++	+	+	++	+	2
Hosokawa 2010 [136]	NR	NR	+	NR	+	+	+	++	++	2
Hosokawa 2016 173	NR	NR	+	NR		-	+	++	-	3

^{xl} Quality of evidence was assessed using the OHAT risk of bias tool

Study	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were experimental conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure characteri zation?	Can we be confident in the outcome assessme nt?	Were all measured outcomes reported?	Were there any other potential threats to internal validity	Quality
Kobayashi 2014 ^[158]	+	NR	++	NR	++	+	+	++	+	1
Kobayashi 2009 [160]	+	NR	+	NR	+	+	+	++	+	1
Leite Ade 2007 [163]	+	NR	+	++	++	+	+	+	+	2
Li 2021a ²⁰³	+	NR	++	NR	++	+	+	+	+	1
Liang 2020a ^[166]	+	NR	+	NR	++	-	+	++	+	2
Liang 2020b ^[167]	+	NR	+	NR	+	-	+	++	+	2
Liu 2016 ^[171]	+	NR	+	NR	++	+	+	++	+	1
Lobo 2015 ^[176]	+	NR	NR	NR	-	-	+	+	+	2
Lopes 2020 219	+	+	+	+	++	+	+	++	+	1
Lupo 2011 ^[180]	+	NR	+	NR	+	+	+	++	-	2
Malvezzi 2019 [185]	+	NR	++	NR	+	+	+	++	+	1
Martin-Pardillos 2014 ^[186]	NR	NR	+	NR	+	-	-	+	_	2

Study	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	Were experimental conditions identical across study groups?	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure characteri zation?	Can we be confident in the outcome assessme nt?	Were all measured outcomes reported?	Were there any other potential threats to internal validity	Quality
McPherson 2018 [187]	+	NR	++	NR	+	++	++	++	++	1
Min 2021 233	+	+	++	+	+	-	+	++	+	2
Nadei 2019 [192]	+	NR	+	NR	++	+	+	+	+	1
Perera 2018 [206]	+	NR	+	NR	++	++	+	++	+	1
Podder 2008 [208]	NR	NR	+	NR	+	-	+	++	-	3
Ran 2021 ²⁶³	+	+	++	+	++	+	+	++	+	1
Song 2011 [225]	+	NR	+	NR	++	+	+	++	-	2
Sun 2010 [229]	+	NR	++	NR	++	+	+	++	+	1
Sun 2012 348	+	NR	+	NR	++	+	+	++	+	1
Teng 2018 [232]	NR	NR	+	++	++	+	+	++	+	1
Turkekul 2020 293	NR	NR	NR	NR	+	+	+	+	+	2
Wang 2018 300	+	NR	+	NR	++	-	+	++	+	1
Wasana 2015 305	+	NR	++	NR	+	+	++	++	-	1
Wei 2016a 307	+	NR	+	NR	+	+	+	++	+	1
Wu 2019 <u>311</u>	+	NR	++	NR	+	+	+	++	+	1

Study	Was administered dose or exposure level adequately randomized?	Was allocation to study groups adequately concealed?	conditions identical y across study	Were the research personnel and human subjects blinded to the study group during the study?	Were outcome data complete without attrition or exclusion from analysis?	Can we be confident in the exposure characteri zation?	Can we be confident in the outcome assessme nt?	Were all measured outcomes reported?	Were there any other potential threats to internal validity	Quality
Zhang 2020 327	+	NR	+	NR	++	-	+	++	+	2
Legend:	efinitely low risk ias	++	Probably low risk bias	of +	Probably high bias	risk of .	– / NR Defini bias	tely high ris	sk of	-

4.4. Characteristics of the included tier-2 animal studies

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Podder 2011 256			
Male Swiss-albino mice (2–3 months old), 5 mice/group	 Exposure Group I (control): safe drinking water (0.1 mg/L F) Group II: NaF 15 mg /L for 30 days Group III: NaF 15 mg /L for 30 days + safe drinking water for 7 days Group IV: NaF 15 mg /L for 30 days + safe drinking water for 30 days Group V: NaF 15 mg /L for 30 days + safe drinking water for 90 days Outcomes assessed Genotoxicity Cell death, chromosomal aberrations (Cas) and chromatid breaks 	 F-treatment was followed by safe drinking water for different time durations resulted in an increase in percentage of dead cells in bone marrow in groups II–IV compared with the control group Significant increase in percentage of aberrant cells (cells with chromatid breaks) and chromatid breaks in groups II and III Compared to group-II mice, group-III and IV showed significant decrease in percentage of aberrant cells and chromatid breaks although their values still remained significantly higher than the control 	Treatment with 15 mg NaF/L for 30 days through drinking water followed by substitution with safe drinking water for 30–90 days significantly reduced chromosomal aberrations however these values remained significantly higher than the control group.
Ranjan 2009 ²⁶⁴			
New Zealand white male rabbits (n=24; 4-6 weeks old); 6/group	 Exposure 0 (control), 50, 100, and 200 mg/L NaF 90 days Outcomes assessed Oxidative stress Changes in oxidative stress indices in erythrocytes, liver, and kidneys 	Lipid peroxide levels were positively, SOD and CAT levels were negatively correlated with the F exposure in RBC, liver and kidneys.	Excess F exposure is associated with oxidative damage in RBCs, liver and kidney tissues of rabbits.

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Reddy 2014 266			
Male Wistar rats (n= 24; 4 months old), 6 per group	 Exposure 0, 20, 60 and 100 ppm 90 days Outcomes Neurotoxicity and Immunotoxicity Brain F levels Neurotransmitter levels in brain Immunological effects (analysis of CD4 cells, IgG1 & NK cells in rat spleen and blood) Oxidative stress in brain, blood and spleen 	 An exponential increase in brain F content with an increase in F conc in DW A significant change in various neurotransmitters (epinephrine, histamine, serotonin and glutamate) was observed A significant dose-dependent reduction in CD4 cells, IgG1, NK of blood and spleen was observed Similarly, a significant dose-dependent decrease in anti-oxidant enzymes (SOD, GPx, catalase) was noted 	At higher exposures, NaF exhibited neuroimmunological and oxidative stress in rats. The results also showed that NaF may cause neurotoxicity.
Shashi 2017 277			
Young male Wistar rats; 6 per group	 Exposure 0, 100, 200, and 300 ppm NaF/kg bw/day by oral gavage 40 days Outcomes assessed Reproductive toxicity Levels of gonadotropins and reproductive hormones (FSH, LH, testosterone, and intratesticular testosterone levels) 	• A significant increase in serum level of FSH, LH; and significant decrease in both serum testosterone and intratesticular testosterone levels were observed at the end of 40 days in all F treatment groups	The present study demonstrates that excess fluoride exposure can induce endocrine hormone disruption over the hypothalamic- pituitary-testis axis by influencing the regulation of reproductive hormones, hence causing deleterious effects on

spermatogenesis and

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
			alters sperm and semen quality.
Song 2014 279			
Male Sprague- Dawley rats, 12 rats/ group	 Exposure 0, 50, 100, and 200 mg/L of NaF in drinking water 120 days Outcomes assessed Kidney toxicity Urinary F levels Histology of kidneys Apoptosis and DNA damage in kidneys Immunohistochemistry of kidneys 	 Urine fluoride levels were significantly higher in all of the F treated groups NaF treated rats showed abnormal pathology in kidneys including hydropic degeneration of epithelial cells of tubule in renal cortex, interstitial fibrosis, chronic inflammatory cell infiltration and structure damage of tubular cells The percentage of cells in early stages of apoptosis, the percentage of late apoptotic/dead of cells and the percentage of total apoptosis in the kidneys was significantly increased in all F-treated groups A concentration-dependent increase in % tail DNA, an indicator of DNA damage, was observed 	The current study demonstrated that NaF treatment exerts pronounced negative effects on renal cells, including histopathological changes, increased apoptosis, and DNA damage, as well as the increased expression of cytosolic Cyt C and cleaved caspases 9, 8, and 3 protein levels in a dose- dependent manner in rats.
Usuda 2016 ²⁹⁴			
Male Wistar rats (9-weeks old), 5 per group 1038	Exposure • Control: 0 mg F Low-dose NaF: 2.1 mg F Middle-dose NaF: 4.3 mg F	 Highest change in median UV value was noted in LG-NaF and MG-ZnF2 groups The median NAG values in the high-dose HG-NaF, KF, and ZnF2 groups showed 2.0, 	Our results suggest the leakage of NAG into urine dose-dependent in NaF, KF, and ZnF2. The decline

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	High-dose NaF: 5.4 mg F	2.2, and 1.8 times higher than control,	of GFR for glomerular
	Low-dose KF: 2.1 mg F	respectively (p < 0.05 with \ge 90 th percentile of	function disorder was
	Middle-dose KF: 4.3 mg F	control)	remarkable in the high-
	High-dose KF: 5.4 mg F	 Highest change in median AST values was 	dose ZnF2 group, which
	Low-dose ZnF2: 2.1 mg F	observed in MG-NaF and LG-KF groups	was placed at the top of
	Middle-dose ZnF2: 4.3 mg F	The median ALT level of all experimental	the PIM [Probability-
	High-dose ZnF2: 5.4 mg F	groups was within the 10 th – 90 th percentile	Impact Matrix] chart with
	Single dose	of controls	the highest risk impact
	Outcomes assessed	 Excretion of fluoride was highest in HG- ZnF2 and MG-ZnF2 groups 	factor due to the tubular and glomerular
	Kidney toxicity	aa c g. a . p o	damage it causes.
	• Cumulative 24-h urine volume (UV), N-acetyl-		Ū
	β -D-glucosaminidase (NAG), and urine		
	creatinine (Creatu)		
	 Serum alanine aminotransferase (ALT), 		
	aspartate aminotransferase (AST), and serum		
	creatinine (Creats)		
Wang 2019 ³⁰²			
Female Sprague-	Exposure	• VH, CD, VH/CD of duodenum, jejunum and	Excess F exposure
Dawley rats (N=	• 0, 25, 50, and 100 mg F/L (NaF salt)	ileum were significantly reduced	induced morphological
48, 3-weeks-old),	• 70 days	 the content of glycoproteins secreted by the 	changes and immunity in
12 per group		goblet cells of duodenum, jejunum and ileum	small intestine of rats
	Outcomes assessed	was significantly decreased in the F 100	through decreasing
	Immunotoxicity	group	its developmental
		 IL-2, IL-6, TNF-α content was significantly 	parameters and the
		decreased in all treatment groups	distribution of immune

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Wang 2017 ³⁰³	 Small intestine morphology (villus height (VH), crypt depth (CD), and villus height to crypt depth ratio (VH/CD)) Serum cytokine contents (IL-1β, IL-2, IL-6, and TNF-α) 		cells, glycoprotein, and cytokine contents in the serum.
Female Kunming mice (30-day old) F0 generation; 21 per group into 4 groups	 Exposure F0 and F1 generation: 0, 50, 100, 150 mg F/L in DW (NaF salt) 90 days (both F0 and F1 generations) F0 females mated after 90 days exposure with healthy males by housing at 3:1 ratio F1: healthy F1 generation female mice (4 weeks old); 21 per group into 4 groups Outcomes assessed Reproductive toxicity Histology and ultrastructural changes in uteritissues Expression levels of MMP-9/TIMP-1, a member of matrix metalloproteinases (MMPs) and the tissue inhibitor of matrix metalloproteinases (TIMPs) families 	 The rates of pregnancy in the F groups were decreased in a dose-dependent manner The litter size and birth weight of F1 and F2 mice of both F100 and F 150 group were significantly decreased Compared to controls, F150 group mice had endometrial epithelial cells irregularly arranged, intercellular space became large, and the boundary of endometrial epithelial cells was not clear; moreover the following ultrastructural changes were observed: vague nucleus, microvilli reduction, increased lysosomes, a dilated endoplasmic reticulum, and mitochondrion vacuolization the mRNA expression levels of MMP-9 in the F 150 group were consistently increased from the 2nd until the 5th days and then gradually decreased on the 6th and 7th days; similarly, the mRNA expression levels of TIMP-1 were significantly increased and 	The results suggest that the excess F exposure in mice for 90 days causes ultrastructural changes in uterii and affect the embryo implantation process via interfering in the MMP-9/TIMP-1 system; may also reduce litter size in female mice.

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
		peaked on the 5 th day. Also, corresponding	
		protein levels of MMP-9 and TIMP-1 were	
		significantly increased in the F 150 group on	
		the 3 rd and 5 th days	
Wei 2016b 308			
Wistar rats; 5 per	Exposure	• Expression levels of A2M, C4BPA, ORM1,	The serum protein
sex per group	• 0, 50, 150, 250 mg/L NaF	C9, KNG2, SERPINA3N, CP, HPX, HP, and	expression profile of F-
	• 24 weeks	KNG1 showed an increasing trend in the 50	treated mice suggests that
		mg/L group, and in contrast decreasing	the low-dose NaF may
	Outcomes assessed	trend in the 150 and/or the 250 mg/L group.	promote complement,
	Serum proteomics	Five proteins (A1BG, RGD1564515,	inflammation, and
	 Serum protein expression profiles 	F1LN61, F1LM30, and F1LPQ6)	immune responses,
		revealed a decreasing trend in the 50 and	whereas moderate- and
		150 mg/L groups	high-dose NaF may inhibit
		 Most differentially expressed proteins 	these responses; and the
		belonged to: inflammatory response	proteins identified in this
		(46.9%), response to wounding (53.1%),	study may serve as
		acute inflammatory response (37.5%);	biomarkers for fluorosis.
		suggesting inflammation and immune	
		reaction proteins were involved in the	
		pathogenesis of fluorosis.	
Yan 2007 316			
Female B6 and	Exposure	Significant increase in bone fluoride content	This study demonstrates
C3H inbred mice	• 0, 50, 100 ppm F (NaF salt)	with increasing fluoride exposure, in both strains of mice	that increasing F doses at physiological levels has

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
(3-weeks old); 6 mice per group	 3 weeks Outcomes assessed Bone/skeletal related toxicity Bone F content Osteoclastogenesis and hematopoietic colony-forming cell assays Biomechanical testing of bones 	 No change in serum osteocalcin levels in neither strain In C3H mice, significant increase in osteoclast potential was correlated with: increased F exposure, serum PTH, serum RANKL, serum OPG, serum TRAP5b and bone osteoclast numbers Tibia trabecular bone quantity and architecture were significantly different between the different F treatment groups for B6 mice only; No significant changes in femur cortical bone were observed between the F treatment groups for either mouse strain 	strain-specific effects on bone physiology in mice such as the increase in intact PTH, changes in osteoclastogenesis and increase in CFU-M (monocyte/macrophage), CFU-GM (granulocyte and macrophage), and CFU-GEMM (multipotential) suggesting a role of F in the early stage of osteoclastogenesis.
Yan 2016 318			
Adult Wistar rats (5-weeks old); 10 per sex per group	Exposure 0, 60, 120 ppm F (NaF salt) 10 weeks Outcomes assessed Neurotoxicity F content in serum and brain Ultrastructural changes in brain Apoptosis in neurons Bax and Bcl-2 Expressions in the Brain 	 Dose-dependent increases of F levels in serum and brain tissues In 60 ppm group, brain cells appeared cytomorphotic, with intranuclear heterochromatin margination condensation, mitochondrial outer membrane: part vague, rough endoplasmic reticulum: gently expanding, cellular membrane: part swollen. In 120 ppm group, brain cells appeared obviously intranuclear heterochromatin margination aggregated, cellular membrane 	Based on the current results, the authors conclude that fluoride exposure induces neuron apoptosis and expression of inflammatory factors by activating microglia in rat brain.

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Zhao 2017 339	 Inflammatory factor expressions in the Hippocampus and Cortex region 	 dissolved, with shrinkage of nuclear and cell volume, organelle dissolved, and apoptosis presented Apoptotic cells (TUNEL-positive staining) increased with increasing fluoride concentrations A dose-dependent correlation between expression of Bax and fluoride concentration and a negative correlation was found between Bcl-2 expression and fluoride concentration in the cortex Indexes of Bcl-2/Bax in the hippocampus significantly lower than the control group, suggesting apoptosis in brain cells 	
Healthy Wistar pregnant rats; 11 per group	 Exposure 0, 1500 mg/L (prior to delivery all rats received distilled water alone; after delivery, maternal rats were given either 0 or 150 mg/L NaF continued to male puppies (same as to their maternal rats) after their weaning (3 weeks old) for 15 weeks) 15 weeks Outcomes assessed 	 An increasing trend in femur F content with an increase in duration of exposure Sperm count and motility were significantly decreased in treated rats with exposure duration In treated rats, the seminiferous tubules of each age were reduced in terms of diameter and thickness; the sperm cells were lost and shedding and finally disappeared after 9 weeks 	NaF exposure altered organ coefficient, sperm quality, total protein content of testis and testicular histology, as well as the mRNA and protein expression levels of HSP27, 79, 90 and HSF in the testis of rats with an increase in the femur fluoride concentration. In

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	 Reproductive toxicity Femur fluoride determination Organ coefficient of the testes and epididymis Sperm quality evaluation Testis histology Immunohistochemical analysis of testis for expression of HSP27, HSP70, HSP90 and HSF 	 Testicular morphological abnormalities were increased with exposure duration in treated rats The relative mRNA expression levels of HSP27, 70, 90 and HSF in treated rats' testes were significantly changed 	addition, in terms of HSPs, significant differences following NaF exposure were observed in the puberty.
Zhou 2013 ³⁴³ Sexually mature (8-10 weeks old) SD rats, females only 20 animals/ group, 4 groups	 Exposure 0, 100, 150, 200 ppm NaF in water 6 months of exposure Outcomes assessed Reproductive toxicity Fertility assessment Relative weights of reproductive organs Histopathological examination Serum hormones Immunohistochemistry 	 Successful pregnancy: rates of successful pregnancy was declined in a dose-dependent manner Organ coefficients: The ovarian organ coefficients were statistically lower in all treatment groups and the uterine organ coefficients increased statistically in 150 and 200ppm groups. Serum hormones: Serum E2, P, and LH levels decreased in all treatment groups; serum T levels were statistically lower in100 and 200 ppm groups; serum FSH levels were statistically lower in50 and 200ppm groups; serum FSH levels were statistically lower in50 and 200ppm groups; Uterine histology: the endometrial cells became larger, and the endometrial glands 	"In the present study, we demonstrated the following results. (1) The fertility of female rats may be inhibited after NaF exposure. (2) The secretion of E2, P, T, LH and FSH was suppressed in rats exposed to NaF. (3) NaF exposure decrease d ovarian and uterine weight. (4) The structures of the ovary and uterus were damaged in NaF- treated rats. These results indicate that the

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
		 became hypertrophic. Blood vessels in the myometrium had altered shapes and sizes. Ovarian histology: the total number of each type of follicle decreased in all treatment groups. 	female rats exposed to NaF is inhibited. The possible mechanism underlying NaF-induced fertility reductions is as follows: NaF hinders reproductive hormone synthesis and secretion, weakening its ability to regulate the ovary and maintain pregnancy. The ovarian and uterine structures may also be destroyed by NaF."
Adedara 2017 ¹⁰⁷			
Adult male Wistar rats (8 weeks old) group size 8	 Exposure 0, 15 mg/L 45 days of exposure Outcomes assessed Renal toxicity Oxidative damage and Thyroid dysfunction: glutathione, malondialdehyde, superoxide dismutase, catalase, glutathione-S- transferase, glutathione peroxidase 	 Decreased glutathione, malondialdehyde, superoxide dismutase, catalase, glutathione- S-transferase, glutathione peroxidase 	Chronically exposed to NaF induced renal toxicity in rats by increasing oxidative stress indices, decrease of antioxidant enzyme activities, and the functional status of the thyroid system
1045			

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Ahmad 2012 108			
Male albino mice (3–4 months old) group size: 10	Exposure 0, 50 ppm 10 days of exposure Outcomes assessed Reproductive toxicity Toxicity in testis 	 Loss of interstitial tissue, spermatogonia, and spermatogenesis. Decrease in the average number of spermatogonia perspermatic cord. Decline in the mean cross-sectional area (CSA) of the seminiferous tubules, whereas increase in the mean CSAs of spermatogonia and primary spermatocytes. Decline in head length, breadth, tail length, and the length and diameter of the middle part of sperm. 	NaF induced steroidogenesis and spermatogenesis in male
Baba 2016 <u>¹¹⁴</u>			
Wistar rats weighing, group size: 6	 Exposure 0, 1ppm, 10ppm 28 days of exposure Outcomes assessed Renal toxicity Levels of glutathione, malondialdehyde, superoxide dismutase, catalase, glutathione- S-transferase, glutathione peroxidase 	Increases in plasma protein, blood urea nitrogen, and creatinine levels	Concurrent exposure to fluoride increased the extent of renal damage which is due to increased free radical formation and a reduced function of the antioxidant system in renal tissue.

Basha 2011 119

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Adult albino Wistar rats, male 200– 250 g, female 170– 200 g, group size: 8	 Exposure <1 ppm, 100 ppm, 200 ppm Exposure through gestation period Outcomes assessed Endocrine and Thyroid related toxicity Serum thyroid hormones, brain histopathology, and learning memory: serum thyroid hormones (FT3 and FT4), acetylcholine esterase activity, spatial learning and memory 	 Decreased serum-free thyroxine (FT4) and free triiodothyronine (FT3) levels and decreased acetylcholine esterase activity. Presence of eosinophilic Purkinje cells, degenerating neurons, decreased granular cells, and vacuolations in discrete brain regions. Poor acquisition and retention and higher latency In the T-maze experiments. 	Fluoride ingestion continuously through multiple generations induced generational or cumulative effects on the development of the offspring.
Bondu 2017 ¹²⁸ Male Sprague- Dawley rats ≈ 200g, group size 6	 Exposure <1 ppm, 15ppm, 50 ppm On Vitamin D deficient (test groups) and adequate (control groups) diet 180 days of exposure Outcomes assessed Renal or Kidney Toxicity serum osteocalcin, parathyroid hormone, C terminal telopeptide of type I collagen, creatinine, Cystatin C, bone mineral density 	 Increased Alkaline Phosphatase and Osteocalcin C terminal telopeptide levels increased with moderate fluoride exposure and decreased with high fluoride exposure 	High fluoride intake deteriorates renal tubular function
Bondu 2019 ¹²⁹			

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Male Sprague- Dawley rats, group size 6		 Increased BMD, serum ALP, bone fluoride content, Osteocalcin, and urine fluoride in both control and test groups with increase in F concentration Mild thickening and increased osteoid in 80% of the Vitamin D deficient rats. Fluoride deposited in rat bone affects both osteoblastic and osteoclastic activity 	Fluoride deposits in bone and affects bone remodeling.
Sprague Daley rats weighing 200- 250 g (4 groups of 10 females, and 4 groups of 10 males)	 Groups of n=10 0 mg/L of NaF and 0 mg/L of resveratrol (control), 10 mg/L of NaF, 50 mg/L of 	 For each gender, the most marked elevations in the blood pressures were seen in the NaF group. In both the male and female groups, the chronic administration of resveratrol with NaF led to decreased blood pressures. The contraction response resulting from phenylephrine administration was increased in the groups administered NaF, whereas it 	Resveratrol provides a protective effect against the increased blood pressure caused by NaF and the potential endothelial damage. The protective effect of resveratrol results from its capability to reduce fluorine induced oxidative

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	 The effect of resveratrol therapy on the contraction-relaxation responses of the thoracic aorta rings and, on the blood pressure of rats exposed to chronic fluorosis Serum fluorine level Blood pressure Contraction response 	was decreased in the groups administered NaF and resveratrol.	stress and endothelial tissue damage.
Cao 2019 ¹³³ APP/PS1 double- transgenic mice, B6.Cg-Tg (APPswe,	Exposure • 100 mg/L, 1000mg/L • 84 days of exposure	 Decline in learning and memory in shorter time. Increased senile plaques and level of Aβ42, lba-1, and BACE1, while reducing the level 	Exposure to fluoride, even at lower concentration, can aggravate the deficit in learning and memory
PSEN1dE9) with a 85Dbo/Mmjax background, 3 months old, both male and female,	 Outcomes assessed Neurotoxicity Morris water maze test of spatial learning and memory Senile plaques, ionized calcium binding 	 of ADAM10 in their brains. Decreased synaptic proteins and enhanced oxidative stress in the hippocampus of APP mice. 	and neuropathological lesions of the mice that express the high level of APP.
group size 10	adaptor molecule 1 (Iba-1), and complement component 3 (C3) expression, Aβ42, synaptic proteins and enzymes that cleave APP, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).		

Chaudhary 2010 140

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Adult male albino rats, group size 10	 Exposure 14.29 mg/L 30,45,60 days of exposure Outcomes assessed Diabetes/ glucose or lipid metabolism related toxicity Enzyme profile and lipid profile: serum ALT, AST, LDH, total cholesterol, triglycercide, LDL, HDL, VLDH 	 Increase in serum AST and ALT. Increase in serum total cholesterol, LDL, VLDL, TG, and decrease in HDL. 	Fluoride exposure increase serum AST, ALT, total cholesterol, LDL, VLDL, TG, and decrease in HDL
Chen 2013 ¹⁴¹ 8-weeks-old male Sprague–Dawley rats (weighing 200–210 g), group size 6	Exposure • 20 mg/L • 84 days of exposure Outcomes assessed • Bone/ skeletal related toxicity • Bone health: bone mineral density,	 Slightly increased vertebral bone mineral density Negatively affected bone biomechanical property and bone microstructure. 	Fluoride slightly increased vertebral bone mineral density but negatively affected bone biomechanical property and bone microstructure.
Choudhary 2020 14 Swiss albino female mice. Four groups of eight animals each	biomechanical test of femur	 Significant decrease in maternal bodyweight in 100ppm and 250 ppm groups Significant differences in live fetuses, dead fetuses, fetal weight and fetal size in NaF groups compared to the control 	 -"NaF treated mice showed decrease in weight as compared to control"

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	 Outcome assessment: Bone/Skeletal related toxicity Skeletal examination Reproductive toxicity Fertility tests: number of implantations, number of resorptions, number of viable fetuses and dead fetuses, number of stunted fetuses, maternal body weight and placental Other: Weight, fetal body weight and size. 	 Reduced ossification, higher prevalance of rib defects, and skeletal malformation in NaF treatment groups 	 -"Number of dead fetuses in high dose of NaF treated group got increased when compared to the control group" -"The treatment of NaF in this study also affected the average body weight of pups and the placental weight."
Chu 2020 <u>149</u>			
Male BALB/c mice (4 weeks old, n=64), 16 mice/group	 Exposure 0 (control), 25, 50, and 100 mg F/L 3 months of exposure Outcomes assessed Bone/skeletal related toxicity Bone histopathology Dental fluorosis Bone F concentration Serum biomarkers (ALP, OCN) for bone differentiation 	 In the high F group, tibial trabecula enlarged and merged into large pieces with the adjacent bone trabeculae, F increased cancellous bone formation, and there was thickened cortical bone in the femur of mice exposed to F, especially in high F group Prevalence rates of dental fluorosis in the three fluoride groups were 43.75% (25 mg F/L), 93.33% (50 mg F/L) and 100% (100 mg F/L). Mice in high F group showed 	"[F]luoride up-regulates the expression of Wnt/b- catenin signal transduction molecules and Runx2, contributing to aberrant osteoblasts activity and osteogenesis, and b-catenin plays a pivot role in fluoride- induced viability and

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	Protein expression in bone tissue (Wnt/b-	severe dental fluorosis, characterized by	differentiation
	catenin signaling pathway)	white spots, cloudy splotches and pitting	osteoblasts."
		 There was a dose-dependent positive 	
		association with F concentration in drinking	
		water and F in spinal bone.	
		 Serum concentrations of ALP and OCN 	
		(biomarkers of bone differentiation) were	
		increased in middle and high F groups	
		 Wnt3a (ligand of Wnt/b-catenin signaling 	
		pathway) was significantly up-regulated in	
		the 50 and 100 mg/L F- groups. F gradually	
		increased the protein expression of Gsk3b	
		phosphorylation, b-catenin and its	
		downstream target gene Runx2, which was	
		accompanied by translocation of b-catenin	
		into the nucleus induced by fluoride. F	
		exposure was correlated with increased	
		Wnt3a, b-catenin, the ratio of p-Gsk3b	
		(Ser9) to Gsk3b and Runx2 protein levels	
Dey 2021 155			
Male Swiss albino	Exposure	Teeth whitening distinctly evident after 1	"[P]rolonged exposure t

- mice (n=54, ~ 20g, 1 month old), 9
- mice/group
- Group I (control): < 0.5 ppm F
- Group II: 6.8 ppm F for 4 months
- Group III: 6.8 ppm F for 8 months

Teeth whitening distinctly evident after 1 month of F treatment. In group II, complete whitening of lower incisors was observed after 4 months of F treatment. Teeth became chalky white with enamel erosions after 8 months of treatment in group III. "[P]rolonged exposure to environmentally relevant concentration of F accumulates in the teeth and bone leading to development of dental and

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	 Group IV: 6.8 ppm F for 4 months, then fresh drinking water (containing < 0.5 ppm of F) for next 4 months Group V: 6.8 ppm F for 4 months, then drinking water (containing < 0.5 ppm of F) supplemented with calcium and vitamin D (2.5-g calcium kg-1 diet and 1000 IU vitamin D kg-1 diet) for next 4 months Group VI: 6.8 ppm F and supplemented with calcium and vitamin D (2.5-g calcium kg-1 diet) for 4 months Group VI: 6.8 ppm F and supplemented with calcium and vitamin D (2.5-g calcium kg-1 diet) for 4 months 4-8 months of exposure Outcomes assessed Bone/skeletal related toxicity Dental fluorosis Skeletal fluorosis 	 Groups II and III exhibited osteosclerosis/increased hardening of the bone. Mild calcification of pelvic bone was observed in group III. F exposure significantly decreased Ca, Zn, Mn, K, Ni, and S levels in the bone while increased magnesium Mg and Fe was observed. In Group IV, Ca, Zn, Mn, and K levels increased compared to Groups II and III. F content in the bone was significantly higher in all treated groups, except in group V where F content was comparable to control group levels. F content was highest in group II, followed by group III, VI, and IV. No signs or symptoms of behavioral changes. Mice in groups II and III showed slight restrictions in activities like walking and 	skeletal fluorosis." Exposure to F altered the metal profile of bone and worsened skeletal health.
	Bone elemental content	movement of the head and limbs. Changes	
	F content in bone	in locomotion were not observed in other groups.	
	BehaviourLocomotion	J	
Dhurvey 2016 156			
Adult female albino rats, 1053	Exposure	 Reduced body weight in the rats ingesting 10, 15, and 20 mg NaF/kg bw/day 	Exposure of female albino rats to NaF in drinking

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
weighing about 180–200 g, group size 6	 0, 5, 10, 15, and 20 mg NaF/kg body weight/day 30 days of exposure Outcomes assessed Reproductive toxicity Estrous cycle and ovarian hormones: serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estrogen 	 Reduced ovarian weight in the rats ingesting 15 and 20 mg NaF/kg bw/day. Increased duration of the proestrous phase in the 10, 15, and 20 mg NaF/kg bw/day group. Decreased diestrous, estrous, and metaestrous phases in the 15 and 20 mg NaF/kg bw/day groups. Decreased hormonal concentrations of luteinising hormone in the 15 and 20 NaF/kg bw/day groups, follicle-stimulating hormone in the 10, 15, and 20 NaF/kg bw/day groups, and estrogen in the 10, 15 and 20 NaF/kg bw/day groups. 	water might have some immediate harmful effects on the reproductive system.
Ferreira 2021 ¹⁶¹ Female pregnant wistar rats (n=6, 150-200 g, 90 days old) and their male offspring (sample size not reported)	Exposure • 0 (control), 10, 50 mg F/L • 42 days of exposure Outcomes assessed • Mechanistic • F plasma concentrations • Oxidative stress • BDNF expression in hippocampus • Hippocampal proteome	 F exposure increased plasma F concentration in treatment groups compared to control group Oxidative biochemistry analyses showed that F caused a decrease of ACAP in 10 mg/L group and in 50 mg/L group compared with control group. There was also a marked increase in MDA levels and nitrite levels for both treated groups. 	"Exposure to both F concentrations during pregnancy and lactation increased the F bioavailability, triggered redox imbalance featured by a decrease of ACAP, increase of LPO and NO-2 levels, BDNF overexpression and

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
		mRNA analysis of whole hippocampus	changes in the
		indicated that there was an increase BDNF	hippocampus proteome."
		expression in both exposure groups	
		compared to controls.	
		• In the 10 mg F/L group, there were changes	
		in proteins associated to axogenesis,	
		positive regulation of neuron projection	
		development, glycolytic process and	
		regulation of calcium ion transport. In the 50	
		mg F/L group, proteins associated with	
		morphogenesis of neuronal projection	
		processes, regulation of neuron projection	
		development, axogenesis, glycolytic process	
		and regulation of ERK 1 and 2 cascade.	
Geng 2014 <u>¹⁶⁶</u>			
female Sprague-	Exposure	NaF induced ovarian apoptosis, with	Oxidative stress may play
Dawley rats, group	• 100 or 200 mg/L	concomitant activation of oxidative stress.	a key role in NaF-induced
size 10	 180 days of exposure 	Exposure to NaF activated extracellular	ovarian dysfunction by
		regulated protein kinase (ERK) and c-Jun	activating the apoptotic
	Outcomes assessed	NH2 kinase (JNK), disrupting the ERK and	ERK and JNK signaling
	Reproductive toxicity	JNK signaling pathways, while p38 and PI3K	pathways.
	Female fertility: ovarian apoptosis, ROS, SOD,	remained unchanged	
	CAT and GSHPx activities and MDA		
	content		

Hosokawa 2015 174

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
4–5-weeks-old male BALB/c mice weighing 23.2±0.2 g, group size 6	 Exposure 1, 5, 25, and 125 ppm 30 days of exposure Outcomes assessed Immunotoxicity Immunotoxic effects: TNFα, IL-1β, β-actin, IFN- γ and IL-2 	 Reduced intake of food or water per body weight in the 125-ppm group. Reduced relative weights of spleens in the 1- and 5-ppm groups. Decline in mRNA expression of TNFα in the macrophages in the 125- ppm group. 	The F concentration in the blood in this study may not be sufficiently high (as in vitro studies) to affected mRNA expression in vivo.
Inkielewicz-Stepnia	ak 2012 <u>176</u>		
Wistar Han rats (6- weeks old male and female rats weighing ~220 and ~170 g), group size 10	 Exposure 0, 12 mg/L Days of exposure not reported Outcomes assessed Hepatic and renal toxicity Liver and kidney function: nitric oxide level, thiobarbituric acid reactive substances, advanced oxidation protein products, total antioxidant status, glutathione, protein content in post nuclear supernatant fractions of the liver and kidney 	 Fluoride enhanced oxidative and nitrosative stress in investigated tissues. No gender difference was observed. 	F enhanced oxidative and nitrosative stress in investigated tissues.
Kaya 2012 <u>¹⁸⁸</u>			
Tuj sheep weighing 31±2 kg, group size 10	Exposure 4 ppm 270 days of exposure 	Decreased serum PTH levelsIncreased serum CT levels	Fluorosis in sheep incurred a decrease in the PTH levels and an

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Khan 2019 <u>189</u>	 Outcomes assessed Bone/skeletal related toxicity Calciotropic hormone: serum parathyroid hormone (PTH) and calcitonin (CT) activity levels 		increase in the CT levels, which may be the result of a temporary rise in serum Ca.
Weanling male A/J and 129P3/J mice	Exposure 15ppm, 50ppm 42 days of exposure Outcomes assessed Hepatotoxicity Liver proteome profiles 	 Fold change in liver proteins more pronounced in lower F treatment group. Most of the proteins with fold change upon treatment with 15 ppm F were increased in the A/J mice compared with their 129P3/J counterparts. Most proteins with fold change were decreased in the A/J mice compared with their 129P3/J counterparts, upon treatment with 50 ppm F. 	Male A/J mice attempt to fight the deleterious effects of F at low concentration. A/J animals have higher susceptibility to the deleterious effects of F.
Kido 2017a ¹⁹² 11–12-weeks-old ICR-derived glomerulonephritis (ICGN mice), male ICR mice, group size 5	Exposure • 0, 50, 100, and 150 ppm • 28 days of exposure Outcomes assessed • Renal/ Kidney toxicity	 For the ICGN mice, at the end of the experimental period, BUN in the 150 ppm group was significantly higher than 0 and 50 ppm groups For the ICR mice, after 3 days, the BUN in the 150 ppm group was higher than the 0 and 100 ppm groups. 	Serious toxic effects of ≥100 ppm F in the drinking water for mice with impaired kidney function.

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	 Renal function: blood urea nitrogen (BUN), the serum creatinine (CRE), the level of urinary protein, and the creatinine clearance 		
Kido 2017b ¹⁹³	• •		
6-weeks-old male Sprague-Dawley rats with unilateral ureteral obstruction opertaion, 250– 280 g, group size 13	 Exposure 0, 75, and 150 ppm 14 days of exposure Outcomes assessed Renal/ Kidney toxicity: transforming growth factor beta 1 (TGF-β1) transcription 	Increase in areas or number of cells that stained with Masson trichrome, or with antibodies against collagen type I, alphasmooth muscle actin (α -SMA, a myofibroblast marker), ED1, ED2, and ED3 (macrophage markers), and TGF- β 1.	M2 macrophage-TGF-β1- fibroblast/myofibroblast- collagen synthesis pathway is related to fluoride exacerbated tuburointerstitial nephropathy from UUO.
Kuang 2017 ¹⁹⁹			
ICR mice, group size 60	Exposure • 0, 12, 24, 48 mg/kg bw/day • 42 days of exposure Outcomes assessed	 Decline in growth index and lymphocytes in the white and red pulp Increased cell percentages of the G0/G1 phase and decreased cell percentages of the S phase 	NaF in 12 mg/kg and over causes toxic effects on the splenic development in mice.
	 Immunotoxicity Splenic development: splenic growth index, histopathological lesions, T and B-cell subsets and CD4+/CD8+ ratio, cytokine expression levels, IgA, IgG, and IgM contents, 	 Decline in T cells and B cells as well as IgA, IgG, and IgM contents. Decreased expression levels of cytokines including interleukin-2 (IL-2), transforming growth factor beta (TGF-β), tumor necrosis 	Cell cycle arrest is the molecular basis. Cellular and humoral
	cyclins/cdks protein expression	factor alpha (TNF-α), interferon gamma (IFN-γ) and cyclin (E/D and CDK2/4	immunity were imparied due to the reduction of T

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
		 Increased protein expression level of 	B cell numbers and
		interleukin-10 (IL-10)	activities.
Leite Ade 2007 200			
male Wistar rats	Exposure	No change in the level of DNA strand breaks in	Oral exposure to NaF did
with 75 days and weighing approximately 270 g, group size 5	 0, 10, 20, 40, 60, 80 and 100 mg/Kg bw/day 2 hours of exposure Outcomes assessed Genotoxicity 	all organs at all doses in the mean tail moment.	not result in systemic genotoxic effect in multiple organs related to fluoride toxicity
	DNA damage		
Li 2017 ²⁰¹			
3-weeks-old male	Exposure	Impaired bone resorption.	The consumption of
C57BL/6 mice, group size 10	 0, 100mg/L 105 days of exposure Outcomes assessed Bone/ skeletal related toxicity Bone homeostasis: bone osteoclasts numbers, osteoclasts ultrastructure, osteoclastogenesis, NFATc1 and ATP6v0d2 mRNA expression in osteoclasts 	 Decline in mRNA expression of nuclear factor of activated T-cells 1 (NFATc1), ATPase H+ transporting V0 subunit D2 (ATP6v0d2) and osteopetrosis-associated transmembrane protein 1 (Ostm1)] 	fluoride resulted in severe fluorosis and in an impaired OC function.
Lima Leite 2014 207			

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Male Wistar rats (60 days old), group size 6	 Exposure 0, 10, or 50 ppm 22 days of exposure Outcomes assessed Diabetes/ glucose or lipid metabolism related toxicity Diabetes: protein functions and protein interaction 	 Quantitative intensity analysis of the proteomic data revealed differential expression between diabetic/nondiabetic rats, and between different F concentrations. The GO annotations with the most significant terms were muscle contraction, carbohydrate catabolic processes, generation of precursor metabolites and energy, NAD metabolic processes and gluconeogenesis. 	The presence of the two stress proteins indicates an increase in insulin resistance, which might worsen diabetes.
		• Proteins with fold changes interacted with GLUT4. GLUT4 interacting proteins, such as MDH and the stress proteins HSPB8 and GRP78, exhibited decreased expression when D animals were exposed to F.	
Liu 2012 ²⁰⁹ SD rats 4 weeks old, group size 20	 Exposure 0, 50mg/L, 100mg/L, and 200mg/L 150 days of exposure Outcomes assessed Endocrine and Thyroid related toxicity Thyroid function: structural changes in the thyroid gland, expression of vascular 	 Increased average relative weight of the thyroid glands. Proliferation and dilatation of capillary blood vessels enlarged follicles with excessive colloid, and obvious nodules in the thyroid glands. Increased expression of VEGF mRNA in the thyroid gland and the serum NO levels. 	Abnormal expression of VEGF induced by fluoride can lead to the proliferation of vascular endothelial cells in the thyroid gland.

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Liu 2020 ²¹⁵ Four-week-old	endothelial growth factor (VEGF) mRNA, expression and deposition of VEGF Exposure	 Increased deposition of VEGF in epithelial and follicular cells of the thyroid gland. Urine fluoride concentrations showed a 	Urine fluoride
male Wistar rats (20 rats per group, 4 groups)	 0, 25mg/L, 50mg/L, and 100mg/L of NaF 12 weeks of exposure Outcomes assessed Bone/Skeletal Skeletal fluorosis Kidney and small intestine were isolated for detection of Klotho with immunohistochemistry (IHC). Femoral artery blood was sampled to measure the serum levels of sKlotho. 	 office indefine contectifications showed a dose-dependent and statistically significant increase in different fluoride-exposed groups, compared to control group. The ratio of 2-degree and 3-degree dental fluorosis increased with increasing levels of fluoride exposure. In rats, serum sKlotho levels was significantly higher in F-exposed groups than that in the control group. Immunohistochemistry results showed that the Klotho expression in the kidney and small intestine increased with increased doses of NaF treatment 	concentrations, 2 nd and 3 rd -degree dental fluorosis, serum sKlotho levels, and sKlotho expression in the kidney and small intestine showed a dose- dependent increase
Lu 2014 ²²¹			
Kunming male mice (8 weeks old, weighing about 20 g), group size 65	Exposure 0, 50, 100, 150 mg/L 56 days of exposure Outcomes assessed Reproductive toxicity 	 The percentage of chemotactic sperm decreased with NaF in a dose-dependent manner. Decreased Ca2+ concentration and AC content In the 100 and 150 mg/L groups. 	Excessive fluoride adversely affects sperm chemotaxis. The alteration of Ca2+ concentration, AC content and CatSper1 mRNA

expression level may play

Study Design	Exposure & Outcomes	Results	Authors' Conclusion	
Ma 2020 <u>224</u>	Sperm chemotaxis: sperm chemotaxis, Ca2+ concentration, adenylate cyclase (AC) content and mRNA expression of mACIII, mACVIII, Golf alpha, CatSper1, CatSper2	 Decreased mRNA expression of CatSper1 in the 100 and 150 mg/L groups. 	a key role in the mechanism underlying the affection.	
male Wistar rats (3 weeks old; weighing 114.8– 180.0 g), group size 20	 Exposure 0, 25, 50, or 100 mg/L 30 or 90 days of exposure Outcomes assessed Bone/ skeletal related toxicity Skeletal fluorosis: expression and DNA methylation level of the promoter region off Bone Morphogenetic Proteins (BMP)-2 and BMP-7 	 Increased protein expression of BMP-2 and BMP-7 in plasma at 1 month and 3 months. Increase in BMP-2 expression with an increase of fluoride exposure time. Hypomethylation was observed in 2 CpG sites (CpGs) of BMP-2 and 1 CpG site of BMP-7 promoter regions. 	Fluoride has a dose- response effect on BMP-2 in fluorosis rats, and fluoride-induced hypomethylation of specific CpGs may play an essential role in the regulation of BMP-2 and BMP-7 expression in rats.	
Miao 2013 ²³² male Sprague- Dawley rats (weight = 70–90 g), group size 10	Exposure • <0.1, 50 mg/L • 180 days of exposure Outcomes assessed • Hepatotoxicity Liver function: apoptosis and Fas/FasL expressions	 Increased protein and mRNA levels of Fas, and FasL. Decreased activity of GSH-Px, and SOD. Increased activity of MDA. 	Fluoride induced apoptosis in the liver, thereby causing liver damage in the rats.	

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
Twenty male Sprague-Dawley rats. Four groups of two to seven animals per group	 Exposure and Outcomes: Group 3 received 1.2 ppm F drinking water, Group 4 received 0 ppm water. Groups 1 and 2 were not relevant. 4 weeks exposure Outcomes assessed: Endocrine toxicity Dark and light cells per unit area in pineal gland Total cell numbers in pineal gland 	 Pineal glands from Group 3 showed significantly fewer cell counts than Group 4 in both light and dark cells 	"In sum, our findings suggest that the removal of dietary fluoride promotes growth of the pineal gland in aged rats. This growth initially involves an increase in supporting cell numbers, followed by subsequent increases in the numbers of both light and dark pinealocytes."
Oka 2020 <u>242</u>			
C57BL/6 mice (10- week-old, male, body weight 29.4 \pm 0.8 g), 2 groups of 6 animals per	 Exposure 0 (control), 5 mM NaF treated group 46 weeks of exposure Outcomes assessed 	 Reduced expression of Osterix and Runx2 The expression levels of ATG5 and Beclin1 were both suppressed by 5 mM NaF in cementoblasts and in periodontal ligament cells 	 5 mM NaF reduces autophagy in cementoblasts and increases the expression of HIF-1α.

- Mechanistic Cell viability and cell apoptosis after exposure to NaF
- cells
- 5 mM NaF induced a high expression of the HIF1-a/p- NFkB axis, which suppressed autophagy and promoted apoptosis.
- Treatment with 5 mM NaF enhanced the alveolar bone resorption in both the upper jaw and the lower jaw compared to the control group induced the expression of
- expression of HIF-1α.
- The oxidative stress activation by 5 mM NaF was also observed with the suppression of autophagy through 5 mM NaF-mediated apoptosis.

group.

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
		Cathepsin K and RANKL in periodontal tissues • Upregulated the expression of autophagy related proteins (ROS, p-NFkB, HIF1-a), suppressed the expression of cementoblast markers and induced apoptosis via the downregulation of ATG5 and Beclin1 expression.	 Decreased levels of autophagy-related proteins in cementoblasts and the periodontal ligament after 5 mM NaF ingestion. The inhibition of cell proliferation and increased apoptotic rates after treatment with 5 mM NaF suggests that excessive NaF may be cytotoxic. 5 mM NaF-treated autophagy was not su cient to counteract the NaF-induced cellular damages in HCEM2 cells
Sanchez-Gutierrez	2019 ²⁶⁸		
Male CD-1 mice aged 45 days old, group size 6	Exposure • 0, 45.2 mg/L • 60 days of exposure Outcomes assessed	 Decreased sperm quality (motility, viability, and concentration). 	Subchronic fluoride exposure of mice with STZ-induced diabetes aggravated testicular
1064			

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
	Reproductive toxicity	Spermatozoa presented a significant	damage and the
	Spermatozoa Quality, Spermatozoa	decrease in ψm and a significant increase in	spermatozoa function.
	Mitochondrial Membrane Potential, Caspase	activity caspase 3/7.	
	3/7 Enzymatic Activity, Histology Analysis	Decreased urinary fluoride excretion.	
Zhang 2013 336			
Oral (drinking	Exposure	D-R relationship: higher F doses altered	Authors conclude that
water)	Sodium fluoride (NaF)	testicular histology	"developmental exposure
subchronic mice study	• 0, 2.2, 4.5, 9 mg/kg bw/day* (0, 25, 50, 100	Results:	of rats to fluoride results in testicular ER stress and
-	mg/L NaF)	- Testicular histopathology: the testes showed	inflammatory response,
Adult Sprague-	Vehicle – distilled water	atrophy of seminiferous tubule, injury of	as well as oxidative stress
Dawley rats,	 From pre-pregnancy to PND 56 	spermatogonia and decrease of	and germ cell apoptosis,
both sex	Outcomes assessed (in male offspring)	spermatocytes, as well as absence	with defects in
 20 animals/sex/ group, 4 groups 	Reproductive toxicity	of elongated spermatids in the severely	spermatogenesis and
(male offspring =	Specific outcomes:	damaged seminiferous tubules, indicative of	accompanying
5/group)	- Testicular Histopathology	impaired spermatogenesis and loss of germ cells in 50 and 100 mg/L groups;	decrease in germ cell count. Furthermore, the
	- Testicular ultrastructure	- Testicular ultrastructure: many spermatogonia	present study
	- Germ cell apoptosis	and spermatocytes displayed the characteristic	has also provided
	- Oxidative stress markers in testis (MDA and	features of apoptosis, including condensation	important new insights
	SOD activity)	and margination of nuclear chromatin in 50	into the roles of ER stress
		and 100 mg/L groups	and inflammation in the
		- Germ cell apoptosis: TUNEL-positive cells were notably increased in testes of 50 and 100	aggravation of testicular damage.".

Study Design	Exposure & Outcomes	Results	Authors' Conclusion
		mg/L NaF; apoptotic cells accounted for	
		degenerating spermatogonia and	
		spermatocytes	
		- Oxidative stress markers: marked increase of	
		MDA levels in the 50 and 100 mg/L groups;	
		significant reduction in enzymatic activities of	
		SOD in all treated groups	

4.5. Summary of evolving animal evidence

The current review search identified new animal evidence relating to twelve primary endpoints, updating the evidence reported in previous authoritative reviews of animal studies: Health Canada 2010 1 and the NTP 2020 draft report 103 on neurocognitive outcomes. A summary of evidence for each outcome, based on the most recent critical review and the current review, is provided in the following sections, with emphasis on effects occurring at or below exposures (i.e., 20 ppm) relevant to current fluoride levels in North American drinking water.

Neurological and cognitive outcomes

Summary based on the NTP 2020 draft report ¹⁰³: NTP systematically reviewed experimental animal studies published up until 2019 that investigated the effect of fluoride on neurodevelopmental and cognitive outcomes with priority given to learning and memory. This review also focused on mechanistically linked outcomes such as measures of thyroid function. Each included individual study was assessed for study quality using OHAT risk of bias tool. This review concluded that the evidence based on experimental animal studies was 'inadequate' to assess whether exposure to fluoride could affect learning and memory, particularly at human-relevant exposure levels. The primary rationale provided for this conclusion was "the inability to separate the learning and memory effects from the effects on motor activity or motor coordination". The majority of the studies were of poor quality in which either the assessment of learning and memory was not accompanied with evaluation of motor activity to determine whether the observed changes in learning and memory could be due to motor dysfunction or to determine whether results had been affected by adverse effects on general health ³⁴⁹. However, those studies that did examine both cognitive and motor deficits, "mainly found an association between fluoride exposure and both types of neurological outcomes or found no effect of fluoride exposure on either type of neurological outcome irrespective of the dose range or duration of dosing".

Current review evidence synthesis: In the current review, a total of 3 low risk-of-bias studies with at least one test concentration \leq 20 ppm (tier-1 study) and published since 2019 were identified. Although one study ²³⁸ found an impairment in the processes of spatial learning and memory in rats from long term fluoride exposure at 50 ppm, it possesses the same study limitations (i.e., no concurrent assessment of motor activity) identified in studies reviewed in the draft NTP 2020 ¹⁰³. Two other low risk of bias tier 1 studies found no significant effects below 20 ppm ^{219, 263}.

Endocrine including thyroid outcomes

Summary based on Health Canada 2010 report: No studies were found examining adverse effects on thyroid at exposure concentrations below 20 ppm. Only studies under very high fluoride exposures (600 mg/L) and/or iodine imbalance (excess or deficiency) conditions were identified.

Current review evidence synthesis: A total of two low risk-of-bias tier-1 studies ^{210, 231} that assessed changes in thyroid related to fluoride exposure at or below 20 ppm fluoride in drinking water were identified. Both studies were conducted in rats (Wistar or Long-Evans hooded) with exposure concentration ranging from 2.3 to 20 ppm fluoride and for 2 to 8 months. One study ²³¹ did not find a significant association between increase in fluoride concentration (up to 20 ppm) and change in thyroid hormone levels (TSH, T3, or T4); the other study ²¹⁰ reported statistically significant – though inconsistent across two time points – changes in thyroid hormonal levels (serum T4 increased at 2 months but not at 8 months; serum TSH unchanged at 2 months but decreased at 8 months; serum T3 unchanged; apoptosis of thyroid cells increased) in rats exposed to 4.5 and 9 mg/L fluoride. Additionally, one tier-2 study ¹⁰⁷ found significant decline in plasma T3 and T4 levels in rats exposed to 15 mg/L fluoride for 45 days.

Current review evidence synthesis: Overall, the studies included in the current review suggest no or inconsistent evidence of thyroid dysfunction in animals exposed to fluoride in drinking water at concentrations relevant to current fluoride levels in North American drinking water.

Renal or Kidney related outcomes

Summary based on Health Canada 2010 report: No studies found examining adverse effects on kidney at exposure concentrations below 20 ppm. Wistar mice exposed to very high fluoride concentrations (226 mg/L) during pregnancy through to the 14th day post-delivery demonstrated increase in urinary fluoride excretion (mothers and pups), increase in plasma creatinine and decrease in urinary creatinine levels.

Current review evidence synthesis: Six low to medium risk of bias animal studies ^{135, 139, 172, 197, 255, 305} were identified that evaluated fluoride effects on kidney function at test concentrations 20 ppm or below. These studies investigated the impact of fluoride exposure in rodents (mice or rats) at different exposure durations (chronic or sub-chronic) given a range of drinking water fluoride concentrations (ranged from 0.05 – 150 mg/L); specific outcomes measured include kidney dysfunction markers such as blood urea nitrogen (BUN) or creatinine (CRE) levels or histological analysis. Three out of six studies found some histopathological changes in kidneys (such as proximal tubule injury) but none reported any significant changes in kidney dysfunction markers relevant to humans; except one study ²⁵⁵ found slight but significant increase in CRE levels after long term exposure at 20 ppm fluoride concentrations.

Reproductive/ Developmental outcomes

Summary based on Health Canada 2010 report: Numerous good quality animal studies reported adverse effects on reproductive function however these effects occurred only at very high concentrations that are not relevant to current fluoride levels in North American drinking water or at levels that known to cause dental and/or skeletal fluorosis. Further, high quality multigeneration guideline studies did not find effects on reproductive function from continuous exposure to fluoride in drinking water.

Current review evidence synthesis: Twelve low to medium risk-of-bias tier-1 studies were identified that evaluated adverse effects on reproductive system in experimental animal studies from fluoride exposure at or below 20 ppm <u>132</u>, <u>137</u>, <u>138</u>, <u>205</u>, <u>206</u>, <u>233</u>, <u>285</u>, <u>286</u>, <u>300</u>, <u>307</u>, <u>311</u>, <u>337</u>. These studies reported that fluoride exposure could induce changes in the organ coefficient of the testis, sperm count, sperm abnormalities, sperm motility, sperm survival, sperm hyperactivation, fertility, testosterone levels, testicular histology and fertility indices. These effects were observed at a range of fluoride exposure concentrations (5 – 100 ppm fluoride in drinking water), different exposure durations (49 to 211 days) and in multiple rodent species (rats and mice); only one study examined effects from exposures during premating, mating, gestation. The lowest concentration tested showing significant reduction in sperm quality was 5 mg/L fluoride. Overall, there was evidence of effects on male fertility, primarily decrease in sperm quality and increased testicular damage, from fluoride exposures at concentrations relevant to current fluoride levels in North American drinking water.

Cancer

Summary based on Health Canada 2010 report: In a cancer bioassay, no malignant tumors related to fluoride exposure were observed, in Sprague-Dawley rats or CD-1 mice exposed to 25 mg/kg bw/day NaF for 95-99 weeks, or in F344 rats exposed to 250 mg/L NaF.

Current review evidence synthesis: No animal studies evaluating the association between fluoride exposure and cancer outcomes were found.

Skeletal/bone related outcomes

Summary based on Health Canada 2010 report: In a comprehensive chronic toxicity/ carcinogenicity bioassay, with F344/N rats and B6C3F1 mice exposed to drinking water containing up to 75 mg/L NaF for 2 years, the estimated NOAELs were 2.7

and 4.1 mg/kg bw/day for the female and male rats, respectively, and 5.7 and 4.9 mg/kg bw/day for the female and male mice, respectively.

Current review evidence synthesis: Three low risk-of-bias tier-1 studies ^{173, 195, 281} were identified to assess the bone/skeletal related toxicity of fluoride exposure at or below 20 ppm fluoride in drinking water. Hosokawa et al. 2016 ¹⁷³, reported no significant increase in any bone indexes in male and female nephrotic mice model (ICGN) exposed to NaF for 4 weeks. Kobayashi et al. ¹⁹⁵ reported that fluoride in drinking water for 8 weeks did not induce any significant changes in bone mineral density or bone modeling. Song et al. ²⁸¹, reported increase in serum ALP, but no change in serum bone alkaline phosphatase activity, in Wistar rats exposed to 10 ppm fluoride for 15 and 30 days. Turkekul et al. ²⁹³ reported severe thinning of the epiphyseal growth plate and trabecular thickness, as well as fat accumulation in the bone marrow in a dose-dependent manner (5-50 ppm fluoride). In a few tier-2 studies, rats and mice exhibited, upon long term (84-210 days) fluoride exposure (15-50 ppm fluoride), elevated bone mineral density and serum ALP and worsened skeletal health (osteosclerosis, mild calcification of pelvic bone) ^{128, 129, 141, 155}.

Diabetes or Glucose or Lipid Metabolism related outcomes

Summary based on Health Canada 2010 report: No animal evidence on diabetes, or any metabolism related outcomes occurred at or below 20 ppm fluoride exposure concentrations was identified.

Current review evidence synthesis: Three low risk-of-bias tier-1 studies ^{217, 223, 228} were identified to assess association between diabetes or any metabolism related outcomes and fluoride exposure at or below 20 ppm fluoride in drinking water. Lupo et al. 2011 ²²³, reported that intake of fluoridated water from water supply (up to 15 ppm for 60 days) modified plasma insulin levels without affecting plasma glycaemia in Sprague-Dawley rats. No change in glycaemia, insulinemia, KITT, and HOMA2-IR were found in Wistar rats exposed to 10 ppm NaF for 22 days ²¹⁷. In another study ²²⁸, non-diabetic mice exposed to 10 ppm NaF had a significant reduction in the plasma glucose levels and a significant increase in the β-cell function.

Cardiovascular outcomes

Summary based on Health Canada 2010 report: In a multigeneration rodent study, Wistar rats exposed to 0.45, 4.5, 22.5, 45 mg/L in drinking water showed significant histopathological changes in the myocardial tissues (at \geq 22.5 mg/L) accompanied by increase in markers of oxidative stress such as superoxide dismutase, GSH peroxidase, and catalase.

Current review evidence synthesis: The single tier-1 study identified ²³⁰ in this review found that after being exposed to NaF for up to 15 mg/L for 4.5 months, Wistar rats with chronic kidney dysfunction had significantly increased medial vascular calcification (MVC). No experimental studies on animals with normal kidney function were identified. In one tier-2 study ¹³¹ an observed increase in blood pressure and potential endothelial damage occurred at 10 mg NaF/L in healthy Sprague Dawley rats.

Respiratory outcomes

Summary based on Health Canada 2010 report: No animal evidence on respiratory outcomes were identified.

Current review evidence synthesis: No tier-1 or tier-2 study was identified.

Hepatic system related outcomes

Summary based on Health Canada 2010 report: No animal evidence on hepatotoxicity was identified.

Current review evidence synthesis: Two low risk-of-bias tier-1 studies ^{139, 255} were identified to assess the hepatotoxicity of fluoride exposure at or below 20 ppm fluoride in drinking water. Chattopadhyay et al. 2011 ¹³⁹, reported increasing GPT level, decreasing GST levels, and extensive vacuolar degeneration in the cytoplasm and loss of integrity in the epithelium lining of central vein, on 8 weeks old Swiss albino mice, exposed at 15ppm NaF exposure for 30 to 90 days. Perera et al. 2018 ²⁵⁵, reported a dose-response increase in serum AST and ALP on male adult Wistar rats, exposed to up to 20 ppm NaF for 60 1072

days. Another tier-2 study, Owumi et al. ²⁴⁸, showed that male Wistar rats exposed to fluoride (15 mg/L in drinking water) for 14 days had decreasing antioxidant enzyme activities, evidenced by elevated ROS & RONS levels and histopathological damage via enhancement of inflammatory responses.

Immune system related outcomes

Summary based on Health Canada 2010 report: No animal evidence on immunotoxicity was identified.

Current review evidence synthesis: Two low risk-of-bias tier-1 studies were identified ^{170, 203}. Gutierrez-Salinas et al. ¹⁷⁰ assessed the immunotoxicity of fluoride exposure at or below 20 ppm fluoride in drinking water; however, the observed changes (decreased metabolic activity or increase in apoptotic markers in macrophages) occurred only at higher concentrations (i.e., 50 mg/L). Li et al. ²⁰³ also observed immunotoxicity of fluoride exposure changes at 11.25 ppm F and above, as well as histopathological changes of the spleen (an unclear junction between the splenic cortex and medulla, and irregularly shaped cells).

Two additional tier-2 studies were identified $\frac{174, 302}{2}$. Wang et al. 2019 $\frac{302}{2}$, reported that serum cytokine contents (IL-1 β , IL-2, IL-6, and TNF- α) was significantly decreased in Sprague-Dawley rats exposed to NaF 25 and 50 mg/L for 70 days. Hosokawa et al. 2015 $\frac{174}{2}$ showed a decline in relative weights of spleens, in male BALB/c mice exposed to 1 and 5 ppm for 30 days.

Genotoxicity

Summary based on Health Canada 2010 report: "Inconsistencies in the overall results of the studies on the genotoxicity/mutagenicity potential of fluoride do not allow for firm conclusions to be made regarding the genotoxic potential of fluoride although the balance of evidence for genotoxicity of fluoride does not support the view that fluoride is genotoxic in humans."

Current review evidence synthesis: One low risk-of-bias tier-1 study ²⁵⁷ was identified to assess the genotoxicity of fluoride exposure at or below 20 ppm fluoride in drinking water. It showed that increase in the percentage of aberrant metaphases and chromatid breaks was more salient in animals treated with 15 mg/L fluoride, than higher doses. Another tier-2 study ²⁵⁶ observed significant increase in percentage of dead cells in bone marrow and in percentage of aberrant cells (cells with chromatid breaks) and chromatid breaks, in male Swiss-albino mice exposed to NaF 15 mg/L for 30 days.

Intestinal outcomes

Summary based on Health Canada 2010 report: No animal evidence on intestinal outcomes was identified.

The current review evidence synthesis: No tier-1 or tier-2 studies were identified to assess the intestinal toxicity in animals exposed to fluoride at or below 20 ppm in drinking water.

Supplementary Material 5. Excluded animal studies

This supplement provides a list of animal studies identified but considered ineligible for the systematic review, with reasons provided for exclusion at level 1 (title and abstract screening) and level 2 (full text examination). Reasons for exclusion of specific studies are provided.

Table 3: Animal studies excluded at levels 1 and 2 by exclusion reason/group

Level	Exclusion group	Reason for exclusion	# of studies
L1	Ineligible	One or more exclusion criteria	1,628
L2	Language	Non-English publication	76
	Duplicate	Included in NTP 2019	7
	Unavailable full-text	No pdf available	37
	Irrelevant outcome	Outcome out of scope	8
	Irrelevant population	Human subjects	5
		In-vitro models (e.g., mammalian cells/ tissues, bacterial cells, plant cells)	3
	Irrelevant publication	Non-systematic reviews	11
	type	Commentary/communication/editorial/letter/ conference abstract/poster/presentation	16
	Other exclusion reasons	Including route of exposure other than drinking water, mixture exposure, non-mammalian species	43

Excluded animal studies (with reasons for exclusion)

Level	Bibliography	Reason for Exclusion
L1	North American Agency for Drugs and Technologies in Health. CADTH Rapid Response Reports. 2019. 10:23	One or more exclusion criteria
L1	Klein, E.,Ciobanu, M.,Klein, J.,Machi, V.,Leborgne, C.,Vandamme, T.,Frisch, B.,Pons, F.,Kichler, A.,Zuber, G.,Lebeau, L "HFP" fluorinated cationic lipids for enhanced lipoplex stability and gene delivery. <i>Bioconjug Chem.</i> 2010. 21:360-71	One or more exclusion criteria
L1	McInnes, S. J., Michl, T. D., Delalat, B., Al-Bataineh, S. A., Coad, B. R., Vasilev, K., Griesser, H. J., Voelcker, N. H "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System. <i>ACS App Mater Interfaces.</i> 2016. 8:4467-76	One or more exclusion criteria
L1	Sinha, S.,Vorse, K. S.,Kariya, P. B.,Mallikarjuna, R 'Pitted' to 'pleasing' in 20 min. <i>BMJ Case Reports.</i> 2015. #volume#:#pages#	One or more exclusion criteria
L1	Fernandez-Maza, L.,Corral, A.,Becerro, A.,Gonzalez, D.,Parrado, A.,Balcerzyk M.,Ocana, M (18)F-fluorination of BaGdF5 nanoparticles for multimodal imaging and PET/CT biodistribution in mouse. <i>Journal of Labelled Compounds</i> <i>and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S166-S168	
L1	Bouchlaka, M.,Gordon, J.,Ludwig, K.,Niles, D.,Bednarz, B.,Fain, S.,Capitini, C. (19)F-MRI for tracking NK Cells after adoptive transfer. <i>Journal of Immunology</i>	

Level	Bibliography	Reason for Exclusion
	Conference: 101st Annual Meeting of the American Association of Immunologist, IMMUNOLOGY. 2014. 192:#pages#	
L1	Chopra, A (99m)Tc-glutamate peptide 3-aminoethyl estradiol. <i>Molecular</i> Imaging and Contrast Agent Database (MICAD). 2004. #volume#:#pages#	One or more exclusion criteria
L1	 Bohmer, V., Van Der Born, D., Szymanski, W., Antunes, I., Klopstra, M., Samplonius, D., Sijbesma, J., Helfrich, W., Visser, T., Feringa, B., Elsinga, P 18 F-labelled click based PSMA-tracer for prostate cancer imaging. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S94-S95 	One or more exclusion criteria
L1	 Fernandez-Maza, L., Rivera-Marrero, S., Balcerzyk, M., Fernandez-Gomez, I., Parrado-Gallego, A., Sablon-Carrazana, M., Perez-Perera, R., Diaz-Garcia, O., Perera-Pintado, A., Prats-Capote, A., Rodriguez-Tanty, C 18F Labeling of a new naphthalene derivative as potential alzheimer disease PET imaging agent. Synthesis and preclinical studies. <i>European Journal of Nuclear Medicine and Molecular Imaging</i>. 2015. 1):S282 	
L1	Sviripa, V. M., Zhang, W., Balia, A. G., Tsodikov, O. V., Nickell, J. R., Gizard, F., Yu, T., Lee, E. Y., Dwoskin, L. P., Liu, C., Watt, D. S. 2', 6'-Dihalostyrylanilines, pyridines, and pyrimidines for the inhibition of the catalytic subunit of methionine S-adenosyltransferase-2. <i>J Med Chem.</i> 2014. 57:6083-91	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Inkster, J.,Lin, K. S.,Ait-Mohand, S.,Gosselin, S.,Benard, F.,Guerin, B.,Pourghiasian, M.,Ruth, T.,Schaffer, P.,Storr, T 2-Fluoropyridine prosthetic compounds for the 18F labeling of bombesin analogues. <i>Bioorganic</i> & <i>Medicinal Chemistry Letters</i> . 2013. 23:3920-6	One or more exclusion criteria
L1	Connett, P 3rd Citizens Conference of the Fluoride Action Network. <i>Fluoride.</i> 2008. 41:175	One or more exclusion criteria
L1	Suzuki, M., Everett, E. T., Whitford, G. M., Bartlett, J. D 4-phenylbutyrate Mitigates Fluoride-Induced Cytotoxicity in ALC Cells. <i>Front Physiol.</i> 2017. 8:302	One or more exclusion criteria
L1	Mitra, R.,Goddard, R.,Pörschke, K. R 9,9-Difluorobispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin. <i>Inorg Chem.</i> 2017. 56:6712-6724	One or more exclusion criteria
L1	Ebenhan, T.,Wagener, J.,Suthiram, J.,Marjanovic, P. B.,Sathekge, M. M.,Zeevaart, J. R ⁶⁸ Ga-PSMA-11: An one-year performance experience on a singlevial kit-type preparation of a potent PETradiodiagnostic agent for prostate cancer imaging. <i>Molecular Imaging and Biology</i> . 2016. 18 (2 Supplement):S1173	One or more exclusion criteria
L1	Perrin, D. M [(18)F]-Organotrifluoroborates as Radioprosthetic Groups for PET Imaging: From Design Principles to Preclinical Applications. <i>Acc Chem Res.</i> 2016. 49:1333-43	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Tibrewala, R.,Bahroos, E.,Mehrebian, H.,Foreman, S. C.,Link, T. M.,Pedoia, V.,Majumdar, S. [18F]-sodium fluoride PET-MR imaging reveals bone-cartilage interactions in hip osteoarthritis. <i>Osteoarthritis and Cartilage</i> . 2019. 27 (Supplement 1):S145-S147	One or more exclusion criteria
L1	Frederic, D.,Bertrand, K.,Annelaure, D.,Camp Nadia, V.,Michael, K.,Bertrand, T.,Raphael, B [¹⁸ F]DPA-716 as a candidate for imaging the TSPO 18 kDa with PET: Radiosynthesis and comparative evaluation ([¹¹ C]DPA-713 / [¹⁸ F]DPA-714) in a rat model of neuroinflammation. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2011. 1):S275	One or more exclusion criteria
L1	Riondato, M.,Pastorino, S.,Giovannini, E.,Ferrando, O.,Lazzeri, P.,Duce, V.,Ciarmiello, A [¹⁸ F]FET production with a modified gallium-68 automated synthesizer in a Radiopharmacy without cyclotron facility. <i>Europear</i> <i>Journal of Nuclear Medicine and Molecular Imaging.</i> 2019. 46 (1 Supplement 1):S723	
L1	Xiong, L.,Shen, B.,Gambhir, S. S.,Chin, F. T.,Rao, J [¹⁸ F]YF <inf>3</inf> nanoprobes: Novel 18F-labeled imaging agents for tumor targeting. <i>Molecular Imaging and Biology.</i> 2012. 1):S168	One or more exclusion criteria
L1	Johanna, R.,Jori, J.,Cesare, F.,Anniina, P.,Juha, R.,Merja, H.,Olof, S [C] Novel [F-18] S1P3-receptor tracer for preclinical PET imaging in Alzheimer's	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	disease. Journal of Labelled Compounds and Radiopharmaceuticals. 2011. 1):S455	
L1	Palczewska-Komsa, M [Comparison of fluoride concentrations in human, dog fox and raccoon dog bones from northwestern Poland]. <i>Pomeranian J Life Sci.</i> 2015. 61:319-28	
L1	Machoy-Mokrzyńska, A.,Machoy, Z. [Current trends in fluorine research]. Ann Acad Med Stetin. 2006. 52 Suppl 1:73-7	One or more exclusion criteria
L1	Montero, M.,Rojas-Sanchez, F.,Socorro, M.,Torres, J.,Acevedo, A. M. [Dental caries and fluorosis in children consuming water with different fluoride concentrations in Maiquetia, Vargas State, Venezuela]. <i>Invest Clin.</i> 2007. 48:5 19	
L1	Golubkina, N. A.,Burtseva, T. I.,Gatsenko, Alu. [Drinking water quality indices in the Orenburg Region]. <i>Gig Sanit.</i> 2011. #volume#:70-4	One or more exclusion criteria
L1	Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Gao, J., Ma, A. H., Liu, Y., Li, H. X [Epidemiological investigation on endemic fluorosis along the Yellow River alluvial plain of Shandong province]. <i>Chung-Hua Liu Hsing Ping Hsueh Tsa Chih Chinese Journal of Epidemiology.</i> 2010. 31:1280-3	One or more exclusion criteria
L1	Varenne, B.,Fournet, F.,Cadot, E.,Msellati, P.,Ouedraogo, H. Z.,Meyer, P. E.,Cornu, J. F.,Salem, G.,Petersen, P. E [Family environment and dental	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	health disparities among urban children in Burkina Faso]. <i>Rev Epidemiol Sante</i> <i>Publique</i> . 2011. 59:385-92	9
L1	Smoliar, N. I.,Bezvushko, E. V.,Chukhrai, N. L.,Dzhaser, A. Kh. [Incidence of malocclusion in children living in areas with high fluoride content in water]. [Russian]. <i>Stomatologiia.</i> 2014. 93:52-54	One or more exclusion criteria
L1	Skudarnov, S. E., Kurkatov, S. V [Incidence of non-communicable diseases and health risks due to potable water quality]. [Russian]. <i>Gigiena i sanitariia.</i> 2011. #volume#:30-32	One or more exclusion criteria
L1	de Carvalho, R. B., Medeiros, U. V., dos Santos, K. T., Pacheco Filho, A. C [Influence of different concentrations of fluoride in the water on epidemiologic indicators of oral health/disease]. <i>Cien Saude Colet.</i> 2011. 16:3509-18	One or more exclusion criteria
L1	Chen, L. W.,Gu, S.,Jia, X. Y [Occluding effects of desensitizer containing NovaMin combined with fluor protector on dentinal tubules:an in vitro study]. <i>Shanghai Kou Qiang Yi Xue.</i> 2015. 24:535-40	One or more exclusion criteria
L1	Wang, X. L., Ming, J., Qiu, B., Liao, Y. F., Liao, Y. D., Wei, S. F., Tu, C. L., Pan, X. L [Relationship between fluoride exposure, orthopedic injuries and bone formation markers in patients with coal-burning fluorosis]. <i>Ying Yong Sheng Ta Xue Bao.</i> 2019. 30:43-48	
L1	Carvalho, R. W., Valois, R. B., Santos, C. N., Marcellini, P. S., Bonjardim, L. R., Oliveira, C. C., Barretto, S. R., Goncalves, S. R [Study of the prevalence of	One or more exclusion criteria
1082		

Level	Bibliography	Reason for Exclusion
	dental fluorosis in Aracaju]. [Portuguese]. <i>Ciencia & saude coletiva.</i> 2010. 15 Suppl 1:1875-1880	
L1	Drobnik, M.,Latour, T.,Sziwa, D [The assessment of health exposure resulted from barium, boron, and fluoride intake from therapeutic waters available for resident people in water abstraction points of health resorts]. [Polish]. <i>Roczniki</i> <i>Panstwowego Zakladu Higieny.</i> 2010. 61:373-378	
L1	Romero, V.,Norris, F. J.,Rios, J. A.,Cortes, I.,Gonzalez, A.,Gaete, L.,Tchernitchin, A. N [The impact of tap water fluoridation on human health]. <i>Revista Medica de Chile.</i> 2017. 145:240-249	One or more exclusion criteria
L1	Jaudenes Marrero, J. R., Hardisson de la Torre, A., Gutierrez Fernandez, A. J., Rubio Armendariz, C., Revert Girones, C [Toxic Risk Assessment of Fluoride Presence in Bottled Water Consumption in the Canary Islands]. <i>Nutricion Hospitalaria.</i> 2015. 32:2261-8	One or more exclusion criteria
L1	Janka, Z [Tracing trace elements in mental functions]. <i>Ideggyogy Sz.</i> 2019. 72:367-379	One or more exclusion criteria
L1	Orsini, G., Procaccini, M., Manzoli, L., Sparabombe, S., Tiriduzzi, P., Bambini, F., Putignano, A A 3-day randomized clinical trial to investigate the desensitizing properties of three dentifrices. <i>J Periodontol.</i> 2013. 84:e65-73	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Choubisa, S. L A brief and critical review on hydrofluorosis in diverse species of domestic animals in India. <i>Environ Geochem Health.</i> 2018. 40:99-114	One or more exclusion criteria
L1	Chen, S.,Song, L.,Xie, X.,Han, X.,Cheng, B A case of abdominal mesenteric Castleman's disease with left renal cell carcinoma and stomach leiomyoma. <i>Hellenic Journal of Nuclear Medicine.</i> 2016. 19:285-288	One or more exclusion criteria
L1	Mosaferi, M.,Feizi, M. A. H.,Dastgiri, S.,Kusha, A.,Mehdipour, M A case study of dental fluorosis prevalence in rural communities in Northwest Iran. <i>Fluoride.</i> 2012. 45 (3 PART 1):185-186	One or more exclusion criteria
L1	Malar, S.,Karuppannan, S.,Krishnaveni, M.,Venkateswaran, S A case study on dental fluorosis in Uthangarai Taluk, Krishnagiri District, Tamil Nadu, India. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences</i> . 2011. 13:47-49	One or more exclusion criteria
L1	Sharma, N.,Roy, S.,Kakar, A.,Greenspan, D. C.,Scott, R A clinical study comparing oral formulations containing 7.5% calcium sodium phosphosilicate (NovaMin), 5% potassium nitrate, and 0.4% stannous fluoride for the management of dentin hypersensitivity. <i>J Clin Dent.</i> 2010. 21:88-92	One or more exclusion criteria
L1	Shruthi, M. N., Anil, N. S A comparative study of dental fluorosis and non- skeletal manifestations of fluorosis in areas with different water fluoride concentrations in rural Kolar. <i>Journal of Family Medicine & Primary Care.</i> 2018 7:1222-1228	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Shruthi, M. N., Santhuram, A. N., Arun, H. S., Kishore Kumar, B. N A comparative study of skeletal fluorosis among adults in two study areas of Bangarpet taluk, Kolar. <i>Indian J Public Health.</i> 2016. 60:203-9	One or more exclusion criteria
L1	Poureslami, H. R.,Horri, A.,Garrusi, B A comparative study of the IQ of children age 7-9 in a high and a low fluoride water city in Iran. <i>Fluoride.</i> 2011. 44:163-167	One or more exclusion criteria
L1	Yu, J.,Zhou, J.,Long, A.,He, X.,Deng, X.,Chen, Y A comparative study of water quality and human health risk assessment in longevity area and adjacent non-longevity area. <i>International Journal of Environmental Research and Public Health.</i> 2019. 16 (19) (no pagination):#pages#	One or more exclusion criteria t
L1	Macey, R., Tickle, M., MacKay, L., McGrady, M., Pretty, I. A A comparison of dental fluorosis in adult populations with and without lifetime exposure to water fluoridation. <i>Community Dent Oral Epidemiol.</i> 2018. 46:608-614	One or more exclusion criteria
L1	González-Horta, C.,Ballinas-Casarrubias, L.,Sánchez-Ramírez, B.,Ishida, M. C.,Barrera-Hernández, A.,Gutiérrez-Torres, D.,Zacarias, O. L.,Saunders, R. J.,Drobná, Z.,Mendez, M. A.,García-Vargas, G.,Loomis, D.,Stýblo, M.,Del Razo, L. M. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. <i>Int J Environ Res Public Health.</i> 2015. 12:4587-601	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ford, D.,Seow, W. K.,Kazoullis, S.,Holcombe, T.,Newman, B. A controlled study of risk factors for enamel hypoplasia in the permanent dentition. <i>Pediatr Dent.</i> 2009. 31:382-8	One or more exclusion criteria
L1	Henry, B. J., Carlin, J. P., Hammerschmidt, J. A., Buck, R. C., Buxton, L. W., Fiedler, H., Seed, J., Hernandez, O A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. <i>Integr Enviror Assess Manag.</i> 2018. 14:316-334	One or more exclusion criteria
L1	Chen, P.,He, D.,Wei, S.,Pu, G.,La, C.,Jiang, H.,Li, S.,Lu, Q.,Zhao, Y A cross- sectional investigation of drinking brick-tea fluorosis of children aged 8 - 12 in Qinghai Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:53-55	One or more exclusion criteria
L1	Sebastian, S. T., Sunitha, S A cross-sectional study to assess the intelligence quotient (IQ) of school going children aged 10-12 years in villages of Mysore district, India with different fluoride levels. <i>J Indian Soc Pedod Prev Dent.</i> 2015 33:307-11	
L1	Zhang, B.,Li, M.,Zhou, S.,Dai, X.,Xiong, P.,Zhu, S A dental fluorosis trend analysis of children aged 8 to 12 in drinking-water-type endemic fluorosis areas of Hubei Province from 2010 to 2014. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2016. 35:664-667	One or more exclusion criteria
L1	Orsini, G., Procaccini, M., Manzoli, L., Giuliodori, F., Lorenzini, A., Putignano, A A double-blind randomized-controlled trial comparing the desensitizing efficacy	

Level	Bibliography	Reason for Exclusion
	of a new dentifrice containing carbonate/hydroxyapatite nanocrystals and a sodium fluoride/potassium nitrate dentifrice. <i>J Clin Periodontol.</i> 2010. 37:510-7	
L1	Li, C.,Li, F.,Li, T.,Bai, T.,Wang, L.,Shi, Z.,Feng, S A facile synthesis and photoluminescence properties of water-dispersible Re3+ doped CeF3 nanocrystals and solid nanocomposites with polymers. <i>Dalton Trans.</i> 2012. 41:4890-5	One or more exclusion criteria
L1	Ke, B.,Chen, W.,Ni, N.,Cheng, Y.,Dai, C.,Dinh, H.,Wang, B. A fluorescent probe for rapid aqueous fluoride detection and cell imaging. <i>Chem Commun (Camb).</i> 2013. 49:2494-6	One or more exclusion criteria
L1	Kotoky, P.,Tamuli, U.,Borah, G. C.,Baruah, M. K.,Sarmah, B. K.,Paul, A. B.,Bhattacharyya, K. G A fluoride zonation map of the Karbianglong District, Assam, India. <i>Fluoride.</i> 2010. 43:157-159	One or more exclusion criteria
L1	Rodnick, M. E.,Brooks, A. F.,Hockley, B. G.,Henderson, B. D.,Scott, P. J. H., A fully automated one-pot high yielding synthesis of [¹⁸ F]fluoromethylcholine. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2013. 1):S117	One or more exclusion criteria
L1	Fordyce, F. M., Vrana, K., Zhovinsky, E., Povoroznuk, V., Toth, G., Hope, B. C., Iljinsky, U., Baker, J A health risk assessment for fluoride in Central Europe <i>Environ Geochem Health.</i> 2007. 29:83-102	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Hongyong, W.,Zou, P.,Xie, M.,Liu, Y.,Wu, J.,Wu, H A high yield automated synthesis of ¹⁸ F-FLT On PET-MF- 2V-IT-I module with SPE purification. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2019. 46 (1 Supplement 1):S853-S854	One or more exclusion criteria
L1	 Tanifum, E. A., Devkota, L., Ngwa, C., Badachhape, A. A., Ghaghada, K. B., Romero, J., Pautler, R. G., Annapragada, A. V A Hyperfluorinated Hydrophilic Molecule for Aqueous (19) F MRI Contrast Media. <i>Contrast Media</i> <i>Mol Imaging.</i> 2018. 2018:1693513 	One or more exclusion criteria
L1	Ghosh, P.,Banerjee, P A Journey towards Salivary Fluoride Level Detection by Suitable Low Cost Chemosensor: From Molecule to Product. <i>Chem Rec.</i> 2019. 19:2119-2129	One or more exclusion criteria
L1	Khare, P A large-scale investigation of the quality of groundwater in six major districts of Central India during the 2010-2011 sampling campaign. <i>Environmental Monitoring and Assessment.</i> 2017. 189 (9) (no pagination):#pages#	One or more exclusion criteria
L1	Chen, L.,Wang, W.,Su, B.,Wen, Y.,Li, C.,Zhou, Y.,Li, M.,Shi, X.,Du, H.,Song, Y.,Jiang, L A light-responsive release platform by controlling the wetting behavior of hydrophobic surface. <i>ACS Nano.</i> 2014. 8:744-51	One or more exclusion criteria
L1	Shaw, F. E A message from the editor. Public Health Reports. 2015. 130:295	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Gill, H. S., Tinianow, J. N., Ogasawara, A., Flores, J. E., Vanderbilt, A. N., Raab, H., Scheer, J. M., Vandlen, R., Williams, S. P., Marik, J A modular platform for the rapid site-specific radiolabeling of proteins with 18F exemplified by quantitative positron emission tomography of human epidermal growth factor receptor 2. <i>J Med Chem.</i> 2009. 52:5816-25	One or more exclusion criteria
L1	Girardi, P.,Merler, E A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid. <i>Environmental Research.</i> 2019. Part A. 179 (no pagination):#pages#	One or more exclusion criteria
L1	Qiao, F.,Pan, T.,Clark, J. W., Jr.,Mawlawi, O. R A motion-incorporated reconstruction method for gated PET studies. <i>Phys Med Biol.</i> 2006. 51:3769-83	One or more exclusion criteria
L1	Wang, C.,Gao, Y.,Wang, W.,Zhao, L.,Zhang, W.,Han, H.,Shi, Y.,Yu, G.,Sun, D A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China. <i>BMJ Open.</i> 2012. 2:#pages#	One or more exclusion criteria
L1	Maltais, R.,Ayan, D.,Poirier, D A new aminosteroid (RM-133) as selective anti-cancer agent: Chemical synthesis and biological activities. <i>Drugs of the Future</i> . 2010. A):256	One or more exclusion criteria
L1	Jin, S.,Zhou, L.,Gu, Z.,Tian, G.,Yan, L.,Ren, W.,Yin, W.,Liu, X.,Zhang, X.,Hu, Z.,Zhao, Y A new near infrared photosensitizing nanoplatform containing	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. <i>Nanoscale.</i> 2013. 5:11910-8	
L1	Inkster, J. A., Colin, D. J., Seimbille, Y A novel 2-cyanobenzothiazole-based (18)F prosthetic group for conjugation to 1,2-aminothiol-bearing targeting vectors. <i>Org Biomol Chem.</i> 2015. 13:3667-76	One or more exclusion criteria
L1	Meziane, I.,Jerome, D.,Johnny, V.,Danie, S.,Denis, G.,Louisa, B A novel [¹⁸ F]AV-45 (Florbetapir) synthesis for a fully automated development on a tracer lab MX <inf>FDG</inf> apparatus. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2011. 1):S418	One or more exclusion criteria
L1	Kumari, U.,Behera, S. K.,Meikap, B. C A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater. <i>Journal of Hazardous Materials.</i> 2019. 365:868-882	One or more exclusion criteria
L1	Tirapelli, C.,Panzeri, H.,Soares, R. G.,Peitl, O.,Zanotto, E. D A novel bioactive glass-ceramic for treating dentin hypersensitivity. <i>Braz Oral Res.</i> 2010. 24:381-7	
L1	Laverman, P.,McBride, W. J.,Sharkey, R. M.,Eek, A.,Joosten, L.,Oyen, W. J.,Goldenberg, D. M.,Boerman, O. C A novel facile method of labeling octreotide with (18)F-fluorine. <i>J Nucl Med.</i> 2010. 51:454-61	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	He, J., Matsuura, T., Chen, J. P A novel Zr-based nanoparticle-embedded PSF blend hollow fiber membrane for treatment of arsenate contaminated water: Material development, adsorption and filtration studies, and characterization. <i>Journal of Membrane Science</i> . 2014. 452:433-445	One or more exclusion criteria
L1	Zheng, F.,Zeng, F.,Yu, C.,Hou, X.,Wu, S A PEGylated fluorescent turn-on sensor for detecting fluoride ions in totally aqueous media and its imaging in live cells. <i>Chemistry.</i> 2013. 19:936-42	One or more exclusion criteria
L1	Mazur, C. M.,Savic, D.,Pedoia, V.,Venkatachari, A. K.,Seo, Y.,Franc, B. L.,Majumdar, S A PET/MR study of cartilage-bone interactions in osteoarthritis using T <inf>1rho</inf> dispersion. <i>Molecular Imaging and Biology.</i> 2016. 1):S759-S760	One or more exclusion criteria
L1	Kong, X. Y.,Hou, L. J.,Shao, X. Q.,Shuang, S. M.,Wang, Y.,Dong, C A phenolphthalein-based fluorescent probe for the sequential sensing of Al(3+) and F(-) ions in aqueous medium and live cells. <i>Spectrochim Acta A Mol Biomol Spectrosc.</i> 2019. 208:131-139	One or more exclusion criteria
L1	Schafer, D.,Zlatopolskiy, B. D.,Ermert, J.,Neumaier, B A practical two-step synthesis of 5-[¹⁸ F]fluoro-L-tryptophan (5-[¹⁸ F]FTrp) via alcohol-enhanced Cu-mediated radiofluorination. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S105	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Lie, M.,Thorstensen, K A precise, sensitive and stable LC-MSMS method for detection of picomolar levels of serum aldosterone. <i>Scand J Clin Lab Invest.</i> 2018. 78:379-385	One or more exclusion criteria
L1	Dickson, R. C A reader and author respond to "The top ten unfounded health scares of the year". <i>MedGenMed Medscape General Medicine.</i> 2008. 10 (4) (no pagination):#pages#	One or more exclusion criteria
L1	Cárdenas-Rodríguez, J., Howison, C. M., Matsunaga, T. O., Pagel, M. D A reference agent model for DCE MRI can be used to quantify the relative vascular permeability of two MRI contrast agents. <i>Magn Reson Imaging.</i> 2013. 31:900-10	One or more exclusion criteria
L1	Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., Abiola, O., Ali, S., Nasim, W A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. <i>Environ Geochem Health.</i> 2018. 40:1265-1281	One or more exclusion criteria
L1	Rahman, Z. U.,Khan, B.,Ahmada, I.,Mian, I. A.,Saeed, A.,Afaq, A.,Khan, A.,Smith, P.,Mianh, A. A A review of groundwater fluoride contamination in Pakistan and an assessment of the risk of fluorosis. <i>Fluoride.</i> 2018. 51:171-181	One or more exclusion criteria
L1	Chang, W.,Wang, L.,Zhang, Y.,Wang, M.,Wang, Y.,Li, P A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. <i>Ecotoxicology and Environmental Safety.</i> 2019. 182 (no pagination):#pages#	One or more exclusion criteria
1092		

Level	Bibliography	Reason for Exclusion
L1	Chang, C. W., Chou, T. K., Liu, R. S., Wang, S. J., Lin, W. J., Chen, C. H., Wang, H. E., A robotic synthesis of [18F]fluoromisonidazole ([18F]FMISO). <i>Appl Radiat Isot.</i> 2007. 65:682-6	One or more exclusion criteria
L1	Tago, T.,Toyohara, J.,Fujimaki, R.,Hirano, K.,Iwai, K.,Ishibashi, K.,Tanaka, H., A simple SPE purification method for ¹⁸ F-radiolabeling: Proof-of- concept study in stilbene amyloid-beta ligands with a neopentyl labeling group. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S163-S164	
L1	Wright, J. A., Cronin, A., Okotto-Okotto, J., Yang, H., Pedley, S., Gundry, S. W. A spatial analysis of pit latrine density and groundwater source contamination. <i>Environ Monit Assess.</i> 2013. 185:4261-72	One or more exclusion criteria
L1	Zhang, R.,Niu, Y.,Du, H.,Cao, X.,Shi, D.,Hao, Q.,Zhou, Y A stable and sensitive testing system for potential carcinogens based on DNA damage- induced gene expression in human HepG2 cell. <i>Toxicol In Vitro.</i> 2009. 23:158- 65	One or more exclusion criteria
L1	Szyperska, A., Gutowska, I., Machoy-Mokrzynska, A., Rak, J., Baranowska- Bosiacka, I., Machoy, Z A study of an hypothesis linking aluminum fluoride to alzheimer disease: The affinity of amino acids occurring in Beta-amyloid to [Al(H <inf>2</inf> O) <inf>6</inf>] ³⁺ . <i>Fluoride.</i> 2017. 50:468-474	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	You, H.,Fu, S.,Qin, X.,Yu, Y.,Yang, B.,Zhang, G.,Sun, X.,Feng, Y.,Chen, Y.,Wu, J A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma. <i>Colloids Surf B Biointerfaces.</i> 2016. 140:150-160	One or more exclusion criteria
L1	Boyle, P.,Koechlin, A.,Autier, P A systematic review with meta-analysis of fluoridated mouthwash use for the prevention of dental caries. <i>Oral Diseases.</i> 2014. 20:27-34	One or more exclusion criteria
L1	Hoover, A. J.,Lazari, M.,Ren, H.,Narayanam, M. K.,Murphy, J. M.,van Dam, R. M.,Hooker, J. M.,Ritter, T A Transmetalation Reaction Enables the Synthesis of [(18)F]5-Fluorouracil from [(18)F]Fluoride for Human PET Imaging. <i>Organometallics.</i> 2016. 35:1008-1014	One or more exclusion criteria
L1	Thompson, S.,Onega, M.,Ashworth, S.,Fleming, I. N.,Passchier, J.,O'Hagan, D A two-step fluorinase enzyme mediated (18)F labelling of an RGD peptide for positron emission tomography. <i>Chem Commun (Camb)</i> . 2015. 51:13542-5	One or more exclusion criteria
L1	Buyukkaplan, U. S., Aksoy, A., Komerik, N., Yilmaz, H. H., Karayilmaz, H Absence of significant association between temporomandibular joint (TMJ) disorders and dental fluorosis in Isparta, Turkey. <i>Fluoride</i> . 2012. 45:274-280	One or more exclusion criteria
L1	Li, Y.,Wang, S.,Prete, D.,Xue, S.,Nan, Z.,Zang, F.,Zhang, Q. Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	wastewater irrigated soil of an oasis region in northwest China. Sci Total Environ. 2017. 595:344-351	
L1	Li, Y.,Wang, S.,Nan, Z.,Zang, F.,Sun, H.,Zhang, Q.,Huang, W.,Bao, L Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. <i>Sci Total Environ.</i> 2019. 663:307-314	One or more exclusion criteria
L1	Khan, N. B., Chohan, A. N Accuracy of bottled drinking water label content. <i>Environmental Monitoring and Assessment.</i> 2010. 166:169-176	One or more exclusion criteria
L1	Goulding, J. M. R., Finch, T. M Acrylates tooth and nail: Coexistent allergic contact dermatitis to acrylates present in desensitizing dental swabs and artificial fingernails. <i>British Journal of Dermatology.</i> 2010. 1):87-88	One or more exclusion criteria
L1	Panziera, W.,Schwertz, C. I.,da Silva, F. S.,Taunde, P. A.,Pavarini, S.P.,Driemeier, D Acute sodium fluorosilicate poisoning in cattle. [Portuguese].Acta Scientiae Veterinariae. 2018. 46 (Supplement) (no pagination):#pages#	One or more exclusion criteria
L1	Narwaria, Y. S., Saksena, D. N Acute toxicity bioassay and behavioural responses induced by sodium fluoride in freshwater fish Puntius sophore (Bloch). <i>Fluoride.</i> 2012. 45:7-12	One or more exclusion criteria
L1	Lisova, K.,Wang, J.,Rios, A.,Van Dam, R. M Adaptation and optimization of [¹⁸ F] Florbetaben ([¹⁸ F]FBB) radiosynthesis to a	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	microdroplet reactor. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S353-S354	
L1	Buckley, H. L., Molla, N. J., Cherukumilli, K., Boden, K. S., Gadgil, A. J Addressing technical barriers for reliable, safe removal of fluoride from drinking water using minimally processed bauxite ores. <i>Dev Eng.</i> 2018. 3:175-187	One or more exclusion criteria
_1	Fromme, H.,Wöckner, M.,Roscher, E.,Völkel, W. ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany. <i>Int J Hyg Environ Health.</i> 2017. 220:455-460	One or more exclusion criteria
L1	Daifullah, A. A., Yakout, S. M., Elreefy, S. A Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. <i>Journal of Hazardous Materials.</i> 2007. 147:633-43	
L1	Viberg, H.,Lee, I.,Eriksson, P Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. <i>Toxicology.</i> 2013. 304:185-91	One or more exclusion criteria
L1	Kisely, S.,Quek, L. H.,Pais, J.,Lalloo, R.,Johnson, N. W.,Lawrence, D Advanced dental disease in people with severe mental illness: systematic review and meta-analysis. <i>Br J Psychiatry.</i> 2011. 199:187-93	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Johnson, J. K.,Hoffman, C. M., Jr.,Smith, D. A.,Xia, Z Advanced Filtration Membranes for the Removal of Perfluoroalkyl Species from Water. <i>ACS</i> <i>Omega.</i> 2019. 4:8001-8006	One or more exclusion criteria
L1	He, P.,Haswell, S. J.,Pamme, N.,Archibald, S. J Advances in processes for PET radiotracer synthesis: separation of [¹⁸ F]fluoride from enriched [¹⁸ O]water. <i>Appl Radiat Isot.</i> 2014. 91:64-70	One or more exclusion criteria
L1	Levine, R Advancing the scientific basis of oral health education. <i>Community Dent Health.</i> 2015. 32:66-7	One or more exclusion criteria
L1	Babini, M. S.,Bionda, C. L.,Salas, N. E.,Martino, A. L Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles. <i>Environmental Monitoring and Assessment.</i> 2016. 188 (8) (no pagination):#pages#	One or more exclusion criteria
L1	Dahi, E Africa's U-turn in defluoridation policy: From the Nalgonda technique to bone char. <i>Fluoride.</i> 2016. Part 1. 49:401-416	One or more exclusion criteria
L1	Shashi, A.,Kumar, M Age specific fluoride exposure in drinking water - A clinical multiparametric study. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences.</i> 2008. 10:655-660	One or more exclusion criteria
L1	Abtahi, M.,Dobaradaran, S.,Jorfi, S.,Koolivand, A.,Mohebbi, M. R.,Montazeri, A.,Khaloo, S. S.,Keshmiri, S.,Saeedi, R Age-sex specific and sequela-specific disability-adjusted life years (DALYs) due to dental caries preventable through	
1097		

Level	Bibliography	Reason for Exclusion
	water fluoridation: An assessment at the national and subnational levels in Iran 2016. <i>Environ Res.</i> 2018. 167:372-385	
L1	Abtahi, M.,Dobaradaran, S.,Jorfi, S.,Koolivand, A.,Khaloo, S. S.,Spitz, J.,Saeedi, H.,Golchinpour, N.,Saeedi, R Age-sex specific disability-adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: A national and subnational study in Iran, 2017. <i>Water Res.</i> 2019. 157:94-105	One or more exclusion criteria
L1	Bassin, E. B., Wypij, D., Davis, R. B., Mittleman, M. A Age-specific fluoride exposure in drinking water and osteosarcoma (United States). <i>Cancer Causes Control.</i> 2006. 17:421-8	One or more exclusion criteria
L1	Arulkumar, M., Vijayan, R., Penislusshiyan, S., Sathishkumar, P., Angayarkanni, J., Palvannan, T Alteration of paraoxonase, arylesterase and lactonase activities in people around fluoride endemic area of Tamil Nadu, India. <i>Clinica Chimica Acta</i> . 2017. 471:206-215	One or more exclusion criteria
L1	Randhawa, S. S., Sharma, S., Ranjan, R Alterations in blood concentrations of macro- and microminerals in water buffaloes living in endemic fluorosis areas of Punjab. <i>Fluoride.</i> 2012. 45 (3 PART 1):190-191	One or more exclusion criteria
L1	Ma, S. K.,Bae, E. H.,Kim, I. J.,Choi, C.,Lee, J.,Kim, S. W. Altered renal expression of aquaporin water channels and sodium transporters in rats with two-kidney, one-clip hypertension. <i>Kidney Blood Press Res.</i> 2009. 32:411-20	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Russ, T. C., Killin, L. O. J., Hannah, J., Batty, G. D., Deary, I. J., Starr, J. M Aluminium and fluoride in drinking water in relation to later dementia risk. <i>British Journal of Psychiatry.</i> 2020. 216:29-34	One or more exclusion criteria
L1	Frisardi, V.,Solfrizzi, V.,Capurso, C.,Kehoe, P. G.,Imbimbo, B. P.,Santamato, A.,Dellegrazie, F.,Seripa, D.,Pilotto, A.,Capurso, A.,Panza, F Aluminum in the diet and Alzheimer's disease: from current epidemiology to possible disease-modifying treatment. <i>J Alzheimers Dis.</i> 2010. 20:17-30	
L1	Shaw, C. A., Seneff, S., Kette, S. D., Tomljenovic, L., Oller, J. W., Davidson, R. M Aluminum-induced entropy in biological systems: Implications for neurological disease. <i>Journal of Toxicology.</i> 2014. 2014 (no pagination):#pages#	One or more exclusion criteria
L1	Seo, E. J.,Lee, M. Y Amelioration of hydrofluoric acid-induced DNA damage by phytochemicals. <i>Toxicology and Environmental Health Sciences</i> . 2013. 5:201-206	One or more exclusion criteria
L1	 Kushi, L. H.,Byers, T.,Doyle, C.,Bandera, E. V.,McCullough, M.,Gansler, T.,Andrews, K. S.,Thun, M. J.,Ainsworth, B.,Ballard-Barbash, R.,Bloch, A. F.,Chan, J. M.,Coates, R. J.,Demark-Wahnefried, W.,Freudenheim, J.,Gann, P.,Giovannucci, E.,Hartman, T.,Kolonel, L.,Lichtenstein, A. H.,Martinez, M. E.,McTiernan, A.,Morra, M.,Schatzkin, A.,Slattery, M.,Smith-Warner, S.,Wylie- Rosett, J.,Zheng, W.,Ades, T.,Cokkinides, V.,Samuels, A.,Ringer, D. P.,Smith, 	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	R. A American Cancer Society guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. <i>Ca-A Cancer Journal for Clinicians.</i> 2006. 56:254-281	
L1	Sun, L.,Gao, Y.,Liu, H.,Zhang, W.,Ding, Y.,Li, B.,Li, M.,Sun, D An assessment of the relationship between excess fluoride intake from drinking water and essential hypertension in adults residing in fluoride endemic areas. <i>Science of</i> <i>the Total Environment.</i> 2013. 443:864-869	t One or more exclusion criteria
L1	Fewtrell, L.,Smith, S.,Kay, D.,Bartram, J An attempt to estimate the global burden of disease due to fluoride in drinking water. <i>J Water Health.</i> 2006. 4:533-42	One or more exclusion criteria
L1	Jiang, G.,Pichaandi, J.,Johnson, N. J.,Burke, R. D.,van Veggel, F. C An effective polymer cross-linking strategy to obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications. <i>Langmuir.</i> 2012. 28:3239-47	One or more exclusion criteria
L1	Kao, C. H.,Hsu, W. L.,Kao, P. F.,Lan, W. C.,Xie, H. L.,Lin, M. C.,Chao, H. Y An efficient and aseptic preparation of "sodium fluoride ((18)F) injection" in a GMP compliant facility. <i>Ann Nucl Med.</i> 2010. 24:149-55	One or more exclusion criteria
L1	Erickson, J. D An epidemiologic enterprise: From fluoride to folate. <i>Birth Defects Research Part A - Clinical and Molecular Teratology.</i> 2012. 94 (5):292	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Zhai, L.,Wang, X.,Gao, H.,Li, L.,Lu, X.,Li, H.,Chen, P An epidemiological investigation of endemic fluorosis in Shandong Province in 2013. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:508-510	One or more exclusion criteria
L1	Harinath, B An epidemiological study of dental fluorosis among higher secondary school children belonging to an endemic rural area in Nalgonda district, Andhra Pradesh. <i>Australasian Medical Journal.</i> 2012. 5 (1):42-43	One or more exclusion criteria
L1	Nirgude, A. S., Saiprasad, G. S., Naik, P. R., Mohanty, S An epidemiological study on fluorosis in an urban slum area of Nalgonda, Andhra Pradesh, India. <i>Indian Journal of Public Health.</i> 2010. 54:194-6	One or more exclusion criteria
L1	Sankannavar, R., Chaudhari, S An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation. <i>Journal of Environmental Management.</i> 2019. 245:230-237	One or more exclusion criteria
L1	Olley, R. C., Pilecki, P., Hughes, N., Jeffery, P., Austin, R. S., Moazzez, R., Bartlett, D An in situ study investigating dentine tubule occlusion of dentifrices following acid challenge. <i>J Dent.</i> 2012. 40:585-93	One or more exclusion criteria
L1	Koletsi-Kounari, H.,Mamai-Homata, E.,Diamanti, I An in vitro study of the effect of aluminum and the combined effect of strontium, aluminum, and fluoride elements on early enamel carious lesions. <i>Biological Trace Element Research</i> . 2012. 147:418-427	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Vivar, M., Pichel, N., Fuentes, M., Martínez, F An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict. <i>Sci Total Environ.</i> 2016. 550:534-546	One or more exclusion criteria
L1	Ye, Y.,Wang, W.,Huo, L. L.,Liu, K. K.,Liu, Y.,Sun, J.,Li, S. P.,Gao, Y. H An investigation of the source of fluoride in the endemic fluorosis areas of Pingxiang city, Jiangxi province in 2011. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2013. 32:67-70	One or more exclusion criteria
L1	Liu, Y.,Guo, R.,Huang, J.,Wang, X.,Yang, F.,Sun, G An survey of endemic fluorosis in Jining City, Shandong Province. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2014. 33:174-177	One or more exclusion criteria
L1	Honkanen, I.,Hock, L.,Bettendorf, B.,Fiordellisi, W An unlikely source of periostitis. <i>Journal of General Internal Medicine</i> . 2018. 33 (2 Supplement 1):464	One or more exclusion criteria
L1	Susan, J.,Sebastian, S An unusual cause of back pain in South India: Case report. <i>Turkish Journal of Gastroenterology.</i> 2019. 30 (Supplement 3):S190-S191	One or more exclusion criteria
L1	Dai, H. X.,Zeng, P.,Wang, K. Y.,Zhang, X. G.,Ma, Z. J.,Zhou, Y. G.,Fan, Z. X.,Guo, S. H Analysis of a survey results of patients with suspected high iodine goiter in Liuji Town Fuping County of Shaanxi Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:408-411	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jia, L. H.,Ma, J.,Du, Y. G.,Ma, D. R.,Liang, S. L.,Zhou, C. H Analysis of an investigational result of drinking-water-borne endemic fluorosis in Hebei Province in 2010. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:659-661	One or more exclusion criteria
L1	Jameel, R. A., Khan, S. S., Rahim, Z. H. A., Bakri, M. M., Siddiqui, S Analysis of dental erosion induced by different beverages and validity of equipment for identifying early dental erosion, in vitro study. <i>Journal of the Pakistan Medical Association.</i> 2016. 66:843-848	One or more exclusion criteria
L1	Gao, R. P.,Xu, Y Analysis of disease surveillance of endemic fluorosis in Yanqing county of Beijing in 2008. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2010. 29:176-178	One or more exclusion criteria
L1	Liu, X. H.,Hu, R. C.,Zheng, C. S.,Zhou, M. R.,Jiang, Z. L.,Tian, S. C.,Gai, C. C.,Zhang, X. K Analysis of endemic fluorosis of Xinbaerhuyouqi in Hulunbeir city of Inner Mongolia in 2000-2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:546-548	One or more exclusion criteria
L1	Chen, J.,Xiao, B. Z.,Yan, W.,Zhou, Q. R.,Zhang, J.,Wang, Z. H.,Zhao, J.,Guo, X. L.,Luo, X. J Analysis of environmental fluoride of the coal-burning endemic fluorosis areas in Chongqing. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:541-544	

Level	Bibliography	Reason for Exclusion
L1	Kataria, H. C., Bux, S., Ambhore, S., Shrivastava, S. C., Pathak, G., Namdeo, MAnalysis of fluoride concentration in groundwater in and around Bhopal city.M.P. India. <i>Biosciences Biotechnology Research Asia.</i> 2008. 5:699-700	One or more exclusion criteria
L1	Niu, Z. H.,Zhao, J. L Analysis of monitoring data of drinking-water borne endemic fluorosis in Xinzhou of Shanxi province in 2010. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:321-324	One or more exclusion criteria
L1	Ge, S. Z. G Analysis of monitoring results of drinking-tea borne endemic fluorosis in Lhasa of Tibet. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:325-328	One or more exclusion criteria
L1	Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Gao, J., Ma, A. H., Liu, Y., Li, H. X Analysis of monitoring results of endemic fluorosis in Shandong province in 2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:188-193	One or more exclusion criteria
L1	Li, P.,Wang, Z.,Wu, Z Analysis of monitoring results of fluoride-safe water supply projects in drinking water type of fluorosis and arsenic poisoning areas in Shanxi Province in 2012. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:116-118	One or more exclusion criteria
L1	Mahajan, R. K., Walia, T. P., Lark, B. S., Sumanjit, Analysis of physical and chemical parameters of bottled drinking water. <i>Int J Environ Health Res.</i> 2006. 16:89-98	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chen, P. Z., Yun, Z. J., Li, H. X., Gao, H. X., Wang, Y. T., Gao, J., Yin, Y. Y Analysis of surveillance outcome of endemic fluorosis in Shandong province in 2010. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2012. 31:191-193	One or more exclusion criteria
L1	Wei, S. Y.,He, D. L.,Ding, P.,Pu, G. L.,Lu, Q.,Yang, P.,Zhou, M.,Han, W.,Tan, D. F.,Xi, G. X.,Pu, W. Q Analysis of surveillance results of drinking water type of endemic fluorosis in Qinghai province in 2009. [Chinese]. <i>Chinese Journal o Endemiology.</i> 2011. 30:542-545	
L1	Shu, C. L., Wang, C. S., Wang, Y., Xia, Y. T., Chen, S. H. Analysis of surveillance results of drinking-water-borne endemic fluorosis in Jiangsu Province in 2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:662-667	One or more exclusion criteria
L1	Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Li, H. X., Liu, Y Analysis of survey results of endemic fluorosis in Shandong province in 2008. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2011. 30:51-55	One or more exclusion criteria
L1	Zhang, L.,Yang, Z. M.,Wu, Z. J.,Luo, Z. Y.,Yan, Q.,Zhang, J Analysis of the survey result of the coal-burning endemic fluorosis in Hongya County of Sichuan Province in 2006. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2008. 27:191-193	One or more exclusion criteria
L1	Chen, P. Z.,Yun, Z. J.,Bian, J. C.,Li, H. X.,Ma, A. H.,Gao, H. X.,Wang, Y. T.,Zhao, L. J Analysis on surveillance outcome of endemic fluorosis in	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Shandong Province from 1992 to 2006. [Chinese]. Chinese Journal of Endemiology. 2009. 28:537-540	
L1	Sun, D.,Gao, Y.,Zhao, L.,Wang, C.,Wang, W.,Gao, L Analysis on the monitoring results of drinking water borne endemic fluorosis in China (2009-2011). <i>Fluoride</i> . 2012. 45 (3 PART 1):204-205	One or more exclusion criteria
L1	Shen, Y. F., Han, H. P., Xiu, C. P., Sun, D. J Analysis on the present running status of water-improving project in Anda city, Heilonjiang province in 2008. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:319-321	One or more exclusion criteria
L1	Zhou, M.,Wei, S. Y.,Si, W. J.,Ding, P.,Lu, Q.,Ding, S. R.,Pu, G. L.,Jiang, H.,Shi W. X. Analysis on the prevention and treatment of drinking water fluorosis Guide county, in Qinghai province. [Chinese]. <i>Chinese Journal of Endemiology</i> 2010. 29:429-431	
L1	Jumba, I. O., Kisia, S. M., Kock, R Animal health problems attributed to environmental contamination in Lake Nakuru National Park, Kenya: A case study on heavy metal poisoning in the waterbuck Kobus ellipsiprymnus defassa (Ruppel 1835). <i>Archives of Environmental Contamination and Toxicology.</i> 2007. 52:270-281	One or more exclusion criteria
L1	Gutierrez, R. M. P., Hoyo-Vadillo, C Anti-inflammatory Potential of Petiveria alliacea on Activated RAW264.7 Murine Macrophages. <i>Pharmacogn Mag.</i> 2017. 13:S174-s178	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
_1	Shinonaga, Y., Arita, K Antibacterial effect of acrylic dental devices after surface modification by fluorine and silver dual-ion implantation. <i>Acta Biomater</i> 2012. 8:1388-93	One or more exclusion criteria
_1	Vasant, R. A., Khajuria, M. C., Narasimhacharya, A. V Antioxidant and ACE enhancing potential of Pankajakasthuri in fluoride toxicity: an in vitro study on mammalian lungs. <i>Toxicology & Industrial Health.</i> 2011. 27:793-801	One or more exclusion criteria
_1	Rocha-Amador, D. O., Calderon, J., Carrizales, L., Costilla-Salazar, R., Perez- Maldonado, I. N Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. <i>Environmental Toxicology & Pharmacology.</i> 2011. 32:399-405	One or more exclusion criteria
_1	Wang, J. H., Feng, X. W., Zheng, Z. X., Liu, W., Li, Z. R., Gao, R., Wang, S. Q., Wang, E. L., Kan, Z. Y., Zhao, W. G., Guo, J. Q Application of global positioning systems and geographic information systems in drinking water defluoridation project in Liaoning province. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2010. 29:544-546	One or more exclusion criteria
L1	Shan, L. H.,Cui, Z. Q.,Shen, Q. H.,Gao, Q.,Qiu, Z. X Application of light-cure resin-modified glass ionomer cement in orthodontic practice. <i>Journal of Clinical Rehabilitative Tissue Engineering Research.</i> 2008. 12:1149-1152	

Level	Bibliography	Reason for Exclusion
L1	Rezaee, R.,Mahvi, A. H.,Maleki, A.,Jafari, A.,Ashrafi, S. D.,Safari, M Application of modified wheat straw for fluoride reduction from aqueous solutions: Isotherms and kinetics. <i>Fluoride</i> . 2012. 45 (3 PART 1):195	One or more exclusion criteria
L1	Shukurov, R.,Balashov, M.,Dadashov, Z.,Valiyev, M.,Mehdi, E.,Novruzov, F Application of production and quality control procedures of 18F-PSMA-1007: Dominant in diagnosis of prostate cancer, through Synthera V2. <i>European</i> <i>Journal of Nuclear Medicine and Molecular Imaging.</i> 2019. 46 (1 Supplement 1):S737-S738	One or more exclusion criteria
L1	Lazari, M.,Sergeev, M.,Morgia, F.,Van Dam, R Application of titanium dioxide in catalytic radiofluorination in aqueous media. <i>Molecular Imaging and Biology</i> . <i>Conference</i> . 2014. 17:#pages#	
L1	Marghade, D., Malpe, D. B., Subba Rao, N Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. <i>Envirol Geochem Health.</i> 2019. #volume#:#pages#	
L1	Mor, S.,Singh, S.,Yadav, P.,Rani, V.,Rani, P.,Sheoran, M.,Singh, G.,Ravindra, K Appraisal of salinity and fluoride in a semi-arid region of India using statistical and multivariate techniques. <i>Environ Geochem Health.</i> 2009. 31:643 55	

Level	Bibliography	Reason for Exclusion
L1	Ericson, B., Caravanos, J., Chatham-Stephens, K., Landrigan, P., Fuller, R Approaches to systematic assessment of environmental exposures posed at hazardous waste sites in the developing world: The Toxic Sites Identification Program. <i>Environmental Monitoring and Assessment.</i> 2013. 185:1755-1766	One or more exclusion criteria
L1	 Anjomshoaa, I.,Briseño-Ruiz, J.,Deeley, K.,Poletta, F. A.,Mereb, J. C.,Leite, A. L.,Barreta, P. A.,Silva, T. L.,Dizak, P.,Ruff, T.,Patir, A.,Koruyucu, M.,Abbasoğlu, Z.,Casado, P. L.,Brown, A.,Zaky, S. H.,Bayram, M.,Küchler, E. C.,Cooper, M. E.,Liu, K.,Marazita, M. L.,Tanboğa, İ,Granjeiro, J. M.,Seymen, F.,Castilla, E. E.,Orioli, I. M.,Sfeir, C.,Owyang, H.,Buzalaf, M. A.,Vieira, A. R Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries. <i>PLoS One</i>. 2015. 10:e0143068 	
L1	Pandith, M.,Malpe, D. B.,Rao, A. D.,Rao, P. N Aquifer wise seasonal variations and spatial distribution of major ions with focus on fluoride contamination-Pandharkawada block, Yavatmal district, Maharashtra, India. <i>Environmental Monitoring and Assessment.</i> 2016. 188:1-20	One or more exclusion criteria
L1	Hu, Q.,Strynar, M. J.,DeWitt, J. C Are developmentally exposed C57BL/6 mice insensitive to suppression of TDAR by PFOA?. <i>Journal of Immunotoxicology.</i> 2010. 7:344-9	One or more exclusion criteria
L1	Peckham, S.,Lowery, D.,Spencer, S Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	study of GP practice data and fluoride levels in drinking water. <i>J Epidemiol Community Health.</i> 2015. 69:619-24	
L1	Newton, J. N., Verne, J., Dancox, M., Young, N Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? Comments on the authors' response to earlier criticism. <i>J Epidemiol Community Health.</i> 2017, 71:315-316	One or more exclusion criteria
L1	Farooqi, A., Sultana, J., Masood, N Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications. <i>Toxicol Ind Health.</i> 2017. 33:655-672	One or more exclusion criteria
L1	Qurat ul, Ain, Farooqi, A., Sultana, J., Masood, N Arsenic and fluoride co- contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications. <i>Toxicology & Industrial Health.</i> 2017. 33:655-672	One or more exclusion criteria
L1	Estrada-Capetillo, B. L.,Ortiz-Pérez, M. D.,Salgado-Bustamante, M.,Calderón- Aranda, E.,Rodríguez-Pinal, C. J.,Reynaga-Hernández, E.,Corral-Fernández, N. E.,González-Amaro, R.,Portales-Pérez, D. P Arsenic and fluoride co- exposure affects the expression of apoptotic and inflammatory genes and proteins in mononuclear cells from children. <i>Mutat Res Genet Toxicol Environ</i> <i>Mutagen.</i> 2014. 761:27-34	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., Marathe, K. V Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. <i>J Environ Manage</i> . 2015. 162:306-25	One or more exclusion criteria
L1	Wang, S. X., Cheng, X. T., Li, J., Sang, Z. P., Zhang, X. D., Han, L. L., Qiao, X. Y., Wu, Z. M., Wang, Z. H Arsenic and fluoride expose in drinking water: Children's IQ and growth in Shanyin Country, Shanxi Province, China. <i>Environmental Health Perspectives</i> . 2007. 115:643-647	One or more exclusion criteria
L1	Chouhan, S.,Flora, S. J Arsenic and fluoride: two major ground water pollutants. <i>Indian Journal of Experimental Biology.</i> 2010. 48:666-78	One or more exclusion criteria
L1	Peterson, E., Shapiro, H., Li, Y., Minnery, J. G., Copes, R. Arsenic from community water fluoridation: quantifying the effect. <i>J Water Health.</i> 2016. 14:236-42	One or more exclusion criteria
L1	Villanueva, C. M.,Kogevinas, M.,Cordier, S.,Templeton, M. R.,Vermeulen, R.,Nuckols, J. R.,Nieuwenhuijsen, M. J.,Levallois, P Assessing exposure and health consequences of chemicals in drinking water: Current state of knowledge and research needs. <i>Environmental Health Perspectives.</i> 2014. 122:213-221	One or more exclusion criteria
L1	Augustsson, A.,Berger, T Assessing the risk of an excess fluoride intake among Swedish children in households with private wells - Expanding static	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	single-source methods to a probabilistic multi-exposure-pathway approach. <i>Environment International.</i> 2014. 68:192-199	
L1	Kalshetty, B. M.,Gaonkar, S. M.,Gani, R. S.,Kalashetti, M. B Assessment and toxicity of fluoride from ground water sources in and around Bagalkot district, Karnataka, India. <i>International Research Journal of Pharmacy.</i> 2013. 4:246-249	One or more exclusion criteria
L1	Pollo, F. E., Grenat, P. R., Otero, M. A., Salas, N. E., Martino, A. L Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine. <i>Ecotoxicol</i> <i>Environ Saf.</i> 2016. 133:466-74	
L1	Valeeva, E. R., Ismagilova, G. A., Stepanova, N. V., Serazetdinova, F. I., Saifullin, R. R., Iliasova, A. R Assessment of adolescents' exposure to non- carcinogenic risk associated with drinking water. <i>Journal of Pharmacy</i> <i>Research.</i> 2017. 11:1209-1213	One or more exclusion criteria
L1	Sarinana-Ruiz, Y. A., Vazquez-Arenas, J., Sosa-Rodriguez, F. S., Labastida, I., Armienta, M. A., Aragon-Pina, A., Escobedo-Bretado, M. A., Gonzalez-Valdez, L. S., Ponce-Pena, P., Ramirez-Aldaba, H., Lara, R. H Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico. <i>Chemosphere</i> . 2017. 178:391-401	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Sariñana-Ruiz, Y. A., Vazquez-Arenas, J., Sosa-Rodríguez, F. S., Labastida,	One or more exclusion criteria
	I., Armienta, M. A., Aragón-Piña, A., Escobedo-Bretado, M. A., González-Valdez,	
	L. S., Ponce-Peña, P., Ramírez-Aldaba, H., Lara, R. H Assessment of arsenic	
	and fluorine in surface soil to determine environmental and health risk factors	
	in the Comarca Lagunera, Mexico. Chemosphere. 2017. 178:391-401	
L1	Arshad, N., Imran, S Assessment of arsenic, fluoride, bacteria, and other	One or more exclusion criteria
	contaminants in drinking water sources for rural communities of Kasur and	
	other districts in Punjab, Pakistan. Environ Sci Pollut Res Int. 2017. 24:2449-	
	2463	
L1	Wang, T. J., An, J., Chen, X. H., Deng, Q. D., Yang, L Assessment of Cuscuta	One or more exclusion criteria
	chinensis seeds' effect on melanogenesis: comparison of water and ethanol	
	fractions in vitro and in vivo. J Ethnopharmacol. 2014. 154:240-8	
L1	Malinowska, E., Inkielewicz, I., Czarnowski, W., Szefer, P Assessment of	One or more exclusion criteria
	fluoride concentration and daily intake by human from tea and herbal infusions.	
	Food Chem Toxicol. 2008. 46:1055-61	
L1	Bhat, N.,Jain, S.,Asawa, K.,Tak, M.,Shinde, K.,Singh, A.,Gandhi, N.,Gupta, V.	One or more exclusion criteria
	V Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of	
	Zinc Smelter, Debari, Udaipur, Rajasthan. <i>J Clin Diagn Res.</i> 2015. 9:Zc63-6	

evel	Bibliography	Reason for Exclusion
1	Vincent, J.,Balakumar, P Assessment of fluoride concentrations of groundwater in Tiruchendur, Thoothukudi district, Tamilnadu by spadns method. <i>International Journal of ChemTech Research.</i> 2014. 6:4807-4809	One or more exclusion criteria
1	Dutta, J Assessment of fluoride, arsenic and other heavy metals in the ground water of tea gardens belt of Sonitpur district, Assam, India. <i>International Journal of ChemTech Research.</i> 2016. 9:71-79	d One or more exclusion criteria
.1	de Souza, C. F.,Lima, J. F., Jr.,Adriano, M. S.,de Carvalho, F. G.,Forte, F. D.,de Farias Oliveira, R.,Silva, A. P.,Sampaio, F. C Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil. <i>Environmental Monitoring & Assessment.</i> 2013. 185:4735-43	One or more exclusion criteria
1	Cooray, T.,Wei, Y.,Zhong, H.,Zheng, L.,Weragoda, S. K.,Weerasooriya, A. R Assessment of Groundwater Quality in CKDu Affected Areas of Sri Lanka: Implications for Drinking Water Treatment. <i>Int J Environ Res Public Health.</i> 2019. 16:#pages#	One or more exclusion criteria
1	Ranjan, S.,Yasmin, S Assessment of groundwater quality in Gaya region with respect to fluoride. <i>Journal of Ecophysiology and Occupational Health.</i> 2012. 12:21-25	One or more exclusion criteria
1	Tunakova, J.,Galimova, A.,Fajzullin, R.,Valiev, V Assessment of health risks of the child population in the consumption of drinking water, taking into account	

Level	Bibliography	Reason for Exclusion
	secondary pollution on the example of Kazan. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. 7:1114-1117	
L1	Meng, F.,Zhao, R.,Liu, P.,Liu, L.,Liu, S Assessment of iodine status in children, adults, pregnant women and lactating women in iodine-replete areas of china. <i>PLoS ONE.</i> 2013. 8 (11) (no pagination):#pages#	One or more exclusion criteria
L1	Francisca, F. M., Carro Perez, M. E Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. <i>Environ Geochem Health.</i> 2009. 31:673-82	One or more exclusion criteria
L1	Corcia, P., Vercouillie, J., Tauber, C., Praline, J., Nicolas, G., Venel, Y., Beaulieu, J. L., Aesch, C., Roussel, C., Kassiou, M., Guilloteau, D., Ribeiro, M Assessmen of neuroinflammation in als with 18F-DPA-714 PET. <i>Amyotrophic Lateral Sclerosis.</i> 2012. 1):54-55	
L1	Kundu, M. C., Mandal, B Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. <i>Environmental Monitoring and Assessment.</i> 2009. 152:97-103	One or more exclusion criteria
L1	Bhattacharya, P.,Samal, A. C.,Banerjee, S.,Pyne, J.,Santra, S. C Assessmen of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India. <i>Environ Sci Pollut Res Int.</i> 2017. 24:20300-20314	t One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
_1	Li, Z., Yang, K., Xie, C., Yang, Q., Lei, X., Wang, H Assessment of potential health risk of major contaminants of groundwater in a densely populated agricultural area. <i>Environ Geochem Health.</i> 2019. #volume#:#pages#	One or more exclusion criteria
_1	Rawlani, S.,Rawlani, S.,Rawlani, S Assessment of Skeletal and Non-skeletal Fluorosis in Endemic Fluoridated Areas of Vidharbha Region, India: A Survey. <i>Indian Journal of Community Medicine.</i> 2010. 35:298-301	One or more exclusion criteria
_1	Meena, C.,Dwivedi, S.,Rathore, S.,Gonmei, Z.,Toteja, G. S.,Bala, K.,Mohanty, S. S Assessment of skeletal fluorosis among children in two blocks of rural area, Jaipur District, Rajasthan, India. <i>Asian Journal of Pharmaceutical and Clinical Research.</i> 2017. 10:322-325	One or more exclusion criteria
_1	Ye, Q.,Zhou, X Assessment of Soil Fluorine Pollution in Jinhua Fluorite Ore Areas. [Chinese]. <i>Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke</i> <i>xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan</i> <i>hui.].</i> 2015. 36:2648-2654	One or more exclusion criteria
_1	Radić, S.,Gregorović, G.,Stipaničev, D.,Cvjetko, P.,Srut, M.,Vujčić, V.,Oreščanin, V.,Vinko Klobučar, G. I Assessment of surface water in the vicinity of fertilizer factory using fish and plants. <i>Ecotoxicol Environ Saf.</i> 2013. 96:32-40	One or more exclusion criteria
_1	West, N. X., Seong, J., Hellin, N., Macdonald, E. L., Jones, S. B., Creeth, J. E Assessment of tubule occlusion properties of an experimental stannous	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	fluoride toothpaste: A randomised clinical in situ study. <i>J Dent.</i> 2018. 76:125- 131	
L1	Viswanathan, G.,Gopalakrishnan, S.,Siva Ilango, S Assessment of water contribution on total fluoride intake of various age groups of people in fluoride endemic and non-endemic areas of Dindigul District, Tamil Nadu, South India. <i>Water Research.</i> 2010. 44:6186-6200	One or more exclusion criteria
L1	Gehani, C. P., Pollick, H., Stevenson, R. A Association between Maternal Fluoride Exposure and Child IQ [8]. <i>JAMA Pediatrics</i> . 2020. 174:215-216	One or more exclusion criteria
L1	Green, R.,Lanphear, B.,Hornung, R.,Flora, D.,Martinez-Mier, E. A.,Neufeld, R.,Ayotte, P.,Muckle, G.,Till, C Association between Maternal Fluoride Exposure during Pregnancy and IQ Scores in Offspring in Canada. <i>JAMA</i> <i>Pediatrics</i> . 2019. 173:940-948	One or more exclusion criteria
L1	Yang, D.,Liu, Y.,Chu, Y.,Yang, Q.,Jiang, W.,Chen, F.,Li, D.,Qin, M.,Sun, D.,Yang, Y.,Gao, Y Association between vitamin D receptor gene Fokl polymorphism and skeletal fluorosis of the brick-tea type fluorosis: a cross sectional, case control study. <i>BMJ Open.</i> 2016. 6:e011980	One or more exclusion criteria
L1	Patel, P. P.,Patel, P. A.,Zulf, M. M.,Yagnik, B.,Kajale, N.,Mandlik, R.,Khadilkar, V.,Chiplonkar, S. A.,Phanse, S.,Patwardhan, V.,Joshi, P.,Patel, A.,Khadilkar, A. V Association of dental and skeletal fluorosis with calcium intake and	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	serum vitamin D concentration in adolescents from a region endemic for fluorosis. <i>Indian Journal of Endocrinology and Metabolism.</i> 2017. 21:190-195	
L1	 Choi, A. L., Zhang, Y., Sun, G., Bellinger, D. C., Wang, K., Yang, X. J., Li, J. S., Zheng, Q., Fu, Y., Grandjean, P Association of lifetime exposure to fluoride and cognitive functions in Chinese children: a pilot study. <i>Neurotoxicol Teratol.</i> 2015. 47:96-101 	One or more exclusion criteria
L1	Asawa, K.,Singh, A.,Bhat, N.,Tak, M.,Shinde, K.,Jain, S Association of Temporomandibular Joint Signs & Symptoms with Dental Fluorosis & Skeletal Manifestations in Endemic Fluoride Areas of Dungarpur District, Rajasthan, India. <i>Journal of Clinical and Diagnostic Research JCDR.</i> 2015. 9:ZC18-21	One or more exclusion criteria
L1	Chafe, R.,Aslanov, R.,Sarkar, A.,Gregory, P.,Comeau, A.,Newhook, L. A Association of type 1 diabetes and concentrations of drinking water components in Newfoundland and Labrador, Canada. <i>BMJ Open Diabetes</i> <i>Research and Care.</i> 2018. 6 (1) (no pagination):#pages#	One or more exclusion criteria
L1	Riddell, J. K., Malin, A. J., Flora, D., McCague, H., Till, C Association of water fluoride and urinary fluoride concentrations with attention deficit hyperactivity disorder in North American youth. <i>Environ Int.</i> 2019. 133:105190	One or more exclusion criteria
L1	Furukawa, S.,Hagiwara, Y.,Taguchi, C.,Turumoto, A.,Kobayashi, S Associations between oral health behavior and anxiety about water fluoridation	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	and motivation to establish water fluoridation in Japanese residents. <i>Journal of Oral Science</i> . 2011. 53:313-9	f
L1	Oweis, R.,Levy, S.,Warren, J.,Gilmore, J. E.,Burns, T.,Saha, P.,Janz, K.,Torner, J.,Letuchy, E.,Broffitt, B Associations of fluoride intake with adolescents' pQCT-derived bone outcome measures at age 17. <i>Journal of Bone and Mineral Research. Conference.</i> 2015. 30:#pages#	One or more exclusion criteria
L1	Levy, S. M.,Eichenberger-Gilmore, J.,Warren, J. J.,Letuchy, E.,Broffitt, B.,Marshall, T. A.,Burns, T.,Willing, M.,Janz, K.,Torner, J. C Associations of fluoride intake with children's bone measures at age 11. <i>Community Dent Oral</i> <i>Epidemiol.</i> 2009. 37:416-26	One or more exclusion criteria
L1	Spittle, B Authority and reasoning in science. Fluoride. 2014. 47:94-97	One or more exclusion criteria
L1	Teotia, S. P. S., Teotia, M Authors's response. <i>Indian Journal of Medical Research.</i> 2008. 128:674-676	One or more exclusion criteria
L1	Hader, S Automated GMP compatible synthesis of 3-[18F] Fluoro-5-[(pyridine 2-yl)ethynyl]benzonitrile ([18F] FPEB). <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2015. 1):S478-S479	e-One or more exclusion criteria
L1	Anzellotti, A.,Bailey, J.,Ferguson, D.,McFarland, A.,Bochev, P.,Andreev, G.,Awasthi, V.,Brown-Proctor, C Automated production and quality testing of	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	[¹⁸ F]labeled radiotracers using the BG75 system. Journal of Radioanalytical and Nuclear Chemistry. 2015. 305:387-401	
L1	Mossine, A., Tanzey, S., Brooks, A., Henderson, B., Skaddan, M., Sanford, M., Scott, P Automated production of high specific activity [¹⁸ F]6F-I-DOPA using a TRACERLab FXFN synthesis module. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S225-S226	One or more exclusion criteria
L1	Zhang, Y.,Zhang, L.,Wu, Z.,Yang, J.,Ploessl, K.,Zha, Z.,Fei, L.,Zhu, H.,Zhu, L.,Yang, Z.,Kung, H Automated radiosynthesis of (2S,4R)-4- [¹⁸ F]fluoroglutamine for clinical application. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S322-S323	One or more exclusion criteria
L1	Collier, T. L., Yokell, D. L., Livni, E., Rice, P. A., Celen, S., Serdons, K., Neelamegam, R., Bormans, G., Harris, D., Walji, A., Hostetler, E. D., Bennacef, I., Vasdev, N Automated radiosynthesis of [¹⁸ F]MK-6240 and validation for human use. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S612	One or more exclusion criteria
L1	Shih, I. H.,Duan, X. D.,Kong, F. L.,Williams, M. D.,Yang, K.,Zhang, Y. H.,Yang, D. J Automated synthesis of 18F-fluoropropoxytryptophan for amino acid transporter system imaging. <i>Biomed Res Int.</i> 2014. 2014:492545	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Noh, M. F. B. M., Laurens, E., Jeow, S. Y., Vedarethinam, R., Wee, X.	One or more exclusion criteria
	J.,Fatholmoein, F. Z. B.,Pek, G.,Ping, H. T. S.,Green, D.,Chiam, V.	
	K.,Boodeea, K.,Doshi, P. R.,Kulasi, A.,Hui, E. T. J.,Weekes, A.,Robins, E	
	Automated synthesis of [¹⁸ F]NAV4694 using GE TracerLab FX-N	
	Pro in compliance with PIC/S GMP. Journal of Labelled Compounds and	
	Radiopharmaceuticals. 2019. 62 (Supplement 1):S333-S334	
L1	Bowden, G., Franke, A., Pichler, B., Maurer, A Automated synthesis of	One or more exclusion criteria
	[¹⁸ F]O ⁶ -[(4-[¹⁸ F]fluoro)benzyl]guanine	
	([¹⁸ F]pFBG) via [¹⁸ F]-fluorobenzyl alcohol	
	([¹⁸ F]4FBnOH) from an optimized copper mediated	
	radiofluorination (CMRF) of 4-tributyltin-benzyl alcohol. Journal of Labelled	
	Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S329-S331	
L1	Mitra, A.,Rajesh, C.,Lad, S.,Upadhye, T.,Banerjee, S.,Rajan, R Automated synthesis of pharmaceutical grade [¹⁸ F]FLT using 5'-O-(Benzoyl)- 2,3'-anhydrothymidine Precursor. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S616	One or more exclusion criteria
L1	Liu, Z.,Goodwin, M.,Ellwood, R. P.,Pretty, I. A.,McGrady, M Automatic detection and classification of dental fluorosis in vivo using white light and fluorescence imaging. <i>J Dent.</i> 2018. 74 Suppl 1:S34-s41	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Bohmer, V. I., Van Der Born, D., Szymanski, W., Klopstra, M., Visser, T. J., Feringa, B. L., Elsinga, P. H Automation of Click Chemistry for the synthesis of ¹⁸ F-labelled PSMA-tracers using the FlowSafe. <i>EJNMMI</i> <i>Radiopharmacy and Chemistry. Conference: 19th European Symposium on</i> <i>Radiopharmacy and Radiopharmaceuticals, ESRR'18. Netherlands</i> 2018. 3:#pages#	One or more exclusion criteria
L1	Souza, M. S., Diniz, L. F., Vogt, L., Carvalho, P. S., D'Vries, R. F., Ellena, J Avoiding irreversible 5-fluorocytosine hydration: Via supramolecular synthesis of pharmaceutical cocrystals. <i>New Journal of Chemistry.</i> 2018. 42:14994- 15005	One or more exclusion criteria
L1	Manthra Prathoshni, S. M., Vishnu Priya, V., Sohara Parveen, N Awareness of dental fluorosis among children - A survey. <i>Journal of Pharmaceutical Sciences and Research.</i> 2017. 9:459-461	
L1	Bansal, R.,Tiwari, S. C Back pain in chronic renal failure. <i>Nephrol Dial Transplant.</i> 2006. 21:2331-2	One or more exclusion criteria
L1	Grandtnerova, B.,Beratsova, Z.,Ova, M. E.,Erven, J.,Markech, M.,Stefanikova, A Balneotherapy and chronic urinary tract infections, a benefit or a danger?. <i>Nephrology Dialysis Transplantation.</i> 2014. 3):iii393	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Sahin-Onat, S., Tasoglu, O., Ozisler, Z., Demircioglu Guneri, F., Ozgirgin, N Balneotherapy in the treatment of knee osteoarthritis: A controlled study. <i>Archives of Rheumatology.</i> 2015. 30:292-297	One or more exclusion criteria
L1	MacGregor, R Battle renewed over value of fluoridation. <i>Cmaj.</i> 2011. 183:1173	One or more exclusion criteria
L1	Sonne, C.,Lam, S. S.,Kim, K. H.,Rinklebe, J.,Ok, Y. S Be cautious applying carbon-fluorine bonds in drug delivery. <i>Chemosphere.</i> 2020. 248 (no pagination):#pages#	One or more exclusion criteria
L1	Szoke, D., Valente, C., Panteghini, M Better blood collection tubes for plasma glucose: Ready for prime time?. <i>Clinical Chemistry and Laboratory Medicine</i> . 2014. 52:e87-e89	One or more exclusion criteria
L1	Gilbert, F. J Beyond FDG: Getting new PET tracers into practice. <i>Journal of Medical Imaging and Radiation Oncology.</i> 2016. 60 (Supplement 1):33	One or more exclusion criteria
L1	Brooks, A.,Burris, S.,Scott, P Binding of [¹⁸ F]N-Methyl lansoprazole to tau aggregates in post-mortem brain sections from alzheimer's disease and progressive supranuclear palsy patients. <i>Journal of Nuclear</i> <i>Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging</i> <i>Annual Meeting, SNMMI.</i> 2017. 58:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Kazi, T. G.,Brahman, K. D.,Baig, J. A.,Afridi, H. I Bioaccumulation of arsenic and fluoride in vegetables from growing media: health risk assessment among different age groups. <i>Environ Geochem Health.</i> 2019. 41:1223-1234	One or more exclusion criteria
L1	Neale, P. A., Antony, A., Bartkow, M. E., Farré, M. J., Heitz, A., Kristiana, I., Tang, J. Y., Escher, B. I Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant. <i>Environ Sci Technol.</i> 2012. 46:10317-25	One or more exclusion criteria
L1	Athapattu, B. C. L., Thalgaspitiya, Twlr, Yasaratne, U. L. S., Vithanage, M Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka. <i>Environ</i> <i>Geochem Health.</i> 2017. 39:1397-1407	One or more exclusion criteria
L1	Jaganmohan, P.,Narayana Rao, S. V. L.,Sambasiva Rao, K. R. S Biochemical and haematological investigations on fluorosis threaten patients at Nellore district, Andhra Pradesh, India. <i>World Journal of Medical Sciences</i> . 2010. 5:54-58	One or more exclusion criteria
L1	Wagner, O., Thiele, J., Weinhart, M., Mazutis, L., Weitz, D. A., Huck, W. T., Haag, R Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. <i>Lab Chip.</i> 2016. 16:65-9	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Cao, T., Yang, Y., Sun, Y., Wu, Y., Gao, Y., Feng, W., Li, F Biodistribution of sub- 10 nm PEG-modified radioactive/upconversion nanoparticles. <i>Biomaterials</i> . 2013. 34:7127-34	One or more exclusion criteria
L1	Palliyal, S. A Biological markers serum and urinary fluoride levels among fertilizer and wood industry workers in Mangalore city, India. <i>Annals of Oncology</i> . 2015. 9):ix14	One or more exclusion criteria
L1	Idowu, O. S., Duckworth, R. M., Valentine, R. A., Zohoori, F. V Biomarkers for the Assessment of Fluoride Exposure in Children. <i>Caries Res.</i> 2020. #volume#:1-10	One or more exclusion criteria
L1	Rango, T.,Vengosh, A.,Jeuland, M.,Whitford, G. M.,Tekle-Haimanot, R Biomarkers of chronic fluoride exposure in groundwater in a highly exposed population. <i>Sci Total Environ.</i> 2017. 596-597:1-11	One or more exclusion criteria
L1	Zhang, X.,Li, Y.,Sun, X.,Kishen, A.,Deng, X.,Yang, X.,Wang, H.,Cong, C.,Wang, Y.,Wu, M Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. <i>J Mater Sci Mater Med.</i> 2014. 25:2619-28	One or more exclusion criteria
L1	Zillohu, A. U., Abdelaziz, R., Homaeigohar, S., Krasnov, I., Müller, M., Strunskus, T., Elbahri, M Biomimetic transferable surface for a real time control over wettability and photoerasable writing with water drop lens. <i>Sci Rep.</i> 2014. 4:7407	One or more exclusion criteria
1125		

Level	Bibliography	Reason for Exclusion
L1	Aylward, L. L.,Hays, S. M.,Vezina, A.,Deveau, M.,St-Amand, A.,Nong, A Biomonitoring Equivalents for interpretation of urinary fluoride. <i>Regul Toxicol</i> <i>Pharmacol.</i> 2015. 72:158-67	One or more exclusion criteria
L1	Chen, Y., Shen, C., Rashid, S., Li, S., Ali, B. A., Liu, J Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water. <i>J Colloid Interface Sci.</i> 2017. 491:207-215	One or more exclusion criteria
L1	Lindner, J. M., Vogeser, M., Grimm, S. H Biphenyl based stationary phases for improved selectivity in complex steroid assays. <i>Journal of Pharmaceutical & Biomedical Analysis.</i> 2017. 142:66-73	One or more exclusion criteria
L1	Waugh, D. T.,Godfrey, M.,Limeback, H.,Potter, W Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand. <i>J Environ Public Health.</i> 2017. 2017:5120504	One or more exclusion criteria
L1	Spencer, K. F.,Limeback, H Blood is thicker than water: Flaws in a National Toxicology Program study. <i>Medical Hypotheses.</i> 2018. 121:160-163	One or more exclusion criteria
L1	Mechlenburg, I.,Hermansen, F.,Thillemann, T.,Soballe, K. Blood perfusion and bone formation before and after minimally invasive periacetabular osteotomy analysed by Positron Emission Tomography combined with Computed Tomography. <i>International Orthopaedics</i> . 2013. 37:789-94	I One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Alkurdi, S. S. A., Al-Juboori, R. A., Bundschuh, J., Hamawand, I Bone char as a green sorbent for removing health threatening fluoride from drinking water. <i>Environment International.</i> 2019. 127:704-719	One or more exclusion criteria
L1	 Godebo, T. R., Jeuland, M., Tekle-Haimanot, R., Shankar, A., Alemayehu, B., Assefa, G., Whitford, G., Wolfe, A Bone quality in fluoride-exposed populations: A novel application of the ultrasonic method. <i>Bone Reports</i>. 2020. 12 (no pagination):#pages# 	One or more exclusion criteria
L1	Topuz, O.,Akkaya, N.,Ardic, F.,Sarsan, A.,Cubukcu, D.,Gokgoz, A Bone resorption marker and ultrasound measurements in adults residing in an endemic fluorosis area of Turkey. <i>Fluoride.</i> 2006. 39:138-144	One or more exclusion criteria
L1	Yildiz, M.,Suslu, H.,Cerci, S.,Ozbek, M.,Cerci, C Bone scintigraphy findings in endemic skeletal fluorosis. [Turkish]. <i>Sendrom.</i> 2007. 19:83-85	One or more exclusion criteria
L1	Choubisa, S. L Bovine calves as ideal bio-indicators for fluoridated drinking water and endemic osteo-dental fluorosis. <i>Environmental Monitoring & Assessment.</i> 2014. 186:4493-8	One or more exclusion criteria
L1	Singh, S. T., Dua, K., Gupta, D. K., Randhawa, S. S., Bansal, B. K Bovine fluorosis and its effects on essential minerals, haemogram and biochemical status in the fluoride endemic South-West Punjab of India. <i>Indian Journal of Animal Sciences</i> . 2017. 87:718-722	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Wei, S.,Lu, Q.,Yang, P.,Chen, P.,Li, S.,La, C.,Jiang, H.,He, D.,Wu, H.,Ma, T Brick-tea type fluorosis in monks in Qinghai Province. [Chinese]. <i>Chinese</i> <i>Journal of Endemiology</i> . 2014. 33:327-330	One or more exclusion criteria
L1	Wang, H., Teng, G. X Brief instruction of the prevention of endemic fluorosis. [Chinese]. <i>Chinese Journal of Clinical Rehabilitation.</i> 2006. 10:222-225	One or more exclusion criteria
L1	Chen, W. C., Ju, C. P., Wang, J. C., Hung, C. C., Chern Lin, J. H Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites. <i>Dent Mater.</i> 2008. 24:1616-22	One or more exclusion criteria
L1	. CADTH Rapid Response Reports. Community Water Fluoridation Exposure: A Review of Neurological and Cognitive Effects. 2019. #volume#:#pages#	One or more exclusion criteria
L1	Hopper, K.,Morales, P.,Garcia, A.,Wagner, J Camptomelia in a rhesus macaque (Macaca mulatta). <i>J Am Assoc Lab Anim Sci.</i> 2010. 49:863-7	One or more exclusion criteria
L1	Suresh, A.,Khairkar, P.,Srujana,. Can high levels of fluoride in body tissues of adolescents impair clinical, psychological, neurocognitive and developmental domains? A qualitative, analytical study from highly fluoride endemic district from south India. <i>Indian Journal of Psychiatry.</i> 2020. 62 (7 Supplement 1):S61	One or more exclusion criteria
L1	Frederic, D.,Stephane, L. H.,Marie-Anne, P.,Wadad, S.,Samuel, B.,Nicolas, T.,Heric, V.,Michael, K Carbon-11-labelling of a novel, trishomocubane-	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	derived, high affinity and selectivity DAT ligand. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2011. 1):S276	
L1	Almerich-Silla, J. M., Montiel-Company, J. M., Ruiz-Miravet, A Caries and dental fluorosis in a western Saharan population of refugee children. <i>Eur J Ora Sci.</i> 2008. 116:512-7	One or more exclusion criteria
L1	Jarjoura, K.,Gagnon, G.,Nieberg, L Caries risk after interproximal enamel reduction. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> . 2006. 130:26-30	One or more exclusion criteria
L1	Sami, E., Vichayanrat, T., Satitvipawee, P Caries with Dental Fluorosis and Oral Health Behaviour Among 12-Year School Children in Moderate-Fluoride Drinking Water Community in Quetta, Pakistan. <i>J Coll Physicians Surg Pak.</i> 2016. 26:744-7	One or more exclusion criteria
L1	Eyer, F.,Zilker, T Caustic injuries of the eye, skin and the gastrointestinal tract. [German]. <i>Therapeutische Umschau.</i> 2009. 66:379-386	One or more exclusion criteria
L1	Olde Heuvel, J., De Wit-Van Der Veen, L., Stokkel, M. P. M., Van Der Poel, H. G., Tuch, D. S., Grootendorst, M. R., Vyas, K. N., Slump, C. H Cerenkov luminescence imaging for intraoperative specimen analysis: A pre-clinical evaluation. <i>European Urology, Supplements.</i> 2019. 18 (1):e668-e669	One or more exclusion criteria
L1	Chen, S.,Li, B.,Lin, S.,Huang, Y.,Zhao, X.,Zhang, M.,Xia, Y.,Fang, X.,Wang, J.,Hwang, S. A.,Yu, S Change of urinary fluoride and bone metabolism	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	indicators in the endemic fluorosis areas of southern China after supplying low fluoride public water. <i>BMC Public Health.</i> 2013. 13:156	
L1	Gupta, S. K., Gupta, R. C., Gupta, K., Trivedi, H. P Changes in serum seromucoid following compensatory hyperparathyroidism: A sequel to chronic fluoride ingestion. <i>Indian Journal of Clinical Biochemistry.</i> 2008. 23:176-180	One or more exclusion criteria
L1	Bennett, H. B., Shantz, A., Shin, G., Sampson, M. L., Meschke, J. S Characterisation of the water quality from open and rope-pump shallow wells in rural Cambodia. <i>Water Science & Technology.</i> 2010. 61:473-9	One or more exclusion criteria
L1	Zhu, C.,Zhao, L. Y.,Yuan, H.,Yang, H. Y.,Li, A.,Wang, P.,Yang, S Characteristics and comparative study of a new drinking-water defluoridation adsorbent Bio-F. [Chinese]. <i>Huanjing Kexue/Environmental Science.</i> 2009. 30:1036-1043	One or more exclusion criteria
L1	Zhang, W.,Bian, J.,Yun, Z.,Cheng, P.,Sun, G.,Gao, H.,Gao, J Characteristics of spatial distribution of water fluoride in Heze City, Shandong Province based on inverse distance weighted. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:178-181	One or more exclusion criteria
L1	Nan, L Characterization and optimization of the radiochemical synthesis of [¹⁸ F]AMD3465: A potential PET imaging agent for Chemokine Receptor CXCR4. <i>Journal of Nuclear Medicine. Conference: Society of Nuclea Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	 Gislason, S. R., Hassenkam, T., Nedel, S., Bovet, N., Eiriksdottir, E. S., Alfredsson, H. A., Hem, C. P., Balogh, Z. I., Dideriksen, K., Oskarsson, N., Sigfusson, B., Larsen, G., Stipp, S. L. S Characterization of Eyjafjallajokull volcanic ash particles and a protocol for rapid risk assessment. <i>Proceedings of</i> <i>the National Academy of Sciences of the United States of America.</i> 2011. 108:7307-7312 	One or more exclusion criteria
L1	Joseph, R., Shelma, R., Rajeev, A., Muraleedharan, C. V Characterization of surface modified polyester fabric. <i>Journal of Materials Science: Materials in Medicine.</i> 2009. 20:S153-S159	One or more exclusion criteria
L1	Odiyo, J. O., Makungo, R Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination. <i>Int J Environ Res Public Health.</i> 2018. 15:#pages#	One or more exclusion criteria
L1	Dahlin, J.,Engfeldt, M.,Svedman, C.,Mowitz, M.,Zimerson, E.,Isaksson, M.,Hindsen, M.,Bruze, M Chemical burns caused by trifluoroacetic acid. <i>Contact Dermatitis.</i> 2012. 2):15	One or more exclusion criteria
L1	Hsu, Y. M.,Wu, C. Y.,Lundgren, D. A.,Nall, J. W.,Birky, B. K Chemical characteristics of aerosol mists in phosphate fertilizer manufacturing facilities. <i>Occup Environ Hyg.</i> 2007. 4:17-25	One or more exclusion criteria J
L1	Ameer, N.,Mustafa, G.,Khan, I.,Zahid, M.,Yasinzai, M.,Shahab, S.,Asghar, N.,Ullah, I.,Ahmad, A.,Munir, I.,Khan, H.,Badshah, S.,Shahid, I.,Ahmad, M.	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	N.,Zia, A.,Ahmad, S Chemical sensors: Promising tools for the online monitoring of fluorides. <i>Fluoride.</i> 2018. 51:252-266	
L1	Marshall, T. A., Curtis, A. M., Cavanaugh, J. E., Warren, J. J., Levy, S. M Child and Adolescent Sugar-Sweetened Beverage Intakes Are Longitudinally Associated with Higher Body Mass Index z Scores in a Birth Cohort Followed 17 Years. <i>J Acad Nutr Diet.</i> 2019. 119:425-434	One or more exclusion criteria
L1	Vilasrao, G. S.,Kamble, K. M.,Sabat, R. N Child fluorosis in Chhattisgarh, India: a community-based survey. <i>Indian Pediatr.</i> 2014. 51:903-5	One or more exclusion criteria
L1	Takizawa, S., Takeda, T., Wongrueng, A., Wattanachira, S Child-education program for the reduction of health risks due to fluoride in water sources in the Chiang Mai Basin, Thailand. <i>Water Sci Technol.</i> 2010. 61:2391-7	One or more exclusion criteria
L1	 Ba, Y.,Wang, G.,Yu, B.,Yang, Y. J.,Ren, L. J.,Yin, G. J.,Cheng, X. M.,Cui, L. X.,Zhang, Y. W Children's dental fluorosis and estrogen receptor alpha gene Xba I polymorphism. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:278-281 	One or more exclusion criteria
L1	Cherry, D. C., Huggins, B., Gilmore, K Children's Health in the Rural Environment. <i>Pediatric Clinics of North America</i> . 2007. 54:121-133	One or more exclusion criteria
L1	Kanagaraj, G., Elango, L Chromium and fluoride contamination in groundwate around leather tanning industries in southern India: Implications from stable	r One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	isotopic ratio DELTA ⁵³ Cr/DELTA ⁵² Cr, geochemical and geostatistical modelling. <i>Chemosphere.</i> 2019. 220:943-953	
L1	Buscariolo, I. A., Penha, S. S., Rocha, R. G Chronic fluorine intoxication. Prevalence of dental fluorosis in schoolchildren. [Portuguese]. <i>Revista de Ciencias Farmaceuticas Basica e Aplicada.</i> 2006. 27:83-87	One or more exclusion criteria
L1	Kurdi, M. S Chronic fluorosis: The disease and its anaesthetic implications. <i>Indian Journal of Anaesthesia.</i> 2016. 60:157-162	One or more exclusion criteria
L1	Jayasinghe, S.,Zhu, Y. G Chronic kidney disease of unknown etiology (CKDu): Using a system dynamics model to conceptualize the multiple environmental causative pathways of the epidemic. <i>Science of the Total Environment.</i> 2020. 705 (no pagination):#pages#	One or more exclusion criteria
L1	Dharma-Wardana, M. W. C Chronic kidney disease of unknown etiology and the effect of multiple-ion interactions. <i>Environ Geochem Health.</i> 2018. 40:705-719	One or more exclusion criteria
L1	Chandrajith, R.,Nanayakkara, S.,Itai, K.,Aturaliya, T. N.,Dissanayake, C. B.,Abeysekera, T.,Harada, K.,Watanabe, T.,Koizumi, A Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: geographic distribution and environmental implications. <i>Environ Geochem Health.</i> 2011. 33:267-78	One or more exclusion criteria
L1	Bandara, J. M.,Senevirathna, D. M.,Dasanayake, D. M.,Herath, V.,Bandara, J. M.,Abeysekara, T.,Rajapaksha, K. H Chronic renal failure among farm	One or more exclusion criteria
1133		

Level	Bibliography	Reason for Exclusion
	families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). <i>Environ Geochem Health.</i> 2008. 30:465-78	
L1	Carstairs, C Cities without cavities: democracy, risk, and public health. <i>J Can Stud.</i> 2010. 44:146-70	One or more exclusion criteria
L1	Ipci, S. D.,Cakar, G.,Kuru, B.,Yilmaz, S Clinical evaluation of lasers and sodium fluoride gel in the treatment of dentine hypersensitivity. <i>Photomed Laser Surg.</i> 2009. 27:85-91	One or more exclusion criteria
L1	Lee, S. H. O.,Lee, N. Y.,Lee, I. N. H Clinical evaluation of the efficacy of fluoride adhesive tape (F-PVA) in reducing dentin hypersensitivity. <i>American Journal of Dentistry.</i> 2013. 26:143-148	One or more exclusion criteria
L1	Lee, S. H.,Lee, N. Y.,Lee, I. H Clinical evaluation of the efficacy of fluoride adhesive tape (F-PVA) in reducing dentin hypersensitivity. <i>Am J Dent.</i> 2013. 26:143-8	One or more exclusion criteria
L1	Dixit, M.,Saxena, P.,Verma, S.,Kumari, S.,Kheruka, S.,Verma, R. S.,Gambhir, S Clinical grade automated synthesis of fluorodeoxyglucose [¹⁸ F] FDG at newly established cyclotron facility at SGPGIMS, Lucknow. <i>Indian Journal of Nuclear Medicine</i> . 2015. 30 (5 Supplement 1):S63- S64	

Level	Bibliography	Reason for Exclusion
L1	Bouyeure-Petit, A. C., Chastan, M., Edet-Sanson, A., Becker, S., Thureau, S., Houivet, E., Vera, P., Hapdey, S Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for (18)F-FDG-PET-CT: phantom validation, practical implications and patient evaluation. <i>Br J Radiol.</i> 2017. 90:20160549	One or more exclusion criteria
L1	Rasool, A.,Xiao, T.,Baig, Z. T.,Masood, S.,Mostofa, K. M.,Iqbal, M Co- occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment. <i>Environ Sci Pollut Res Int.</i> 2015. 22:19729-46	One or more exclusion criteria
L1	Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., Vengosh, A Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. <i>Sci Total Environ.</i> 2019. 688:1216-1227	One or more exclusion criteria
L1	Alarcón-Herrera, M. T., Martin-Alarcon, D. A., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. A., Bundschuh, J Co- occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. <i>Sci Total</i> <i>Environ.</i> 2020. 698:134168	One or more exclusion criteria
L1	Navi, M.,Skelly, C.,Taulis, M.,Nasiri, S Coal seam gas water: Potential hazards and exposure pathways in Queensland. <i>International Journal of Environmental Health Research</i> . 2015. 25:162-183	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chen, J.,Liu, G.,Kang, Y.,Wu, B.,Sun, R.,Zhou, C.,Wu, D Coal utilization in China: environmental impacts and human health. <i>Environ Geochem Health</i> . 2014. 36:735-53	One or more exclusion criteria
L1	Li, M.,Gao, Y.,Cui, J.,Li, Y.,Li, B.,Liu, Y.,Sun, J.,Liu, X.,Liu, H.,Zhao, L.,Sun, D. Cognitive Impairment and Risk Factors in Elderly People Living in Fluorosis Areas in China. <i>Biol Trace Elem Res.</i> 2016. 172:53-60	. One or more exclusion criteria
L1	Tang, L.,Wang, L. J.,Zhang, Y. L.,Bai, S. B.,Zhong, J. J.,Zhang, Y. X.,Liu, K. T. COLIXA3 gene expression of peripheral blood lymphocyte in patients with endemic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:144-146	One or more exclusion criteria
L1	Escobar-García, D.,Mejía-Saavedra, J.,Jarquín-Yáñez, L.,Molina-Frechero, N.,Pozos-Guillén, A Collagenase 1A2 (COL1A2) gene A/C polymorphism in relation to severity of dental fluorosis. <i>Community Dent Oral Epidemiol.</i> 2016. 44:162-8	One or more exclusion criteria
∟1	Ghosh, P.,Roy, B. G.,Jana, S.,Mukhopadhyay, S. K.,Banerjee, P Colorimetric and fluorimetric response of Schiff base molecules towards fluoride anion, solution test kit fabrication, logical interpretations and DFT-D3 study. <i>Physical</i> <i>Chemistry Chemical Physics</i> . 2015. 17:20288-95	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Rango, T.,Colombani, N.,Mastrocicco, M.,Bianchini, G.,Beccaluva, L Column elution experiments on volcanic ash: Geochemical implications for the main Ethiopian rift waters. <i>Water, Air, and Soil Pollution.</i> 2010. 208:221-233	One or more exclusion criteria
L1	Mittal, M., Chatterjee, S., Flora, S. J. S Combination therapy with vitamin C and DMSA for arsenic-fluoride co-exposure in rats. <i>Metallomics : Integrated Biometal Science</i> . 2018. 10:1291-1306	d One or more exclusion criteria
L1	Moolenburgh, H Comment on editorial report: Medline again rejects Fluoride. <i>Fluoride</i> . 2010. 43:81-84	One or more exclusion criteria
L1	Sun, D Commentary. <i>Journal of Neurosciences in Rural Practice</i> . 2012. 3:149-150	One or more exclusion criteria
L1	Grimes, D. R Commentary on "Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water". <i>J Epidemiol Community Health.</i> 2015. 69:616	
L1	Montgomery, J Commentary on "Public health, private right and the common law". <i>Public Health.</i> 2006. 120:50-51	One or more exclusion criteria
L1	Paul, C. J., Jeuland, M. A., Godebo, T. R., Weinthal, E Communities coping with risks: Household water choice and environmental health in the Ethiopian Rift Valley. <i>Environmental Science and Policy.</i> 2018. 86:85-94	One or more exclusion criteria
1137		

Level	Bibliography	Reason for Exclusion
L1	Young, N.,Newton, J.,Morris, J.,Morris, J.,Langford, J.,Iloya, J.,Edwards, D.,Makhani, S.,Verne, J Community water fluoridation and health outcomes in England: a cross-sectional study. <i>Community Dent Oral Epidemiol.</i> 2015. 43:550-9	One or more exclusion criteria
L1	Till, C.,Green, R.,Grundy, J. G.,Hornung, R.,Neufeld, R.,Martinez-Mier, E. A.,Ayotte, P.,Muckle, G.,Lanphear, B Community water fluoridation and urinary fluoride concentrations in a national sample of pregnant women in Canada. <i>Environmental Health Perspectives.</i> 2018. 126 (10) (no pagination):#pages#	One or more exclusion criteria
L1	Mertz, A., Allukian, M Community water fluoridation on the Internet and social media. <i>J Mass Dent Soc.</i> 2014. 63:32-6	One or more exclusion criteria
L1	Fluegge, K Community water fluoridation predicts increase in age-adjusted incidence and prevalence of diabetes in 22 states from 2005 and 2010. <i>J Water Health.</i> 2016. 14:864-877	One or more exclusion criteria
L1	Whyman, R. A., Mahoney, E. K., Børsting, T Community water fluoridation: attitudes and opinions from the New Zealand Oral Health Survey. <i>Aust N Z J Public Health.</i> 2016. 40:186-92	One or more exclusion criteria
L1	Wang, L. F., Chen, Q., Long, X. P., Wu, X. B., Sun, L Comparative analysis of groundwater fluorine levels and other characteristics in two areas of Laizhou	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Bay and its explanation on fluorine enrichment. Water Science and Technology: Water Supply. 2015. 15:384-394	
L1	Aparna, S.,Setty, S.,Thakur, S Comparative efficacy of two treatment modalities for dentinal hypersensitivity: a clinical trial. <i>Indian J Dent Res.</i> 2010. 21:544-8	One or more exclusion criteria
L1	Ramesh, M., Malathi, N., Ramesh, K., Aruna, R., Kuruvilla, S Comparative evaluation of dental and skeletal fluorosis in an endemic fluorosed district, Salem, Tamil Nadu. <i>Journal of Pharmacy and Bioallied Sciences.</i> 2017. 9:S88- S91	One or more exclusion criteria
L1	Rikame, V.,Doshi, Y.,Horowitz, R. A.,Kevadia-Shah, V.,Shah, M Comparative Evaluation of Fluoridated Mouthwash and Sodium Bicarbonate in Management of Dentin Hypersensitivity: An In Vitro SEM Study. <i>Compend Contin Educ Dent</i> . 2018. 39:e5-e8	
L1	Chahal, A.,Bala, M.,Dahiya, R. S.,Ghalaut, V. S Comparative evaluation of serum fluoride levels in patients with and without chronic abdominal pain. <i>Clinica Chimica Acta.</i> 2014. 429:140-142	One or more exclusion criteria
L1	Kumar, N.,Gauba, K.,Goyal, A.,Kapur, A Comparative evaluation of three different recording criteria of dental fluorosis in a known endemic fluoride area of Haryana. <i>Indian Journal of Medical Research.</i> 2018. 147:567-572	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Pandit, N., Gupta, R., Bansal, A Comparative evaluation of two commercially available desensitizing agents for the treatment of dentinal hypersensitivity. <i>Indian J Dent Res.</i> 2012. 23:778-83	One or more exclusion criteria
L1	Sheng, N.,Zhou, X.,Zheng, F.,Pan, Y.,Guo, X.,Guo, Y.,Sun, Y.,Dai, J Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice. <i>Arch Toxicol.</i> 2017. 91:2909-2919	One or more exclusion criteria
L1	Yu, X.,Liang, B.,Jin, X.,Fu, B.,Hannig, M Comparative in vivo study on the desensitizing efficacy of dentin desensitizers and one-bottle self-etching adhesives. <i>Oper Dent.</i> 2010. 35:279-86	One or more exclusion criteria
L1	Lu, J.,Xu, Q.,Chen, H.,Li, J.,Chen, K Comparative proteomics analysis of midgut samples from Takifugu rubripes exposed to excessive fluoride: initial molecular response to fluorosis. <i>Toxicology Mechanisms & Methods.</i> 2011. 21:444-52	One or more exclusion criteria
L1	Chhabra, S.,Siddique, N.,Randhawa, S. N. S Comparative studies on plasma mineral status of cattle in fluoride toxic brackish water zone of Punjab, India. <i>Asian Pacific Journal of Tropical Disease.</i> 2012. 2:S257-S259	One or more exclusion criteria
L1	Qian, W. W.,Lin, J. H.,Hu, Y Comparative study on effect of different remineralization agents on eroded primary teeth enamel. [Chinese]. <i>Journal of Shanghai Jiaotong University (Medical Science)</i> . 2014. 34:1126-1131	One or more exclusion criteria
4440		

Level	Bibliography	Reason for Exclusion
L1	Choi, Y. E.,Seo, D. Y.,Lee, J. E.,Ha, Y.,Park, A. H.,Jeong, J. W.,Kwon, O. W.,Kim, Y. J Comparative toxicity of Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanesulfonamide (PFOSA) in fish hepatoma cell line, PLHC-1. <i>Toxicology and Environmental Health Sciences.</i> 2018. 10 (4):S58	One or more exclusion criteria
L1	Solis-Angeles, S.,Cardenas Gonzalez, M.,Jimenez-Cordova, M. I.,Villarreal- Vega, E.,Aguilar-Madrid, G.,Gonzalez-Horta, M. C.,Del Razo, L. M.,Barbier, O., Comparative urinary miRNAs expression and cystatin C level in adults chronically exposed to fluoride through drinking water. <i>Toxicology Letters</i> . 2016. 259 (Supplement 1):S115	One or more exclusion criteria
L1	Datturi, S., Steenbergen, F. V., Beusekom, M. V., Kebede, S Comparing defluoridation and safe sourcing for fluorosis mitigation in the ethiopian central rift valley. <i>Fluoride.</i> 2015. 48:293-314	One or more exclusion criteria
L1	Nicole, W Comparing fluoride exposures in pregnant North American women: Fluoridated versus nonfluoridated drinking water. <i>Environmental Health</i> <i>Perspectives.</i> 2019. 127 (7) (no pagination):#pages#	One or more exclusion criteria
L1	Bozorgi, M., Ghasempour, M., Ahmadi, G., Khafri, S Comparison between the effects of green and black tea, and fluoride on microhardness and prevention of demineralization of deciduous teeth enamel. <i>Journal of Babol University of Medical Sciences</i> . 2018. 20:14-19	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Gao, J.,Yun, Z. J.,Chen, P. Z.,Bian, J. C.,Wang, Y. T.,Li, H. X.,Gao, H. X.,Ma, A. H Comparison of body fluorine levels in Liangshan and Boxing counties of Shandong province from 2007 to 2009. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2012. 31:199-201	One or more exclusion criteria
L1	Pradeep, A. R., Agarwal, E., Naik, S. B., Bajaj, P., Kalra, N Comparison of efficacy of three commercially available dentifrices [corrected] on dentinal hypersensitivity: a randomized clinical trial. <i>Aust Dent J.</i> 2012. 57:429-34	One or more exclusion criteria
L1	Pradeep, A. R., Agarwal, E., Naik, S. B., Bajaj, P., Kalra, N Comparison of efficacy of three commercially available dentrifices on dentinal hypersensitivity: A randomized clinical trial. <i>Australian Dental Journal.</i> 2012. 57:429-434	One or more exclusion criteria
L1	Kakei, M.,Sakae, T.,Mishima, H.,Yoshikawa, M Comparison of harmfulness between fluoride and cadmium ions on the crystal nucleation process. <i>Bone.</i> 2009. 2):S414	One or more exclusion criteria
L1	 Hirzy, J. W., Carton, R. J., Bonanni, C. D., Montanero, C. M., Nagle, M. F Comparison of hydrofluorosilicic acid and pharmaceutical sodium fluoride as fluoridating agents-A cost-benefit analysis. <i>Environmental Science and Policy</i>. 2013. 29:81-86 	One or more exclusion criteria
L1	Yu, Q.,Liu, H.,Liu, Z.,Peng, Y.,Cheng, X.,Ma, K.,Ji, Y Comparison of nanofluoridated hydroxyapatite of varying fluoride content for dentin tubule occlusion. <i>Am J Dent.</i> 2017. 30:109-115	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Usuda, K.,Kono, R.,Ueno, T.,Ito, Y.,Dote, T.,Yokoyama, H.,Kono, K.,Tamaki, J Comparison of the Biological Impacts of the Fluoride Compounds by Graphical Risk Visualization Map Technique. <i>Biol Trace Elem Res.</i> 2015. 167:84-90	One or more exclusion criteria
L1	Sun, X. G., Huang, G., Liu, J. J., Wan, L. R Comparison of the effect of positive and negative oral contrast agents on (18)F-FDG PET/CT scan. <i>Hell J Nucl Med.</i> 2009. 12:115-8	One or more exclusion criteria
L1	Rice, J. R.,Boyd, W. A.,Chandra, D.,Smith, M. V.,Besten, P. K. D.,Freedman, J. H Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans. <i>Environmental Toxicology and Chemistry.</i> 2014. 33:82-88	One or more exclusion criteria
L1	Shorter, J. P.,Massawe, J.,Parry, N.,Walker, R. W Comparison of two village primary schools in northern Tanzania affected by fluorosis. <i>International Health.</i> 2010. 2:269-74	One or more exclusion criteria
L1	Wu, K.,Zhang, N.,Liu, T.,Ma, C.,Jin, P.,Zhang, F.,Zhang, J.,Wang, X Competitive adsorption behaviors of arsenite and fluoride onto manganese- aluminum binary adsorbents. <i>Colloids and Surfaces A: Physicochemical and</i> <i>Engineering Aspects.</i> 2017. 529:185-194	One or more exclusion criteria
L1	Murtaza, B.,Natasha,,Amjad, M.,Shahid, M.,Imran, M.,Shah, N. S.,Abbas, G.,Naeem, M. A.,Amjad, M Compositional and health risk assessment of	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	drinking water from health facilities of District Vehari, Pakistan. Environ Geochem Health. 2019. #volume#:#pages#	
L1	 Fantong, W. Y., Jokam Nenkam, T. L. L., Nbendah, P., Kimbi, S. B., Fru, E. C., Kamtchueng, B. T., Takoundjou, A. F., Tejiobou, A. R., Ngueutchoua, G., Kringel, R Compositions and mobility of major, deltaD, delta¹⁸O, trace, and REEs patterns in water sources at Benue River Basin-Cameroon: implications for recharge mechanisms, geo- environmental controls, and public health. <i>Environmental geochemistry and health</i> 2020. 28:#pages# 	One or more exclusion criteria
L1	Zong, Y.,Shea, C.,Maffucci, K.,Ojima, I Computational Design and Synthesis of Novel Fluoro-Analogs of Combretastatins A-4 and A-1. <i>J Fluor Chem.</i> 2017. 203:193-199	
L1	Pollick, H. F Concerns about water fluoridation, IQ, and osteosarcoma lack credible evidence. <i>Int J Occup Environ Health.</i> 2006. 12:91-94	One or more exclusion criteria
L1	Bachanek, T.,Hendzel, B.,Wolańska, E.,Samborski, D.,Jarosz, Z.,Pitura, K. M.,Dzida, K.,Podymniak, M.,Tymczyna-Borowicz, B.,Niewczas, A.,Shybinskyy, V.,Zimenkovsky, A Condition of mineralized tooth tissue in a population of 15- year-old adolescents living in a region of Ukraine with slightly exceeded fluorine concentration in the water. <i>Ann Agric Environ Med.</i> 2019. 26:623-629	

Bibliography Level **Reason for Exclusion** Coplan, M. J., Patch, S. C., Masters, R. D., Bachman, M. S., Confirmation of and One or more exclusion criteria L1 explanations for elevated blood lead and other disorders in children exposed to water disinfection and fluoridation chemicals. NeuroToxicology. 2007. 28:1032-1042 L1 Wang, M., Svatunek, D., Rohlfing, K., Liu, Y., Wang, H., Giglio, B., Yuan, H., Wu, One or more exclusion criteria Z.,Li, Z.,Fox, J.: Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation. Theranostics. 2016. 6:887-95 L1 Sankararamakrishnan, N., Sharma, A. K., Iyengar, L., Contamination of nitrate One or more exclusion criteria and fluoride in ground water along the Ganges Alluvial Plain of Kanpur district, Uttar Pradesh, India. Environmental Monitoring and Assessment. 2008. 146:375-382 L1 Peters, M., Guo, Q., Strauss, H., Wei, R., Li, S., Yue, F., Contamination patterns One or more exclusion criteria in river water from rural Beijing: A hydrochemical and multiple stable isotope study. Science of the Total Environment. 2019. 654:226-236 L1 Weegman, B. P., Einstein, S. A., Steyn, L. V., Suszynski, T. M., Firpo, M. One or more exclusion criteria T., Graham, M. L., Janacek, J., Eberly, L. E., Garwood, M., Papas, K. K., Continuous oxygen delivery improves oxygenation of tissue-engineered islet grafts in vivo as measured with fluorine-19 magnetic resonance spectroscopy. Xenotransplantation. 2015. 1):S128-S129

evel	Bibliography	Reason for Exclusion
	Kaseva, M. E Contribution of trona (magadi) into excessive fluorosis-a case study in Maji ya Chai ward, northern Tanzania. <i>Science of the Total</i> <i>Environment.</i> 2006. 366:92-100	One or more exclusion criteria
l	Yun, Z.,Yin, Y.,Gao, J.,Wen, Y.,Bian, J.,Chen, P.,Wang, Y Control status quo of drinking-water-borne endemic fluorosis in the disease affected areas in Shandong Province in 2012: An analysis of survey results. [Chinese]. <i>Chinese</i> <i>Journal of Endemiology.</i> 2014. 33:155-159	One or more exclusion criteria
1	Fookes, F. A., Mengatto, L. N., Rigalli, A., Luna, J. A Controlled fluoride release for osteoporosis treatment using orally administered chitosan hydrogels. <i>Journal of Drug Delivery Science and Technology.</i> 2019. 51:268-275	One or more exclusion criteria
1	Hirakawa, K.,Suzuki, A.,Ouyang, D.,Okazaki, S.,Ibuki, Y.,Nakazaki, J.,Segawa, H Controlled Photodynamic Action of Axial Fluorinated DiethoxyP(V)tetrakis(p-methoxyphenyl)porphyrin through Self-Aggregation. <i>Chem Res Toxicol.</i> 2019. 32:1638-1645	, One or more exclusion criteria
1	Adimalla, N Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA). <i>Environ Geochem Health.</i> 2019. #volume#:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Enriquez, J. S., Yu, M., Bouley, B. S., Xie, D., Que, E. L Copper(ii) complexes for cysteine detection using (19)F magnetic resonance. <i>Dalton Trans.</i> 2018. 47:15024-15030	One or more exclusion criteria
L1	 Wu, Y.,Yang, D.,Kang, X.,Ma, P.,Huang, S.,Zhang, Y.,Li, C.,Lin, J Core-shell structured luminescent and mesoporous beta-NaYF4:Ce3+/Tb3+@mSiO2-PEG nanospheres for anti-cancer drug delivery. <i>Dalton Transactions.</i> 2013. 42:9852-61 	One or more exclusion criteria
L1	Jeong, J. H., Cho, I. H., Chun, K. A., Kong, E. J., Kwon, S. D., Kim, J. H Correlation Between Apparent Diffusion Coefficients and Standardized Uptake Values in Hybrid (18)F-FDG PET/MR: Preliminary Results in Rectal Cancer. <i>Nucl Med Mol Imaging.</i> 2016. 50:150-6	One or more exclusion criteria
L1	Kheradpisheh, Z.,Mahvi, A. H.,Mirzaei, M.,Mokhtari, M.,Azizi, R.,Fallahzadeh, H.,Ehrampoush, M. H Correlation between drinking water fluoride and TSH hormone by ANNs and ANFIS. <i>Journal of Environmental Health Science & Engineering.</i> 2018. 16:11-18	One or more exclusion criteria
L1	Faraji, H.,Mohammadi, A. A.,Akbari-Adergani, B.,Vakili Saatloo, N.,Lashkarboloki, G.,Mahvi, A. H Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran. <i>Iraniar</i> <i>Journal of Public Health.</i> 2014. 43:1664-8	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Wu, J.,Li, D.,Yang, D.,Qin, M.,Li, B.,Liu, X.,Li, M.,Li, Y.,Zhang, W.,Gao, Y Correlation between urinary fluoride level and i ntaking of fluoride per day in Tibetan and Kazakh population in brick-tea-borne fluorosis areas. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:549-552	One or more exclusion criteria
L1	Ahmed, I.,Rafique, T.,Hasan, S. K.,Khan, N.,Khan, M. H.,Usmani, T. H Correlation of fluoride in drinking water with urine, blood plasma, and serum fluoride levels of people consuming high and low fluoride drinking water in Pakistan. <i>Fluoride</i> . 2012. 45:384-388	One or more exclusion criteria
L1	Mariño, R.,Fajardo, J.,Morgan, M Cost-effectiveness models for dental caries prevention programmes among Chilean schoolchildren. <i>Community Dent Health.</i> 2012. 29:302-8	One or more exclusion criteria
L1	Chansaenpak, K.,Kamkaew, A.,Weeranantanapan, O.,Suttisintong, K.,Tumcharern, G Coumarin Probe for Selective Detection of Fluoride Ions in Aqueous Solution and Its Bioimaging in Live Cells. <i>Sensors (Basel).</i> 2018. 18:#pages#	One or more exclusion criteria
L1	Garner, L. E., Steirer, K. X., Young, J. L., Anderson, N. C., Miller, E. M., Tinkham, J. S., Deutsch, T. G., Sellinger, A., Turner, J. A., Neale, N. R Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. <i>ChemSusChem.</i> 2017. 10:767-773	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Cai, H.,Zhu, X.,Peng, C.,Xu, W.,Li, D.,Wang, Y.,Fang, S.,Li, Y.,Hu, S.,Wan, X Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China. <i>Ecotoxicol Environ Saf.</i> 2016. 131:14-21	One or more exclusion criteria
L1	Shinoda, T.,Ogawa, H.,Cornelius, F.,Toyoshima, C Crystal structure of the sodium-potassium pump at 2.4 A resolution. <i>Nature.</i> 2009. 459:446-50	One or more exclusion criteria
L1	Tiwari, H.,Rao, M. V Curcumin supplementation protects from genotoxic effects of arsenic and fluoride. <i>Food Chem Toxicol.</i> 2010. 48:1234-8	One or more exclusion criteria
L1	Shick, E Current fluoride recommendations for the pediatric patient. <i>U.S.</i> 2007. Pharmacist. 32:52-56	One or more exclusion criteria
L1	Mejare, I Current Guidance for Fluoride Intake: Is It Appropriate?. Advances in Dental Research. 2018. 29:167-176	One or more exclusion criteria
L1	Machoy-Mokrzynska, A.,Machoy, Z Current trends in fluorine research. [Polish]. Annales Academiae Medicae Stetinensis. 2006. 52 Suppl 1:73-77	One or more exclusion criteria
L1	Patil, M. M.,Lakhkar, B. B.,Patil, S. S Curse of Fluorosis. Indian Journal of Pediatrics. 2018. 85:375-383	One or more exclusion criteria
L1	Wodtke, R.,Ruiz-Gómez, G.,Kuchar, M.,Pisabarro, M. T.,Novotná, P.,Urbanová, M.,Steinbach, J.,Pietzsch, J.,Löser, R Cyclopeptides containing the DEKS motif as conformationally restricted collagen telopeptide analogues: synthesis and conformational analysis. <i>Org Biomol Chem.</i> 2015. 13:1878-96	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Pawar, A. C.,Naik, S. J. K.,Kumari, S. A Cytogenetic analysis of human lymphocytes of fluorosis-affected men from the endemic fluorosis region in Nalgonda district of Andhra Pradesh, India. <i>Fluoride.</i> 2014. 47:78-84	One or more exclusion criteria
L1	 Palmieri, M. J., Andrade-Vieira, L. F., Campos, J. M. S., dos Santos Gedraite, L., Davide, L. C Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays. <i>Ecotoxicology and Environmental Safety.</i> 2016. 133:442-447 	One or more exclusion criteria
L1	Alimohammadi, M., Nabizadeh, R., Yaghmaeian, K., Mahvi, A. H., Foroohar, P., Hemmati, S., Heidarinejad, Z Data on assessing fluoride risk in bottled waters in Iran. <i>Data Brief.</i> 2018. 20:825-830	One or more exclusion criteria
L1	Ghaderpoori, M.,Najafpoor, A. A.,Ghaderpoury, A.,Shams, M Data on fluoride concentration and health risk assessment of drinking water in Khorasan Razavi province, Iran. <i>Data Brief.</i> 2018. 18:1596-1601	
L1	Dehghani, M. H., Haghighat, G. A., Yousefi, M Data on fluoride concentration in drinking water resources in Iran: A case study of Fars province; Larestan region. <i>Data in Brief.</i> 2018. 19:842-846	One or more exclusion criteria
L1	Narsimha, A.,Sudarshan, V Data on fluoride concentration levels in semi-arid region of Medak, Telangana, South India. <i>Data in Brief.</i> 2018. 16:717-723	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Kaur, L., Rishi, M. S Data on fluoride contamination in potable water in alluvial plains of district Panipat, Haryana, India. <i>Data in Brief.</i> 2018. 20:1844-1849	One or more exclusion criteria
∟1	Azhdarpoor, A.,Radfard, M.,Rahmatinia, M.,Hashemi, H.,Hashemzadeh, B.,Nabavi, S.,Akbari, H.,Akbari, H.,Adibzadeh, A Data on health risk assessment of fluoride in drinking water in the Khash city of Sistan and Baluchistan province, Iran. <i>Data Brief.</i> 2018. 21:1508-1513	One or more exclusion criteria
_1	Radfard, M.,Rahmatinia, M.,Akbari, H.,Hashemzadeh, B.,Akbari, H.,Adibzadeh, A Data on health risk assessment of fluoride in water distribution network of Iranshahr, Iran. <i>Data Brief.</i> 2018. 20:1446-1452	, One or more exclusion criteria
_1	Ahmadi, S.,Rahdar, S.,Igwegbe, C. A.,Rahdar, A.,Shafighi, N.,Sadeghfar, F Data on the removal of fluoride from aqueous solutions using synthesized P/gamma-Fe ₂ O ₃ nanoparticles: A novel adsorbent. <i>MethodsX.</i> 2019. 6:98-106	One or more exclusion criteria
_1	Loganathan, P.,Vigneswaran, S.,Kandasamy, J.,Naidu, R Defluoridation of drinking water using adsorption processes. <i>J Hazard Mater.</i> 2013. 248-249:1-19	One or more exclusion criteria
_1	Rao, T. K.,Kasiviswanath, I. V.,Murthy, Y. L. N Defluoridation of water by nanotechnology. <i>Water Science and Technology: Water Supply.</i> 2009. 9:485-492	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Atia, D.,Hoggui, A Defluoridation of water by precipitation. <i>Journal of Chemical and Pharmaceutical Research.</i> 2012. 4:5180-5184	One or more exclusion criteria
L1	Sharma, S.,Upadhyay, D.,Singh, B.,Shrivastava, D.,Kulshreshtha, N. M Defluoridation of water using autochthonous bacterial isolates. <i>Environmental</i> <i>Monitoring & Assessment</i> . 2019. 191:781	One or more exclusion criteria
L1	Slack-Smith, L.,Colvin, L.,Leonard, H.,Kilpatrick, N.,Read, A.,Messer, L. B Dental admissions in children under two yearsa total-population investigation. <i>Child Care Health Dev.</i> 2013. 39:253-9	One or more exclusion criteria
L1	Aung, Y. M., Tin Tin, S., Jelleyman, T., Ameratunga, S Dental caries and previous hospitalisations among preschool children: Findings from a population based study in New Zealand. <i>New Zealand Medical Journal.</i> 2019. 132:44-53	One or more exclusion criteria
L1	Sagheri, D.,McLoughlin, J.,Nunn, J. H Dental caries experience and barriers to care in young children with disabilities in Ireland. <i>Quintessence Int.</i> 2013. 44:159-69	One or more exclusion criteria
L1	Skinner, J., Johnson, G., Phelan, C., Blinkhorn, A Dental caries in 14- and 15- year-olds in New South Wales, Australia. <i>BMC Public Health.</i> 2013. 13:1060	One or more exclusion criteria
L1	Matloob, M. H Dental caries in Iraqi 12-year-olds and background fluoride exposure. <i>Community Dent Health.</i> 2015. 32:163-9	One or more exclusion criteria

Dental caries in rural Alaska Native childrenAlaska, 2008. <i>MMWR Morb</i> <i>Mortal Wkly Rep.</i> 2011. 60:1275-8 Rugg-Gunn, A Dental caries: strategies to control this preventable disease. <i>Acta Med Acad.</i> 2013. 42:117-30 Nayak, B.,Roy, M. M.,Chakraborti, D Dental fluorosis. <i>Clinical Toxicology: The</i> <i>Official Journal of the American Academy of Clinical Toxicology & European</i> <i>Association of Poisons Centres & Clinical Toxicologists.</i> 2009. 47:355 Fiwari, P.,Kaur, S.,Sodhi, A Dental fluorosis and its association with the use of	
Acta Med Acad. 2013. 42:117-30 Nayak, B.,Roy, M. M.,Chakraborti, D Dental fluorosis. <i>Clinical Toxicology: The</i> <i>Official Journal of the American Academy of Clinical Toxicology & European</i> Association of Poisons Centres & Clinical Toxicologists. 2009. 47:355 Tiwari, P.,Kaur, S.,Sodhi, A Dental fluorosis and its association with the use c	e One or more exclusion criteria
Official Journal of the American Academy of Clinical Toxicology & European Association of Poisons Centres & Clinical Toxicologists. 2009. 47:355 Tiwari, P.,Kaur, S.,Sodhi, A Dental fluorosis and its association with the use o	
	of One or more exclusion criteria
luoridated toothpaste among middle school students of Delhi. <i>Indian J Med</i> S <i>ci.</i> 2010. 64:1-6	
Susheela, A. K Dental fluorosis and its extended effects. <i>Indian Journal of Pediatrics.</i> 2013. 80:715-717	One or more exclusion criteria
Moimaz, S. A.,Saliba, O.,Marques, L. B.,Garbin, C. A.,Saliba, N. A Dental Iuorosis and its influence on children's life. <i>Braz Oral Res.</i> 2015. 29:#pages#	One or more exclusion criteria
lankizhai, R. J Dental fluorosis and its management - A review. <i>Research</i> Journal of Pharmacy and Technology. 2016. 9:967-971	One or more exclusion criteria
Menya, D.,Maina, S. K.,Kibosia, C.,Kigen, N.,Oduor, M.,Some, F.,Chumba, D.,Ayuo, P.,Middleton, D. R. S.,Osano, O.,Abedi-Ardekani, B.,Schüz,	One or more exclusion criteria
J	ournal of Pharmacy and Technology. 2016. 9:967-971 lenya, D.,Maina, S. K.,Kibosia, C.,Kigen, N.,Oduor, M.,Some, F.,Chumba,

Level	Bibliography	Reason for Exclusion
	Esophageal Cancer Corridor: Findings from the Kenya ESCCAPE case-control study and a pan-African perspective. <i>Int J Cancer.</i> 2019. 145:99-109	
L1	Pontigo-Loyola, A. P., Islas-Márquez, A., Loyola-Rodríguez, J. P., Maupome, G., Marquez-Corona, M. L., Medina-Solis, C. E Dental fluorosis in 12- and 15- year-olds at high altitudes in above-optimal fluoridated communities in Mexico. <i>J Public Health Dent.</i> 2008. 68:163-6	One or more exclusion criteria
L1	da Cunha, L. F.,Tomita, N. E Dental fluorosis in Brazil: a systematic review from 1993 to 2004. <i>Cad Saude Publica.</i> 2006. 22:1809-16	One or more exclusion criteria
L1	Khandare, A. L., Gourineni, S. R., Validandi, V Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India. <i>Environmental Monitoring and Assessment.</i> 2017. 189 (11) (no pagination):#pages#	One or more exclusion criteria
L1	Montanha-Andrade, K.,Maia, W.,Pimentel, A. C. P.,Arsati, Ybol,Santos, J. N. D.,Cury, P. R Dental health status and its indicators in adult Brazilian Indians without exposition to drinking water fluoridation: a cross-sectional study. <i>Environmental Science & Pollution Research.</i> 2019. 26:34440-34447	One or more exclusion criteria
L1	Mashoto, K. O., Astrom, A. N., David, J., Masalu, J. R Dental pain, oral impacts and perceived need for dental treatment in Tanzanian school students: A	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	cross-sectional study. <i>Health and Quality of Life Outcomes.</i> 2009. 7 (no pagination):#pages#	
L1	Sharma, M.,Singh, A.,Minocha, R. C.,Chhabra, V.,Agarwal, V.,Chugh, T Dental survey of children in Jaipur, Rajasthan, India. <i>Indian Journal of Public</i> <i>Health Research and Development</i> . 2013. 4:262-268	One or more exclusion criteria
L1	Arnold, W. H.,Gröger, Ch,Bizhang, M.,Naumova, E. A Dentin abrasivity of various desensitizing toothpastes. <i>Head Face Med.</i> 2016. 12:16	One or more exclusion criteria
L1	Zhang, Y.,Sun, G.,Zheng, Q Dentin hypersensitivity in an endemic fluorosis rural area of China. <i>Fluoride.</i> 2012. 45 (3 PART 1):215-216	One or more exclusion criteria
L1	Ozen, T.,Orhan, K.,Avsever, H.,Tunca, Y. M.,Ulker, A. E.,Akyol, M Dentin hypersensitivity: a randomized clinical comparison of three different agents in a short-term treatment period. <i>Oper Dent.</i> 2009. 34:392-8	One or more exclusion criteria
L1	Komabayashi, T.,Imai, Y.,Ahn, C.,Chow, L. C.,Takagi, S Dentin permeability reduction by a sequential application of calcium and fluoride-phosphate solutions. <i>J Dent.</i> 2010. 38:736-41	One or more exclusion criteria
L1	Madhavan, S.,Nayak, M.,Shenoy, A.,Shetty, R.,Prasad, K Dentinal hypersensitivity: A comparative clinical evaluation of CPP-ACP F, sodium fluoride, propolis, and placebo. <i>J Conserv Dent.</i> 2012. 15:315-8	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Rogo, E.,Hodges, K.,Herzog, A Dentinal sensitivity: a natural mineral dietary supplement study. <i>Int J Dent Hyg.</i> 2006. 4:122-8	One or more exclusion criteria
L1	Malandrino, P.,Scollo, C.,Marturano, I.,Russo, M.,Tavarelli, M.,Attard, M.,Richiusa, P.,Violi, M. A.,Dardanoni, G.,Vigneri, R.,Pellegriti, G Descriptive epidemiology of human thyroid cancer: Experience from a regional registry and the "volcanic factor". <i>Frontiers in Endocrinology.</i> 2013. 4 (JUN) (no pagination):#pages#	One or more exclusion criteria
L1	Balan Pillai, A., Varghese, B., Madhusoodanan, K. N Design and development of novel sensors for the determination of fluoride in water. <i>Environmental</i> <i>Science and Technology.</i> 2012. 46:404-409	One or more exclusion criteria
L1	Pillai, A. B., Varghese, B., Madhusoodanan, K. N Design and development of novel sensors for the determination of fluoride in water. <i>Environ Sci Technol.</i> 2012. 46:404-9	One or more exclusion criteria
L1	Silvers, W.,Cai, H.,Ramezani, S.,Oz, O.,Sun, X Design and synthesis of a radiotracer for noninvasive imaging of Stearoyl-CoA Desaturase-1. <i>Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2015. 56:#pages#	One or more exclusion criteria
L1	Yin, W., Tian, G., Ren, W., Yan, L., Jin, S., Gu, Z., Zhou, L., Li, J., Zhao, Y Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy. <i>Dalton Trans.</i> 2014. 43:3861-70	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Mishra, R.,Siddiqui, A. A.,Husain, A.,Rashid, M.,Bhardwaj, S Design, synthesis and anticonvulsant activity of 1, 3, 5 -triazin-2-imine/one/thione incorporated pyridazines. <i>Movement Disorders.</i> 2016. 31 (Supplement 1):S96- S97	One or more exclusion criteria
L1	Dziedzic, P.,Cisneros, J. A.,Robertson, M. J.,Hare, A. A.,Danford, N. E.,Baxter, R. H.,Jorgensen, W. L. Design, synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor. <i>J Am Chem Soc.</i> 2015. 137:2996-3003	, One or more exclusion criteria
L1	Higashiyama, A.,Komori, T.,Juri, H.,Inada, Y.,Azuma, H.,Narumi, Y Detectability of residual invasive bladder cancer in delayed (18)F-FDG PET imaging with oral hydration using 500 mL of water and voiding-refilling. <i>Ann</i> <i>Nucl Med.</i> 2018. 32:561-567	One or more exclusion criteria
L1	Pawlowska-Goral, K.,Pilawa, B Detection of free radicals formed by in vitro metabolism of fluoride using EPR spectroscopy. <i>Toxicology in Vitro.</i> 2011. 25:1269-1273	One or more exclusion criteria
L1	Udhayakumari, D Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015-2019. <i>Spectrochimica Acta. Part A, Molecular & Biomolecular Spectroscopy.</i> 2020. 228:117817	One or more exclusion criteria

Jan, M. L.,Ni, Y. C.,Chuang, K. S.,Liang, H. C.,Fu, Y. K Detection-ability evaluation of the PEImager for positron emission mammography applications. <i>Phys Med.</i> 2006. 21 Suppl 1:109-13	One or more exclusion criteria
Huber, A. C.,Bhend, S.,Mosler, H. J Determinants of exclusive consumption of fluoride-free water: A cross-sectional household study in rural Ethiopia. <i>Journal of Public Health (Germany).</i> 2012. 20:269-278	One or more exclusion criteria
Gričar, M.,Andrenšek, S Determination of azide impurity in sartans using reversed-phase HPLC with UV detection. <i>J Pharm Biomed Anal.</i> 2016. 125:27-32	One or more exclusion criteria
Paz, S., Jaudenes, J. R., Gutierrez, A. J., Rubio, C., Hardisson, A., Revert, C Determination of Fluoride in Organic and Non-organic Wines. <i>Biological Trace</i> <i>Element Research.</i> 2017. 178:153-159	One or more exclusion criteria
Ocak, E.,Kose, S Determination of fluoride in water, milk, and dairy products. <i>Fluoride.</i> 2018. 51:182-192	One or more exclusion criteria
Huber, A. C., Mosler, H. J Determining behavioral factors for interventions to increase safe water consumption: a cross-sectional field study in rural Ethiopia. <i>Int J Environ Health Res.</i> 2013. 23:96-107	
	 evaluation of the PEImager for positron emission mammography applications. <i>Phys Med.</i> 2006. 21 Suppl 1:109-13 Huber, A. C.,Bhend, S.,Mosler, H. J Determinants of exclusive consumption of fluoride-free water: A cross-sectional household study in rural Ethiopia. <i>Journal of Public Health (Germany).</i> 2012. 20:269-278 Gričar, M.,Andrenšek, S Determination of azide impurity in sartans using reversed-phase HPLC with UV detection. <i>J Pharm Biomed Anal.</i> 2016. 125:27- 32 Paz, S.,Jaudenes, J. R.,Gutierrez, A. J.,Rubio, C.,Hardisson, A.,Revert, C Determination of Fluoride in Organic and Non-organic Wines. <i>Biological Trace Element Research.</i> 2017. 178:153-159 Ocak, E.,Kose, S Determination of fluoride in water, milk, and dairy products. <i>Fluoride.</i> 2018. 51:182-192 Huber, A. C.,Mosler, H. J Determining behavioral factors for interventions to increase safe water consumption: a cross-sectional field study in rural Ethiopia.

Level	Bibliography	Reason for Exclusion
L1	Huber, A. C., Mosler, H. J Determining the differential preferences of users of two fluoride-free water options in rural Ethiopia. <i>Journal of Public Health (Germany).</i> 2013. 21:183-192	One or more exclusion criteria
L1	Viswanathan, G., Jaswanth, A., Gopalakrishnan, S., Siva ilango, S., Aditya, G Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India. <i>Science of the Total Environment.</i> 2009. 407:5298-5307	One or more exclusion criteria
L1	Kaur, L.,Rishi, M. S.,Siddiqui, A. U Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. <i>Environ Pollut.</i> 2019. 259:113711	One or more exclusion criteria
L1	Morris, O., Gregory, J., Blykers, A., Allsop, D., Taylor, M., Allan, S., McMahon, A., Boutin, H., Prenant, C Development & application of an [18F] anti-amyloid peptide radiotracer. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2015. 1):S144	One or more exclusion criteria
L1	Mamat, C.,Neuber, C.,Mosch, B.,Pietzsch, J.,Steinbach, J Development and fluorine-18-radiolabeling of benzodioxolylpyrimidine EphB4 receptor inhibitors. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S178	One or more exclusion criteria
L1	Palmieri, L.,Glassner, M.,Hoogenboom, R.,Staelens, S.,Wyffels, L Development and in vivo evaluation of ¹⁸ F-labeled PEtOx-RGD	One or more exclusion criteria
1159		

Level	Bibliography	Reason for Exclusion
	for PET imaging of alphavbeta3 integrins. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S511	
L1	Lu, C. C.,Lin, H. H.,Chuang, K. S.,Dong, S. L.,Wu, J.,Ni, Y. C.,Jan, M. L Development and validation of a fast voxel-based dose evaluation system in nuclear medicine. <i>Radiation Physics and Chemistry.</i> 2014. 104:355-359	One or more exclusion criteria
L1	Bongarzone, S.,Basagni, F.,Sementa, T.,Singh, N.,Gakpetor, C.,Faugeras, V.,Bordoloi, J.,Gee, A. D Development of (18)F FAMTO: A novel fuorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands. <i>European Journal of Nuclear</i> <i>Medicine and Molecular Imaging.</i> 2018. 45 (Supplement 1):S191-S192	One or more exclusion criteria
L1	Kramer, C. S., Kanagasundaram, T., Kopka, K Development of a bimodal (PET/NIR) tumor tracer for non-invasive staging and fluorescence guided surgery of prostate cancer. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2019. 46 (1 Supplement 1):S753	One or more exclusion criteria
L1	Kosterev, V. V.,Kramer-Ageev, E. A.,Mazokhin, V. N.,van Rhoon, G. C.,Crezee, J Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. <i>Int J Hyperthermia</i> . 2015. 31:443-52	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ditmyer, M. M., Mobley, C., Draper, Q., Demopoulos, C., Smith, E. S Development of a theoretical screening tool to assess caries risk in Nevada youth. <i>J Public Health Dent.</i> 2008. 68:201-8	One or more exclusion criteria
L1	Mori, T.,Kiyono, Y.,Dence, C. S.,Welch, M. J.,Fujibayashi, Y.,Okazawa, H Development of automatic synthesis of 16beta-[¹⁸ F]fluoro- 5alpha-dihydrotestosterone using a plastic cassette-type FDG synthesizer. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2011. 2):S233	One or more exclusion criteria
L1	Lawrence, H. R., Martin, M. P., Luo, Y., Pireddu, R., Yang, H., Gevariya, H., Ozcan, S., Zhu, J. Y., Kendig, R., Rodriguez, M., Elias, R., Cheng, J. Q., Sebti, S. M., Schonbrunn, E., Lawrence, N. J Development of o-chlorophenyl substituted pyrimidines as exceptionally potent aurora kinase inhibitors. <i>J Med</i> <i>Chem.</i> 2012. 55:7392-7416	One or more exclusion criteria
L1	Entract, G. M.,Bryden, F.,Domarkas, J.,Savoie, H.,Allott, L.,Archibald, S. J.,Cawthorne, C.,Boyle, R. W Development of PDT/PET Theranostics: Synthesis and Biological Evaluation of an (18)F-Radiolabeled Water-Soluble Porphyrin. <i>Mol Pharm.</i> 2015. 12:4414-23	One or more exclusion criteria
L1	Ramesh, G.,Nagarajappa, R.,Raghunath, V.,Manohar, R Developmental defects of enamel in children of Davangere District and their relationship to fluoride levels in drinking water. <i>Asia Pac J Public Health.</i> 2011. 23:341-8	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chi, D. L.,Rossitch, K. C.,Beeles, E. M Developmental delays and dental caries in low-income preschoolers in the USA: a pilot cross-sectional study and preliminary explanatory model. <i>BMC Oral Health.</i> 2013. 13:53	One or more exclusion criteria
L1	Grandjean, P Developmental fluoride neurotoxicity: an updated review. <i>Environ Health.</i> 2019. 18:110	One or more exclusion criteria
L1	Mondal, N. K Diagnosis of fluorosis and recovery through easy to practise interventions. <i>Fluoride.</i> 2018. 51:230-242	One or more exclusion criteria
L1	Huang, C. Q., Chen, Z., Tang, R. Q., Liu, B. H Diagnosis on endemic skeletal fluorosis: Clinical vs. X-rays examination. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:194-196	One or more exclusion criteria
L1	Frood, R.,Baren, J.,McDermott, G.,Bottomley, D.,Patel, C.,Scarsbrook, A Diagnostic performance of a streamlined (18)F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria. <i>Clin Radiol.</i> 2018. 73:632-639	
L1	Kebede, A.,Retta, N.,Abuye, C.,Whiting, S. J.,Kassaw, M.,Zeru, T.,Tessema, M.,Kjellevold, M Dietary Fluoride Intake and Associated Skeletal and Dental Fluorosis in School Age Children in Rural Ethiopian Rift Valley. <i>Int J Environ Res Public Health.</i> 2016. 13:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Opydo-Szymaczek, J.,Opydo, J Dietary fluoride intake from infant and toddler formulas in Poland. <i>Food and Chemical Toxicology</i> . 2011. 49:1759-1763	One or more exclusion criteria
L1	Wu, J.,Li, D.,Yang, D.,Qin, M.,Li, B.,Liu, X.,Li, M.,Li, Y.,Zhang, W.,Gao, Y Differences of urinary fluoride and pH level between Tibetan and Kazakh in drinking-brick-tea-borne fluorosis areas. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2015. 34:81-83	One or more exclusion criteria
L1	Ge, Q. D.,Xie, C.,Zhang, H.,Tan, Y.,Wan, C. W.,Wang, W. J.,Jin, T. X Differential Expression of miRNAs in the Hippocampi of Offspring Rats Exposed to Fluorine Combined with Aluminum during the Embryonic Stage and into Adulthood. <i>Biological Trace Element Research.</i> 2019. 189:463-477	One or more exclusion criteria
L1	Wong, H. M.,McGrath, C.,King, N. M Diffuse opacities in 12-year-old Hong Kong childrenfour cross-sectional surveys. <i>Community Dent Oral Epidemiol.</i> 2014. 42:61-9	One or more exclusion criteria
L1	Miao, Z.,Shen, B.,Qin, L.,Neumann, K.,DiMagno, S.,Chin, F. T Direct high yield no-carrier added radiosynthesis of [F-18]catecholamines. <i>Journal of Cerebral Blood Flow and Metabolism.</i> 2012. 1):S191	One or more exclusion criteria
L1	likura, H.,Aoki, T.,Hyoudoh, I.,Furuichi, N.,Watanabe, F.,Ozawa, S.,Sakaidani, M.,Matsushita, M.,Shimma, N.,Harada, N.,Tomii, Y.,Aoki, Y.,Takanashi, K Discovery of a novel specific MEK and Raf inhibitor, CH5126766 (RO5126766), hit to lead study of a unique scaffold for kinase inhibitor to a	One or more exclusion criteria

evel	Bibliography	Reason for Exclusion
	clinical compound. Cancer Research. Conference: 102nd Annual Meeting of the American Association for Cancer Research, AACR. 2011. 71:#pages#	
1	Saul, A. W Dispensing with fluoride. Fluoride. 2011. 44:188-190	One or more exclusion criteria
1	Aghapour, S.,Bina, B.,Tarrahi, M. J.,Amiri, F.,Ebrahimi, A. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. <i>Environ Monit Assess.</i> 2018. 190:137	One or more exclusion criteria
1	Shin, W.,Oh, J.,Choung, S.,Cho, B. W.,Lee, K. S.,Yun, U.,Woo, N. C.,Kim, H. K Distribution and potential health risk of groundwater uranium in Korea. <i>Chemosphere.</i> 2016. 163:108-115	One or more exclusion criteria
.1	Yu, Y. Q.,Cui, S. F.,Fan, R. J.,Fu, Y. Z.,Liao, Y. L.,Yang, J. Y Distribution and superposed health risk assessment of fluorine co-effect in phosphorous chemical industrial and agricultural sources. <i>Environ Pollut.</i> 2020. 262:114249	One or more exclusion criteria
1	Yousefi, M., Ghalehaskar, S., Asghari, F. B., Ghaderpoury, A., Dehghani, M. H., Ghaderpoori, M., Mohammadi, A. A Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran. <i>Regul Toxicol Pharmacol.</i> 2019. 107:104408	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ravindra, K.,Garg, V. K Distribution of fluoride in groundwater and its suitability assessment for drinking purpose. <i>Int J Environ Health Res.</i> 2006. 16:163-6	One or more exclusion criteria
L1	Wang, M.,Li, X.,He, W. Y.,Li, J. X.,Zhu, Y. Y.,Liao, Y. L.,Yang, J. Y.,Yang, X. E Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China. <i>Environ Pollut.</i> 2019. 249:423-433	One or more exclusion criteria
L1	Dong, H.,Lu, G.,Yan, Z.,Liu, J.,Yang, H.,Zhang, P.,Jiang, R.,Bao, X.,Nkoom, M Distribution, sources and human risk of perfluoroalkyl acids (PFAAs) in a receiving riverine environment of the Nanjing urban area, East China. <i>Journal</i> <i>of Hazardous Materials.</i> 2020. 381 (no pagination):#pages#	One or more exclusion criteria
L1	Debia, K.,Janda, K.,Siwiec, E.,Wolska, J.,Baranowska-Bosiacka, I.,Jakubczyk, K.,Chlubek, D.,Gutowska, I Do brewing temperature and the morphological part of the ground elder plant have an influence on the fluoride content of ground elder infusions?. <i>Fluoride.</i> 2018. 51:153-163	One or more exclusion criteria
L1	Werner, M.,Wiegand, J.,Kupferschlager, J.,Lois, C.,Bezrukov, I.,Pfannenberg, C.,Schwenzer, N.,Beyer, T.,Schmidt, H Do dental implants affect PET/CT and PET/MR image quality equally?. <i>NuklearMedizin.</i> 2012. 51 (2):A49-A50	
L1	Sacco, D. E., Cleveland, R. O., Kracht, J. M., Dretler, S. P Do lithotriptors maintain their effectiveness over time?. <i>Journal of Urology.</i> 2009. 1):582	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Clincha, C Does dental fluoride use have clinically significant effects on oral bacteria?. <i>Fluoride.</i> 2010. 43:205-214	One or more exclusion criteria
L1	Varol, E., Varol, S Does fluoride toxicity cause hypertension in patients with endemic fluorosis?. <i>Biological Trace Element Research.</i> 2012. 150:1-2	One or more exclusion criteria
L1	Torres, L.,August, A Does perfluorooctane sulfonic acid (PFOS) affect the mouse immune system?. <i>FASEB Journal. Conference: Experimental Biology.</i> 2018. 32:#pages#	One or more exclusion criteria
L1	Sonego, I. L., Huber, A. C., Mosler, H. J Does the implementation of hardware need software? A longitudinal study on fluoride-removal filter use in Ethiopia. <i>Environ Sci Technol.</i> 2013. 47:12661-8	One or more exclusion criteria
L1	Mohapatra, S.,Das, R. K Dopamine integrated B, N, S doped CQD nanoprobe for rapid and selective detection of fluoride ion. <i>Anal Chim Acta.</i> 2019. 1058:146-154	e One or more exclusion criteria
L1	Cui, Y.,Zhang, B.,Ma, J.,Wang, Y.,Zhao, L.,Hou, C.,Yu, J.,Zhao, Y.,Zhang, Z.,Nie, J.,Gao, T.,Zhou, G.,Liu, H Dopamine receptor D2 gene polymorphism, urine fluoride, and intelligence impairment of children in China: A school-based cross-sectional study. <i>Ecotoxicology and Environmental Safety</i> . 2018. 165:270 277	

Bibliography Reason for Exclusion Level L1 Bhardwaj, M., Shashi, A.. Dose effect relationship between high fluoride intake One or more exclusion criteria and biomarkers of lipid metabolism in endemic fluorosis. Biomedicine and Preventive Nutrition. 2013. 3:121-127 L1 Khandare, A. L., Validandi, V., Gourineni, S. R., Gopalan, V., Nagalla, B., Dose- One or more exclusion criteria dependent effect of fluoride on clinical and subclinical indices of fluorosis in school going children and its mitigation by supply of safe drinking water for 5 years: an Indian study. Environmental Monitoring and Assessment. 2018. 190 (3) (no pagination):#pages# L1 Chandrajith, R., Dissanayake, C. B., Ariyarathna, T., Herath, H. M., Padmasiri, J. One or more exclusion criteria P.. Dose-dependent Na and Ca in fluoride-rich drinking water--another major cause of chronic renal failure in tropical arid regions. Sci Total Environ. 2011. 409:671-5 L1 Xiong, X., Liu, J., He, W., Xia, T., He, P., Chen, X., Yang, K., Wang, A., Dose-effect One or more exclusion criteria relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environmental Research. 2007. 103:112-116 L1 Xiang, Q. Y., Zhou, M. H., Wu, M., Tao, R., Chen, L. S., Zhang, M. F., Liang, Y. X.. One or more exclusion criteria Dose-respones relationship between daily total fluoride intake and prevalence of osteofluorosis. [Chinese]. Chinese Journal of Endemiology. 2008. 27:196-200

Level	Bibliography	Reason for Exclusion
L1	Xiang, Q Dose-response relationships between drinking water fluoride, bone mineral density, and serum osteocalcin. <i>Fluoride.</i> 2012. 45 (3 PART 1):210-211	One or more exclusion criteria
L1	Rah, J. E.,Oh, D. H.,Shin, D.,Kim, D. H.,Ji, Y. H.,Kim, J. W.,Park, S. Y Dosimetric evaluation of a glass dosimeter for proton beam measurements. <i>Appl Radiat Isot.</i> 2012. 70:1616-23	One or more exclusion criteria
L1	Sweileh, W. M.,Zyoud, S. H.,Al-Jabi, S. W.,Sawalha, A. F.,Shraim, N. Y Drinking and recreational water-related diseases: a bibliometric analysis (1980- 2015). <i>Ann Occup Environ Med.</i> 2016. 28:40	One or more exclusion criteria
L1	Mastrantonio, M.,Bai, E.,Uccelli, R.,Cordiano, V.,Screpanti, A.,Crosignani, P Drinking water contamination from perfluoroalkyl substances (PFAS): an ecological mortality study in the Veneto Region, Italy. <i>Eur J Public Health.</i> 2018. 28:180-185	One or more exclusion criteria
L1	Comber, H.,Deady, S.,Montgomery, E.,Gavin, A Drinking water fluoridation and osteosarcoma incidence on the island of Ireland. <i>Cancer Causes Control.</i> 2011. 22:919-24	One or more exclusion criteria
L1	Nazemi, S.,Dehghani, M Drinking water fluoride and child dental caries in Khartooran, Iran. <i>Fluoride.</i> 2014. 47:85-91	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Vitoria Minana, I Drinking water in infants. Is there any ideal composition?. [Spanish]. Acta Pediatrica Espanola. 2009. 67:255-266	One or more exclusion criteria
L1	Narsimha, A.,Sudarshan, V Drinking water pollution with respective of fluoride in the semi-arid region of Basara, Nirmal district, Telangana State, India. <i>Data</i> <i>Brief.</i> 2018. 16:752-757	One or more exclusion criteria
L1	Wasana, H. M., Aluthpatabendi, D., Kularatne, W. M., Wijekoon, P., Weerasooriya, R., Bandara, J Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water. <i>Environ Geochem Health.</i> 2016. 38:157-68	One or more exclusion criteria
L1	Frazao, P.,Peres, M. A.,Cury, J. A Drinking water quality and fluoride concentration. [Portuguese]. <i>Revista de Saude Publica</i> . 2011. 45:964-973	One or more exclusion criteria
L1	Beaudeau, P.,Schwartz, J.,Levin, R Drinking water quality and hospital admissions of elderly people for gastrointestinal illness in Eastern Massachusetts, 1998-2008. <i>Water Research.</i> 2014. 52:188-198	One or more exclusion criteria
L1	Levallois, P.,Villanueva, C. M Drinking water quality and human health: An editorial. <i>International Journal of Environmental Research and Public Health.</i> 2019. 16 (4) (no pagination):#pages#	One or more exclusion criteria

Bibliography Level **Reason for Exclusion** L1 Xia, Y. T., Wang, Y., Wang, P. H., Wang, C. S., Shu, C. L., Wu, J.. Drinking-water One or more exclusion criteria type endemic fluorosis in Northern Jiangsu Province in 2008: An analysis of survey results. [Chinese]. Chinese Journal of Endemiology. 2011. 30:434-436 L1 Fan, Z. X., Li, Y., Li, X. Q., Bai, G. L., Liu, X. L., Bai, A. M., Li, P. A., Yang, X. D., One or more exclusion criteria Drinking-water type of fluorosis in Shaanxi province in 2009: An analysis of surveillance results. [Chinese]. Chinese Journal of Endemiology. 2011. 30:294-297 L1 Liu, Z., Radtke, M. A., Wong, M. Q., Lin, K. S., Yapp, D. T., Perrin, D. M. Dual One or more exclusion criteria mode fluorescent (18)F-PET tracers: efficient modular synthesis of rhodamine-[cRGD]2-[(18)F]-organotrifluoroborate, rapid, and high yielding one-step (18)Flabeling at high specific activity, and correlated in vivo PET imaging and ex vivo fluorescence. Bioconjug Chem. 2014. 25:1951-62 L1 Saffioti, N. A., de Sautu, M., Ferreira-Gomes, M. S., Rossi, R. C., Berlin, J., Rossi, One or more exclusion criteria Jpfc, Mangialavori, I. C., E2P-like states of plasma membrane Ca(2+)-ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. Biochim Biophys Acta Biomembr. 2019. 1861:366-379 L1 Kirch, R. D., Meyer, P. T., Geisler, S., Braun, F., Gehrig, S., Langen, K. J., von One or more exclusion criteria Hörsten, S., Nikkhah, G., Cassel, J. C., Döbrössy, M. D.. Early deficits in declarative and procedural memory dependent behavioral function in a

Level	Bibliography	Reason for Exclusion
	transgenic rat model of Huntington's disease. <i>Behav Brain Res.</i> 2013. 239:15- 26	
L1	Susheela, A. K., Mondal, N. K., Tripathi, N., Gupta, R Early diagnosis and complete recovery from fluorosis through practice of interventions. <i>J Assoc Physicians India</i> . 2014. 62:572-9	One or more exclusion criteria
L1	Saleem, A., Price, P. M Early tumor drug pharmacokinetics is influenced by tumor perfusion but not plasma drug exposure. <i>Clin Cancer Res.</i> 2008. 14:8184-90	One or more exclusion criteria
L1	Volenzo, T. E.,Odiyo, J Ecological public health and participatory planning and assessment dilemmas: The case of water resources management. <i>International Journal of Environmental Research and Public Health.</i> 2018. 15 (8) (no pagination):#pages#	One or more exclusion criteria
L1	Zurita, J. L., Jos, A., Cameán, A. M., Salguero, M., López-Artíguez, M., Repetto, G Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines. <i>Chemosphere.</i> 2007. 67:1-12	One or more exclusion criteria
L1	Bobak, M.,Dunn, J. R Editorial note: Peckham versus Newton. <i>J Epidemiol Community Health.</i> 2017. 71:317	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Zeng, W., Chen, Y. L Editorial: advances in therapeutic glycopeptides. <i>Protein Pept Lett.</i> 2014. 21:975	One or more exclusion criteria
L1	Yoshitomi, B.,Nagano, I Effect of dietary fluoride derived from Antarctic krill (Euphausia superba) meal on growth of yellowtail (Seriola quinqueradiata). <i>Chemosphere.</i> 2012. 86:891-7	One or more exclusion criteria
L1	Saxena, S.,Sahay, A.,Goel, P Effect of fluoride exposure on the intelligence of school children in Madhya Pradesh, India. <i>Journal of Neurosciences in Rural Practice</i> . 2012. 3:144-149	f One or more exclusion criteria
L1	Aghaei, M.,Derakhshani, R.,Raoof, M.,Dehghani, M.,Mahvi, A. H Effect of fluoride in drinking water on birth height and weight: An ecological study in Kerman Province, Zarand county, Iran. <i>Fluoride.</i> 2015. 48:160-168	One or more exclusion criteria
L1	Goudu, A. S.,Naidu, M. D Effect of fluoride on oxidative stress and biochemical markers of bone turnover in postmenopausal women. <i>Fluoride.</i> 2013. 46:208-211	One or more exclusion criteria
L1	Ravula, S.,Harinarayan, C. V.,Prasad, U. V.,Ramalakshmi, T.,Rupungudi, A.,Madrol, V Effect of fluoride on reactive oxygen species and bone metabolism in postmenopausal women. <i>Fluoride.</i> 2012. 45:108-115	One or more exclusion criteria
L1	Singh, M.,Sharma, O. P.,Jain, H. K Effect of fluoride on the fingerlings of Indian major carp, Labeo Rohita (Hamilton). <i>Fluoride.</i> 2012. 45:368-370	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Zhang, N. H., An, D., He, P., Li, D. S., Liang, Y., Jin, Z. J Effect of food drying methods on fluoride content in maize and pepper in coal-burning type of fluorosis regions. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:536-539	One or more exclusion criteria
L1	Shashi, A.,Kumar, M Effect of high fluoride ingestion on serum biochemical indices in patients of skeletal fluorosis. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences.</i> 2008. 10:569-576	One or more exclusion criteria
L1	Wang, F.,Hou, T. Z.,Li, J. J.,Li, Z. Z.,Tang, C. F Effect of magnesium and selenium on the expression of matrix metalloproteinases-20 and kallikrein 4 in fluorosis mice. [Chinese]. <i>Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology.</i> 2016. 51:546-551	One or more exclusion criteria
L1	Wiegand, A.,Gutsche, M.,Attin, T Effect of olive oil and an olive-oil-containing fluoridated mouthrinse on enamel and dentin erosion in vitro. <i>Acta Odontologica Scandinavica.</i> 2007. 65:357-361	One or more exclusion criteria
L1	Xu, Z.,Wang, Q.,Liu, T.,Guo, L.,Jing, F.,Liu, H Effect of overdose fluoride on expression of bone sialoprotein in developing dental tissues of rats. [Chinese]. Shanghai kou qiang yi xue = Shanghai journal of stomatology. 2006. 15:194-197	One or more exclusion criteria

 Zandim, D. L., Tschoppe, P., Sampaio, J. E., Kielbassa, A. M Effect of saliva substitutes in combination with fluorides on remineralization of subsurface dentin lesions. <i>Support Care Cancer.</i> 2011. 19:1143-9 Chien, C. H., Sakagami, H., Kouhara, M., Sasaki, A., Matsumoto, K., Kanegae, H. Effect of simulated orthodontic forces on flouride-induced cytotoxicity in 	One or more exclusion criteria . One or more exclusion criteria
	. One or more exclusion criteria
MC3T3-E1 osteoblast-like cells. In Vivo. 2009. 23:259-266	
Freitas, A. S., Fontes Cunha, I. M., Andrade-Vieira, L. F., Techio, V. H Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L. <i>Ecotoxicology</i> & <i>Environmental Safety.</i> 2016. 124:426-434	One or more exclusion criteria
Dowling, D. P., Miller, I. S., Ardhaoui, M., Gallagher, W. M Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. <i>J Biomater Appl.</i> 2011. 26:327-47	One or more exclusion criteria
Salvio, L. A., DoCarmo, V. C. F. T., Andrade, T. P. S., Baroudi, K Effect of the combined use of adhesive systems and oxalate-based and fluoride-based dentin desensitizers on bond strength. <i>Journal of Clinical and Diagnostic Research.</i> 2019. 13:ZC17-ZC21	One or more exclusion criteria
Murata, S.,Izumi, T.,Ito, H Effect of the moisture content in aerosol on the spray performance of Stmerin ® D hydrofluoroalkane preparations (2). <i>Chem Pharm Bull (Tokyo).</i> 2012. 60:593-7	One or more exclusion criteria
	MC3T3-E1 osteoblast-like cells. <i>In Vivo.</i> 2009. 23:259-266 Freitas, A. S.,Fontes Cunha, I. M.,Andrade-Vieira, L. F.,Techio, V. H Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L. <i>Ecotoxicology & Environmental Safety.</i> 2016. 124:426-434 Dowling, D. P.,Miller, I. S.,Ardhaoui, M.,Gallagher, W. M Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma- modified polystyrene. <i>J Biomater Appl.</i> 2011. 26:327-47 Salvio, L. A.,DoCarmo, V. C. F. T.,Andrade, T. P. S.,Baroudi, K Effect of the combined use of adhesive systems and oxalate-based and fluoride-based dentin desensitizers on bond strength. <i>Journal of Clinical and Diagnostic Research.</i> 2019. 13:ZC17-ZC21 Murata, S.,Izumi, T.,Ito, H Effect of the moisture content in aerosol on the spray performance of Stmerin ® D hydrofluoroalkane preparations (2). <i>Chem</i>

_evel	Bibliography	Reason for Exclusion
_1	Chou, W. L., Yang, K. C Effect of various chelating agents on supercritical carbon dioxide extraction of indium(III) ions from acidic aqueous solution. <i>J Hazard Mater.</i> 2008. 154:498-505	One or more exclusion criteria
_1	Breazeal, M. V.,Novak, J. T.,Vikesland, P. J.,Pruden, A. Effect of wastewater colloids on membrane removal of antibiotic resistance genes. <i>Water Res.</i> 2013. 47:130-40	One or more exclusion criteria
_1	Hammouda, I. M., Al-Wakeel, E. E Effect of water storage on fluoride release and mechanical properties of a polyacid-modified composite resin (compomer). <i>Journal of Biomedical Research.</i> 2011. 25:254-258	
_1	Antoniazzi, R. P., Machado, M. E., Grellmann, A. P., Santos, R. C., Zanatta, F. B Effectiveness of a desensitizing agent for topical and home use for dentin hypersensitivity: a randomized clinical trial. <i>Am J Dent.</i> 2014. 27:251-7	One or more exclusion criteria
_1	Anthoney, D.,Zahid, S.,Khalid, H.,Khurshid, Z.,Shah, A. T.,Chaudhry, A. A.,Khan, A. S Effectiveness of Thymoquinone and Fluoridated Bioactive Glass/Nano-Oxide Contained Dentifrices on Abrasion and Dentine Tubules Occlusion: An Ex Vivo Study. <i>Eur J Dent.</i> 2020. 14:45-54	One or more exclusion criteria
_1	Nardi, G. M., Sabatini, S., Lauritano, D., Silvestre, F., Petruzzi, M Effectiveness of two different desensitizing varnishes in reducing tooth sensitivity: a randomized double-blind clinical trial. <i>Oral Implantol (Rome)</i> . 2016. 9:185-189	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Olgar, S.,Kuybulu, A. E.,Karademir, S.,Sipahi, T.,Oguz, D. A.,Ormeci, A. R Effects of chronic fluorosis on cardiovascular system in children. <i>Cardiology in the Young.</i> 2010. 1):222	One or more exclusion criteria
L1	Wierichs, R. J., Rupp, K., Meyer-Lueckel, H., Apel, C., Esteves-Oliveira, M Effects of Dentifrices Differing in Fluoride Content on Remineralization Characteristics of Dentin in vitro. <i>Caries research.</i> 2020. 54:75-86	One or more exclusion criteria
L1	Olley, R. C., Moazzez, R., Bartlett, D Effects of dentifrices on subsurface dentititubule occlusion: an in situ study. <i>Int J Prosthodont.</i> 2015. 28:181-7	n One or more exclusion criteria
L1	Yang, M.,Lin, H.,Jiang, R.,Zheng, G Effects of desensitizing toothpastes on the permeability of dentin after different brushing times: An in vitro study. <i>Am J</i> <i>Dent.</i> 2016. 29:345-351	One or more exclusion criteria
L1	Sushma Susik, M. S., Ajay Prakash, P., Madhusudhan Rao, T Effects of different concentrations of fluoride in oral mucosal cells in albino rats. <i>J Clin Diagn Res.</i> 2015. 9: ZF01-ZF04	One or more exclusion criteria
L1	Wang, J. Y.,Li, B. L.,Zhao, X. H.,Huang, Y. X.,Chen, J. K.,Chen, S. H.,Ou, H. H.,Chen, S. X Effects of drinking water defluoride in endemic fluorosis areas in Shantou city of Guangdong province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:71-73	One or more exclusion criteria
L1	Shaffer, J. R.,Carlson, J. C.,Stanley, B. O. C.,Feingold, E.,Cooper, M.,Vanyukov, M. M.,Maher, B. S.,Slayton, R. L.,Willing, M. C.,Reis, S.	One or more exclusion criteria

Bibliography	Reason for Exclusion
E.,McNeil, D. W.,Crout, R. J.,Weyant, R. J.,Levy, S. M.,Vieira, A. R.,Marazita, M. L Effects of enamel matrix genes on dental caries are moderated by fluoride exposures. <i>Human Genetics.</i> 2015. 134:159-167	
Maas, R. P., Patch, S. C., Christian, A. M., Coplan, M. J Effects of fluoridation and disinfection agent combinations on lead leaching from leaded-brass parts. <i>Neurotoxicology.</i> 2007. 28:1023-31	One or more exclusion criteria
Ludlow, M.,Luxton, G.,Mathew, T Effects of fluoridation of community water supplies for people with chronic kidney disease. <i>Nephrol Dial Transplant.</i> 2007. 22:2763-7	One or more exclusion criteria
Shahab, S.,Mustafa, G.,Khan, I.,Zahid, M.,Yasinzai, M.,Ameer, N.,Asghar, N.,Ullah, I.,Nadhman, A.,Ahmed, A.,Munir, I.,Mujahid, A.,Hussain, T.,Ahmad, M. N.,Ahmad, S. S Effects of fluoride ion toxicity on animals, plants, and soil health: A review. <i>Fluoride.</i> 2017. 50:393-408	One or more exclusion criteria
Goyal, N., Dulawat, M. S., Dulawat, S. S Effects of fluoride on human health in Rajasthan. <i>Advanced Science, Engineering and Medicine.</i> 2019. 11:21-23	One or more exclusion criteria
Zhang, Y.,Xie, L.,Li, X.,Chai, L.,Chen, M.,Kong, X.,Wang, Q.,Liu, J.,Zhi, L.,Yang, C.,Wang, H Effects of fluoride on morphology, growth, development, and thyroid hormone of Chinese toad (Bufo gargarizans) embryos. <i>Environ Mol</i> <i>Mutagen.</i> 2018. 59:123-133	One or more exclusion criteria
	 E.,McNeil, D. W.,Crout, R. J.,Weyant, R. J.,Levy, S. M.,Vieira, A. R.,Marazita, M. L.: Effects of enamel matrix genes on dental caries are moderated by fluoride exposures. <i>Human Genetics</i>. 2015. 134:159-167 Maas, R. P.,Patch, S. C.,Christian, A. M.,Coplan, M. J.: Effects of fluoridation and disinfection agent combinations on lead leaching from leaded-brass parts. <i>Neurotoxicology</i>. 2007. 28:1023-31 Ludlow, M.,Luxton, G.,Mathew, T.: Effects of fluoridation of community water supplies for people with chronic kidney disease. <i>Nephrol Dial Transplant</i>. 2007. 22:2763-7 Shahab, S.,Mustafa, G.,Khan, I.,Zahid, M.,Yasinzai, M.,Ameer, N.,Asghar, N.,Ullah, I.,Nadhman, A.,Ahmed, A.,Munir, I.,Mujahid, A.,Hussain, T.,Ahmad, M. N.,Ahmad, S. S.: Effects of fluoride ion toxicity on animals, plants, and soil health: A review. <i>Fluoride</i>. 2017. 50:393-408 Goyal, N.,Dulawat, M. S.,Dulawat, S. S.: Effects of fluoride on human health in Rajasthan. <i>Advanced Science, Engineering and Medicine</i>. 2019. 11:21-23 Zhang, Y.,Xie, L.,Li, X.,Chai, L.,Chen, M.,Kong, X.,Wang, Q.,Liu, J.,Zhi, L.,Yang, C.,Wang, H.: Effects of fluoride on morphology, growth, development, and thyroid hormone of Chinese toad (Bufo gargarizans) embryos. <i>Environ More</i>

Level	Bibliography	Reason for Exclusion
_1	Levy, S. M., Warren, J. J., Phipps, K., Letuchy, E., Broffitt, B., Eichenberger- Gilmore, J., Burns, T. L., Kavand, G., Janz, K. F., Torner, J. C., Pauley, C. A Effects of life-long fluoride intake on bone measures of adolescents: a prospective cohort study. <i>J Dent Res.</i> 2014. 93:353-9	One or more exclusion criteria
_1	Park, E. Y., Hwang, S. S., Kim, J. Y., Cho, S. H Effects of long-term fluoride in drinking water on risks of hip fracture of the elderly: an ecologic study based on database of hospitalization episodes. [Korean]. <i>Journal of preventive medicine and public health</i> = Yebang Uihakhoe chi. 2008. 41:147-152	
_1	Cai, J.,Burrow, M. F.,Manton, D. J.,Tsuda, Y.,Sobh, E. G.,Palamara, J. E. A Effects of silver diamine fluoride/potassium iodide on artificial root caries lesions with adjunctive application of proanthocyanidin. <i>Acta Biomaterialia</i> . 2019. 88:491-502	One or more exclusion criteria
.1	Khandare, A.,Rasaputra, K.,Meshram, I.,Rao, S Effects of smoking, use of aluminium utensils, and tamarind consumption on fluorosis in a fluorotic village of Andhra Pradesh, India. <i>Fluoride.</i> 2010. 43:128-133	One or more exclusion criteria
.1	Andrade-Vieira, L. F., de Campos, J. M. S., Davide, L. C Effects of Spent Pot Liner on mitotic activity and nuclear DNA content in meristematic cells of Allium cepa. <i>Journal of Environmental Management.</i> 2012. 107:140-146	One or more exclusion criteria
.1	Zhang, X. J.,Sun, T. C.,Liu, Z. W.,Wang, F. J.,Wang, Y. D.,Liu, J Effects of Tianmagouteng particles on brain cognitive function in spontaneously	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	hypertensive rats with hyperactivity of liver-yang: A [F-18] FDG micro-PET imaging study. <i>Biomed Pharmacother.</i> 2017. 95:1838-1843	
L1	Ju, X.,Brennan, D.,Parker, E.,Mills, H.,Kapellas, K.,Jamieson, L Efficacy of an oral health literacy intervention among Indigenous Australian adults. <i>Community dentistry and oral epidemiology.</i> 2017. 45:413-426	n One or more exclusion criteria
L1	Idon, P. I.,Esan, T. A.,Bamise, C. T Efficacy of Three In-Office Dentin Hypersensitivity Treatments. <i>Oral Health Prev Dent</i> . 2017. 15:207-214	One or more exclusion criteria
L1	Daumar, P.,Wanger-Baumann, C. A.,Pillarsetty, N.,Fabrizio, L.,Carlin, S. D.,Andreev, O. A.,Reshetnyak, Y. K.,Lewis, J. S Efficient (18)F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation. <i>Bioconjug Chem.</i> 2012. 23:1557-66	One or more exclusion criteria
L1	Otabashi, M., Vergote, T., Desfours, C Efficient commercial scale 18F-FES production on AllinOne (Trasis). <i>Journal of Nuclear Medicine. Conference:</i> <i>Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2017. 58:#pages#	One or more exclusion criteria
L1	Deraedt, Q.,Masset, J.,Otabashi, M.,Philippart, G Efficient commercial scale [¹⁸ F]FES production on AllinOne (Trasis). <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S195	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chen, R.,Yu, H.,Jia, Z. Y.,Yao, Q. L.,Teng, G. J Efficient nano iron particle- labeling and noninvasive MR imaging of mouse bone marrow-derived endothelial progenitor cells. <i>Int J Nanomedicine</i> . 2011. 6:511-9	One or more exclusion criteria
L1	Zhang, S.,He, Y.,Wang, X.,Li, G.,Ding, R.,Xu, J.,Feng, M.,Liu, H.,Qi, C.,Peng, C Efficient radiosynthesis and evaluation of fluorine-18 labeled benzimidazol derivatives for peripheral tumor imaging. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2009. 1):S153	One or more exclusion criteria
L1	Morales-Roman, R.,Tamano-Machiavello, M.,Roig-Perez, L.,Costa, C.,Lanceros-Mendez, S.,Gomez-Ribelles, J.,Gallego-Ferrer, G Electroactive poly(vinylidene fluoride) membranes with hydrophilic domains for osteogenic differentiation. <i>Artificial Organs.</i> 2017. 41 (9):A62	One or more exclusion criteria
L1	Wang, Z.,Guo, X.,Bai, G.,Lei, Y.,Wang, Y.,Fan, Z.,Zhang, Q.,Ding, Y Elevated levels of arsenic and fluoride, but not selenium, associated with endemic disease in the Chinese village of Dazhuyuan, Shaanxi Province. <i>Fluoride</i> . 2009. 42:34-38	d One or more exclusion criteria
L1	Nelson, J. D., Spencer, S. M., Blake, C. E., Moore, J. B., Martin, A. B Elevating Oral Health Interprofessional Practice Among Pediatricians Through a Statewide Quality Improvement Learning Collaborative. <i>J Public Health Manag</i> <i>Pract.</i> 2018. 24:e19-e24	

Level	Bibliography	Reason for Exclusion
L1	Patel, R. K.,Kumar, S.,Chawla, A. K.,Mondal, P.,Neelam,,Teychene, B.,Pandey, J. K Elimination of fluoride, arsenic, and nitrate from water through adsorption onto nano-adsorbent: A review. <i>Current Nanoscience</i> . 2019. 15:557-575	One or more exclusion criteria
L1	Pandey, P.,Khan, F.,Mishra, R.,Singh, S. K Elucidation of the potential of Moringa oleifera leaves extract as a novel alternate to the chemical coagulant in water treatment process. <i>Water Environ Res.</i> 2020. #volume#:#pages#	One or more exclusion criteria
L1	Opydo-Szymaczek, J.,Gerreth, K.,Borysewicz-Lewicka, M.,Pawlaczyk- Kamienska, T.,Torlinska-Walkowiak, N.,Sniatala, R Enamel defects and dental caries among children attending primary schools in Poznan, Poland. <i>Advances in Clinical and Experimental Medicine.</i> 2018. 27:#pages#	One or more exclusion criteria
L1	Bagh, B Endemic fluoride pollution in drinking water and its impact on human health and management by bio-remediation. <i>Fluoride.</i> 2012. 45 (3 PART 1):152-153	One or more exclusion criteria
L1	Brandt Jr, E. N Endemic fluorosis and its relation to dental caries (1938): Commentary. <i>Public Health Reports.</i> 2006. 121:212-219	One or more exclusion criteria
L1	Srikanth, R., Chandra, T. R., Kumar, B. R Endemic fluorosis in five villages of the Palamau District, Jharkhand, India. <i>Fluoride.</i> 2008. 41:206-211	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ding, S. R.,Lu, Q.,Ding, P.,Si, W. J.,Pu, G. L.,Yang, P Endemic fluorosis in guide county of Qinghai province in 2008: An analysis of surveillance results. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:306-308	One or more exclusion criteria
L1	Chen, P.,Wei, S. Y.,Ding, P.,Lu, Q.,He, D. L.,Wu, H. K.,Pu, G. L.,Tan, D. F.,Zheng, J. Z Endemic fluorosis in Huangyuan county Qinghai province in 2009: An analysis of surveillance results. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2011. 30:303-305	One or more exclusion criteria
L1	Zhang, H. T.,Lu, Z. M.,Tang, H. Y.,Zhang, X. L.,Fang, L. Y Endemic fluorosis in Jilin province: Analysis of surveillance data for 2006-2010. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2011. 30:298-302	One or more exclusion criteria
L1	Ma, J.,Lu, S. M.,Zhang, H. P.,Du, Y. G.,Yao, G. J.,Zhang, K. J.,Li, Y.,Zhao, G. J Endemic fluorosis in Sanhe City of Hebei Province in 2004 and 2005: An analysis of the outcome. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2007. 26:168-169	One or more exclusion criteria
L1	Sharmila, C., Subramanian, S. P Endemic fluorosis in vellore district, tamil nadu - a bio-geochemical approach. <i>International Journal of Pharmaceutical Sciences Review and Research.</i> 2019. 54:58-66	One or more exclusion criteria
L1	Li, J.,Wang, Z. H.,Cheng, X. T.,Jia, Q. Z.,Sang, Z. P.,Zhang, J.,Han, L. L.,Duan, H. S.,Liang, B. F.,Wang, S. X Endemic fluorosis prevalence in the	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	counties of severe disease areas of Shanxi Province. [Chinese]. Chinese Journal of Endemiology. 2006. 25:541-543	
L1	Yu, S. Q.,Wang, W. L.,Jia, J. X.,Chen, X. Y.,Shao, J. Y.,Bai, S. Y.,Wang, W. H Endemic fluorosis surveillance in Qinan County of Gansu Province from 2004 to 2007: An outcome analysis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:545-547	One or more exclusion criteria
L1	Wang, J. H.,Zheng, Z. X.,Liu, W.,Liu, Y.,Gao, R.,Li, Z. R.,Zhao, W. G.,Wang, S Q.,Liu, W. Y Endemic fluorosis: Prevalence and prevention in Liaoning Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:663-667	. One or more exclusion criteria
L1	Zheng, Z. X.,Liu, W.,Zhao, W. G.,Lin, S. G.,Wang, H Endemic flurosis: Current status of prevention and control in Liaoning. [Chinese]. <i>Chinese</i> <i>Journal of Endemiology.</i> 2006. 25:328-329	One or more exclusion criteria
L1	Petrone, P.,Giordano, M.,Giustino, S.,Guarino, F. M. Enduring fluoride health hazard for the Vesuvius area population: the case of AD 79 Herculaneum. <i>PLoS One.</i> 2011. 6:e21085	One or more exclusion criteria
L1	Chen, Y.,Ginga, N. J.,LePage, W. S.,Kazyak, E.,Gayle, A. J.,Wang, J.,Rodriguez, R. E.,Thouless, M. D.,Dasgupta, N. P Enhanced Interfacial Toughness of Thermoplastic-Epoxy Interfaces Using ALD Surface Treatments. <i>ACS applied materials & interfaces.</i> 2019. 11:43573-43580	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Viswanathan, N.,Meenakshi, S Enriched fluoride sorption using alumina/chitosan composite. <i>Journal of Hazardous Materials.</i> 2010. 178:226- 232	One or more exclusion criteria
L1	Lash, L. H Environmental and Genetic Factors Influencing Kidney Toxicity. Semin Nephrol. 2019. 39:132-140	One or more exclusion criteria
L1	Tsai, W. T Environmental and health risk analysis of nitrogen trifluoride (NF(3)), a toxic and potent greenhouse gas. <i>J Hazard Mater.</i> 2008. 159:257-63	One or more exclusion criteria
L1	Sengupta, P Environmental and occupational exposure of metals and their role in male reproductive functions. <i>Drug and Chemical Toxicology.</i> 2013. 36:353-368	One or more exclusion criteria
L1	Mondal, P., Chattopadhyay, A Environmental exposure of arsenic and fluoride and their combined toxicity: A recent update. <i>Journal of Applied Toxicology.</i> . 2019. #volume#:#pages#	One or more exclusion criteria
L1	Molina-Frechero, N., Nevarez-Rascón, M., Tremillo-Maldonado, O., Vergara- Onofre, M., Gutiérrez-Tolentino, R., Gaona, E., Castañeda, E., Jarquin-Yañez, L., Bologna-Molina, R Environmental Exposure of Arsenic in Groundwater Associated to Carcinogenic Risk in Underweight Children Exposed to Fluorides. <i>Int J Environ Res Public Health.</i> 2020. 17:#pages#	One or more exclusion criteria
L1	Cardenas-Gonzalez, M.,Osorio-Yanez, C.,Gaspar-Ramirez, O.,Pavkovic, M.,Ochoa, Martinez,Lopez-Ventura, D.,Medeiros, M.,Barbier, O.,Perez-	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Maldonado, I. N., Sabbisetti, V. S., Bonventre, J. V., Vaidya, V. S Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S158	
L1	Cardenas-Gonzalez, M.,Osorio-Yanez, C.,Gaspar-Ramirez, O.,Pavkovic, M.,Ochoa-Martinez, A.,Lopez-Ventura, D.,Medeiros, M.,Barbier, O. C.,Perez- Maldonado, I. N.,Sabbisetti, V. S.,Bonventre, J. V.,Vaidya, V. S Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. <i>Environmental Research.</i> 2016. 150:653-662	One or more exclusion criteria
L1	Tsai, W. T Environmental hazards and health risk of common liquid perfluoro- n-alkanes, potent greenhouse gases. <i>Environ Int.</i> 2009. 35:418-24	One or more exclusion criteria
L1	Etzel, R. A Environmental hazards that matter for children's health. <i>Hong Kong Journal of Paediatrics.</i> 2015. 20:86-94	One or more exclusion criteria
L1	Patil, R. R Environmental health impact assessment of national aluminum company, Orissa. <i>Indian Journal of Occupational and Environmental Medicine</i> . 2011. 15:73-75	One or more exclusion criteria
L1	Buchhamer, E. E., Blanes, P. S., Osicka, R. M., Giménez, M. C Environmental risk assessment of arsenic and fluoride in the Chaco Province, Argentina: research advances. <i>J Toxicol Environ Health A.</i> 2012. 75:1437-50	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Malone Rubright, S. L., Pearce, L. L., Peterson, J Environmental toxicology of hydrogen sulfide. <i>Nitric Oxide - Biology and Chemistry.</i> 2017. 71:1-13	One or more exclusion criteria
L1	Lowe, P. T., Dall'Angelo, S., Fleming, I. N., Piras, M., Zanda, M., O'Hagan, D Enzymatic radiosynthesis of a (18)F-Glu-Ureido-Lys ligand for the prostate- specific membrane antigen (PSMA). <i>Org Biomol Chem.</i> 2019. 17:1480-1486	One or more exclusion criteria
L1	Thompson, S.,Fleming, I. N.,O'Hagan, D Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase. <i>Org Biomol Chem.</i> 2016. 14:3120-9	One or more exclusion criteria
L1	 Wei, S.,Lu, Q.,Yang, P.,Li, S.,Jiang, H.,Chen, P.,La, C.,He, D.,Wu, H Epidemic status of drinking-tea-borne fluorosis in different occupational groups in Qinghai Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:164-166 	One or more exclusion criteria
L1	Chen, P. Z., Yun, Z. J., Gao, H. X., Ma, A. H., Wang, Y. T., Li, H. X., Zhao, L. J Epidemiologic studies of endemic fluorosis in Jiaxiang. A county in Shandong province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:537-540	One or more exclusion criteria
L1	Chen, P. Z., Yun, Z. J., Gao, H. X., Li, H. X., Wang, Y. T., Gao, J., Yin, Y. Y Epidemiological investigation and analysis of water-related endemic fluorosis in the south area of Shandong province in 2009. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2012. 31:566-570	One or more exclusion criteria า

Level	Bibliography	Reason for Exclusion
L1	 Yun, Z. J.,Bian, J. C.,Chen, P. Z.,Pang, X. G.,Qin, Q. L.,Zhao, L. J.,Wang, Y. T Epidemiological investigation of endemic fluorosis along the Yellow River basin of Shandong Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:174-176 	One or more exclusion criteria
L1	Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Gao, J., Yin, Y. Y., Li, H. X., Liu, Y Epidemiological investigation of endemic fluorosis of Shandong province in 2010. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:571-575	One or more exclusion criteria
L1	 Yun, Z. J., Bian, J. C., Chen, P. Z., Pang, X. G., Wang, Y. T., Li, H. X., Zhao, L. J., Gao, Y. M., Zhang, S. X., Zhou, C. K Epidemiological investigation on endemic fluorosis in Boxing County of Shandong Province in 2007. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:75-77 	One or more exclusion criteria
L1	Yousefi, M.,Mohammadi, A. A.,Yaseri, M.,Mahvi, A. H Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: An ecological study in west Azerbaijan province, poldasht county, Iran. <i>Fluoride</i> . 2017. 50:343-353	One or more exclusion criteria
L1	McLaku, Z.,Assefa, G.,Enqusilassie, F.,Bjorvatn, K.,Tekle-Haimanot, R Epidemiology of skeletal fluorosis in wonji shoa sugar estate, wonji, ethiopia: A community based survey. <i>Ethiopian Medical Journal.</i> 2012. 50:307-313	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Melaku, Z., Assefa, G., Enqusilassie, F., Bjorvatn, K., Tekle-Haimanot, R Epidemiology of skeletal fluorosis in Wonji Shoa Sugar Estate, Wonji, Ethiopia: a community based survey. <i>Ethiop Med J.</i> 2012. 50:307-13	One or more exclusion criteria
L1	Kulkarni, P.,Anand, A.,Bansal, A.,Jain, A.,Tiwari, U.,Agrawal, S Erosive effects of pediatric liquid medicinal syrups on primary enamel: An in vitro comparative study. <i>Indian J Dent.</i> 2016. 7:131-133	One or more exclusion criteria
L1	Vieira, A. M.,Neto, F.,Carvalho, P.,Manso, A. C Erosive potential of medication on human enamel and posterior remineralization capacity. <i>Annals of Medicine</i> . 2019. 51 (Supplement 1):S107-S109	One or more exclusion criteria
L1	Wimalawansa, S. J Escalating chronic kidney diseases of multi-factorial origin (CKD-mfo) in Sri Lanka: causes, solutions, and recommendations-update and responses. <i>Environmental Health and Preventive Medicine</i> . 2015. 20:152-157	One or more exclusion criteria
L1	Misra, S. K Essentials of specifications for activated alumina in defluoridation technology. <i>J Environ Sci Eng.</i> 2006. 48:231-40	One or more exclusion criteria
L1	Näsman, P.,Ekstrand, J.,Granath, F.,Ekbom, A.,Fored, C. M Estimated drinking water fluoride exposure and risk of hip fracture: a cohort study. <i>J Dent Res.</i> 2013. 92:1029-34	One or more exclusion criteria
L1	Awofeso, N Ethics of artificial water fluoridation in Australia. <i>Public Health Ethics</i> . 2012. 5:161-172	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Joshua, A. D., NethajiMariappan, V. E., Anne, B. M., Vadivel, N Evaluating fluoride contamination in ground water of Dharmapuri district in Tamilnadu. <i>Journal of Chemical and Pharmaceutical Sciences.</i> 2015. 8:18-24	One or more exclusion criteria
L1	Loccisano, A. E., Campbell, J. L., Jr., Andersen, M. E., Clewell, H. J., 3rd. Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. <i>Regul Toxicol Pharmacol.</i> 2011. 59:157-75	One or more exclusion criteria
L1	Pollo, F. E., Grenat, P. R., Salinas, Z. A., Otero, M. A., Salas, N. E., Martino, A. L. Evaluation in situ of genotoxicity and stress in South American common toad Rhinella arenarum in environments related to fluorite mine. <i>Environ Sci Pollut Res Int.</i> 2017. 24:18179-18187	. One or more exclusion criteria
L1	Fekrazad, R., Ebrahimpour, L Evaluation of acquired acid resistance of enamel surrounding orthodontic brackets irradiated by laser and fluoride application. <i>Lasers in Medical Science</i> . 2014. 29:1793-1798	One or more exclusion criteria
L1	Bhardwaj, M.,Aggarwal, S Evaluation of biochemical interaction and correlation between high fluoride ingestion and protein metabolism. <i>Biomedicine and Preventive Nutrition.</i> 2013. 3:129-137	One or more exclusion criteria
L1	Tomlinson, R.,Shoghi, K.,Silva, M Evaluation of blood flow and skeletal kinetics during loading induced osteogenesis using pet imaging. <i>Journal of Bone and Mineral Research.</i> 2010. 1):S70-S71	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Moazeni, M., Atefi, M., Ebrahimi, A., Razmjoo, P., Vahid Dastjerdi, M Evaluation of chemical and microbiological quality in 21 brands of iranian bottled drinking waters in 2012: A comparison study on label and real contents. <i>Journal of</i> <i>Environmental and Public Health.</i> 2013. 2013 (no pagination):#pages#	One or more exclusion criteria
L1	Tran, M. T., Shah, S. R., Kim, K., Trinidad, P., Pandey, S., Karmur, A., Patel, R., Kant, R., Mukherjee, J Evaluation of dopamine receptor agonists, 18F-5- OH-FPPAT, 18F-5-OH-FHXPAT and 18F-7-OH-FHXPAT. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2009. 1):S345	One or more exclusion criteria
L1	Sarmah, S. P., Chutia, J Evaluation of drinking water quality in Bihpuria area of Lakhimpur District, Assam, India. <i>Research Journal of Pharmaceutical, Biological and Chemical Sciences.</i> 2012. 3:1030-1036	One or more exclusion criteria
L1	Ramesh, M. V.,Naveenkumar, P. G.,Prashant, G. M.,Sakeenabi, B.,Allamaprabhu,,Vijetha, K Evaluation of effect of brushite-calcite and two indigenous herbs in removal of fluoride from water. <i>Journal of Clinical and</i> <i>Diagnostic Research.</i> 2016. 10:ZC83-ZC85	One or more exclusion criteria
L1	Rocha, R. A., Calatayud, M., Devesa, V., Velez, D Evaluation of exposure to fluoride in child population of North Argentina. <i>Environmental Science</i> & <i>Pollution Research.</i> 2017. 24:22040-22047	One or more exclusion criteria
L1	Stramare, R.,Raffeiner, B.,Ciprian, L.,Scagliori, E.,Coran, A.,Perissinotto, E.,Fiocco, U.,Beltrame, V.,Rubaltelli, L Evaluation of finger joint synovial	One or more exclusion criteria
1190		

Trial Ex. 131.1190

Level	Bibliography	Reason for Exclusion
	vascularity in patients with rheumatoid arthritis using contrast-enhanced ultrasound with water immersion and a stabilized probe. <i>J Clin Ultrasound</i> . 2012. 40:147-54	
L1	Bengharez, Z., Farch, S., Bendahmane, M., Merine, H., Benyahia, M Evaluation of fluoride bottled water and its incidence in fluoride endemic and non endemic areas. <i>e-SPEN Journal.</i> 2012. 7:e41-e45	
L1	Abouleish, M. Y Evaluation of fluoride levels in bottled water and their contribution to health and teeth problems in the United Arab Emirates. <i>Saudi Dent J.</i> 2016. 28:194-202	One or more exclusion criteria
L1	Singh, G., Rishi, M. S., Herojeet, R., Kaur, L., Sharma, K Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi- arid region of northern India. <i>Environmental Geochemistry & Health.</i> 2019. 05:05	One or more exclusion criteria
L1	Elumalai, V.,Nwabisa, D. P.,Rajmohan, N Evaluation of high fluoride contaminated fractured rock aquifer in South Africa - Geochemical and chemometric approaches. <i>Chemosphere</i> . 2019. 235:1-11	One or more exclusion criteria
L1	Pant, H. H.,Rao, M. V Evaluation of in vitro anti-genotoxic potential of melatonin against arsenic and fluoride in human blood cultures. <i>Ecotoxicol Environ Saf.</i> 2010. 73:1333-7	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Samuel, S. R., Khatri, S. G., Acharya, S., Patil, S. T Evaluation of instant desensitization after a single topical application over 30 days: a randomized trial. <i>Aust Dent J.</i> 2015. 60:336-42	One or more exclusion criteria
∟1	Jiménez-Córdova, M. I.,Cárdenas-González, M.,Aguilar-Madrid, G.,Sanchez- Peña, L. C.,Barrera-Hernández, Á,Domínguez-Guerrero, I. A.,González-Horta, C.,Barbier, O. C.,Del Razo, L. M Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels. <i>Toxicol Appl Pharmacol.</i> 2018. 352:97-106	One or more exclusion criteria
L1	Jimenez-Cordova, M. I.,Gonzalez-Horta, M. C.,Aguilar-Madrid, G.,Barrera- Hernandez, A.,Sanchez-Pena, L. C.,Barbier, O. C.,Del Razo, L. M Evaluation of KIM-1, Cystatin-C and glomerular filtration rate in schoolchildren exposed to inorganic fluoride. <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S131	One or more exclusion criteria
L1	Brooks, A.,Jackson, I.,Scott, P Evaluation of metal-protein aggregate radioligand [¹⁸ F]FL2-b by small animal PET imaging and autoradiography in alzheimer's disease, amyotrophic lateral sclerosis, and lewy body dementia. <i>Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2017. 58:#pages#	One or more exclusion criteria
L1	J, M.,Sinha, S.,Ghosh, M.,Mukherjee, A Evaluation of multi-endpoint assay to detect genotoxicity and oxidative stress in mice exposed to sodium fluoride. <i>Mutat Res.</i> 2013. 751:59-65	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Adekiitan, M. E., Imana, G. E., Adedeji, O. O Evaluation of new glucometers (Easy Touch GC) for bedside use. <i>Clinical Chemistry.</i> 2014. 1):S214	One or more exclusion criteria
L1	Karunanidhi, D., Aravinthasamy, P., Roy, P. D., Praveenkumar, R. M., Prasanth, K., Selvapraveen, S., Thowbeekrahman, A., Subramani, T., Srinivasamoorthy, K. Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of south India. <i>Environ Monit Assess.</i> 2020. 192:102	
L1	Wang, Y.,Yu, R.,Zhu, G. Evaluation of Physicochemical Characteristics in Drinking Water Sources Emphasized on Fluoride: A Case Study of Yancheng, China. <i>Int J Environ Res Public Health.</i> 2019. 16:#pages#	One or more exclusion criteria
L1	Maga, K.,Lamba, M Evaluation of respiratory gating of roi definition on the accuracy of suv in f18-FDG pet imaging. <i>International Journal of Radiation Oncology Biology Physics</i> . 2010. 1):S814	One or more exclusion criteria
L1	Ortega-Romero, M. S.,Hernandez Sanchez, A. M.,Medeiros-Domingo, M.,Barbier, O Evaluation of risk factors for renal disease in a pediatric Mexican meztizo population from Apizaco in Tlaxcala Mexico. <i>Toxicology</i> <i>Letters</i> . 2016. 259 (Supplement 1):S242	One or more exclusion criteria
L1	Yur, F.,Mert, N.,Dede, S.,Deger, Y.,Ertekin, A.,Mert, H.,Yasar, S.,Dogan, I.,Isik A Evaluation of serum lipoprotein and tissue antioxidant levels in sheep with fluorosis. <i>Fluoride.</i> 2013. 46:90-96	, One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Magnusson, R.,Rittfeldt, L.,. Evaluation of sorbent materials for the sampling and analysis of phosphine, sulfuryl fluoride and methyl bromide in air. <i>J Chromatogr A.</i> 2015. 1375:17-26	One or more exclusion criteria
L1	Whittaker, P.,Clarke, J. J.,San, R. H.,Begley, T. H.,Dunkel, V. C Evaluation of the butter flavoring chemical diacetyl and a fluorochemical paper additive for mutagenicity and toxicity using the mammalian cell gene mutation assay in L5178Y mouse lymphoma cells. <i>Food Chem Toxicol.</i> 2008. 46:2928-33	One or more exclusion criteria
L1	Iskandarova, S.,Khasanova, M.,Fayzieva, M.,Sattarova, Z.,Mirdadaeva, D Evaluation of the content of microelements in the soil under the conditions of Uzbekistan. <i>International Journal of Pharmaceutical Research</i> . 2020. 12:787- 791	One or more exclusion criteria
L1	Sarkar, M.,Manna, S.,Pramanick, P. P Evaluation of the efficiency of fly ash from thermal power plant in controlling aquatic pollution. <i>Journal of the Indian Chemical Society.</i> 2008. 85:1130-1133	One or more exclusion criteria
L1	Mori, M. M., Airaksinen, A. J., Hirvonen, J. T., Santos, H. A., Caramella, C. M Evaluation of the physicochemical and biopharmaceutical properties of fluoro- indomethacin. <i>Curr Drug Metab.</i> 2013. 14:80-9	One or more exclusion criteria
L1	Willekens, I.,Buls, N.,Lahoutte, T.,Baeyens, L.,Vanhove, C.,Caveliers, V.,Deklerck, R.,Bossuyt, A.,de Mey, J Evaluation of the radiation dose in	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	micro-CT with optimization of the scan protocol. <i>Contrast Media Mol Imaging.</i> 2010. 5:201-7	
L1	Jimenez-Cordova, M. I.,Gonzalez-Horta, C.,Ayllon-Vergara, J. C.,Arreola- Mendoza, L.,Aguilar-Madrid, G.,Villareal-Vega, E. E.,Barrera-Hernandez, A.,Barbier, O. C.,Del Razo, L. M Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride. <i>Environmental</i> <i>Research.</i> 2019. 169:220-228	One or more exclusion criteria
L1	Nelson, E. A., Halling, C. L Evidence for skeletal fluorosis in Illinois: A pathological analysis of individuals from the ray site and discussion of environmental factors affecting community health. <i>American Journal of Physical Anthropology.</i> 2014. 58):193	One or more exclusion criteria
L1	Nelson, E. A.,Halling, C. L.,Buikstra, J. E Evidence of Skeletal Fluorosis at the Ray Site, Illinois, USA: a pathological assessment and discussion of environmental factors. <i>Int J Paleopathol.</i> 2019. 26:48-60	e One or more exclusion criteria
L1	Huber, A. C., Tobias, R., Mosler, H. J Evidence-based tailoring of behavior- change campaigns: increasing fluoride-free water consumption in rural Ethiopia with persuasion. <i>Applied Psychology. Health and Well-being.</i> 2014. 6:96-118	One or more exclusion criteria
L1	Chakraborti, D.,Das, B.,Murrill, M. T Examining India's groundwater quality management. <i>Environmental Science and Technology.</i> 2011. 45:27-33	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
_1	Tomar, A.,Singh, V. P.,Chauhan, D. S.,Mishra, S.,Joshi, D. K.,Kumar, S.,Tripathi, S.,Tomar, S Excessive fluoride exposure delineating changes in different vitamin levels and oxidative burden in school children in the eastern region of Rajasthan, India. <i>Fluoride</i> . 2012. 45 (3 PART 1):206-207	One or more exclusion criteria
_1	Al-Raddadi, R. M.,Bahijri, S. M.,Al-Khateeb, T Excessive fluoride intake is associated with hyperparathyroidism and hypothyroidism in children and adolescent, Jeddah-Saudi Arabia. <i>Archives of Disease in Childhood.</i> 2012. 2):A294	One or more exclusion criteria
∟1	Liu, L. Z., Wang, L. H., Xu, C. B., Yu, G. Q., Fu, S. B., Liu, Y. Q., Shi, Y. X., Song, L., Wu, Y., Yu, J., Gao, Y. H., Wan, G. M., Sun, D. J Experimental study on the 24-hour metabolism of brick-tea fluoride in rats at the altitude of 3 290 meters above sea level. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:135-135	One or more exclusion criteria
_1	Zhou, D.,Chu, W.,Katzenellenbogen, J Exploration of alcohol-enhanced Cu- mediated radiofluorination towards practical labeling. <i>Journal of Nuclear</i> <i>Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging</i> <i>Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria
_1	Mukherjee, I., Singh, U. K., Patra, P. K Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India. <i>Chemosphere.</i> 2019. 233:164-173	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Zhou, D.,Kim, S. H.,Carroll, V.,Dence, C. S.,Mach, R. H.,Katzenellenbogen, J. A Exploring F-18 labeling of diaryiodonium salts: From model reactions to F- 18 radiosynthesis of a peroxisome proliferator-activated receptor-gamma (PPAR- gamma) ligand. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2013. 1):S164	One or more exclusion criteria
L1	Malin, A. J., Till, C Exposure to fluoridated water and attention deficit hyperactivity disorder prevalence among children and adolescents in the United States: an ecological association. <i>Environ Health.</i> 2015. 14:17	One or more exclusion criteria
L1	Susheela, A. K.,Mondal, N. K.,Singh, A. Exposure to fluoride in smelter workers in a primary aluminum industry in India. <i>Int J Occup Environ Med.</i> 2013. 4:61-72	One or more exclusion criteria
L1	Zhang, Y. L., Zhao, Y., Tang, L., Wu, Q. Q., Bai, S. B., Zhong, J. J Expression of minichromosome maintenance 3 from the peripheral blood of fluorosis patients and the liver and renal function. [Chinese]. <i>Chinese Journal of Tissue Engineering Research.</i> 2013. 17:6682-6688	
L1	Claassen, H.,Cellarius, C.,Scholz-Ahrens, K. E.,Schrezenmeir, J.,Gluer, C. C.,Schunke, M.,Kurz, B Extracellular matrix changes in knee joint cartilage following bone-active drug treatment. <i>Cell and Tissue Research.</i> 2006. 324:279-289	One or more exclusion criteria

Bibliography Reason for Exclusion Level L1 Schwartz, G. G.. Eye cancer incidence in U.S. states and access to fluoridated One or more exclusion criteria water. Cancer Epidemiol Biomarkers Prev. 2014. 23:1707-11 L1 Jing, C., Cui, J., Huang, Y., Li, A., Fabrication, characterization, and application One or more exclusion criteria of a composite adsorbent for simultaneous removal of arsenic and fluoride. Acs Applied Materials & Interfaces. 2012. 4:714-20 L1 Li, Z., Guo, H., Qian, H., Hu, Y.. Facile microemulsion route to coat carbonized One or more exclusion criteria glucose on upconversion nanocrystals as high luminescence and biocompatible cell-imaging probes. Nanotechnology. 2010. 21:315105 L1 Hu, Y., Wu, B., Jin, Q., Wang, X., Li, Y., Sun, Y., Huo, J., Zhao, X., Facile synthesis One or more exclusion criteria of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells. Talanta. 2016. 152:504-12 L1 Rocha, R. A., de la Fuente, B., Clemente, M. J., Ruiz, A., Vélez, D., Devesa, V. One or more exclusion criteria Factors affecting the bioaccessibility of fluoride from seafood products. Food Chem Toxicol. 2013. 59:104-10 L1 Slack-Smith, L., Colvin, L., Leonard, H., Kilpatrick, N., Bower, C., Brearley Messer, One or more exclusion criteria L.. Factors associated with dental admissions for children aged under 5 years in Western Australia. Arch Dis Child. 2009. 94:517-23 L1 Burgstahler, A. W.. Failure to diagnose fluoride poisoning in horses caused by One or more exclusion criteria water fluoridation. *Fluoride*. 2006. 39:1-2

Level	Bibliography	Reason for Exclusion
L1	Lech, T Fatal cases of acute suicidal sodium and accidental zinc fluorosilicate poisoning. Review of acute intoxications due to fluoride compounds. <i>Forensic Science International.</i> 2011. 206:e20-e24	One or more exclusion criteria
L1	Ozsoy, G.,Kendirli, T.,Ates, U.,Perk, O.,Azapagasi, E.,Ozcan, S.,Baran, C.,Goktug, A.,Dindar, H Fatal Refractory Ventricular Fibrillation Due to Ingestion of Hydrofluoric Acid. <i>Pediatric Emergency Care.</i> 2019. 35:E201-E202	One or more exclusion criteria
L1	 Chakraborti, D.,Rahman, M. M.,Chatterjee, A.,Das, D.,Das, B.,Nayak, B.,Pal, A.,Chowdhury, U. K.,Ahmed, S.,Biswas, B. K.,Sengupta, M. K.,Lodh, D.,Samanta, G.,Chakraborty, S.,Roy, M. M.,Dutta, R. N.,Saha, K. C.,Mukherjee, S. C.,Pati, S.,Kar, P. B Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio- economic effects and mitigation approaches. <i>J Trace Elem Med Biol.</i> 2016. 38:33-45 	One or more exclusion criteria
L1	Kwee, S. A., Franke, A. A., Custer, L. J., Li, X., Wong, L. L Fatty acid and phospholipid profiling of liver tumor tissue: Correlation with in vivo molecular PET imaging of phosphocholine synthesis. <i>Cancer Research. Conference: 106th Annual Meeting of the American Association for Cancer Research, AACR</i> . 2015. 75:#pages#	One or more exclusion criteria
L1	Kuo, P. H.,Carlson, K. R.,Christensen, I.,Girardi, M.,Heald, P. W FDG- PET/CT for the evaluation of response to therapy of cutaneous T-cell	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	lymphoma to vorinostat (suberoylanilide hydroxamic acid, SAHA) in a phase II trial. <i>Mol Imaging Biol.</i> 2008. 10:306-14	
L1	Riondato, M., Pastorino, S., Giovacchini, G., Duce, V., Ferrando, O., Cazzola, E., Gorgoni, G., Ciarmiello, A Feasibility study for the [¹⁸ F]FET manufacturing with a gallium-68 automated synthesizer in a radiopharmacy without cyclotron facility. <i>Clinical and Translational Imaging.</i> 2019. 7 (Supplement 1):S128	One or more exclusion criteria
L1	Scopelliti, F.,Di Raimondo, P.,Petralia, G.,Benfatto, G.,Pometti, M. A.,Ingargiola, P. D.,Cosentino, S.,Baldari, S.,Mure, G.,Ippolito, M First synthesis of FLT at Cannizzaro Hospital of Catania. <i>Clinical and Translational</i> <i>Imaging.</i> 2015. 1):S126	One or more exclusion criteria
L1	Ammanath, G.,Yeasmin, S.,Srinivasulu, Y.,Vats, M.,Cheema, J. A.,Nabilah, F.,Srivastava, R.,Yildiz, U. H.,Alagappan, P.,Liedberg, B Flow-through colorimetric assay for detection of nucleic acids in plasma. <i>Anal Chim Acta</i> . 2019. 1066:102-111	One or more exclusion criteria
L1	Dias, I. N.,Bassin, J. P.,Dezotti, M.,Vilar, V. J. P Fluorene oxidation by solar- driven photo-Fenton process: toward mild pH conditions. <i>Environ Sci Pollut</i> <i>Res Int.</i> 2018. 25:27808-27818	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Kim, S. Y., Park, J., Koh, M., Park, S. B., Hong, J. I Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells. <i>Chem Commun (Camb).</i> 2009. #volume#:4735-7	One or more exclusion criteria
L1	Jiao, Y.,Zhu, B.,Chen, J.,Duan, X Fluorescent sensing of fluoride in cellular system. <i>Theranostics.</i> 2015. 5:173-87	One or more exclusion criteria
L1	Burgstahler, A. W Fluoridated bottled water. Fluoride. 2006. 39:252-254	One or more exclusion criteria
L1	Hui, J.,Zhang, X.,Zhang, Z.,Wang, S.,Tao, L.,Wei, Y.,Wang, X Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. <i>Nanoscale.</i> 2012. 4:6967-70	One or more exclusion criteria
L1	Perrott, K. W Fluoridation and attention deficit hyperactivity disorder - a critique of Malin and Till (2015). <i>Br Dent J.</i> 2018. 223:819-822	One or more exclusion criteria
L1	Crnosija, N., Choi, M., Meliker, J. R Fluoridation and county-level secondary bone cancer among cancer patients 18 years or older in New York State. <i>Environ Geochem Health.</i> 2019. 41:761-768	One or more exclusion criteria
L1	Foley, M Fluoridation and hypothyroidisma commentary on Peckham et al. <i>Br Dent J.</i> 2015. 219:429-31	One or more exclusion criteria
L1	Schiffl, H Fluoridation of drinking water and chronic kidney disease: absence of evidence is not evidence of absence. <i>Nephrol Dial Transplant.</i> 2008. 23:411	

Level	Bibliography	Reason for Exclusion
L1	Spittle, B Fluoridation promotion by scientists in 2006: An example of "tardive photopsia". <i>Fluoride.</i> 2006. 39:157-162	One or more exclusion criteria
L1	Berger, T.,Mathurin, F. A.,Drake, H.,Astrom, M. E Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks. <i>Science of the Total Environment.</i> 2016. 569-570:948-960	One or more exclusion criteria
L1	Gupta, S.,Banerjee, S Fluoride accumulation in crops and vegetables and dietary intake in a fluoride-endemic area of west bengal. <i>Fluoride.</i> 2011. 44:153-157	One or more exclusion criteria
L1	Yun, Z. J., Chen, P. Z., Bian, J. C., Wang, Y. T., Ma, A. H Fluoride analysis of drinking water in endemic fluorosis areas in Shandong province from 2005 to 2007. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:540-543	One or more exclusion criteria
L1	Brahman, K. D.,Kazi, T. G.,Baig, J. A.,Afridi, H. I.,Khan, A.,Arain, S. S.,Arain, M. B Fluoride and arsenic exposure through water and grain crops in nagarparkar, pakistan. <i>Chemosphere.</i> 2014. 100:182-189	One or more exclusion criteria
L1	Borman, B.,Fyfe, C Fluoride and children's IQ. NZ Med J. 2013. 126:111-2	One or more exclusion criteria
L1	Lewis, C. W Fluoride and dental caries prevention in children. <i>Pediatrics in Review.</i> 2014. 35:3-15	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Kotoky, P.,Barooah, P. K.,Baruah, M. K.,Goswami, A.,Borah, G. C.,Gogoi, H. M.,Ahmed, F.,Gogoi, A.,Paul, A. B Fluoride and endemic fluorosis in the Karbianglong district, Assam, India. <i>Fluoride</i> . 2008. 41:72-75	One or more exclusion criteria
L1	Sharma, S.,Ramani, J.,Bhalodia, J.,Thakkar, K Fluoride and fluorosis in context to Gujarat state of India: A review. <i>Research Journal of Pharmaceutical, Biological and Chemical Sciences.</i> 2012. 3:85-94	One or more exclusion criteria
L1	Hussain, J., Hussain, I., Sharma, K. C Fluoride and health hazards: community perception in a fluorotic area of central Rajasthan (India): an arid environment. <i>Environ Monit Assess.</i> 2010. 162:1-14	One or more exclusion criteria
L1	Chachra, D., Vieira, A. P., Grynpas, M. D Fluoride and mineralized tissues. <i>Cri</i> <i>Rev Biomed Eng.</i> 2008. 36:183-223	t One or more exclusion criteria
L1	Vitoria Minana, I Fluoride and prevention of dental caries in childhood. Update (II). [Spanish]. <i>Acta Pediatrica Espanola.</i> 2010. 68:185-194	e One or more exclusion criteria
L1	Vitoria Minana, I Fluoride and the prevention of dental caries in childhood. Update (I). [Spanish]. <i>Acta Pediatrica Espanola.</i> 2010. 68:129-134	One or more exclusion criteria
L1	Shaik, N., Shanbhog, R., Nandlal, B., Tippeswamy, H. M Fluoride and Thyroid Function in Children Resident of Naturally Fluoridated Areas Consuming Different Levels of Fluoride in Drinking Water: An Observational Study. <i>Contemporary Clinical Dentistry.</i> 2019. 10:24-30	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Kundu, M. C., Mandal, B Fluoride concentration in groundwater in the north 24-paraganas district of West Bengal, India. <i>Fluoride.</i> 2010. 43:160-164	One or more exclusion criteria
L1	Smyk, M.,Opejda, A.,Fedyna, A.,Rybicka, M.,Chlubek, D., Fluoride concentration in infants' and children's drinks in Poland. <i>Fluoride.</i> 2012. 45 (3 PART 1):199-200	One or more exclusion criteria
L1	Amouei, A. I., Mahvi, A. H., Mohammadi, A. A., Asgharnia, H. A., Fallah, S. H., Khafajeh, A. A Fluoride concentration in potable groundwater in rural areas of Khaf city, Razavi Khorasan Province, northeastern Iran. <i>International Journal of Occupational & Environmental Medicine.</i> 2012. 3:201-3	
L1	Mohammadi, A. A., Yousefi, M., Mahvi, A. H Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature. <i>Data in Brief.</i> 2017. 13:312-315	One or more exclusion criteria
L1	Das, S.,de Oliveira, L. M.,da Silva, E.,Liu, Y.,Ma, L. Q Fluoride concentrations in traditional and herbal teas: Health risk assessment. <i>Environ Pollut.</i> 2017. 231:779-784	s One or more exclusion criteria
L1	Burgstahler, A. W., Spittle, B., Fluoride Conferences in Toronto: XVIIITH Conference of the ISFR. <i>Fluoride</i> . 2008. 41:173-175	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Shanthakumari, D., Srinivasalu, S., Subramanian, S Fluoride contaminated water and its implications on human health in Vellore District, Tamil Nadu, India. <i>Research Journal of Environmental Toxicology</i> . 2010. 4:92-102	One or more exclusion criteria
L1	Khandare, H. W Fluoride contaminated water and its implications on human health-a review. <i>International Journal of ChemTech Research.</i> 2013. 5:502-51	
L1	Pandey, J., Pandey, U Fluoride contamination and fluorosis in rural community in the vicinity of a phosphate fertilizer factory in India. <i>Bulletin of Environmenta</i> <i>Contamination and Toxicology.</i> 2011. 87:245-249	
L1	Hussain, I., Arif, M., Hussain, J Fluoride contamination in drinking water in rura habitations of Central Rajasthan, India. <i>Environmental Monitoring</i> & <i>Assessment.</i> 2012. 184:5151-8	I One or more exclusion criteria
L1	Suthar, S.,Garg, V. K.,Jangir, S.,Kaur, S.,Goswami, N.,Singh, S Fluoride contamination in drinking water in rural habitations of northern Rajasthan, India. <i>Environmental Monitoring & Assessment.</i> 2008. 145:1-6	One or more exclusion criteria
L1	Hanse, A., Chabukdhara, M., Gohain Baruah, S., Boruah, H., Gupta, S. K Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India. <i>Environ Monit Assess.</i> 2019. 191:782	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Brindha, K.,Rajesh, R.,Murugan, R.,Elango, L. Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. <i>Environmental Monitoring & Assessment.</i> 2011. 172:481-92	One or more exclusion criteria
L1	Emenike, C. P., Tenebe, I. T., Jarvis, P Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk. <i>Ecotoxicol Environ Saf.</i> 2018. 156:391-402	One or more exclusion criteria
L1	Datta, A. S., Chakrabortty, A., De Dalal, S. S., Lahiri, S. C Fluoride contamination of underground water in West Bengal, India. <i>Fluoride.</i> 2014. 47:241-248	One or more exclusion criteria
L1	Sabal, D.,Khan, T. I Fluoride contamination status of groundwater in Phulera tehsil of Jaipur district, Rajasthan. <i>Journal of Environmental Biology.</i> 2008. 29:871-6	One or more exclusion criteria
L1	Yadav, K. K.,Kumar, S.,Pham, Q. B.,Gupta, N.,Rezania, S.,Kamyab, H.,Yadav, S.,Vymazal, J.,Kumar, V.,Tri, D. Q.,Talaiekhozani, A.,Prasad, S.,Reece, L. M.,Singh, N.,Maurya, P. K.,Cho, J Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. <i>Ecotoxicol Environ Saf.</i> 2019. 182:109362	, One or more exclusion criteria
L1	Telesinski, A.,nioszek, M. A.,Grzeszczuk, M.,Jadczak, D Fluoride content and antioxidant activity of infusions of selected herbs from the lamiaceae family. <i>Fluoride</i> . 2012. 45 (3 PART 1):205-206	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Somasundaram, S.,Ravi, K.,Rajapandian, K.,Gurunathan, D Fluoride Content of Bottled Drinking Water in Chennai, Tamilnadu. <i>Journal of Clinical and</i> <i>Diagnostic Research JCDR.</i> 2015. 9:ZC32-4	t One or more exclusion criteria
L1	Ruxton, C. H. S.,Bond, T. J Fluoride content of UK retail tea: Comparisons between tea bags and infusions. <i>Proceedings of the Nutrition Society.</i> <i>Conference: Summer Meeting Carbohydrates in Health: Friends or Foes.</i> 2014 74:#pages#	One or more exclusion criteria
L1	Steinmetz, J. E. A., Martinez-Mier, E. A., Jones, J. E., Sanders, B. J., Weddell, J. A., Soto-Rojas, A. E., Tomlin, A. M., Eckert, G. J Fluoride content of water used to reconstitute infant formula. <i>Clinical Pediatrics.</i> 2011. 50:100-105	
L1	Zhang, X.,Gao, X.,Li, C.,Luo, X.,Wang, Y Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China. <i>Scientific reports.</i> 2019. 9:14488	One or more exclusion criteria
L1	Singh, G.,Kumari, B.,Sinam, G.,Kriti,,Kumar, N.,Mallick, S Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective- a review. <i>Environ Pollut.</i> 2018. 239:95- 108	n One or more exclusion criteria
L1	Mondal, D.,Gupta, S.,Reddy, D. V.,Dutta, G Fluoride enrichment in an alluvial aquifer with its subsequent effect on human health in Birbhum district, West Bengal, India. <i>Chemosphere</i> . 2017. 168:817-824	One or more exclusion criteria
1207		

Level	Bibliography	Reason for Exclusion
L1	Chandio, T. A., Khan, M. N., Sarwar, A Fluoride estimation and its correlation with other physicochemical parameters in drinking water of some areas of Balochistan, Pakistan. <i>Environmental Monitoring & Assessment.</i> 2015. 187:537	One or more exclusion criteria
L1	Barberio, A. M., Hosein, F. S., Quiñonez, C., McLaren, L Fluoride exposure and indicators of thyroid functioning in the North American population: implications for community water fluoridation. <i>J Epidemiol Community Health.</i> 2017. 71:1019-1025	One or more exclusion criteria
L1	Keshavarz, S., Ebrahimi, A., Nikaeen, M Fluoride exposure and its health risk assessment in drinking water and staple food in the population of Dayyer, Iran, in 2013. <i>J Educ Health Promot.</i> 2015. 4:72	
L1	Malin, A. J.,Lesseur, C.,Busgang, S. A.,Curtin, P.,Wright, R. O.,Sanders, A. P., Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013-2016. <i>Environment International.</i> 2019. 132 (no pagination):#pages#	
L1	Wondimkun, S. A., Berglund, M., Mekonnen, Y., Petros, B Fluoride exposure and risk of skeletal fluorosis among an adult population living in an endemic fluoride area of Ethiopia. <i>Fluoride</i> . 2012. 45 (3 PART 1):209-210	One or more exclusion criteria
L1	Malin, A. J., Riddell, J., McCague, H., Till, C Fluoride exposure and thyroid function among adults living in Canada: Effect modification by iodine status. <i>Environ Int.</i> 2018. 121:667-674	One or more exclusion criteria

Bibliography	Reason for Exclusion
Archer, N., Villanacci, J., Napier, T Fluoride exposure in drinking water and childhood and adolescent osteosarcoma in texas. <i>American Journal of Epidemiology.</i> 2013. 11):S43	One or more exclusion criteria
Archer, N. P., Napier, T. S., Villanacci, J. F Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas. <i>Cancer Causes Control.</i> 2016. 27:863-8	g One or more exclusion criteria
Waugh, D. T Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. <i>Int J Environ Res Public Health.</i> 2019. 16:#pages#	One or more exclusion criteria
Dharmaratne, R. W Fluoride in drinking water and diet: the causative factor of chronic kidney diseases in the North Central Province of Sri Lanka. <i>Environ Health Prev Med.</i> 2015. 20:237-42	f One or more exclusion criteria
Meenakshi,,Maheshwari, R. C Fluoride in drinking water and its removal. Journal of Hazardous Materials. 2006. 137:456-463	One or more exclusion criteria
Levy, M.,Leclerc, B. S Fluoride in drinking water and osteosarcoma incidence rates in the continental United States among children and adolescents. <i>Cancel</i> <i>Epidemiol.</i> 2012. 36:e83-8	
	 Archer, N.,Villanacci, J.,Napier, T Fluoride exposure in drinking water and childhood and adolescent osteosarcoma in texas. <i>American Journal of Epidemiology</i>. 2013. 11):S43 Archer, N. P.,Napier, T. S.,Villanacci, J. F Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas. <i>Cancer Causes Control</i>. 2016. 27:863-8 Waugh, D. T Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. <i>Int J Environ Res Public Health</i>. 2019. 16:#pages# Dharmaratne, R. W Fluoride in drinking water and diet: the causative factor of chronic kidney diseases in the North Central Province of Sri Lanka. <i>Environ Health Prev Med</i>. 2015. 20:237-42 Meenakshi,,Maheshwari, R. C Fluoride in drinking water and its removal. <i>Journal of Hazardous Materials</i>. 2006. 137:456-463 Levy, M.,Leclerc, B. S Fluoride in drinking water and osteosarcoma incidence rates in the continental United States among children and adolescents. <i>Cancer</i>

Level	Bibliography	Reason for Exclusion
L1	Ayoob, S., Gupta, A. K Fluoride in drinking water: A review on the status and stress effects. <i>Critical Reviews in Environmental Science and Technology.</i> 2006. 36:433-487	One or more exclusion criteria
L1	Satpathy, K. K., Padhi, R. K., Sowmya, M., Samantara, M. K Fluoride in ground water: A comment on "fluorine contamination in ground water: A major challenge" published in Environmental Monitoring and Assessment, (2011) 173, 955-968. <i>Environmental Monitoring and Assessment.</i> 2014. 186:2159-2163	One or more exclusion criteria
L1	Jha, S. K., Singh, R. K., Damodaran, T., Mishra, V. K., Sharma, D. K., Rai, D Fluoride in groundwater: Toxicological exposure and remedies. <i>Journal of</i> <i>Toxicology and Environmental Health - Part B: Critical Reviews.</i> 2013. 16:52- 66	One or more exclusion criteria
L1	Keramati, H., Miri, A., Baghaei, M., Rahimizadeh, A., Ghorbani, R., Fakhri, Y., Bay, A., Moradi, M., Bahmani, Z., Ghaderpoori, M., Mousavi Khaneghah, A Fluoride in Iranian Drinking Water Resources: a Systematic Review, Meta-analysis and Non-carcinogenic Risk Assessment. <i>Biol Trace Elem Res.</i> 2019. 188:261-273	, One or more exclusion criteria
L1	Palczewska-Komsa, M.,Kalisinska, E.,Kosik-Bogacka, D.,Lanocha- Arendarczyk, N.,Budis, H.,Sokolowski, S.,Baranowska-Bosiacka, I.,Gutowska, I.,Chlubek, D Fluoride in the compact bone after femoral head arthroplasty in patients from North-Western Poland. <i>Fluoride.</i> 2015. 48:93-104	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jha, S. K., Mishra, V. K., Sharma, D. K., Damodaran, T Fluoride in the environment and its metabolism in humans. <i>Reviews of Environmental Contamination & Toxicology</i> . 2011. 211:121-42	One or more exclusion criteria
L1	Arveti, N.,Sarma, M. R.,Aitkenhead-Peterson, J. A.,Sunil, K Fluoride incidence in groundwater: a case study from Talupula, Andhra Pradesh, India. <i>Environmental Monitoring & Assessment.</i> 2011. 172:427-43	One or more exclusion criteria
L1	Chauhan, D. S., Mishra, S., Tripathi, S Fluoride induced alteration in hypothalamic testicular axis hormones and deterioration in antioxidants status in fluorotic patients. <i>Indian Journal of Clinical Biochemistry</i> . 2017. 32 (1 Supplement 1):S236	One or more exclusion criteria
L1	Shaik, N.,Shanbhog, R.,Nandlal, B.,Tippeswamy, H. M Fluoride ingestion and thyroid function in children resident of naturally fluoridated areas - An observational study. <i>Journal of Clinical & Experimental Dentistry.</i> 2019. 11:e883-e889	One or more exclusion criteria
L1	Oweis, R. R.,Levy, S. M.,Eichenberger-Gilmore, J. M.,Warren, J. J.,Burns, T. L.,Janz, K. F.,Torner, J. C.,Saha, P. K.,Letuchy, E Fluoride intake and cortical and trabecular bone characteristics in adolescents at age 17: A prospective cohort study. <i>Community Dent Oral Epidemiol.</i> 2018. 46:527-534	
L1	Kharb, S.,Sandhu, R.,Kundu, Z. S. Fluoride levels and osteosarcoma. <i>South</i> Asian J Cancer. 2012. 1:76-7	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Whyte, M. P Fluoride levels in bottled teas [15]. <i>American Journal of Medicine</i> . 2006. 119:189-190	One or more exclusion criteria
L1	Peckham, S.,Lowery, D.,Spencer, S Fluoride levels in drinking water and hypothyroidism: Response to Grimes and Newton et al. <i>J Epidemiol Community Health.</i> 2017. 71:313-314	One or more exclusion criteria
L1	Ravichandran, B.,Bhattacharya, S. K.,Mukherjee, A. K.,Gangopadhyay, P. K.,Roychowdhury, A.,Saiyed, H. N Fluoride levels in drinking water and other surface water of an industrial area belt of Orissa State in India. <i>International Journal of Environment and Pollution.</i> 2012. 49:55-61	One or more exclusion criteria
L1	Rubio, C.,Rodriguez, I.,Jaudenes, J. R.,Gutierrez, A. J.,Paz, S.,Burgos, A.,Hardisson, A.,Revert, C Fluoride levels in supply water from a volcanic area in the Macaronesia region. <i>Environmental Science & Pollution Research.</i> 2020. 22:22	One or more exclusion criteria
L1	Cao, J.,Zhao, Y.,Li, Y.,Deng, H. J.,Yi, J.,Liu, J. W Fluoride levels in various black tea commodities: Measurement and safety evaluation. <i>Food and Chemical Toxicology.</i> 2006. 44:1131-1137	One or more exclusion criteria
L1	Lacson, C. F. Z.,Lu, M. C.,Huang, Y. H Fluoride network and circular economy as potential model for sustainable development-A review. <i>Chemosphere.</i> 2020. 239 (no pagination):#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jha, S. K.,Nayak, A. K.,Sharma, Y. K Fluoride occurrence and assessment of exposure dose of fluoride in shallow aquifers of Makur, Unnao district Uttar Pradesh, India. <i>Environmental Monitoring and Assessment.</i> 2009. 156:561-566	
L1	Jia, H.,Qian, H.,Qu, W.,Zheng, L.,Feng, W.,Ren, W Fluoride Occurrence and Human Health Risk in Drinking Water Wells from Southern Edge of Chinese Loess Plateau. <i>Int J Environ Res Public Health.</i> 2019. 16:#pages#	One or more exclusion criteria
L1	 Rashid, A.,Guan, D. X.,Farooqi, A.,Khan, S.,Zahir, S.,Jehan, S.,Khattak, S. A.,Khan, M. S.,Khan, R Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. <i>Sci Total Environ.</i> 2018. 635:203-215 	One or more exclusion criteria
L1	De Oliveira, F. A., Pereira, A. A., Da Silva Ventura, T., Buzalaf, M., De Oliveira, R. C., Peres-Buzalaf, C Fluoride regulates osteoclastogenesis in a strain- specific manner. <i>Journal of Bone and Mineral Research. Conference.</i> 2016. 31:#pages#	One or more exclusion criteria
L1	Seraoui, H., Fluoride remedy or poison?. <i>Fundamental and Clinical Pharmacology</i> . 2014. 1):112	One or more exclusion criteria
L1	Bazrafshan, E.,Mahvi, A. H Fluoride removal by an electro-coagulation using iron and aluminum electrodes. <i>Fluoride.</i> 2012. 45 (3 PART 1):154-155	One or more exclusion criteria
L1	Choong, C. E., Wong, K. T., Jang, S. B., Nah, I. W., Choi, J., Ibrahim, S., Yoon, Y., Jang, M Fluoride removal by palm shell waste based powdered activated	One or more exclusion criteria
1213		

Level	Bibliography	Reason for Exclusion
	carbon vs. functionalized carbon with magnesium silicate: Implications for their application in water treatment. <i>Chemosphere</i> . 2020. 239 (no pagination):#pages#	
L1	Mena, V. F.,Betancor-Abreu, A.,Gonzalez, S.,Delgado, S.,Souto, R. M.,Santana, J. J Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations. <i>Journal of</i> <i>Environmental Management.</i> 2019. 246:472-483	One or more exclusion criteria
L1	Ashrafi, S. D.,Mahvi, A. H.,Farrokhi, M.,Asgari, G.,Jafari, A.,Rezaee, R.,Hoseini, M. H Fluoride removal using agricultural waste rice husk as a low- cost adsorbent. <i>Fluoride.</i> 2012. 45 (3 PART 1):151-152	One or more exclusion criteria
L1	Ni, J.,Zhong, Z.,Zhang, W.,Liu, B.,Shu, R.,Li, Y Fluoride resistance in fibroblasts is conferred via reduced susceptibility to oxidative stress and apoptosis. <i>FEBS Open Bio.</i> . 2020. #volume#:#pages#	One or more exclusion criteria
L1	Garg, V. K., Singh, B. Fluoride signatures in groundwater and dental fluorosis in permanent teeth of school children in rural areas of Haryana state, india. <i>International Journal of Occupational and Environmental Medicine</i> . 2013. 4:107-108	One or more exclusion criteria
L1	Abell, S Fluoride supplementation. Clinical Pediatrics. 2008. 47:91-92	One or more exclusion criteria
L1	Takahashi, R.,Ota, E.,Hoshi, K.,Naito, T.,Toyoshima, Y.,Yuasa, H.,Mori, R.,Nango, E Fluoride supplementation (with tablets, drops, lozenges or	One or more exclusion criteria
1214		

Level	Bibliography	Reason for Exclusion
	chewing gum) in pregnant women for preventing dental caries in the primary teeth of their children. <i>Cochrane Database of Systematic Reviews</i> . 2017. 2017 (10) (no pagination):#pages#	
L1	Flood, S., Asplund, K., Hoffman, B., Nye, A., Zuckerman, K. E Fluoride Supplementation Adherence and Barriers in a Community Without Water Fluoridation. <i>Academic Pediatrics</i> . 2017. 17:316-322	One or more exclusion criteria
L1	Choubisa, S. L Fluoride toxicosis in immature herbivorous domestic animals living in low fluoride water endemic areas of Rajasthan, India: An observationa survey. <i>Fluoride</i> . 2013. 46:19-24	
L1	Clark, M. B., Slayton, R. L Fluoride use in caries prevention in the primary car setting. <i>Pediatrics.</i> 2014. 134:626-633	e One or more exclusion criteria
L1	Dutta, J Fluoride, arsenic and other heavy metals contamination of drinking water in the tea garden belt of sonitpur district, Assam, India. <i>International Journal of ChemTech Research.</i> 2013. 5:2614-2622	One or more exclusion criteria
L1	Spittle, B Fluoride, IQ, emotion, and children's school performance. <i>Fluoride.</i> 2018. 51:98-101	One or more exclusion criteria
L1	Quadri, J. A.,Sarwar, S.,Sinha, A.,Kalaivani, M.,Dinda, A. K.,Bagga, A.,Roy, T. S.,Das, T. K.,Shariff, A Fluoride-associated ultrastructural changes and	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	apoptosis in human renal tubule: a pilot study. <i>Hum Exp Toxicol.</i> 2018. 37:1199-1206	
L1	Iafisco, M.,Degli Esposti, L.,Ramirez-Rodriguez, G. B.,Carella, F.,Gomez- Morales, J.,Ionescu, A. C.,Brambilla, E.,Tampieri, A.,Delgado-Lopez, J. M Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. <i>Scientific Reports</i> . 2018. 8:17016	One or more exclusion criteria
L1	Spittle, B Fluoride-induced developmental disorders and iodine deficiency disorders as examples developmental disorders due to disturbed thyroid hormone metabolism. <i>Fluoride</i> . 2018. 51:307-318	One or more exclusion criteria
L1	Ramirez, D. I., Vargas-Sierra, O., Flores-Mendez, M. A., Hernandez-Kelly, L. C., Del Razo, L. M., Ortega, A Fluoride-triggered protein synthesis decrease in cerebellar Bergmann glia cells. <i>Journal of Neurochemistry.</i> 2013. 1):117	One or more exclusion criteria
L1	Chuah, C. J., Lye, H. R., Ziegler, A. D., Wood, S. H., Kongpun, C., Rajchagool, S., Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand. <i>Sci Total Environ.</i> 2016. 545-546:266-79	One or more exclusion criteria
L1	Horst, J. A., Tanzer, J. M., Milgrom, P. M Fluorides and Other Preventive Strategies for Tooth Decay. <i>Dental Clinics of North America</i> . 2018. 62:207-234	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Shailaja, K., Johnson, M. E. C Fluorides in groundwater and its impact on health. <i>Journal of Environmental Biology</i> . 2007. 28:331-332	One or more exclusion criteria
L1	Molchanov, A.,Gust, R Fluorinated [1,2-diarylethylenediamine]platinum(II) complexes: differences between in vivo and in vitro cytotoxicity. <i>Journal of Cancer Research and Clinical Oncology.</i> 2012. 1):105-106	One or more exclusion criteria
L1	Hequet, E., Henoumont, C., Muller, R. N., Laurent, S Fluorinated MRI contrast agents and their versatile applications in the biomedical field. <i>Future Med Chem.</i> 2019. 11:1157-1175	One or more exclusion criteria
L1	Pan, M.,Rosenfeld, L.,Kim, M.,Xu, M.,Lin, E.,Derda, R.,Tang, S. K Fluorinated pickering emulsions impede interfacial transport and form rigid interface for the growth of anchorage-dependent cells. <i>ACS Appl Mater Interfaces</i> . 2014. 6:21446-53	
L1	Fedorova, O.,Orlovskaya, V.,Stepanova, M.,Krasikova, R Fluorination efficiency and enantiomeric purity in the synthesis of O-(2- [¹⁸ F]fluoroethyl)-L-tyrosine: the role of the solvent and PTC catalyst. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S498	One or more exclusion criteria
L1	Whittier, K.,Martin, M.,O'Dorisio, M. S.,Tewson, T Fluorination of GDC-0449 as a PET tracer in medulloblastoma. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S149	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Pucelik, B.,Gürol, I.,Ahsen, V.,Dumoulin, F.,D. Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. <i>Eur J Med Chem.</i> 2016. 124:284-298	One or more exclusion criteria
L1	Hong, M.,Zhang, B.,Zhang, X. I.,Zhao, Y. S Fluorine distribution in aquatic environment and its health effect in the Western Region of the Songnen Plain, Northeast China. <i>Environmental Monitoring and Assessment.</i> 2007. 133:379- 386	One or more exclusion criteria
L1	Zhang, B.,Hong, M.,Zhang, B.,Zhang, X. L.,Zhao, Y. S Fluorine distribution in aquatic environment and its health effect in the Western Region of the Songnen Plain, Northeast China. <i>Environmental Monitoring & Assessment.</i> 2007. 133:379-86	One or more exclusion criteria
L1	Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. Y., Kwon, J. S., Kim, K., Koh, Y. K Fluorine geochemistry in bedrock groundwater of South Korea. <i>Science of the Total Environment.</i> 2007. 385:272-283	One or more exclusion criteria
L1	De Rita, D., Cremisini, C., Cinnirella, A., Spaziani, F Fluorine in the rocks and sediments of volcanic areas in central Italy: Total content, enrichment and leaching processes and a hypothesis on the vulnerability of the related aquifers. <i>Environmental Monitoring and Assessment.</i> 2012. 184:5781-5796	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Schieferstein, H.,Muller, C.,Ross, T. L. Fluorine-18 click-labeling and evaluation of a folic acid derivative with enhanced polarity. <i>NuklearMedizin.</i> 2012. 51 (2):A29	One or more exclusion criteria
L1	Kuhnast, B.,Boisgard, R.,Hinnen, F.,Hecht, M.,Dinklerborg, L.,Friebe, M.,Tavitian, B.,Dolle, F Fluorine-18 labeling and evaluation in rats and tumor- bearing mice of the Tenascin-C-binding aptamer TTA-01 using [18f]FPyME. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2009. 1):S41	One or more exclusion criteria
L1	Kuhnast, B., Maisonial, A., Hinnen, F., Boisgard, R., Chezal, J., Moins, N., Madelmont, J., Tavitian, B., Dolle, F Fluorine-18 labeling of a new melanin- targeting tracer for melanoma imaging with PET. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2009. 1):S131	One or more exclusion criteria
L1	Bertrand, K., Francoise, H., Raphael, B., Peter, N., Bertrand, T., Frederic, D Fluorine-18 labeling of a novel series of chimeric, mdm2 oncogene-targeting, peptide-pna oligomers using [¹⁸ F]FPyME. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2011. 1):S6	One or more exclusion criteria
L1	Dolle, F.,Hinnen, F.,Charton, Y.,Kuhnast, B.,Saba, W.,Schollhorn-Peyronneau, M.,Valette, H.,Goldstein, S.,Deverre, J.,Lestage, P.,Bottlaender, M Fluorine- 18 labeling of S43473 for imaging nicotinic acetylcholine receptors with PET. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2009. 1):S362	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Surdock, C. P.,Potter, P. M.,Danks, M. K.,Snyder, S. E Fluorine-18 labeling of substituted benzils for imaging carboxylesterase. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2009. 1):S170	One or more exclusion criteria
L1	Li, Z.,Wang, D.,Xu, M.,Wang, J.,Hu, X.,Anwar, S.,Tedesco, A. C.,Morais, P. C.,Bi, H Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy. <i>J Mater Chem B.</i> 2020. #volume#:#pages#	One or more exclusion criteria
L1	Liu, G.,Li, X.,Xiong, S.,Li, L.,Chu, P. K.,Yeung, K. W. K.,Wu, S.,Xu, Z Fluorine-containing pH-responsive core/shell microgel particles: preparation, characterization, and their applications in controlled drug release. <i>Colloid and</i> <i>Polymer Science.</i> 2011. #volume#:1-9	One or more exclusion criteria
L1	 Paiuk, O. L., Mitina, N. Y., Myagkota, O. S., Volianiuk, K. A., Musat, N., Stryganyuk, G. Z., Reshetnyak, O. V., Kinash, N. I., Hevus, O. I., Shermolovich, Y. G., Zaichenko, A. S., Fluorine-containing polyamphiphiles constructed from synthetic and biopolymer blocks. <i>Biopolymers and Cell.</i> 2018. 34:207-217 	One or more exclusion criteria
L1	Boxi, S. S., Paria, S Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles. <i>Dalton Trans.</i> 2016. 45:811-9	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Mandracchia, D.,Piccionello, A. P.,Pitarresi, G.,Pace, A.,Buscemi, S.,Giammona, G., Fluoropolymer based on a polyaspartamide containing 1,2,4-oxadiazole units: A potential artificial oxygen (O <inf>2</inf>) carrier. <i>Macromolecular Bioscience</i> . 2007. 7:836-845	One or more exclusion criteria
L1	Saeed, M.,Malik, R. N.,Kamal, A Fluorosis and cognitive development among children (6-14 years of age) in the endemic areas of the world: a review and critical analysis. <i>Environ Sci Pollut Res Int.</i> 2020. 27:2566-2579	One or more exclusion criteria
L1	Molina-Frechero, N.,Pierdant-Rodriguez, A. I.,Oropeza-Oropeza, A.,Bologna- Molina, R Fluorosis and dental caries: An assessment of risk factors in Mexican children. <i>Revista de Investigacion Clinica.</i> 2012. 64:67-73	One or more exclusion criteria
L1	 Shaw, S. D.,Bishop, P. J.,Harvey, C.,Berger, L.,Skerratt, L. F.,Callon, K.,Watson, M.,Potter, J.,Jakob-Hoff, R.,Goold, M.,Kunzmann, N.,West, P.,Speare, R Fluorosis as a probable factor in metabolic bone disease in captive New Zealand native frogs (Leiopelma species). <i>J Zoo Wildl Med.</i> 2012. 43:549-65 	One or more exclusion criteria
L1	Wermers, R. A.,Cooper, K.,Whitford, G. M.,Razonable, R. R.,Deziel, P. J.,Moyer, T Fluorosis associated with chronic voriconazole therapy. <i>Journal of Bone and Mineral Research.</i> 2010. 1):S504	One or more exclusion criteria
L1	Spittle, B., Fluorosis in frogs: A red flag from New Zealand. <i>Fluoride</i> . 2012. 45:231-233	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Choubisa, S. L., Choubisa, L., Sompura, K., Choubisa, D., Fluorosis in subjects belonging to different ethnic groups of Rajasthan, India. <i>Journal of Communicable Diseases</i> . 2007. 39:171-7	One or more exclusion criteria
L1	Kurtdede, E., Pekcan, M., Karagul, H Fluorosis problem in Turkey and biochemical interaction of fluorine. [Turkish]. <i>Ataturk Universitesi Veteriner Bilimleri Dergisi.</i> 2017. 12:320-326	One or more exclusion criteria
L1	Kosjek, T.,Perko, S.,Žigon, D.,Heath, E Fluorouracil in the environment: analysis, occurrence, degradation and transformation. <i>J Chromatogr A.</i> 2013. 1290:62-72	One or more exclusion criteria
L1	Misawa, M.,Watanabe, A.,Fujita, A.,Sakai, H.,Kamei, J.,Chiba, Y Focused Conference Group: P09 - Nflammation and immunopharmacology: New tools for old diseases aqueous cigarette tar extract causes marked bronchial smooth muscle hyperresponsiveness in rats. <i>Basic and Clinical Pharmacology and</i> <i>Toxicology</i> . 2010. 1):460	One or more exclusion criteria
L1	Choubisa, S. L., Mishra, G. V., Sheikh, Z., Bhardwaj, B., Mali, P., Jaroli, V. J Food, fluoride, and fluorosis in domestic ruminants in the dungarpur district of Rajasthan, India. <i>Fluoride.</i> 2011. 44:70-76	One or more exclusion criteria
L1	Shan, Z.,Tan, Y.,Qin, L.,Li, G.,Pan, X.,Wang, Z.,Yu, X.,Wang, Q.,Wu, C Formulation and evaluation of novel reverse microemulsions containing salmor calcitonin in hydrofluoroalkane propellants. <i>Int J Pharm.</i> 2014. 466:390-9	One or more exclusion criteria
1222		

Level	Bibliography	Reason for Exclusion
L1	Soh, J., Chueng, A., Adio, A., Cooper, A. J., Birch, B. R., Lwaleed, B. A Fourier transform infrared spectroscopy imaging of live epithelial cancer cells under non-aqueous media. <i>J Clin Pathol.</i> 2013. 66:312-8	One or more exclusion criteria
L1	Kurtdede, E., Pekcan, M., Karagul, H Free radicals, reactive oxygen species and relationship with oxidative stress. [Turkish]. <i>Ataturk Universitesi Veteriner</i> <i>Bilimleri Dergisi.</i> 2018. 13:373-379	One or more exclusion criteria
L1	Yang, Y.,Zhao, Q.,Liu, Y.,Liu, X.,Chu, Y.,Yan, H.,Fan, Y.,Huo, S.,Wang, L.,Lou Q.,Guo, N.,Sun, D.,Gao, Y FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China. <i>Arch Toxicol.</i> 2018. 92:2217-2225	u, One or more exclusion criteria
L1	Otabashi, M., Vergote, T., Desfours, C Fully automated 18F-FAZA production on AllInOne (Trasis) at commercial scale. <i>Journal of Nuclear Medicine.</i> <i>Conference: Society of Nuclear Medicine and Molecular Imaging Annual</i> <i>Meeting, SNMMI.</i> 2017. 58:#pages#	One or more exclusion criteria
L1	Vergote, T.,Otabashi, M.,Vriamont, C.,Desfours, C.,Morelle, J.,Philippart, G., Fully automated 18F-FAZA production on AllInOne (Trasis) at commercial scale. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2017. 44 (2 Supplement 1):S518-S519	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Devalankar, D.,McConathy, J Fully automated radiosyntheses of the ¹⁸ F-labeled amino acids MeFAMP and AFETP for oncologic imaging. <i>Journal of Nuclear Medicine. Conference.</i> 2019. 60:#pages#	One or more exclusion criteria
L1	Toyohara, J.,Furumoto, S.,Tago, T Fully automated radiosynthesis of [¹⁸ F]THK-5351 for clinical use. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S447	One or more exclusion criteria
L1	Nandy, S. K.,Rajan, R. M Fully automated radiosynthesis of [F- 18]fluoroestradiol by alkali hydrolysis and simplified column purification. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2009. 1):S303	One or more exclusion criteria
L1	Nandy, S., Chakarborthy, A., Pawar, Y., Ghosh, S., Chaudhary, P. R., Rajan, M. G. R Fully automated radiosynthesis of novel [18F]fluoroethylated Plumbagin derivative and its feasibility study as tumour imaging agent. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2013. 1):S396	One or more exclusion criteria
L1	Cleij, M.,Fortt, R.,Gee, A Fully automated synthesis of 3- [¹⁸ F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([¹⁸ F]FPEB). <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2013. 1):S450	One or more exclusion criteria
L1	Giancarlo, P., Giovanni, N., Sabrina, P., Piero, S. A Fully automated synthesis of ¹⁸ F-fluorocholine derivatives using a Dose-On-Demand	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	microfluidic approach. Journal of Labelled Compounds and Radiopharmaceuticals. 2011. 1):S542	
L1	Go, M. L.,Leow, J. L.,Gorla, S. K.,Schuller, A. P.,Wang, M.,Casey, P. J Functionalized 3-aminomethylindoles as potent inhibitors of isoprenylcysteine carboxy methyltransferase. <i>Drugs of the Future.</i> 2010. A):227-228	One or more exclusion criteria
L1	Spittle, B Further MEDLINE rejection of Fluoride. Fluoride. 2014. 47:2-8	One or more exclusion criteria
L1	Szabo, Z.,Xia, J.,Mathews, W. B.,Brown, P. R Future direction of renal positron emission tomography. <i>Semin Nucl Med.</i> 2006. 36:36-50	One or more exclusion criteria
L1	Ma, Q.,Huang, H.,Sun, L.,Zhou, T.,Zhu, J.,Cheng, X.,Duan, L.,Li, Z.,Cui, L.,Ba Y Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERA gene polymorphisms?. <i>Chemosphere</i> . 2017. 188:525-531	, One or more exclusion criteria
L1	Tripathi, N.,Bajpai, S.,Tripathia, M Genotoxic alterations induced by fluoride i Asian catfish, Clarias batrachus (Linn.). <i>Fluoride.</i> 2009. 42:292-296	n One or more exclusion criteria
L1	Vaquez-Alvarado, P., Prieto-Garcia, F., Gordillo-Martinez, A., Coronel-Olivarez, C., Ortiz-Espisnosa, R. M., Hernandez-Ceruelos, A Genotoxic damage in oral epithelial cells induced by fluoride in drinking-water on students of tula Mexico <i>Environmental and Molecular Mutagenesis</i> . 2010. 51 (7):727	

Level	Bibliography	Reason for Exclusion
L1	Martignon, S.,Opazo-Gutierrez, M. O.,Velasquez-Riano, M.,Orjuela-Osorio, I. R.,Avila, V.,Martinez-Mier, E. A.,Gonzalez-Carrera, M. C.,Ruiz-Carrizosa, J. A.,Silva-Hermida, B. C Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia). <i>Environmental Monitoring and Assessment.</i> 2017. 189 (6) (no pagination):#pages#	One or more exclusion criteria
L1	Rashid, A.,Farooqi, A.,Gao, X.,Zahir, S.,Noor, S.,Khattak, J. A Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. <i>Chemosphere.</i> 2020. 243:125409	One or more exclusion criteria
L1	Dehbandi, R.,Moore, F.,Keshavarzi, B Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran. <i>Chemosphere.</i> 2018. 193:763-776	One or more exclusion criteria
L1	Kämppi, A., Tanner, T., Päkkilä, J., Patinen, P., Järvelin, M. R., Tjäderhane, L., Anttonen, V Geographical distribution of dental caries prevalence and associated factors in young adults in Finland. <i>Caries Res.</i> 2013. 47:346-54	One or more exclusion criteria
L1	Subhadharsini, S., Pradeep, S Glass ionomer dental cement - a review. <i>Research Journal of Pharmacy and Technology.</i> 2016. 9:1513-1515	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Mumtaz, N.,Pandey, G.,Labhasetwar, P. K Global fluoride occurrence, available technologies for fluoride removal, and electrolytic defluoridation: A review. <i>Critical Reviews in Environmental Science and Technology</i> . 2015. 45:2357-2389	One or more exclusion criteria
L1	Guidotti, T. L., Gitterman, B. A Global Pediatric Environmental Health. <i>Pediatric Clinics of North America.</i> 2007. 54:335-350	One or more exclusion criteria
L1	Lyke, K Global water fluoridation: what is holding us back?. <i>Altern Ther Healt Med</i> . 2016. 22:6-7	hOne or more exclusion criteria
L1	Wright, J. V Global water fluoridation: what is holding us back?. <i>Altern Ther Health Med.</i> 2016. 22:6	One or more exclusion criteria
L1	Anonymous,. Global water fluoridation: what is holding us back? Reply. Alternative Therapies in Health & Medicine. 2016. 22:7	One or more exclusion criteria
L1	. Global water fluoridation: what is holding us back? Reply. <i>Altern Ther Health Med.</i> 2016. 22:7	One or more exclusion criteria
L1	Dinneen, J.,Fitzgibbon, M.,O'Gorman, P Glucose determination at point of care using blood gas analyser-a worthy substitute for laboratory analysis in the oral glucose tolerance test. <i>Clinical Chemistry and Laboratory Medicine.</i> 2018. 56 (2):eA83	

Level	Bibliography	Reason for Exclusion
L1	Liu, R.,Fu, Z.,Zhao, M.,Gao, X.,Li, H.,Mi, Q.,Liu, P.,Yang, J.,Yao, Z.,Gao, Q GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates. <i>Oncotarget.</i> 2017. 8:39476-39496	One or more exclusion criteria
L1	Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., Owusu-Ansah, E. D. G. J., Tettey, S., Diabene, P. Y., Asimah, S Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. <i>Chemosphere.</i> 2019. 233:862-872	One or more exclusion criteria
L1	Ranasinghe, N., Kruger, E., Chandrajith, R., Tennant, M Groundwater fluoride in Sri Lanka: opportunities to mitigate the risk at maximum contaminant level. <i>Ceylon Med J.</i> 2018. 63:174-179	One or more exclusion criteria
L1	Sunitha, V.,Reddy, B. M.,Khan, J. A.,Reddy, M. R. Groundwater Geochemistry in the Southeastern Part of Anantapur District, Andhra Pradesh, with Special Reference to Fluoride Distribution and Its Impact on Health. <i>Journal of</i> <i>Environmental Science & Engineering.</i> 2014. 56:153-60	/ One or more exclusion criteria
L1	Suneetha, M.,Syama Sundar, B.,Ravindhranath, K Groundwater pollution and adverse effects on health by fluoride ions. <i>Journal of Chemical and Pharmaceutical Research.</i> 2015. 7:292-305	One or more exclusion criteria
L1	Hua, B.,Yang, J.,Deng, B Groundwater quality. <i>Water Environment Research</i> 2010. 82:1854-1874	. One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Stephenson, J.,Sabic, H.,Huber, R.,Renshaw, P Halides in drinking water are inversely correlated with suicide rates. <i>Biological Psychiatry</i> . 2017. 81 (10 Supplement 1):S332	One or more exclusion criteria
L1	Jablonski, R Hands-on solutions for long-term care nurses providing oral healthcare. <i>Annals of Long-Term Care.</i> 2014. 22:20-22	One or more exclusion criteria
L1	Karak, P Health effects of ground water fluoride contamination in Bankura district of West Bengal, India. <i>International Journal of Pharma and Bio Sciences</i> . 2017. 8:B195-B203	One or more exclusion criteria
L1	Nayak, B.,Roy, M. M.,Das, B.,Pal, A.,Sengupta, M. K.,Prasad De, S.,Chakraborti, D Health effects of groundwater fluoride contamination. <i>Clinical Toxicology.</i> 2009. 47:292-295	One or more exclusion criteria
L1	Meghe, A. D.,Quazi, Z Health effects of high fluoride in groundwater in parts of two districts in Central India. <i>Fluoride</i> . 2012. 45 (3 PART 1):188-189	One or more exclusion criteria
L1	Majumdar, K. K Health impact of supplying safe drinking water containing fluoride below permissible level on flourosis patients in a fluoride-endemic rural area of West Bengal. <i>Indian Journal of Public Health.</i> 2011. 55:303-8	One or more exclusion criteria
L1	Majumdar, K. K.,Sundarraj, S. N Health impact of supplying safe drinking water on patients having various clinical manifestations of fluorosis in an	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	endemic village of west bengal. <i>Journal of Family Medicine & Primary Care.</i> 2013. 2:74-8	
L1	Riley, M.,Locke, A. B.,Skye, E. P Health maintenance in school-aged children Part I. History, physical examination, screening, and immunizations. <i>American</i> <i>Family Physician.</i> 2011. 83:683-688	: One or more exclusion criteria
L1	Riley, M.,Morrison, L.,McEvoy, A Health Maintenance in School-Aged Children: Part I. History, Physical Examination, Screening, and Immunizations. <i>American family physician.</i> 2019. 100:213-218	One or more exclusion criteria
L1	Riley, M.,Locke, A. B.,Skye, E. P Health maintenance in school-aged children Part II. Counseling recommendations. <i>Am Fam Physician.</i> 2011. 83:689-94	: One or more exclusion criteria
L1	Fu, G.,Zeng, Q.,Zhao, L.,Zhang, Y.,Feng, B.,Wang, R.,Zhang, L.,Wang, Y.,Hou, C Health Risk Assessment of Drinking Water Quality in Tianjin Based on GIS. [Chinese]. <i>Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.].</i> 2015. 36:4553-4560	One or more exclusion criteria
L1	Gao, H. J., Jin, Y. Q., Wei, J. L Health risk assessment of fluoride in drinking water from Anhui Province in China. <i>Environ Monit Assess.</i> 2013. 185:3687-95	One or more exclusion criteria
L1	Bai, X.,Song, K.,Liu, J.,Mohamed, A. K.,Mou, C.,Liu, D Health risk assessment of groundwater contaminated by oil pollutants based on numerical	One or more exclusion criteria
1230		

Level	Bibliography	Reason for Exclusion
	modeling. International Journal of Environmental Research and Public Health. 2019. 16 (18) (no pagination):#pages#	
L1	Yousefi, M., Ghoochani, M., Hossein Mahvi, A Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. <i>Ecotoxicol Environ Saf.</i> 2018. 148:426-430	One or more exclusion criteria
L1	Yuan, L.,Fei, W.,Jia, F.,Jun-Ping, L.,Qi, L.,Fang-Ru, N.,Xu-Dong, L.,Shu-Lian, X Health risk in children to fluoride exposure in a typical endemic fluorosis area on Loess Plateau, north China, in the last decade. <i>Chemosphere.</i> 2020. 243:125451	One or more exclusion criteria
L1	Napier, G. L., Kodner, C. M Health Risks and Benefits of Bottled Water. <i>Primary Care - Clinics in Office Practice.</i> 2008. 35:789-802	One or more exclusion criteria
L1	Arya, S.,Subramani, T.,Vennila, G.,Karunanidhi, D Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India. <i>Environmental Geochemistry & Health.</i> 2019. 18:18	One or more exclusion criteria
L1	Arya, S., Subramani, T., Vennila, G., Karunanidhi, D., Bennett, H. B., Shantz, A., Shin, G., Sampson, M. L., Meschke, J. S Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India. Characterisation of the water quality from open and rope-	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	pump shallow wells in rural Cambodia. <i>Environ Geochem Health.</i> 2019. 61:473-9	
L1	Tornqvist, R.,Jarsjo, J.,Karimov, B Health risks from large-scale water pollution: Trends in Central Asia. <i>Environment International.</i> 2011. 37:435-442	One or more exclusion criteria
L1	Asare, M. L.,Cobbina, S. J.,Akpabey, F. J.,Duwiejuah, A. B.,Abuntori, Z. N Heavy metal concentration in water, sediment and fish species in the bontanga reservoir, Ghana. <i>Toxicology and Environmental Health Sciences.</i> 2018. 10:49 58	
L1	Li, X.,Brejnrod, A. D.,Ernst, M.,Rykaer, M.,Herschend, J.,Olsen, N. M. C.,Dorrestein, P. C.,Rensing, C.,Sorensen, S. J Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. <i>Environment International.</i> 2019. 126:454-467	One or more exclusion criteria
L1	Tanaka, K.,Kitamura, N.,Chujo, Y Heavy metal-free 19F NMR probes for quantitative measurements of glutathione reductase activity using silica nanoparticles as a signal quencher. <i>Bioorg Med Chem.</i> 2012. 20:96-100	One or more exclusion criteria
L1	Tang, J.,Xiao, T.,Wang, S.,Lei, J.,Zhang, M.,Gong, Y.,Li, H.,Ning, Z.,He, L High cadmium concentrations in areas with endemic fluorosis: a serious hidder toxin?. <i>Chemosphere.</i> 2009. 76:300-5	One or more exclusion criteria
L1	Moghaddam, V. K.,Yousefi, M.,Khosravi, A.,Yaseri, M.,Mahvi, A. H.,Hadei, M.,Mohammadi, A. A.,Robati, Z.,Mokammel, A High Concentration of Fluoride	One or more exclusion criteria
1232		

Level	Bibliography	Reason for Exclusion
	Can Be Increased Risk of Abortion. <i>Biological Trace Element Research.</i> 2018. 185:262-265	
L1	 Wong, C. Y. O., Schneider, P., Balon, H. R., Huang, W. S., Chang, S. T., Chang, C. Y., Cheng, C. Y., Fink-Bennett, D High incidence of initial loss of consciousness with abnormal F-18 FDG and O-15 water brain PET in patients with chronic closed head injury. <i>Journal of Medical Sciences</i>. 2008. 28:71-75 	
L1	Greenwood, H High throughput PET/CT imaging using a multiple mouse imaging system. <i>Molecular Imaging and Biology.</i> 2017. 19 (1 Supplement 1):S540	One or more exclusion criteria
L1	Subba Rao, N High-fluoride groundwater. <i>Environmental Monitoring and Assessment.</i> 2011. 176:637-645	One or more exclusion criteria
L1	Burnazi, E.,Carlin, S.,Lyashchenko, S.,Staton, K.,Brown, A.,Hicks, S.,Veach, D.,Lewis, J. S High-yield manual synthesis of 16beta-[¹⁸ F]-fluoro-5alpha-dihydrotestosterone ([¹⁸ F]FDHT) using reverse-phase HPLC purification. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S427-S428	One or more exclusion criteria
L1	Lar, U. A., Tejan, A. B Highlights of some environmental problems of geomedical significance in Nigeria. <i>Environ Geochem Health.</i> 2008. 30:383-9	One or more exclusion criteria
L1	Lakshman, M. K.,Keeler, J. C.,Ngassa, F. N.,Hilmer, J. H.,Pradhan, P.,Zajc, B.,Thomasson, K. A Highly diastereoselective synthesis of nucleoside	One or more exclusion criteria
1233		

Trial Ex. 131.1233

Level	Bibliography	Reason for Exclusion
	adducts from the carcinogenic benzo[a]pyrene diol epoxide and a computational analysis. <i>J Am Chem Soc.</i> 2007. 129:68-76	
L1	Moon, B. S., Park, J. H., Lee, H. J., Kil, H. S., Chi, D. Y., Lee, B. C., Kim, Y. K., Kim, S. E Highly efficient production of [¹⁸ F]fallypride with low concentration of base. <i>Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2010. 51:#pages#	One or more exclusion criteria
L1	Celeste, R. K.,Nadanovsky, P How much of the income inequality effect can be explained by public policy? Evidence from oral health in Brazil. <i>Health Policy</i> . 2010. 97:250-258	One or more exclusion criteria
L1	 Van Den Berg, S. A. A., De Groot, M. J. M., Salden, L. P. W., Draad, P. J. G. J., Dijkstra, I. M., Lunshof, S., Van Thiel, S. W., Boonen, K. J. M., Thelen, M. H. M How to perform pregnancy diabetes screening correctly. <i>Nederlands</i> <i>Tijdschrift voor Klinische Chemie en Laboratoriumgeneeskunde</i>. 2016. 41:198- 	One or more exclusion criteria
L1	Herndon, J. M Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification. <i>Frontiers in Public Health.</i> 2016. 4:139	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Simate, G. S., Iyuke, S. E., Ndlovu, S., Heydenrych, M., Walubita, L. F Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. <i>Environment International.</i> 2012. 39:38-49	One or more exclusion criteria
L1	Samuel, O. A., PraiseGod, E. C., Theophilus, T. I., Omolola, K. C Human health risk assessment data of trace elements concentration in tap water-Abeokuta South, Nigeria. <i>Data Brief.</i> 2018. 18:1416-1426	n One or more exclusion criteria
L1	Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., Kacew, S., Lindsay, J., Mahfouz, A. M., Rondeau, V Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. <i>Journal of Toxicology and Environmental Health - Part B: Critical Reviews.</i> 2007. 10:1-269	One or more exclusion criteria
L1	Zhang, Y.,Ma, R.,Li, Z Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China). <i>Environ Monit</i> <i>Assess.</i> 2014. 186:4669-84	One or more exclusion criteria
L1	Yadav, K. K.,Kumar, V.,Gupta, N.,Kumar, S.,Rezania, S.,Singh, N Human health risk assessment: Study of a population exposed to fluoride through groundwater of Agra city, India. <i>Regul Toxicol Pharmacol.</i> 2019. 106:68-80	One or more exclusion criteria
L1	Ram, P Human skeletal fluorosis in India. <i>Fluoride.</i> 2012. 45 (3 PART 1):189- 190	One or more exclusion criteria
L1	Roy Chowdhury, A.,Mondal, A.,Roy, B. G.,K, J. C. B.,Mukhopadhyay, S.,Banerjee, P Hydrazine functionalized probes for chromogenic and	One or more exclusion criteria
1235		

Trial Ex. 131.1235

_evel	Bibliography	Reason for Exclusion
	fluorescent ratiometric sensing of pH and F(-): experimental and DFT studies. <i>Photochem Photobiol Sci.</i> 2017. 16:1654-1663	
1	Hermenegildo, B.,Ribeiro, C.,Pérez-Álvarez, L.,Vilas, J. L.,Learmonth, D. A.,Sousa, R. A.,Martins, P.,Lanceros-Méndez, S Hydrogel-based magnetoelectric microenvironments for tissue stimulation. <i>Colloids Surf B Biointerfaces.</i> 2019. 181:1041-1047	One or more exclusion criteria
.1	Hossain, M., Patra, P. K Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. <i>Environ Pollut.</i> 2020. 258:113646	One or more exclusion criteria
.1	Zhang, X.,Miao, J.,Hu, B. X.,Liu, H.,Zhang, H.,Ma, Z Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China). <i>Environmental Science & Pollution Research.</i> 2017. 24:21073-21090	One or more exclusion criteria
.1	Aullon Alcaine, A., Schulz, C., Bundschuh, J., Jacks, G., Thunvik, R., Gustafsson, J. P., Morth, C. M., Sracek, O., Ahmad, A., Bhattacharya, P Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co- contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. <i>Science of the Total Environment.</i> 2020. 715 (no pagination):#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Dey, R. K., Swain, S. K., Mishra, S., Sharma, P., Patnaik, T., Singh, V. K., Dehury, B. N., Jha, U., Patel, R. K Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. <i>Environmental Monitoring and Assessment.</i> 2012. 184:3279- 3291	One or more exclusion criteria
L1	Mitchell, S. M., Ullman, J. L., Teel, A. L., Watts, R. J Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin. <i>Chemosphere.</i> 2015. 134:504-11	
L1	Lepoittevin, B.,Elzein, T.,Dragoe, D.,Bejjani, A.,Lemee, F.,Levillain, J.,Bazin, P.,Roger, P.,Dez, I Hydrophobization of chitosan films by surface grafting with fluorinated polymer brushes. <i>Carbohydrate polymers.</i> 2019. 205:437-446	One or more exclusion criteria
L1	Tredwin, C. J., Young, A. M., Abou Neel, E. A., Georgiou, G., Knowles, J. C Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation. <i>J</i> <i>Mater Sci Mater Med.</i> 2014. 25:47-53	One or more exclusion criteria
L1	Ramamoorthy, N.,Pillai, M. R. A.,Jin, J. H.,Haji-Saeid, S. M. IAEA activities in support of production and utilization of radioisotope labelled compounds. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2007. 50:312-317	One or more exclusion criteria
L1	larc Working Group on the Evaluation of Carcinogenic Risk to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some	One or more exclusion criteria
1237		

_evel	Bibliography	Reason for Exclusion
	Chemicals Used as Solvents and in Polymer Manufacture. 2017. #volume#:#pages#	
_1	Tang, Y. S. C., Davis, R. A., Ganguly, T., Sutcliffe, J. L Identification, Characterization, and Optimization of Integrin $\alpha(v)\beta_6$ -Targeting Peptides from a One-Bead One-Compound (OBOC) Library: Towards the Development of Positron Emission Tomography (PET) Imaging Agents. <i>Molecules</i> . 2019. 24:#pages#	One or more exclusion criteria
_1	Xu, Y.,Wang, S.,Jiang, L.,Wang, H.,Yang, Y.,Li, M.,Wang, X.,Zhao, X.,Xie, K Identify melatonin as a novel therapeutic reagent in the treatment of 1- bromopropane(1-BP) intoxication. <i>Medicine (United States).</i> 2016. 95 (3) (no pagination):#pages#	One or more exclusion criteria
_1	 Alaiwa, M. A., Hilkin, B., Akurathi, V., Watkins, G., Stoltz, D., Sunderland, J., Welsh, M., Dick, D Imaging mucociliary clearance using F-18 alumina PET: A proof in concept study. <i>Journal of Nuclear Medicine. Conference.</i> 2019. 60:#pages# 	One or more exclusion criteria
_1	Gai, Y.,Yuan, L.,Li, H.,Zeng, D.,Lan, X. Imaging of melanoma Using Al ¹⁸ F labeled peptidomemitic ligand LLP2A. <i>Journal of Nuclear</i> <i>Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging</i> <i>Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Frawley, R. P.,Smith, M.,Cesta, M. F.,Hayes-Bouknight, S.,Blystone, C.,Kissling, G. E.,Harris, S.,Germolec, D Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague-Dawley rats and B ₆ C ₃ F ₁ /N mice when administered by oral gavage for 28 days. <i>Journal of Immunotoxicology</i> . 2018. 15:41-52	One or more exclusion criteria
L1	Varol, E., Akcay, S., Ersoy, I. H., Koroglu, B. K., Varol, S Impact of chronic fluorosis on left ventricular diastolic and global functions. <i>Science of the Total Environment.</i> 2010. 408:2295-2298	One or more exclusion criteria
L1	Kheradpisheh, Z.,Mirzaei, M.,Mahvi, A. H.,Mokhtari, M.,Azizi, R.,Fallahzadeh, H.,Ehrampoush, M. H Impact of Drinking Water Fluoride on Human Thyroid Hormones: A Case- Control Study. <i>Sci Rep.</i> 2018. 8:2674	One or more exclusion criteria
L1	Shankar, B. S., Balasubramanya, N., Maruthesha Reddy, M. T Impact of industrialization on groundwater qualitya case study of Peenya industrial area, Bangalore, India. <i>Environ Monit Assess.</i> 2008. 142:263-8	One or more exclusion criteria
L1	Grover, P. K.,Kaur, K.,Gautam, C. S Impact of milk intake on dental fluorosis in the North Indian population: An observational study. <i>Biomedicine (India).</i> 2018. 38:190-194	One or more exclusion criteria
L1	Bhagat, S. K., Tiyasha,. Impact of millions of tones of effluent of textile industries: Analysis of textile industries effluents in Bhilwara and an approach	One or more exclusion criteria
1239		

Level	Bibliography	Reason for Exclusion
	with bioremediation. International Journal of ChemTech Research. 2013. 5:1289-1298	
L1	Ahmad, F Impact of urbanization on groundwater quality of Bhagalpur city: Deterioration of water quality and its sustainable management. <i>Journal of</i> <i>Chemical and Pharmaceutical Research.</i> 2015. 7:1303-1307	One or more exclusion criteria
L1	Ahoyo, T. A., Fatombi, K. J., Boco, M., Aminou, T., Bramane, K. L Impact of water quality and environmental sanitation on the health of schoolchildren in a suburban area of Benin: Findings in the Savalou-Bante and Dassa-Glazoue sanitary districts. [French]. <i>Medecine Tropicale.</i> 2011. 71:281-285	One or more exclusion criteria
L1	Mula, A.,Skrobanska, A.,Nowis, D Impairment of glucose uptake in cancer cells by statins. <i>European Journal of Medical Research.</i> 2011. 1):40-41	One or more exclusion criteria
L1	Berroteran-Infante, N.,Hacker, M.,Mitterhauser, M.,Wadsak, W. Improved automated radiosynthesis of [¹⁸ F]FEPPA. <i>EJNMMI</i> <i>Radiopharmacy and Chemistry. Conference: 18th European Symposium on</i> <i>Radiopharmacy and Radiopharmaceuticals. Austria</i> 2016. 1:#pages#	One or more exclusion criteria
L1	Vavere, A. L.,Hu, B.,Neumann, K. D.,DiMagno, S. G.,Snyder, S. E. Improved synthesis and purification of meta-[¹⁸ F]fluorobenzylguanidine (mFBG) for clinical use. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2015. 1):S216	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Qu, W.,Kelly, J.,Amor-Coarasa, A.,Waterhouse, N.,Dooley, M.,Babich, J Improved two-step click synthesis of [¹⁸ F]RPS-040: A prostate specific membrane antigen (PSMA)-targeted tracer for Imaging prostate cancer (PCa) using positron emission tomography (PET). <i>Journal of Nuclear Medicine</i> <i>Conference: Society of Nuclear Medicine and Molecular Imaging Annual</i> <i>Meeting, SNMMI.</i> 2018. 59:#pages#	
L1	Fitz, N. F.,Castranio, E. L.,Carter, A. Y.,Kodali, R.,Lefterov, I.,Koldamova, R Improvement of memory deficits and amyloid-β clearance in aged APP23 mice treated with a combination of anti-amyloid-β antibody and LXR agonist. <i>J</i> <i>Alzheimers Dis.</i> 2014. 41:535-49	
L1	Hariri, M., Mirvaghefi, A., Farahmand, H., Taghavi, L., Shahabinia, A. R In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario). <i>Environ Toxicol Pharmacol.</i> 2018. 58:59-69	One or more exclusion criteria
L1	Seong, J.,Macdonald, E.,Newcombe, R. G.,Davies, M.,Jones, S. B.,Johnson, S.,West, N. X In situ randomised trial to investigate the occluding properties o two desensitising toothpastes on dentine after subsequent acid challenge. <i>Clin Oral Investig.</i> 2013. 17:195-203	f
L1	Valdez Jimenez, L.,Lopez Guzman, O. D.,Cervantes Flores, M.,Costilla- Salazar, R.,Calderon Hernandez, J.,Alcaraz Contreras, Y.,Rocha-Amador, D.	One or more exclusion criteria
1241		

Level	Bibliography	Reason for Exclusion
	O In utero exposure to fluoride and cognitive development delay in infants. <i>Neurotoxicology.</i> 2017. 59:65-70	
L1	Valdez-Jimenez, L.,Lopez-Guzman, O. D.,Cervantes-Flores, M.,Costilla- Salazar, R.,Calderon-Hernandez, J.,Alcaraz-Contreras, Y.,Rocha-Amador, D. O In utero exposure to fluoride through drinking water and cognitive development delay in children. <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S206	One or more exclusion criteria
L1	Lütje, S.,Franssen, G. M.,Herrmann, K.,Boerman, O. C.,Rijpkema, M.,Gotthardt, M.,Heskamp, S In Vitro and In Vivo Characterization of an (18)F-AIF-Labeled PSMA Ligand for Imaging of PSMA-Expressing Xenografts. <i>J Nucl Med.</i> 2019. 60:1017-1022	One or more exclusion criteria
L1	Bhakta, S.,Gillingham, K. H.,Mirsaneh, M.,Miller, C. A.,Reaney, I. M.,Brook, I. M.,van Noort, R.,Hatton, P. V In vitro biocompatibility of modified potassium fluorrichterite and potassium fluorrichterite-fluorapatite glass-ceramics. <i>J Mater Sci Mater Med.</i> 2011. 22:2065-70	
L1	Mihanovic, D., Negovetic-Vranic, D In vitro changes in the value of fluoride ions, and PH of artificial saliva due to the influence of erosive drinks in artificial saliva. <i>Acta Stomatologica Croatica.</i> 2016. 50 (1):90	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Farooq, I.,Moheet, I. A.,AlShwaimi, E In vitro dentin tubule occlusion and remineralization competence of various toothpastes. <i>Arch Oral Biol.</i> 2015. 60:1246-53	One or more exclusion criteria
L1	Huang, Y.,Tsai, C.,Ho, B.,Ho, H.,Chang, Y.,Wu, C.,Yen, R.,Shiue, C In vitro evaluation of [¹⁸ F]FPA as a fatty acid synthasetargeting imaging agent for breast cancer and its in vivo whole-body biodistribution in normal mice. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2019. 46 (1 Supplement 1):S709-S710	One or more exclusion criteria
L1	Krisanapun, C.,Wongkrajang, Y.,Temsiririrkkul, R.,Phornchirasilp, S.,Peungvicha, P In vitro evaluation of anti-diabetic potential of piper sarmentosum Roxb. extract. <i>FASEB Journal. Conference: Experimental</i> <i>Biology.</i> 2012. 26:#pages#	One or more exclusion criteria
L1	Mehta, D., Mondal, P., Saharan, V. K., George, S In-vitro synthesis of marble apatite as a novel adsorbent for removal of fluoride ions from ground water: An ultrasonic approach. <i>Ultrasonics Sonochemistry.</i> 2018. Part A. 40:664-674	One or more exclusion criteria
L1	A, S.,M, K.,M, B. Incidence of skeletal deformities in endemic fluorosis. <i>Trop Doct.</i> 2008. 38:231-3	One or more exclusion criteria
L1	Shashi, A.,Kumar, M.,Bhardwaj, M Incidence of skeletal deformities in endemic fluorosis. <i>Tropical Doctor</i> . 2008. 38:231-233	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Yuan, L.,Fei, W.,Jia, F.,Junping, L.,Qi, L.,Fangru, N.,Xudong, L.,Lan, X.,Shulian, X Increased health threats from land use change caused by anthropogenic activity in an endemic fluorosis and arsenicosis area. <i>Environ</i> <i>Pollut.</i> 2020. 261:114130	One or more exclusion criteria
L1	Gao, X.,Luo, W.,Luo, X.,Li, C.,Zhang, X.,Wang, Y Indigenous microbes induced fluoride release from aquifer sediments. <i>Environmental Pollution</i> . 2019. 252:580-590	One or more exclusion criteria
L1	Mondal, D., Dutta, G., Gupta, S Inferring the fluoride hydrogeochemistry and effect of consuming fluoride-contaminated drinking water on human health in some endemic areas of Birbhum district, West Bengal. <i>Environ Geochem Health.</i> 2016. 38:557-76	One or more exclusion criteria
L1	Akimov, O. Y., Mischenko, A. V., Kostenko, V. O Influence of combined nitrate and fluoride intoxication on connective tissue disorders in rats gastric mucosa. <i>Archives of the Balkan Medical Union.</i> 2019. 54:417-421	One or more exclusion criteria
L1	Lepri, C. P., Geraldo-Martins, V. R., Faraoni-Romano, J. J., Palma-Dibb, R. G Influence of different lasers irradiation, associated or not to fluoride, on root caries prevention. <i>Medicina Oral, Patologia Oral y Cirugia Bucal.</i> 2012. 17 (SUPPL.1):S181	One or more exclusion criteria
L1	Resende, R. F., Arantes, B. F., Palma-Dibb, R. G., Faraoni, J. J., de Castro, D. T., de Menezes Oliveira, M. A. H., Soares, C. J., Geraldo-Martins, V. R., Lepri, C.	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	P Influence of Er,Cr:YSGG laser on dentin acid resistance after erosive challenge. <i>Am J Dent.</i> 2019. 32:215-218	
L1	Piatek-Jakubek, K.,Nowak, J.,Boltacz-Rzepkowska, E Influence of infiltration technique and selected demineralization methods on the roughness of demineralized enamel: An in vitro study. <i>Advances in Clinical and Experimental Medicine</i> . 2017. 26:1179-1188	
L1	Povoroznyuk, V. V., Grygoreva, N. V., Vilensky, A. V., Dmitrenco, O. P Influence of raised fluorine concentrations in water on structurally-functional state of bone mass, teeth, anthropometric parameters and physical development of teenagers. <i>Bone.</i> 2009. 2):S76-S77	One or more exclusion criteria
L1	Alehosseini, M.,Edris, H.,Fathi, M Influence of strontium on the structure and biological properties of mechanical activation sr-doped flourapatite nanopowde for bone replacement. <i>Iranian Journal of Biotechnology</i> . 2017. ISSUE):115	
L1	Iglesias-Jerez, R.,Cayero-Otero, M. D.,Martin-Banderas, L.,Borrego-Dorado, I. Influence of the use of cryoprotectant on the ladiolabelling of poly(lactic-co- glycolic acid) (PLGA) nanoparticles with 99m Tc. <i>European Journal of Nuclear</i> <i>Medicine and Molecular Imaging.</i> 2017. 44 (2 Supplement 1):S564	
L1	Gao, H.,Zhang, Z.,Wan, X Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants. <i>Environ Geochem Health.</i> 2012. 34:551-62	One or more exclusion criteria
1245		

Level	Bibliography	Reason for Exclusion
L1	Galal, A. A. A.,Reda, R. M.,Abdel-Rahman Mohamed, A Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. <i>Fish</i> <i>Shellfish Immunol.</i> 2018. 77:445-456	One or more exclusion criteria
L1	Dimachkie, P., Peicher, K., Maalouf, N. M. Inhalation of air dust cleaner causing skeletal fluorosis. <i>Endocrine Reviews. Conference: 99th Annual Meeting of the Endocrine Society, ENDO.</i> 2017. 38:#pages#	
L1	A, S.,G, M Inhibitory Effect of Fluoride on Na+,K+ ATPase Activity in Human Erythrocyte Membrane. <i>Biological Trace Element Research.</i> 2015. 168:340-8	One or more exclusion criteria
L1	Zhang, Y.,Zhang, L.,Yang, J.,Wu, Z.,Ploessl, K.,Zha, Z.,Liu, F.,Xu, X.,Zhu, H.,Yang, Z.,Zhu, L.,Kung, H. F Initial experience in synthesis of (2S,4R)-4- [(18) F]fluoroglutamine for clinical application. <i>J Labelled Comp Radiopharm.</i> 2019. 62:209-214	One or more exclusion criteria
L1	Russo, F.,Ursino, C.,Avruscio, E.,Desiderio, G.,Perrone, A.,Santoro, S.,Galiano, F.,Figoli, A Innovative Poly (Vinylidene Fluoride) (PVDF) Electrospun Nanofiber Membrane Preparation Using DMSO as a Low Toxicity Solvent. <i>Membranes (Basel).</i> 2020. 10:#pages#	One or more exclusion criteria
L1	Devesa, I. Perez V.,Velez, D.,Montoro, R.,Gimeno, J.,Rocha, R.,Martin, R.,Canals, J Inorganic arsenic and its metabolites induce neural stem cell	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	apoptosis: Synergism of fluoride coexposure. <i>Toxicology Letters.</i> 2010. 1):S306	
L1	Aswar, S. A., Yeul, V. S., Bhagat, P. R Integration of ground water quality: Identifying potential hazards in Yavatmal district, India. <i>Journal of Chemical</i> <i>and Pharmaceutical Research.</i> 2015. 7:512-517	One or more exclusion criteria
L1	Podder, S.,Ghoshal, N.,Banerjee, A.,Ganguly, B.,Upadhyay, R.,Chatterjee, A Interaction of DNA-lesions induced by sodium fluoride and radiation and its influence in apoptotic induction in cancer cell lines. <i>Toxicol Rep.</i> 2015. 2:461- 471	One or more exclusion criteria
L1	Spittle, B International differences in the recognition of non-skeletal Fluorosis: A comparison of India and New Zealand. <i>Fluoride.</i> 2018. 51:199-205	One or more exclusion criteria
L1	Bai, S. Y.,Xu, J. M.,Dao, L. T.,Jia, J. X.,Liu, M. L.,Wang, W. H. Intervened observation of low-fluoride brick-tea on the population in drinking-tea type fluorosis areas in Akesai County of Gansu Province. [Chinese]. <i>Chinese</i> <i>Journal of Endemiology.</i> 2009. 28:429-432	One or more exclusion criteria
L1	Rehman, A. U.,Rafique, W.,Mehmood, M.,Bashir, M.,Ali, B.,Nawaz, M. K.,Faruqui, Z. S.,Gilani, S. A. N Introduction of Pakistan 1 st Cyclotron & PET/CT Centre. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S132	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Wu, J. Q., Peng, J. W., Li, T. L., Wu, H. Y., Li, B. L., Miao, L. J Investigating the current water-related endemic fluorosis in Shaoguan City of Guangdong Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:535-536	One or more exclusion criteria
L1	Liu, X. L.,Bai, G. L.,Fan, Z. X.,Li, Y.,Li, X. Q.,Li, P. A.,Bai, A. M. Investigation and analysis on endemic fluorosis associated with drinking water in Shaanxi in 2008. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:171-175	One or more exclusion criteria
L1	Li, J.,Liang, P.,Zheng, L Investigation and analysis on the fluorine source and fluorotic teeth epidemic factors in wumeng mountain coal-burning contaminated area. <i>Biomedical Research (India).</i> 2017. 2017:S187-S192	One or more exclusion criteria
L1	Ge, P. F.,Yu, S. Q.,Shao, J. Y.,Liao, Y. J.,Wang, W. L.,Bai, S. Y.,Ren, Y. G.,Jia, J. X Investigation and distribution of higher fluorides water in different ecotypic areas in Gansu Province from 2006 to 2008. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:633-636	One or more exclusion criteria
L1	He, M. X., Zhang, C. N Investigation of children's intelligence quotient and dental fluorosis in drinking water-type of endemic fluorosis area in Pucheng county Shaanxi province before and after drinking water change. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:547-548	One or more exclusion criteria
L1	Zhu, C. S., Chen, Y. F Investigation of drinking water flouride and fluorosis in Shaanxi province from 2005 to 2007. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:181-183	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Sun, D. Y., Qi, Z. M., Ji, F. Y., Zhang, F. X., Liu, C. Z., Ma, Y Investigation of fluoride level in drinking water and state of endemic fluorosis in Yan'an city. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:436-439	One or more exclusion criteria
L1	Karimzade, S.,Aghaei, M.,Mahvi, A. H Investigation of intelligence quotient in 9-12-year-old children exposed to high- and low-drinking water fluoride in West Azerbaijan Province, Iran. <i>Fluoride.</i> 2014. 47:9-14	
L1	Fu, S. X., Yang, F. L., Kang, J. S., Ma, J., Qiao, Y. P., Yao, Q. L. Investigation of status in coal-burning fluorosis areas in Luoyang city of Henan in 2006. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:190-192	One or more exclusion criteria
L1	Yang, Z. M., Zhang, L., Yang, D. Q., Wu, Z. J., Yu, L. Investigation on coal- burning fluorosis in mineral factory areas of Hongya Cunty, Sichuan Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2007. 26:557-559	One or more exclusion criteria
L1	Wang, L. H.,Liu, L. Z.,Shi, Y. X.,Gao, Y. H.,Liu, Y. Q.,Sun, D. J Investigation on histopathological damages of articular growth plate cartilage, liver and kidney of rats with fluorosis induced by drinking brick-tea in the high altitude areas. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:25-29	One or more exclusion criteria
L1	Chen, J. A., Lan, T. S., Chen, Z. H., Lan, Y. G., Zhang, Z. C., Chen, H. Q., Qiu, Q. R., Chen, J. X Investigation on prevailing factors synthesized control measures of endemic fluorosis in Longyan City. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2007. 26:699-701	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Yu, S. Q., Shao, J. Y., Liao, Y. J., Wang, W. L., Bai, S. Y., Ren, Y. G., Jia, J. X Investigation on status of endemic fluorosis control in Gansu province in 2006. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:179-181	One or more exclusion criteria
L1	Hou, C. C., Han, S. Q., Liu, Z. H., Liu, H. L Investigation on the prevalent condition of adult osteofluorosis in the endemic fluorosis areas of Tianjin in 2008. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:322-324	One or more exclusion criteria
L1	Chen, P. Z., Yun, Z. J., Bian, J. C., Li, H. X., Gao, H. X., Ma, A. H., Wang, Y. T., Zhao, L. J., Song, S. L Investigation on the prevention and control of endemic fluorosis in the southwestern area of Shandong province in 2007. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:186-189	One or more exclusion criteria
L1	Gao, H. X., Wang, Y. T., Wang, Z. Z., Lu, X. D., Li, T., Zhao, L. J Investigation or water fluoride content and water-improving defluoridation projects in endemic fluorosis areas in Jining City, Shandong Province in 2005. [Chinese]. <i>Chinese</i> <i>Journal of Endemiology.</i> 2008. 27:526-528	o One or more exclusion criteria
L1	Hoscan, M. B., Dilmen, C., Ekinci, M., Oksay, T., Orak, S., Bedir, S., Serel, T. A Invitro effects of our spring water on the solubility of uric acid stones: A pilot study. [Turkish]. <i>Journal of Clinical and Analytical Medicine.</i> 2010. 1:15-17	One or more exclusion criteria
L1	Jentzen, W.,Weise, R.,Kupferschläger, J.,Freudenberg, L.,Brandau, W.,Bares, R.,Burchert, W.,Bockisch, A Iodine-124 PET dosimetry in differentiated	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging. 2008. 35:611-23	
L1	Burnazi, E.,Carlin, S.,Lyashchenko, S.,Rotstein, B. H.,Vasdev, N.,Lewis, J. S lodonium ylide-mediated radiofluorination of [¹⁸ F]MFBG and novel formulation with cation exchange solid-phase extraction. <i>Journal of</i> <i>Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S490-S491	One or more exclusion criteria
L1	 Blakey, K., Feltbower, R. G., Parslow, R. C., James, P. W., Gómez Pozo, B., Stiller, C., Vincent, T. J., Norman, P., McKinney, P. A., Murphy, M. F., Craft, A. W., McNally, R. J Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0-49-year-olds in Great Britain, 1980-2005. <i>Int J Epidemiol.</i> 2014. 43:224-34 	One or more exclusion criteria
L1	Zachariassen, K. E., Flaten, T. P Is fluoride-induced hyperthyroidism a cause of psychosis among East African immigrants to Scandinavia?. <i>Med Hypotheses</i> . 2009. 72:501-3	One or more exclusion criteria
L1	Gupta, S. K.,Gupta, R. C.,Gupta, A. B Is there a need of extra fluoride in children?. <i>Indian Pediatr.</i> 2009. 46:755-9	One or more exclusion criteria
L1	Hoffman, B. L.,Felter, E. M.,Chu, K. H.,Shensa, A.,Hermann, C.,Wolynn, T.,Williams, D.,Primack, B. A It's not all about autism: The emerging	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	landscape of anti-vaccination sentiment on Facebook. Vaccine. 2019. 37:2216- 2223	-
L1	Napolitano, R., De Matteis, S., Carloni, S., Simonetti, G., Musuraca, G., Lucchesi, A., Calistri, D., Cuneo, A., Menon, K., Martinelli, G Kevetrin: Preclinical study of a new compound in acute myeloid leukemia. <i>Haematologica</i> . 2017. 102 (Supplement 2):371	One or more exclusion criteria
L1	 Cox, C. D.,Breslin, M. J.,Whitman, D. B.,Coleman, P. J.,Garbaccio, R. M.,Fraley, M. E.,Zrada, M. M.,Buser, C. A.,Walsh, E. S.,Hamilton, K.,Lobell, R. B.,Tao, W.,Abrams, M. T.,South, V. J.,Huber, H. E.,Kohl, N. E.,Hartman, G. D., Kinesin spindle protein (KSP) inhibitors. Part V: discovery of 2-propylamino- 2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by beta-fluorination to overcome cellular efflux by P-glycoprotein. <i>Bioorg Med Chem Lett.</i> 2007. 17:2697-702 	One or more exclusion criteria
L1	Qiu, L.,Xie, M.,Lin, J Kit-like 18F radiolabeling of caspase activatable molecular probe for in situ noninvasive imaging of drug-induced apoptosis. <i>Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and</i> <i>Molecular Imaging Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria
L1	Ly, P.,Hayes, D. K.,Yamashiroya, V.,Turnure, M. M.,Iwaishi, L. K Knowledge and Attitudes Towards Fluoride Supplementation: A Survey of Pediatric	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Medical and Dental Providers in the State of Hawai'i. Hawaii J Med Public Health. 2018. 77:275-282	
.1	Bottenberg, P.,Melckebeke, L. V.,Louckx, F.,Vandenplas, Y Knowledge of Flemish paediatricians about children's oral health - Results of a survey. <i>Acta Paediatrica, International Journal of Paediatrics</i> . 2008. 97:959-963	One or more exclusion criteria
.1	Sekhar, V., Sivsankar, P., Easwaran, M. A., Subitha, L., Bharath, N., Rajeswary, K., Jeyalakshmi, S Knowledge, attitude and practice of school teachers towards oral health in Pondicherry. <i>Journal of Clinical and Diagnostic Research.</i> 2014. 8:ZC12-ZC15	One or more exclusion criteria
.1	Pruss-Ustun, A., Vickers, C., Haefliger, P., Bertollini, R Knowns and unknowns on burden of disease due to chemicals: A systematic review. <i>Environmental</i> <i>Health: A Global Access Science Source.</i> 2011. 10 (1) (no pagination):#pages#	
.1	Giovinazzo, N.,Inkster, J.,Germain, S.,Colin, D.,Seimbille, Y Labeling of a cyclic RGD peptide with two 2-[18F] fluoropyridine prosthetic groups for integrinal alphavbeta3 PET imaging. <i>Nuklearmedizin.</i> 2014. 53 (2):A124	One or more exclusion criteria ו
1	Set, R., Shastri, J Laboratory aspects of clinically significant rapidly growing mycobacteria. <i>Indian Journal of Medical Microbiology</i> . 2011. 29:343-352	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Takamizawa, T.,Tsujimoto, A.,Ishii, R.,Ujiie, M.,Kawazu, M.,Hidari, T.,Suzuki, T.,Miyazaki, M Laboratory evaluation of dentin tubule occlusion after use of dentifrices containing stannous fluoride. <i>J Oral Sci.</i> 2019. 61:276-283	One or more exclusion criteria
L1	Levy, S.,Warren, J.,Broffitt, B.,Letuchy, E.,Burns, T.,Gilmore, J. E.,Torner, J.,Janz, K.,Phipps, K Lack of association of fluoride intake with girls' childhood bone development assessed by dual-energy x-ray absorptiometry (DXA). <i>Journal of Bone and Mineral Research. Conference.</i> 2012. 27:#pages#	One or more exclusion criteria
L1	Ribeiro, D. A., Marques, M. E., Salvadori, D. M Lack of effect of prior treatment with fluoride on genotoxicity of two chemical agents in vitro. <i>Caries Res.</i> 2007. 41:239-43	One or more exclusion criteria
L1	Lambertz, A.,Klink, C. D.,Röth, A.,Schmitz, D.,Pich, A.,Feher, K.,Bremus- Köbberling, E.,Neumann, U. P.,Junge, K Laser-induced drug release for local tumor controla proof of concept. <i>J Surg Res.</i> 2014. 192:312-6	One or more exclusion criteria
L1	Sarkar, F. H.,Li, Y.,Wang, Z.,Padhye, S Lesson learned from nature for the development of novel anti-cancer agents: Implication of isoflavone, curcumin, and their synthetic analogs. <i>Current Pharmaceutical Design.</i> 2010. 16:1801-1812	One or more exclusion criteria
L1	Klotz, A.,Hughes, K.,McCabe, D.,Cole, J Let's Iron OutVR What is Toxic in Here. <i>Clinical Toxicology.</i> 2018. 56 (10):1072-1073	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ranjan, R.,Swarup, D.,Bhardwaj, B.,Patra, R. C Level of certain micro and macro minerals in blood of cattle from fluoride polluted localities of Udaipur, India. <i>Bulletin of Environmental Contamination and Toxicology.</i> 2008. 81:503-507	One or more exclusion criteria
L1	Naik, R. G., Dodamani, A. S., Vishwakarma, P., Jadhav, H. C., Khairnar, M. R., Deshmukh, M. A., Wadgave, U Level of fluoride in soil, grain and water in Jalgaon district, Maharashtra, India. <i>Journal of Clinical and Diagnostic Research.</i> 2017. 11:ZC05-ZC07	One or more exclusion criteria
L1	Makris, K. C., Andra, S. S Limited representation of drinking-water contaminants in pregnancy-birth cohorts. <i>Sci Total Environ.</i> 2014. 468-469:165-75	One or more exclusion criteria
L1	Hutchings, J.,Kendall, C.,Barr, H.,Stone, N Linear discriminant analysis of Raman maps for potential automated histopathology of oesophageal precancer. <i>Lasers in Medical Science</i> . 2009. 24 (5):828	One or more exclusion criteria
L1	Sodhi, R. K., Singh, N Liver X receptor agonist T0901317 reduces neuropathological changes and improves memory in mouse models of experimental dementia. <i>Eur J Pharmacol.</i> 2014. 732:50-9	One or more exclusion criteria
L1	Li, Y.,Wang, F.,Feng, J.,Lv, J. P.,Liu, Q.,Nan, F. R.,Zhang, W.,Qu, W. Y.,Xie, S. L Long term spatial-temporal dynamics of fluoride in sources of drinking	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	water and associated health risks in a semiarid region of Northern China. Ecotoxicol Environ Saf. 2019. 171:274-280	
L1	Nakahara, Y.,Ozaki, K.,Matsuura, T Long-term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents. <i>Diabetes.</i> 2017. 66:2868-2874	One or more exclusion criteria
L1	Matsuura, T.,Shako, N.,Ozaki, K Long-term hyperglycemia naturally induces dental caries but not periodontal disease in type-2 diabetic db/db mouse. <i>Experimental Animals.</i> 2017. 66 (Supplement 1):S61	One or more exclusion criteria
L1	Hussain, I., Ahamad, K. U., Nath, P. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water. <i>Anal Chem.</i> 2017. 89:767-775	One or more exclusion criteria
L1	Huang, Y.,Wang, J.,Tan, Y.,Wang, L.,Lin, H.,Lan, L.,Xiong, Y.,Huang, W.,Shu, W Low-mineral direct drinking water in school may retard height growth and increase dental caries in schoolchildren in China. <i>Environment International.</i> 2018. 115:104-109	One or more exclusion criteria
L1	Zhou, R.,Li, M.,Wang, S.,Wu, P.,Wu, L.,Hou, X Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. <i>Nanoscale.</i> 2014. 6:14319-25	One or more exclusion criteria
L1	Spillmann, F.,Van Linthout, S.,Miteva, K.,Lorenz, M.,Stangl, V.,Schultheiss, H. P.,Tschöpe, C LXR agonism improves TNF-α-induced endothelial dysfunction	
1256		

Level	Bibliography	Reason for Exclusion
	in the absence of its cholesterol-modulating effects. <i>Atherosclerosis</i> . 2014. 232:1-9	
L1	McIntyre, D. J.,Madhu, B.,Lee, S. H.,Griffiths, J. R Magnetic resonance spectroscopy of cancer metabolism and response to therapy. <i>Radiat Res.</i> 2012. 177:398-435	One or more exclusion criteria
L1	Chandra Shekar, B. R., Suma, S., Kumar, S., Sukhabogi, J. R., Manjunath, B. C Malocclusion status among 15 years old adolescents in relation to fluoride concentration and area of residence. <i>Indian Journal of Dental Research.</i> 2013. 24:1-7	One or more exclusion criteria
L1	Babaei Zarch, A.,Fallah Huseini, H.,Kianbakht, S.,Changaei, P.,Mirjalili, A.,Salehi, J Malva sylvestris L. Protects from Fluoride Nephrotoxicity in Rat. <i>Journal of Medicinal Plants.</i> 2017. 16:21-32	One or more exclusion criteria
L1	 Kopycka-Kedzierawski, D. T., Meyerowitz, C., Litaker, M. S., Chonowski, S., Heft, M. W., Gordan, V. V., Yardic, R. L., Madden, T. E., Reyes, S. C., Gilbert, G. H., National Dental, Pbrn Collaborative Group. Management of Dentin Hypersensitivity by National Dental Practice-Based Research Network practitioners: results from a questionnaire administered prior to initiation of a clinical study on this topic. <i>BMC Oral Health.</i> 2017. 17:41 	One or more exclusion criteria
L1	Wu, A. J Management of Salivary Hypofunction in Sjogren's Syndrome. Current Treatment Options in Rheumatology. 2015. 1:255-268	One or more exclusion criteria

evel	Bibliography	Reason for Exclusion
	Samuel, A. R., Thomas, T Management of sensitivity after dental bleaching - A review. International Journal of Pharmacy and Technology. 2016. 8:4857-4864	One or more exclusion criteria
1	Rischmueller, M Management of Sjogren's syndrome. International Journal of Rheumatic Diseases. 2019. 22 (Supplement 3):27-28	One or more exclusion criteria
1	Fu, H. Z., Wang, M. H., Ho, Y. S Mapping of drinking water research: A bibliometric analysis of research output during 1992-2011. <i>Science of the Total Environment.</i> 2013. 443:757-765	One or more exclusion criteria
1	Saini, P.,Khan, S.,Baunthiyal, M.,Sharma, V Mapping of fluoride endemic area and assessment of F ⁻¹ accumulation in soil and vegetation. <i>Environmental Monitoring and Assessment.</i> 2013. 185:2001-2008	One or more exclusion criteria
1	Viswanathan, G., Jaswanth, A., Gopalakrishnan, S., Siva ilango, S Mapping of fluoride endemic areas and assessment of fluoride exposure. <i>Sci Total Environ.</i> 2009. 407:1579-87	One or more exclusion criteria
1	Thakur, N.,Kumar, S. A.,Wagh, D. N.,Das, S.,Pandey, A. K.,Kumar, S. D.,Reddy, A. V Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams. <i>J Hazard Mater.</i> 2012. 201-202:193-201	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Deng, H., Ikeda, A., Cui, H., Bartlett, J. D., Suzuki, M MDM2-Mediated p21 Proteasomal Degradation Promotes Fluoride Toxicity in Ameloblasts. <i>Cells.</i> 2019. 8:#pages#	One or more exclusion criteria
L1	Becam, J.,Gaulier, J. M.,Baillif-Couniou, V.,Sastre, C.,Piercecchi, M. D.,Leonetti, G.,Pelissier-Alicot, A. L MDMA-related deaths: About 3 cases. <i>Toxicologie Analytique et Clinique</i> . 2019. 31 (2 Supplement):S38	One or more exclusion criteria
L1	Kumar, S.,Singh, R.,Venkatesh, A. S.,Udayabhanu, G.,Sahoo, P. R Medical Geological assessment of fluoride contaminated groundwater in parts of Indo- Gangetic Alluvial plains. <i>Sci Rep.</i> 2019. 9:16243	One or more exclusion criteria
L1	Dissanayake, C. B., Chandrajith, R Medical geology in tropical countries with special reference to Sri Lanka. <i>Environ Geochem Health.</i> 2007. 29:155-62	One or more exclusion criteria
L1	Khandare, H. W Medical geology: An emerging field of interdisciplinary research on geology and human health. <i>International Journal of ChemTech Research.</i> 2012. 4:1792-1796	One or more exclusion criteria
L1	Zhou, L.,Zheng, X.,Gu, Z.,Yin, W.,Zhang, X.,Ruan, L.,Yang, Y.,Hu, Z.,Zhao, Y. Mesoporous NaYbF4@NaGdF4 core-shell up-conversion nanoparticles for targeted drug delivery and multimodal imaging. <i>Biomaterials.</i> 2014. 35:7666-78	

Level	Bibliography	Reason for Exclusion
L1	Zhao, Y.,Liu, K. T.,Xue, Q Meta analysis on the effects of water defluoridation measures in China. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2007. 26:434-437	
L1	Bhardwaj, M.,Shashi, A Meta-analysis of electrolyte imbalance in human fluorosis. <i>Biomedicine and Preventive Nutrition.</i> 2012. 2:294-302	One or more exclusion criteria
L1	Costa-Vieira, D.,Monteiro, R.,Martins, M. J Metabolic syndrome features: Is there a modulation role by mineral water consumption? a review. <i>Nutrients</i> . 2019. 11 (5) (no pagination):#pages#	One or more exclusion criteria
L1	Qiu, Y.,Zhang, C.,Tu, J.,Zhang, D Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures. <i>J</i> <i>Biomech.</i> 2012. 45:1339-45	d One or more exclusion criteria
L1	He, P.,Domarkas, J.,Cawthorne, C.,Archibald, S Microfluidic devices for electrode trapping of [¹⁸ F]fluoride from [¹⁸ O]water and continuous flow radiosynthesis of [¹⁸ F]FLT. <i>Journal of</i> <i>Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular</i> <i>Imaging Annual Meeting, SNMMI.</i> 2017. 58:#pages#	One or more exclusion criteria
L1	Ismail, R.,Machness, A.,Van Dam, R. M.,Keng, P. Y Microfluidic polymer monoliths for [18F]fluoride concentration, activation and solid phase radiofluorination. <i>Molecular Imaging and Biology.</i> 2012. 1):S1259	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Philippe, C.,Ungersboeck, J.,Nics, L.,Karanikas, G.,Mitterhauser, M.,Wadsak, W Microfluidic preparation of [18F]altanserin for clinical trials. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2013. 2):S421-S422	One or more exclusion criteria
L1	Akula, M.,Collier, T.,Kabalka, G.,Wall, J.,Kennel, S.,Stuckey, A.,LeBlanc, A Microfluidic synthesis of [¹⁸ F]FLT. <i>Journal of Nuclear Medicine.</i> <i>Conference: Society of Nuclear Medicine and Molecular Imaging Annual</i> <i>Meeting, SNMMI.</i> 2010. 51:#pages#	One or more exclusion criteria
L1	Zhao, J.,Zhu, Y. J.,Wu, J.,Chen, F Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3+/Er3+ nanocrystals. <i>J Colloid Interface Sci.</i> 2015. 440:39-45	One or more exclusion criteria
L1	Zhao, J.,Zhu, Y. J.,Wu, J.,Chen, F Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF <inf>2</inf> : Yb ³⁺ /Er ³⁺ nanocrystals. <i>Journal of Colloid and Interface Science</i> . 2015. 440:39-45	One or more exclusion criteria
L1	Shimizu, H., Shimahara, M., Miyamoto, M., Fujimoto, K., Morimoto, M., Horiuchi, T., Kono, K MID-term overview of japan international cooperation agency (JICA) fluorosis mitigation project phase 2 (2011) in Southern India 1. the report of the water analysis for fluoride and trace elements in krishnagiri and Dharmapuri Districts, India. <i>Fluoride</i> . 2012. 45 (3 PART 1):199	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Fujimoto, K., Shimizu, H., Shimahara, M., Horiuchi, T., Kono, R., Mitsui, G., Usuda, K., Kono, K MID-term overview of Japan international cooperation agency (JICA) fluorosis mitigation project phase 2 (2011) in Southern India 2. the survey and proposal for skeletal fluorosis. <i>Fluoride.</i> 2012. 45 (3 PART 1):164-165	, One or more exclusion criteria
L1	Kono, R., Shimahara, M., Ueno, T., Horiuchi, T., Shimizu, H., Fujimoto, K., Usuda, K., Kono, K MID-term overview of Japan international cooperation agency (JICA) fluorosis mitigation project phase 2 (2011) in Southern India 3. Dental approach. <i>Fluoride.</i> 2012. 45 (3 PART 1):177-178	One or more exclusion criteria
L1	Deavenport-Saman, A.,Britt, A.,Smith, K.,Jacobs, R. A Milestones and controversies in maternal and child health: examining a brief history of micronutrient fortification in the US. <i>J Perinatol.</i> 2017. 37:1180-1184	One or more exclusion criteria
L1	Xie, Y. L., Zhang, B., Jing, L MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia-reperfusion injury by targeting p53. <i>Neurol Res.</i> 2018. 40:828-837	One or more exclusion criteria
L1	Khairnar, M. R.,Dodamani, A. S.,Jadhav, H. C.,Naik, R. G.,Deshmukh, M. A Mitigation of Fluorosis - A Review. <i>J Clin Diagn Res.</i> 2015. 9:Ze05-9	One or more exclusion criteria
L1	Bonotto, D. M.,Oliveira, A. M. M. A. D Mobility indices and doses from ²¹⁰ Po and ²¹⁰ Pb activity concentrations data in	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Brazilian spas groundwaters. <i>Journal of Environmental Radioactivity.</i> 2017. 172:15-23	
L1	Antuganov, D.,Ryzhkova, D.,Zykova, T.,Vinal'ev, A.,Antuganova, Y.,Samburov, O.,Zykov, M. Modification of the automatic synthesis method for [¹⁸ F]-FDOPA production. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S457	, One or more exclusion criteria
L1	 Zhang, S., Zhang, X., Liu, H., Qu, W., Guan, Z., Zeng, Q., Jiang, C., Gao, H., Zhang, C., Lei, R., Xia, T., Wang, Z., Yang, L., Chen, Y., Wu, X., Cui, Y., Yu, L., Wang, A Modifying effect of COMT gene polymorphism and a predictive role for proteomics analysis in children's intelligence in endemic fluorosis area in Tianjin, China. <i>Toxicological Sciences</i>. 2015. 144:238-245 	One or more exclusion criteria
L1	Wu, J.,Wang, W.,Liu, Y.,Sun, J.,Ye, Y.,Li, B.,Liu, X.,Liu, H.,Sun, Z.,Li, M.,Cui, J.,Sun, D.,Yang, Y.,Gao, Y Modifying Role of GSTP1 Polymorphism on the Association between Tea Fluoride Exposure and the Brick-Tea Type Fluorosis. <i>PLoS One.</i> 2015. 10:e0128280	
L1	Zhou, H.,Chen, K.,Yao, Q.,Gao, L.,Wang, Y Molecular cloning of Bombyx mori cytochrome P450 gene and its involvement in fluoride resistance. <i>Journal of Hazardous Materials.</i> 2008. 160:330-336	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Zheng, X.,Sun, Y.,Ke, L.,Ouyang, W.,Zhang, Z Molecular mechanism of brain impairment caused by drinking-acquired fluorosis and selenium intervention. <i>Environmental Toxicology and Pharmacology.</i> 2016. 43:134-139	One or more exclusion criteria
L1	Ramanaiah, S. V., Venkata Mohan, S., Rajkumar, B., Sarma, P. N Monitoring of fluoride concentration in ground water of Prakasham District in India: correlation with physico-chemical parameters. <i>Journal of Environmental</i> <i>Science & Engineering.</i> 2006. 48:129-34	f One or more exclusion criteria
L1	Aslani, H.,Zarei, M.,Taghipour, H.,Khashabi, E.,Ghanbari, H.,Ejlali, A Monitoring, mapping and health risk assessment of fluoride in drinking water supplies in rural areas of Maku and Poldasht, Iran. <i>Environ Geochem Health.</i> 2019. 41:2281-2294	One or more exclusion criteria
L1	Bakht, M. K.,Sadeghi, M.,Ahmadi, S. J.,Haddadi, A.,Sadjadi, S. S.,Tenreiro, C. Monte Carlo simulations and radiation dosimetry measurements of 142Pr capillary tube-based radioactive implant (CTRI): a new structure for brachytherapy sources. <i>Ann Nucl Med.</i> 2013. 27:253-60	. One or more exclusion criteria
L1	Cooper, V. K.,Ludwig, T. G Most cited: Number 7 effect of fluoride and of soil trace elements on the morphology of the permanent molars in man. <i>New Zealand Dental Journal.</i> 2009. 105:138-139	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Kardos, T MOST CITED: Number 7. Effect of fluoride and of soil trace elements on the morphology of the permanent molars in man. <i>N Z Dent J.</i> 2009. 105:138-9	One or more exclusion criteria
L1	Wardak, M.,Wong, K. P.,Shao, W.,Dahlbom, M.,Kepe, V.,Satyamurthy, N.,Small, G. W.,Barrio, J. R.,Huang, S. C Movement correction method for human brain PET images: application to quantitative analysis of dynamic 18F- FDDNP scans. <i>J Nucl Med.</i> 2010. 51:210-8	One or more exclusion criteria
L1	Osterwalder, L., Johnson, C. A., Yang, H., Johnston, R. B Multi-criteria assessment of community-based fluoride-removal technologies for rural Ethiopia. <i>Sci Total Environ</i> . 2014. 488-489:532-8	One or more exclusion criteria
L1	 Wu, T.,Li, X.,Yang, T.,Sun, X.,Mielke, H. W.,Cai, Y.,Ai, Y.,Zhao, Y.,Liu, D.,Zhang, X.,Li, X.,Wang, L.,Yu, H Multi-Elements in Source Water (Drinking and Surface Water) within Five Cities from the Semi-Arid and Arid Region, NW China: Occurrence, Spatial Distribution and Risk Assessment. <i>Int J Environ Res Public Health.</i> 2017. 14:#pages# 	One or more exclusion criteria
L1	Sayed, F. N., Grover, V., Sudarsan, V., Pandey, B. N., Asthana, A., Vatsa, R. K., Tyagi, A. K Multicolored and white-light phosphors based on doped GdF3 nanoparticles and their potential bio-applications. <i>J Colloid Interface Sci.</i> 2012. 367:161-70	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Bacquart, T.,Frisbie, S.,Mitchell, E.,Grigg, L.,Cole, C.,Small, C.,Sarkar, B Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium. <i>Sci Total Environ.</i> 2015. 517:232-45	One or more exclusion criteria
L1	Quadri, J. A., Alam, M. M., Sarwar, S., Ghanai, A., Shariff, A., Das, T. K Multiple Myeloma-Like Spinal MRI Findings in Skeletal Fluorosis: An Unusual Presentation of Fluoride Toxicity in Human. <i>Front Oncol.</i> 2016. 6:245	One or more exclusion criteria
L1	Chin, M. Y. H., Sandham, A., Pratten, J., De Vries, J., Van Der Mei, H. C., Busscher, H. J Multivariate analysis of surface physico-chemical properties controlling biofilm formation on orthodontic adhesives prior to and after fluoride and chlorhexidine treatment. <i>Journal of Biomedical Materials Research - Part &</i> <i>Applied Biomaterials.</i> 2006. 78:401-408	
L1	Salifu, A., Petrusevski, B., Ghebremichael, K., Buamah, R., Amy, G Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern regio of Ghana. <i>Journal of Contaminant Hydrology</i> . 2012. 140-141:34-44	
L1	Saha, A.,Mukherjee, A. K.,Ravichandran, B. Musculoskeletal problems and fluoride exposure: A cross-sectional study among metal smelting workers. <i>Toxicology & Industrial Health.</i> 2016. 32:1581-8	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Anthonisen, A. N., Clausen, J. D., Andersen, J. P Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2+-ATPase. <i>J Biol Chem.</i> 2006. 281:31572-82	One or more exclusion criteria
L1	Hou, Y.,Qiao, R.,Fang, F.,Wang, X.,Dong, C.,Liu, K.,Liu, C.,Liu, Z.,Lei, H.,Wang, F.,Gao, M NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. <i>ACS</i> <i>Nano.</i> 2013. 7:330-8	One or more exclusion criteria
L1	Ren, X.,Hu, Q.,Liu, X.,Shen, Y.,Liu, C.,Yang, L.,Yang, H Nanoparticles Patterned Ceramsites Showing Super-Hydrophobicity and Low Crushing Rate: The Promising Proppant for Gas and Oil Well Fracturing. <i>Journal of</i> <i>nanoscience and nanotechnology.</i> 2019. 19:905-911	One or more exclusion criteria
L1	Zhao, L. J., Wang, C., Gao, Y. H., Sun, D. J National annual monitoring report of drinking-water-borne endemic fluorosis in 2010 and 2011. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:177-182	One or more exclusion criteria
L1	Nasman, P.,Granath, F.,Ekstrand, J.,Ekbom, A.,Sandborgh-Englund, G.,Fored, C. M. Natural fluoride in drinking water and myocardial infarction: A cohort study in Sweden. <i>Science of the Total Environment.</i> 2016. 562:305-311	, One or more exclusion criteria
L1	Ramachandra, S. S.,Rao, M Need for community water fluoridation in areas with suboptimal fluoride levels in India. <i>Perspectives in Public Health.</i> 2010. 130:211-212	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Singh, V. P., Tripathi, S., Satapathy, M. K., Kumar, S., Chauhan, D. S., Mishra, S., Seth, A. K Neurobehavioral changes in different stages of fluorosis and its correlation with acetylcholinesterase activity: A clinical study in Jaipur district Rajasthan. <i>International Journal of Developmental Neuroscience</i> . 2012. 30 (8):692	One or more exclusion criteria
L1	Grandjean, P.,Landrigan, P. J Neurobehavioural effects of developmental toxicity. <i>The Lancet Neurology.</i> 2014. 13:330-338	One or more exclusion criteria
L1	Gelinas, J., Allukian, M Neurodevelopmental toxicity: Still more questions than answers. <i>The Lancet Neurology.</i> 2014. 13:647-648	One or more exclusion criteria
L1	Sharma, C. M., Khandelwal, D. C., Kumawat, B. L., Ralot, T Neurological picture. Fluorotic cervical myelopathy. <i>J Neurol Neurosurg Psychiatry</i> . 2008. 79:1021	One or more exclusion criteria
L1	Reddy, D. R Neurology of endemic skeletal fluorosis. <i>Neurol India.</i> 2009. 57:7-12	One or more exclusion criteria
L1	Raja Reddy, D Neurology of endemic skeletal fluorosis. <i>Neurology India.</i> 2009. 57:7-12	One or more exclusion criteria
L1	Hussien, H. M., Abd-Elmegied, A., Ghareeb, D. A., Hafez, H. S., Ahmed, H. E. A., El-Moneam, N. A Neuroprotective effect of berberine against	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats. <i>Food Chem Toxicol.</i> 2018. 111:432-444	•
L1	Mirfeizi, L.,De Jong, I. J.,Elsinga, P. H.,Dierckx, R. A. J. O.,De Vries, E. F. J New and automated synthesis method for 16beta-[¹⁸ F]fluoro- 5alpha-dihydrotestosterone, a new clinical tracer for PET imaging of the androgen receptor. <i>European Journal of Nuclear Medicine and Molecular</i> <i>Imaging.</i> 2012. 2):S267-S268	One or more exclusion criteria
L1	Gomzina, N., Vaulina, D., Nasirzadeh, M New Approach to Production of [18F]Flumazenil for Central Benzodiazepine Receptors Imaging by PET. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2015. 1):S480	One or more exclusion criteria
L1	Riadi, Y., Abrouki, Y., Mamouni, R., El Haddad, M., Routier, S., Guillaumet, G., Lazar, S New eco-friendly animal bone meal catalysts for preparation of chalcones and aza-Michael adducts. <i>Chem Cent J.</i> 2012. 6:60	One or more exclusion criteria
L1	Mencia, G.,Lozano-Cruz, T.,Valiente, M.,de la Mata, J.,Cano, J.,Gómez, R New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. <i>Molecules</i> . 2020. 25:#pages#	One or more exclusion criteria
L1	Dolan, M. F New review recapitulates urgency of us national research council fluoride report. <i>Fluoride.</i> 2011. 44:57-59	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Dove, A News feature: Drugs down the drain. <i>Nature Medicine.</i> 2006. 12:376-377	One or more exclusion criteria
L1	Tomlinson, R. E., Shoghi, K. I., Silva, M. J Nitric oxide-mediated vasodilation increases blood flow during the early stages of stress fracture healing. <i>J Appl Physiol (1985).</i> 2014. 116:416-24	One or more exclusion criteria
L1	Warren, J. J., Saraiva, M. C No Evidence Supports the Claim That Water Fluoridation Causes Hypothyroidism. <i>J Evid Based Dent Pract.</i> 2015. 15:137-9	One or more exclusion criteria
L1	Can, A. M., Darling, C. L., Ho, C., Fried, D Non-destructive assessment of inhibition of demineralization in dental enamel irradiated by a lambda = 9.3-mum CO <inf>2</inf> laser at ablative irradiation intensities with PS-OCT. <i>Lasers in Surgery and Medicine.</i> 2008. 40:342-349	One or more exclusion criteria
L1	Old, O. J., Lloyd, G., Almond, M., Kendall, C., Barr, H., Shore, A., Stone, N Non- endoscopic screening for barrett's oesophagus: Identifying neoplasia with infrared spectroscopy. <i>Gut.</i> 2015. 1):A485	One or more exclusion criteria
L1	Paprottka, P. M., Cyran, C. C., Zengel, P., von Einem, J., Wintersperger, B., Nikolaou, K., Reiser, M. F., Clevert, D. A Non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Contrast mixed mode examination vs. only contrast enhanced ultrasound examination. <i>Clin Hemorheol Microcirc.</i> 2010. 46:149-58	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Liu, Y.,Qian, M.,Ma, X.,Zhu, L.,Martin, J. W Nontarget Mass Spectrometry Reveals New Perfluoroalkyl Substances in Fish from the Yangtze River and Tangxun Lake, China. <i>Environ Sci Technol.</i> 2018. 52:5830-5840	One or more exclusion criteria
L1	Bongarzone, S.,Faugeras, V.,Sementa, T.,Gakpetor, C.,Gee, A. D Novel (18)F-labelled Metomidate analogues for targeting CYP11B2 beta hydroxylase - Towards a new PET radiotracer for managing personalised treatments for aldosteronoma-mediated hypertension. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S73	One or more exclusion criteria
L1	Yue, X.,Wang, Z.,Zhu, L.,Wang, Y.,Qian, C.,Ma, Y.,Kiesewetter, D. O.,Niu, G.,Chen, X Novel 19F activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS. <i>Mol Pharm.</i> 2014. 11:4208-17	One or more exclusion criteria
L1	Nandy, S.,Roy, S.,Pawar, Y.,Ghosh, S.,Chaudhary, P. R.,Rajan, M. G. R Novel [18F]fluoroethylated thymidine derivative: Fully automated radiosynthesis and its evaluation as cellular proliferation imaging agent by PET. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S346	One or more exclusion criteria
L1	Chiotellis, A., Sladojevich, F., Mu, L., Müller Herde, A., Valverde, I. E., Tolmachev V., Schibli, R., Ametamey, S. M., Mindt, T. L Novel chemoselective (18)F- radiolabeling of thiol-containing biomolecules under mild aqueous conditions. <i>Chem Commun (Camb).</i> 2016. 52:6083-6	, One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Hao, Y. P.,Liu, Z. Y.,Xie, C.,Zhou, L.,Sun, X Novel fluorinated docetaxel analog for anti-hepatoma: Molecular docking and biological evaluation. <i>Eur J Pharm Sci.</i> 2016. 88:274-81	One or more exclusion criteria
L1	Papadopoulou, M. V., Ji, M., Bloomer, W. D Novel fluorinated hypoxia-targeted compounds as Non-invasive probes for measuring tumor-hypoxia by 19F-magnetic resonance spectroscopy (19F-MRS). <i>Anticancer Res.</i> 2006. 26:3253	
L1	Michelena, O.,Padro, D.,Carrillo-Carrión, C.,Del Pino, P.,Blanco, J.,Arnaiz, B.,Parak, W. J.,Carril, M Novel fluorinated ligands for gold nanoparticle labelling with applications in (19)F-MRI. <i>Chem Commun (Camb).</i> 2017. 53:2447-2450	One or more exclusion criteria
L1	Ashida, R.,Kawabata, K. I.,Asami, R.,Ioka, T.,Katayama, K Novel US/EUS guided site-specific treatment using ultrasonically activated superheated perfluorocarbon droplets. <i>Gastroenterology.</i> 2013. 1):S873	One or more exclusion criteria
L1	Litman, Y.,Pace, P.,Silva, L.,Hormigo, C.,Caro, R.,Gutierrez, H.,Bastianello, M.,Casale, G Novel, simple and fast automated synthesis of ¹⁸ F-choline in a single module Synthera. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S454	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Khandare, A. L., Geddam, B., Rao, S Nutritional, clinical, and biochemical status in an 8-PPM fluoride water village in the nalgonda district of Andhra Pradesh, India. <i>Fluoride.</i> 2012. 45 (3 PART 1):174-175	One or more exclusion criteria
L1	Nigam, S.,Domarkas, J.,Bernard, J.,Clemente, G.,Burke, B.,Juge, S.,Malacea- Kabbara, R.,Benoit, D.,Cawthorn, C O-BF <inf>3</inf> -Phosphonium pincer moieties in the design of delocalized lipophilic cation based tracers for PET imaging of mitochondrial function. <i>Journal of Nuclear Medicine. Conference:</i> <i>Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2017. 58:#pages#	One or more exclusion criteria
L1	Hu, C. H.,Xie, X. L Occlusion of dentinal tubules by (NH <inf>4</inf>) <inf>2</inf> SiF <inf>6</inf> solution. [Chinese]. <i>Journal of Clinical Rehabilitative Tissue Engineering Research.</i> 2010. 14:4641-4644	One or more exclusion criteria
L1	Yang, Q. L., Chen, S. J., Wan, Y., Geng, C., Rong, G. Y Occlusion of dentinal tubules using tricalcium silicate. [Chinese]. <i>Chinese Journal of Tissue Engineering Research.</i> 2013. 17:6740-6746	One or more exclusion criteria
L1	Skaugset, N. P.,Ellingsen, D. G.,Dahl, K.,Martinsen, I.,Jordbekken, L.,Drablos, P. A.,Thomassen, Y Occupational exposure to beryllium in primary aluminium production. <i>Journal of Environmental Monitoring.</i> 2012. 14:353-359	

Level	Bibliography	Reason for Exclusion
L1	Vikas, C Occurence and distribution of fluoride in groundwaters of central Rajasthan, India. <i>Journal of Environmental Science & Engineering.</i> 2009. 51:169-74	One or more exclusion criteria
L1	Kurwadkar, S Occurrence and distribution of organic and inorganic pollutants in groundwater. <i>Water Environment Research.</i> 2019. 91:1001-1008	One or more exclusion criteria
L1	Oruc, N Occurrence and problems of high fluoride waters in Turkey: an overview. <i>Environ Geochem Health.</i> 2008. 30:315-23	One or more exclusion criteria
L1	Crone, B. C., Speth, T. F., Wahman, D. G., Smith, S. J., Abulikemu, G., Kleiner, E. J., Pressman, J. G Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water. <i>Critical Reviews in Environmental Science and Technology.</i> 2019. 49:2359-2396	. One or more exclusion criteria
L1	Li, P.,Oyang, X.,Zhao, Y.,Tu, T.,Tian, X.,Li, L.,Zhao, Y.,Li, J.,Xiao, Z Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. <i>Chemosphere.</i> 2019. 225:659-667	One or more exclusion criteria
L1	Elfikrie, N.,Ho, Y. B.,Zaidon, S. Z.,Juahir, H.,Tan, E. S. S. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. <i>Science of the Total Environment.</i> 2020. 712 (no pagination):#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Lennona, M. A One in a million: The first community trial of water fluoridation. Bulletin of the World Health Organization. 2006. 84:759-760	One or more exclusion criteria
L1	Mueller, D.,Klette, I.,Kalb, F.,Baum, R One pot synthesis of [18F]- Fluoroethylcholine. <i>Journal of Nuclear Medicine. Conference: Society of</i> <i>Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI.</i> 2010. 51:#pages#	One or more exclusion criteria
L1	Liu, G.,Chen, Y.,Jia, M.,Sun, Z.,Ding, B.,Shao, S.,Jiang, F.,Fu, Z.,Ma, P.,Lin, J One-pot synthesis of SiO(2)-coated Gd(2)(WO(4))(3):Yb(3+)/Ho(3+) nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition. <i>Dalton Trans.</i> 2019. 48:10537-10546	One or more exclusion criteria
L1	He, X.,Hai, L.,Su, J.,Wang, K.,Wu, X One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells. <i>Nanoscale.</i> 2011. 3:2936-42	I One or more exclusion criteria
L1	Wong, E. Y., Stenstrom, M. K Onsite defluoridation system for drinking water treatment using calcium carbonate. <i>Journal of Environmental Management.</i> 2018. 216:270-274	One or more exclusion criteria
L1	Song, G. X., Han, S. Q., Liu, M. S., Yuan, A. M., Dou, G. Q., Kan, W. F Operational state of drinking water defluorination project and situation of fluorosis in children aged 8 to 12 in Dagang district of Tianjin in 2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:68-71	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Katsifis, A.,Le, V.,Stark, D.,Hossain, M.,Le, T.,Lam, P.,Eberl, S.,Fulham, M Optimisation and automation of [18F]PSMA-1007 production, a next generation PET ligand for prostate carcinoma, using a GE FASTlab 2. <i>Journal of Nuclear</i> <i>Medicine. Conference: Society of Nuclear Medicine and Molecular Imaging</i> <i>Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria
L1	Yao, X.,Zha, Z.,Zhao, R.,Choi, S. R.,Ploessl, K.,Liu, F.,Zhu, L.,Kung, H. F Optimization of solid-phase extraction (SPE) in the preparation of [18F]D3FSP: A new PET imaging agent for mapping Abeta plaques. <i>Nuclear medicine and</i> <i>biology.</i> 2019. 71:54-64	One or more exclusion criteria
L1	Wyffels, L.,Waldron, A. M.,Verhaeghe, J.,Vanderghinste, D.,Langlois, X.,Schmidt, M.,Stroobants, S.,Staelens, S Optimization of the automated synthesis of [¹⁸ F]-AV45 on a Veenstra FluorSynthon I module for muPET imaging in a transgenic mouse model of Alzheimer's disease. <i>Journal</i> <i>of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S481	One or more exclusion criteria
L1	He, F.,Li, C.,Zhang, X.,Chen, Y.,Deng, X.,Liu, B.,Hou, Z.,Huang, S.,Jin, D.,Lin, J Optimization of upconversion luminescence of Nd(3+)-sensitized BaGdF5- based nanostructures and their application in dual-modality imaging and drug delivery. <i>Dalton Trans.</i> 2016. 45:1708-16	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Merugu, R.,Garimella, S. S.,Kudle, K. R.,Ramesh, D.,Pratap Rudra, M. P Optimization studies for defluoridation of water using Aspergillus niger fungal biosorbent. <i>International Journal of ChemTech Research</i> . 2012. 4:1089-1093	One or more exclusion criteria
L1	Arora, G., Shukla, J., Gupta, P., Bandopadhyaya, G Optimizing electrophilic 6- [18F]fluoro-L-DOPA synthesis utilizing low precursor concentration. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2010. 2):S493	One or more exclusion criteria
L1	Hassan, H., Abu Bakar, S., Che, A. Halim K., Idris, J., Nordin, A Optimizing the azeotropic drying of 18F-way to improve 18F-Fluorocholine radiochemical yields!. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2015. 1):S824-S825	One or more exclusion criteria
_1	Haysom, L.,Indig, D.,Byun, R.,Moore, E.,van den Dolder, P Oral health and risk factors for dental disease of Australian young people in custody. <i>Journal of Paediatrics & Child Health.</i> 2015. 51:545-551	One or more exclusion criteria f
L1	Ramos-Gomez, F. J., Folayan, M. O Oral health considerations in HIV-infected children. <i>Curr HIV/AIDS Rep.</i> 2013. 10:283-93	d One or more exclusion criteria
∟1	Lalloo, R.,Kisely, S.,Amarasinghe, H.,Perera, R.,Johnson, N Oral health of patients on psychotropic medications: a study of outpatients in Queensland. <i>Australas Psychiatry.</i> 2013. 21:338-42	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Donaldson, M.,Goodchild, J. H Oral health of the methamphetamine abuser. Am J Health Syst Pharm. 2006. 63:2078-82	One or more exclusion criteria
L1	Shashi, A., Sharma, S., Bhardwaj, M Oral health status in students exposed to flouride in drinking water. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences.</i> 2008. 10:323-328	One or more exclusion criteria
L1	Bomfim, R. A., Herrera, D. R., De-Carli, A. D Oral health-related quality of life and risk factors associated with traumatic dental injuries in Brazilian children: A multilevel approach. <i>Dent Traumatol.</i> 2017. 33:358-368	
L1	Gonzalez, S.,Sung, H.,Sepulveda, D.,Gonzalez, M. J.,Molina, C Oral manifestations and their treatment in Sjogren's syndrome. <i>Oral Diseases.</i> 2014. 20:153-161	One or more exclusion criteria
L1	Aguilar-Díaz, F. C., Irigoyen-Camacho, M. E., Borges-Yáñez, S. A Oral-health- related quality of life in schoolchildren in an endemic fluorosis area of Mexico. <i>Qual Life Res.</i> 2011. 20:1699-706	One or more exclusion criteria
L1	Zorc, B.,Pavic, K Organofluorine drugs. [Croatian]. <i>Farmaceutski Glasnik.</i> 2018. 74:351-360	One or more exclusion criteria
L1	Li, P.,Wu, J.,Qian, H.,Lyu, X.,Liu, H Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. <i>Environ Geochem Health.</i> 2014. 36:693-712	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	MacDonald-Jankowski, D. S.,Li, T. K Ossifying fibroma in a Hong Kong community: the clinical and radiological features and outcomes of treatment. <i>Dentomaxillofac Radiol.</i> 2009. 38:514-23	One or more exclusion criteria
L1	Choubisa, S. L Osteo-dental fluorosis in domestic animals living in areas with high fluoride in drinking water of Rajasthan, India. <i>Fluoride</i> . 2012. 45 (3 PART 1):158	One or more exclusion criteria
L1	Choubisa, S. L., Choubisa, L., Choubisa, D Osteo-dental fluorosis in relation to age and sex in tribal districts of Rajasthan, India. <i>J Environ Sci Eng.</i> 2010. 52:199-204	One or more exclusion criteria
L1	Choubisa, S. L Osteo-dental fluorosis in relation to chemical constituents of drinking waters. <i>J Environ Sci Eng.</i> 2012. 54:153-8	One or more exclusion criteria
L1	Choubisa, S. L., Choubisa, L., Choubisac, D Osteo-dental fluorosis in relation to nutritional status, living habits, and occupation in rural tribal areas of Rajasthan, India. <i>Fluoride.</i> 2009. 42:210-215	One or more exclusion criteria
L1	Tamer, M. N.,Kale Köroğlu, B.,Arslan, C.,Akdoğan, M.,Köroğlu, M.,Cam, H.,Yildiz, M Osteosclerosis due to endemic fluorosis. <i>Sci Total Environ.</i> 2007. 373:43-8	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Uppal, S.,Bajaj, Y.,Coatesworth, A. P Otosclerosis 2: The medical management of otosclerosis. <i>International Journal of Clinical Practice</i> . 2010. 64:256-265	One or more exclusion criteria
L1	Babcock, T. A.,Liu, X. Z Otosclerosis: From Genetics to Molecular Biology. Otolaryngologic Clinics of North America. 2018. 51:305-318	One or more exclusion criteria
L1	Liao, M.,Liu, J.,Tang, Z. Z.,Huang, L. R.,Ning, R. J.,Zeng, X. P Outcome analysis of endemic fluorosis control in Guangxi in 2006. [Chinese]. <i>Chinese</i> <i>Journal of Endemiology.</i> 2008. 27:300-302	One or more exclusion criteria
L1	Huang, C. Q., Wang, C. H., Zhang, X. D., Xu, H. W., Tang, H. Y., Lu, Z. M., Zhang, A. J., Zhang, Y. L Outcome analysis of surveillance on endemic fluorosis during thr period of 1991 to 2006 in Jilin Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:424-428	, One or more exclusion criteria
L1	Yu, S. Q.,Liao, Y. J.,Sha, J. Y Outcome analysis on endemic flourosis control in Gansu province in 2006. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:187-190	One or more exclusion criteria
L1	Li, J.,Wang, S. X.,Wang, Z. H.,Jia, Q. Z.,Zhang, X. D.,Cheng, X. T.,Wen, X. P.,Wu, Z. M.,Han, L. L.,Qiao, X. Y.,Jing, Y. L.,Wu, M.,Zhang, F. F Outcome analysis on screening of drinking water source with high flouride in Shanxi province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:184-186	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	 Wu, Z. M.,Li, J.,Wang, Z. H.,Zhang, X. D.,Han, L. L.,Qiao, X. Y.,Li, P. F.,Jing, Y. L Outcome analysis on screening of drinking water source with high fluoride and the condition of the water-improving projects in Shanxi province in 2007. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:316-318 	One or more exclusion criteria
L1	Liu, Y.,Li, X. F.,Yue, Y. T.,Zheng, H. M.,Yu, B.,Yu, H. Y.,Hao, Z. Y Outcome assessment of health education on endemic diseases in Henan province in 2010. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:104-108	One or more exclusion criteria
L1	Niu, Q Overview of the Relationship Between Aluminum Exposure and Health of Human Being. <i>Adv Exp Med Biol.</i> 2018. 1091:1-31	One or more exclusion criteria
L1	Khan, H., Verma, Y., Rana, S. V. S Oxidative stress induced by co-exposure to arsenic and fluoride in Wistar rat. <i>Cancer Medicine</i> . 2018. 7 (Supplement 1):33	
L1	Jeppesen, T. E., Kristensen, L. K., Nielsen, C. H., Petersen, L. C., Kristensen, J. B., Behrens, C., Madsen, J., Kjaer, A Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde. <i>Bioconjug Chem.</i> 2019. 30:775-784	
L1	Foulkes, R. G Paradigms and public health policy versus evidence. <i>Fluoride.</i> 2007. 40:229-237	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Rho, J., Stares, E., Adams, S. R., Lister, D., Leach, B., Ahrens, E. T Paramagnetic Fluorinated Nanoemulsions for in vivo F-19 MRI. <i>Molecular</i> <i>Imaging and Biology.</i> 2019. #volume#:#pages#	One or more exclusion criteria
L1	Shashi, A., Singla, S Parathyroid function in osteofluorosis. <i>World Journal of Medical Sciences</i> . 2013. 8:67-73	One or more exclusion criteria
L1	Staberg, M.,Norén, J. G.,Johnson, M.,Kopp, S.,Robertson, A Parental attitudes and experiences of dental care in children and adolescents with ADHDa questionnaire study. <i>Swed Dent J.</i> 2014. 38:93-100	One or more exclusion criteria
L1	Loganathan, P.,Hedley, M. J.,Grace, N. D Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects. <i>Rev Environ Contam Toxicol.</i> 2008. 192:29-66	One or more exclusion criteria
L1	Khan, M. S.,Naz, F.,Javid, R.,Mosby, T. T.,Assaf, N Pattern of nutritional deficiencies in childhood cancer patients-experience from a large cancer hospital in Pakistan. <i>Pediatric Blood and Cancer.</i> 2016. 63 (Supplement 3):S282	One or more exclusion criteria
L1	Stepanova, N. V., Valeeva, E. R., Ziyatdinova, A. I., Fomina, S. F Peculiarities of chidren's risk assessment on ingestion of chemicals with drinking water. <i>Research Journal of Pharmaceutical, Biological and Chemical Sciences.</i> 2016. 7:1677-1681	

Level	Bibliography	Reason for Exclusion
L1	Zhu, Z.,Wang, T.,Meng, J.,Wang, P.,Li, Q.,Lu, Y Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: seasonal variation, mass flow, and risk assessment. <i>Environ Sci Pollut Res Int.</i> 2015. 22:10009-18	One or more exclusion criteria
L1	Badi, M. Y., Azari, A., Esrafili, A., Ahmadi, E., Gholami, M Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution. [Persian]. <i>Journal of</i> <i>Mazandaran University of Medical Sciences.</i> 2015. 25:128-142	One or more exclusion criteria
L1	Vandana, K. L.,George, P.,Cobb, C. M. Periodontal changes in fluorosed and nonfluorosed teeth by scanning electron microscopy. <i>Fluoride.</i> 2007. 40:128-133	One or more exclusion criteria
L1	Pan, D.,Yan, Y.,Yang, R.,Xu, Y. P.,Chen, F.,Wang, L.,Luo, S.,Yang, M PET imaging of prostate tumors with 18F-AI-NOTA-MATBBN. <i>Contrast Media Mol Imaging.</i> 2014. 9:342-8	One or more exclusion criteria
L1	Morana, G., Piccardo, A., Luisa Garre, M., Rossi, A PET/MR of paediatric brain tumours. <i>Cancer Imaging. Conference: 16th Annual Teaching Course of the International Cancer Imaging Society, ICIS.</i> 2016. 16:#pages#	One or more exclusion criteria
L1	Wallat, J. D.,Harrison, J. K.,Pokorski, J. K pH Responsive Doxorubicin Delivery by Fluorous Polymers for Cancer Treatment. <i>Mol Pharm.</i> 2018. 15:2954-2962	One or more exclusion criteria
1283		

Level	Bibliography	Reason for Exclusion
L1	Chander, V.,Sharma, B.,Negi, V.,Aswal, R. S.,Singh, P.,Singh, R.,Dobhal, R Pharmaceutical compounds in drinking water. <i>Journal of Xenobiotics.</i> 2016. 6 (1) (no pagination):#pages#	One or more exclusion criteria
L1	Lin, H. H.,Lin, A. Y Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment. <i>Water Res.</i> 2014. 48:559-68	One or more exclusion criteria
L1	Wang, H. X.,Zhu, L. N.,Guo, F. Q Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO(2) nanotube arrays. <i>Environ Sci Pollu Res Int.</i> 2019. 26:33847-33855	One or more exclusion criteria
L1	Macpherson, L. M. D., Conway, D. I., Gilmour, W. H., Petersson, L. G., Stephen, K. W Photographic assessment of fluorosis in children from naturally fluoridated Kungsbacka and non-fluoridated Halmstad, Sweden. <i>Acta Odontologica Scandinavica.</i> 2007. 65:149-155	One or more exclusion criteria
L1	Sirtori, C.,Zapata, A.,Gernjak, W.,Malato, S.,Aguera, A Photolysis of flumequine: Identification of the major phototransformation products and toxicity measures. <i>Chemosphere</i> . 2012. 88:627-634	One or more exclusion criteria
L1	Nirmala, B.,Suchetan, P. A.,Darshan, D.,Sudha, A. G.,Lohith, T. N.,Suresh, E.,Mamtha, Physico-chemical analysis of selected groundwater samples of Tumkur district, Karnataka. <i>International Journal of ChemTech Research</i> . 2013. 5:288-292	One or more exclusion criteria
1284		

Level	Bibliography	Reason for Exclusion
L1	Farronato, M.,Cossellu, G.,Farronato, G.,Inchingolo, F.,Blasi, S.,Angiero, F Physico-chemical characterization of a smart thermo-responsive fluoride- releasing poloxamer-based gel. <i>Journal of Biological Regulators and</i> <i>Homeostatic Agents.</i> 2019. 33:1309-1314	One or more exclusion criteria
L1	Foka, F. E. T., Yah, C. S., Bissong, M. E. A Physico-chemical properties and microbiological quality of borehole water in four crowded areas of benin city, nigeria, during rainfalls. <i>Shiraz E Medical Journal.</i> 2018. 19 (11) (no pagination):#pages#	One or more exclusion criteria
L1	Palmeira, Aroa, da Silva, Vath, Dias Junior, F. L., Stancari, R. C. A., Nascentes, G. A. N., Anversa, L Physicochemical and microbiological quality of the public water supply in 38 cities from the midwest region of the State of Sao Paulo, Brazil. <i>Water Environment Research.</i> 2019. 91:805-812	
L1	Lakshmanakuma, V., Thanigavelan, V., Victor Rajamanickam, G., Kaliyamurthi, V Physicochemical characterization of a Siddha formulation Vediuppu Chendhuram. <i>Pharmacologyonline.</i> 2011. 2:604-618	One or more exclusion criteria
L1	Singh, A. K., Das, S., Singh, S., Pradhan, N., Gajamer, V. R., Kumar, S., Lepcha, Y. D., Tiwari, H. K Physicochemical parameters and alarming coliform count of the potable water of Eastern Himalayan state Sikkim: An indication of severe fecal contamination and immediate health risk. <i>Frontiers in Cell and Developmental Biology.</i> 2019. 7 (AUG) (no pagination):#pages#	

Level	Bibliography	Reason for Exclusion
L1	lagaru, A.,Young, P.,Mittra, E.,Dick, D. W.,Herfkens, R.,Gambhir, S. S Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. <i>Clin</i> <i>Nucl Med.</i> 2013. 38:e290-6	One or more exclusion criteria
L1	Zhong, B., Wang, L., Liang, T., Xing, B Pollution level and inhalation exposure of ambient aerosol fluoride as affected by polymetallic rare earth mining and smelting in Baotou, north China. <i>Atmospheric Environment.</i> 2017. 167:40-48	One or more exclusion criteria
L1	He, X.,Li, P.,Wu, J.,Wei, M.,Ren, X.,Wang, D Poor groundwater quality and high potential health risks in the Datong Basin, northern China: research from published data. <i>Environ Geochem Health.</i> 2020. #volume#:#pages#	One or more exclusion criteria
L1	Palmer, C. A., Gilbert, J. A Position of the Academy of Nutrition and Dietetics: the impact of fluoride on health. <i>J Acad Nutr Diet</i> . 2012. 112:1443-1453	One or more exclusion criteria
L1	Lahna, D.,Woltjer, R.,Grinstead, J.,Boespflug, E. L.,Schwartz, D.,Kaye, J. A.,Rooney, W. D.,Silbert, L. C Postmortem 7t Mri for Guided Histology and Tissue Segmentation. <i>Alzheimer's and Dementia.</i> 2018. 14 (7 Supplement):P53	One or more exclusion criteria
L1	Burnett, G. R., Gallob, J. T., Milleman, K. R., Mason, S., Patil, A., Budhawant, C., Milleman, J. L Potassium oxalate oral rinses for long-term relief from dentinal hypersensitivity: Three randomised controlled studies. <i>J Dent.</i> 2018. 70:23-30	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Limon-Pacheco, J. H., Jimenez-Cordova, M. I., Cardenas-Gonzalez, M., Sanchez Retana, I. M., Gonsebatt, M. E., Del Razo, L. M Potential co- exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. <i>Annals of Global Health.</i> 2018. 84:257-273	One or more exclusion criteria
L1	Lung, S. C., Cheng, H. W., Fu, C. B Potential exposure and risk of fluoride intakes from tea drinks produced in Taiwan. <i>Journal of Exposure Science & Environmental Epidemiology.</i> 2008. 18:158-66	One or more exclusion criteria
L1	Ding, L.,Yang, Q.,Yang, Y.,Ma, H.,Martin, J. D Potential risk assessment of groundwater to address the agricultural and domestic challenges in Ordos Basin. <i>Environmental Geochemistry & Health.</i> 2020. 03:03	One or more exclusion criteria
L1	Gai, Y.,Altine, B.,Han, N.,Lan, X Preclinical evaluation of a ¹⁸ F- labeled phosphatidylinositol 3-kinase inhibitor for breast cancer imaging. <i>Journal of Nuclear Medicine. Conference.</i> 2019. 60:#pages#	One or more exclusion criteria
L1	Altine, B.,Gai, Y.,Han, N.,Jiang, Y.,Ji, H.,Fang, H.,Niyonkuru, A.,Bakari, K. H.,Rajab Arnous, M. M.,Liu, Q.,Zhang, Y.,Lan, X Preclinical Evaluation of a Fluorine-18 ((18)F)-Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging. <i>Mol Pharm.</i> 2019. 16:4563-4571	One or more exclusion criteria
L1	Podgorski, J. E., Labhasetwar, P., Saha, D., Berg, M Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India. <i>Environmental Science & Technology.</i> 2018. 52:9889-9898	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Han, I. H Pregnancy and spinal problems. <i>Current Opinion in Obstetrics and Gynecology.</i> 2010. 22:477-481	One or more exclusion criteria
L1	Datta, A. S., Singh, R., Basu, D., Lahiri, S. C Preliminary clinical investigation on fluoride contamination in Nalhati subdivision (West Bengal);possible structural changes of water due to fluoride ion and related clinical aspects. <i>Journal of the Indian Chemical Society.</i> 2016. 93:1383-1388	One or more exclusion criteria
L1	Martínez-Acuña, M. I., Mercado-Reyes, M., Alegría-Torres, J. A., Mejía- Saavedra, J. J Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. <i>Environ Monit Assess.</i> 2016. 188:476	One or more exclusion criteria
L1	Dam, J.,Langkjaer, N.,Baun, C.,Olsen, B Preparation and evaluation of (18)F AIF-NOTA-NOC for PET imaging of neuroendocrine tumors. <i>Journal of</i> <i>Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S416-S417	One or more exclusion criteria
L1	Kong, Y.,Zhou, X.,Cao, G.,Xu, X.,Zou, M.,Qin, X.,Zhang, R Preparation of (99m)Tc-PQQ and preliminary biological evaluation for the NMDA receptor. <i>J Radioanal Nucl Chem.</i> 2011. 287:93-101	One or more exclusion criteria
L1	Lakshminarayanan, N.,Arjun, G.,Rajan, M. G. R Preparation of 18F- Fluoroethyltyrosine: Preliminary studies. <i>Indian Journal of Nuclear Medicine.</i> 2011. 1):S43	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Li, M. H., Chu, H. H., Chang, H. C., Feng, C. F Preparing of [¹⁸ F]INER-1577 as histone deacetylase (HDAC2) imaging agent for AD. <i>Molecular Imaging and Biology.</i> 2016. 18 (2 Supplement):S592-S593	One or more exclusion criteria
L1	Jarvis, H. G., Heslop, P., Kisima, J., Gray, W. K., Ndossi, G., Maguire, A., Walker, R. W Prevalence and aetiology of juvenile skeletal fluorosis in the south-west of the Hai district, Tanzaniaa community-based prevalence and case-control study. <i>Trop Med Int Health.</i> 2013. 18:222-9	
L1	Isaac, A., Silvia, W. D. C. R., Somanna, S. N., Mysorekar, V., Narayana, K., Srikantaiah, P Prevalence and manifestations of water-born fluorosis among schoolchildren in Kaiwara village of India: A preliminary study. <i>Asian Biomedicine</i> . 2009. 3:563-566	One or more exclusion criteria
L1	Carvalho, T. S.,Kehrle, H. M.,Sampaio, F. C Prevalence and severity of denta fluorosis among students from João Pessoa, PB, Brazil. <i>Braz Oral Res.</i> 2007. 21:198-203	Il One or more exclusion criteria
L1	Pretty, I. A.,Boothman, N.,Morris, J.,MacKay, L.,Liu, Z.,McGrady, M.,Goodwin, M Prevalence and severity of dental fluorosis in four English cities. <i>Community Dent Health.</i> 2016. 33:292-296	One or more exclusion criteria
L1	Beltrán-Aguilar, E. D.,Barker, L.,Dye, B. A Prevalence and severity of dental fluorosis in the United States, 1999-2004. <i>NCHS Data Brief.</i> 2010. #volume#:1 8	

Level	Bibliography	Reason for Exclusion
L1	Fan, Z.,Gao, Y.,Wang, W.,Gong, H.,Guo, M.,Zhao, S.,Liu, X.,Yu, B.,Sun, D Prevalence of Brick Tea-Type Fluorosis in the Tibet Autonomous Region. <i>J</i> <i>Epidemiol.</i> 2016. 26:57-63	One or more exclusion criteria
L1	Karthikeyan, K.,Nanthakumar, K.,Velmurugan, P.,Tamilarasi, S.,Lakshmanaperumalsamy, P Prevalence of certain inorganic constituents in groundwater samples of Erode district, Tamilnadu, India, with special emphasis on fluoride, fluorosis and its remedial measures. <i>Environmental Monitoring and</i> <i>Assessment.</i> 2010. 160:141-155	5
L1	Shekar, C., Cheluvaiah, M. B., Namile, D Prevalence of dental caries and dental fluorosis among 12 and 15 years old school children in relation to fluoride concentration in drinking water in an endemic fluoride belt of Andhra Pradesh. <i>Indian J Public Health.</i> 2012. 56:122-8	One or more exclusion criteria
L1	Veiga, N., Amaral, O., Pereira, C., Ribeiro, C., Arrimar, A., Coelho, I Prevalence of dental caries and fluorosis among a sample of adolescents living in a fluoridated and a non-fluoridated water region. <i>European Journal of</i> <i>Epidemiology.</i> 2013. 1):S226	One or more exclusion criteria
L1	Xia, Y.,Li, B. L.,Zhao, X. H.,Huang, Y. X.,Chen, J. K.,Chen, S. H.,Ou, H. Z.,Chen, S. X Prevalence of dental caries in Shantou City Guangdong Province fluorosis areas after water improvement. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2013. 32:309-311	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
_1	Kotecha, P. V., Patel, S. V., Bhalani, K. D., Shah, D., Shah, V. S., Mehta, K. G Prevalence of dental fluorosis & dental caries in association with high levels of drinking water fluoride content in a district of Gujarat, India. <i>Indian Journal of</i> <i>Medical Research.</i> 2012. 135:873-877	One or more exclusion criteria
_1	Sebastian, S. T., Soman, R. R., Sunitha, S Prevalence of dental fluorosis among primary school children in association with different water fluoride levels in Mysore district, Karnataka. <i>Indian Journal of Dental Research.</i> 2016. 27:151 4	
_1	Khatib, N.,Meghe, A. D Prevalence of dental fluorosis among primary school children in rural areas of INDIA. <i>Fluoride.</i> 2012. 45 (3 PART 1):185	One or more exclusion criteria
_1	Punitha, V. C., Sivaprakasam, P., Elango, R., Balasubramanian, R., Midhun Kumar, G. H., Sudhir Ben Nelson, B. T Prevalence of dental fluorosis in a non- endemic district of Tamil Nadu, India. <i>Biosciences Biotechnology Research</i> <i>Asia.</i> 2014. 11:159-163	One or more exclusion criteria
_1	Casanova-Rosado, A. J., Medina-Sols, C. E., Casanova-Rosado, J. F., Vallejos- Sanchez, A. A., de la Rosa-Santillana, R., Mendoza-Rodriguez, M., Villalobos- Rodelo, J. J., Maupome, G Prevalence of dental fluorosis in eight cohorts of Mexicans born in the establishment of the national domestic salt fluoridation. <i>Gaceta Medica de Mexico</i> . 2013. 149:27-35	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Zhang, Y.,Cheng, R.,Cheng, G.,Zhang, X Prevalence of dentine hypersensitivity in Chinese rural adults with dental fluorosis. <i>J Oral Rehabil.</i> 2014. 41:289-95	One or more exclusion criteria
L1	Pandey, A Prevalence of fluorosis in an endemic village in central India. <i>Trop</i> Doct. 2010. 40:217-9	One or more exclusion criteria
L1	Jaganmohan, P.,Narayana Rao, S. V. L.,Sambasiva Rao, K. R. S Prevalence of high fluoride concentration in drinking water in Nellore District, A.p., India: A biochemical study to develop the relation to renal failures. <i>World Journal of</i> <i>Medical Sciences.</i> 2010. 5:45-48	
L1	Sharma, J. D.,Sohu, D.,Jain, P Prevalence of neurological manifestations in a human population exposed to fluoride in drinking water. <i>Fluoride.</i> 2009. 42:127-132	a One or more exclusion criteria
L1	John, J.,Hariharan, M.,Remy, V.,Haleem, S.,Thajuraj, P. K.,Deepak, B.,Rajeev K. G.,Devang Divakar, D Prevalence of skeletal fluorosis in fisherman from Kutch coast, Gujarat, India. <i>Rocz Panstw Zakl Hig.</i> 2015. 66:379-82	r, One or more exclusion criteria
L1	Syme, S. L Preventing disease and promoting health: The need for some new thinking. <i>Sozial- und Praventivmedizin.</i> 2006. 51:247-248	v One or more exclusion criteria
L1	Susheela, A. K.,Toteja, G. S Prevention & control of fluorosis & linked disorders: Developments in the 21 st Century - Reaching out to	One or more exclusion criteria
1292		

Level	Bibliography	Reason for Exclusion
	patients in the community & hospital settings for recovery. Indian Journal of Medical Research. 2018. 148:539-547	
L1	Wang, H. J., Cui, J. L., Shan, J. L Prevention and control for endemic fluorosis in Pingdu County; current status analysis. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2007. 26:170-172	One or more exclusion criteria
L1	Mei, M. L., Ito, L., Chu, C. H., Lo, E. C. M., Zhang, C. F Prevention of dentine caries using silver diamine fluoride application followed by Er:YAG laser irradiation: an in vitro study. <i>Lasers in Medical Science</i> . 2014. 29:1785-1791	One or more exclusion criteria
L1	Korner, P., Wiedemeier, D. B., Attin, T., Wegehaupt, F. J Prevention of Enamel Softening by Rinsing with a Calcium Solution before Dental Erosion. <i>Caries</i> <i>research.</i> 2020. #volume#:1-7	One or more exclusion criteria
L1	 Zhang, L., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., Zhang, Z., Zou, Y Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas. <i>Environmental Pollution</i>. 2017. 222:118-125 	One or more exclusion criteria
L1	Zhang, L. E., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., Zhang, Z., Zou, Y Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas. <i>Environ Pollut.</i> 2017. 222:118-125	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Soderquist, C. Z., McNamara, B. K., Fisher, D. R Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. <i>Curr Radiopharm.</i> 2012. 5:244-52	One or more exclusion criteria
L1	Connett, P Professionals mobilize to end water fluoridation worldwide. <i>Fluoride</i> . 2007. 40:155-158	One or more exclusion criteria
L1	Li, B. Y., Yang, Y. M., Liu, Y., Sun, J., Ye, Y., Liu, X. N., Liu, H. X., Sun, Z. Q., Li, M., Cui, J., Sun, D. J., Gao, Y. H Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis. <i>PLoS One.</i> 2017. 12:e0171011	One or more exclusion criteria
L1	Holmquist, H., Schellenberger, S., van der Veen, I., Peters, G. M., Leonards, P. E. G., Cousins, I. T Properties, performance and associated hazards of state- of-the-art durable water repellent (DWR) chemistry for textile finishing. <i>Environment International.</i> 2016. 91:251-264	One or more exclusion criteria
L1	Awad, A.,Cipriani, A Prophylactic mood stabilization: What is the evidence for lithium exposure in drinking water?. <i>Bipolar Disorders.</i> 2017. 19:601-602	One or more exclusion criteria
L1	Bruton, T. A.,Blum, A Proposal for coordinated health research in PFAS- contaminated communities in the United States. <i>Environmental Health: A</i> <i>Global Access Science Source.</i> 2017. 16 (1) (no pagination):#pages#	One or more exclusion criteria
L1 1294	Wilhelm-Buchstab, T.,Thelen, C.,Leitzen, C.,Schmeel, L. C.,Mudder, T.,Oberste-Beulmann, S.,Schuller, H.,Rohner, F.,Garbe, S.,Schoroth,	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	F.,Simon, B.,Schild, H. H Protective effect on tissue using dental waterjet and dexpanthenol rinsing solution during radiotherapy in head and neck tumor patients. <i>Strahlentherapie und Onkologie.</i> 2016. 192 (1 Supplement 1):66	ł
L1	Rameshrad, M.,Razavi, B. M.,Hosseinzadeh, H Protective effects of green te and its main constituents against natural and chemical toxins: A comprehensive review. <i>Food and Chemical Toxicology</i> . 2017. 100:115-137	a One or more exclusion criteria
L1	Zhang, W.,Gao, Y. H.,Lin, L.,Sun, D. J Protective role of tea polyphenols in oxidative stress damage of the rat articular cartilage tissue caused by brick-tea fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:381-385	One or more exclusion criteria
L1	Das, N.,Das, A.,Sarma, K. P.,Kumar, M. Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. <i>Chemosphere.</i> 2018. 194:755-772	One or more exclusion criteria
L1	Qu, W.,Zheng, W.,Spencer, P.,Zheng, J.,Yang, L.,Han, F.,Yan, L.,Ma, W.,Zhou, Y.,Zheng, Y.,Wang, Y Public health concerns arising from interventions designed to circumvent polluted surface drinking water in Shenqi County, Henan, China. <i>The Lancet.</i> 2017. 390 (SPEC.ISS 1):87	One or more exclusion criteria u
L1	Berry, C Public health impact of food: Quantity, quality, supplements and appetites. <i>Toxicology Letters.</i> 2013. 1):S2	One or more exclusion criteria
L1	Schwenzer, N. F.,Schraml, C.,Muller, M.,Brendle, C.,Sauter, A.,Spengler, W.,Pfannenberg, A. C.,Claussen, C. D.,Schmidt, H Pulmonary lesion	One or more exclusion criteria
1295		

Level	Bibliography	Reason for Exclusion
	assessment: Comparison of whole-body hybrid MR/PET and PET/CT imaging - Pilot study. <i>Radiology.</i> 2012. 264:551-558	-
L1	Deepa, P.,Arun, R. N Quality assessment of drinking water in different localities of Manjeri. <i>International Journal of Pharmaceutical Sciences Review</i> <i>and Research.</i> 2013. 20:60-62	One or more exclusion criteria
L1	de Carvalho, A. M., Duarte, M. C., Ponezi, A. N Quality assessment of sulfurous thermal waters in the city of Pocos de caldas, Minas gerais, Brazil. <i>Environmental Monitoring & Assessment.</i> 2015. 187:563	One or more exclusion criteria
L1	Thitame, S. N., Somasundaram, K. V Quality of drinking water and associated health risks in rural Ahmednagar, Maharashtra, India. <i>Journal of Chemical and Pharmaceutical Research.</i> 2015. 7:660-663	
L1	Hayat, E.,Baba, A Quality of groundwater resources in Afghanistan. <i>Environmental Monitoring and Assessment.</i> 2017. 189 (7) (no pagination):#pages#	One or more exclusion criteria
L1	Tomlinson, R. E., Silva, M. J., Shoghi, K. I Quantification of skeletal blood flow and fluoride metabolism in rats using PET in a pre-clinical stress fracture model. <i>Mol Imaging Biol.</i> 2012. 14:348-54	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Tomlinson, R.,Silva, M. J.,Shoghi, K. I Quantification of skeletal blood flow and fluoride metabolism in rodents. <i>Molecular Imaging and Biology</i> . 2010. 2):S1412	One or more exclusion criteria
L1	Klomp, D.,van Laarhoven, H.,Scheenen, T.,Kamm, Y.,Heerschap, A Quantitative 19F MR spectroscopy at 3 T to detect heterogeneous capecitabine metabolism in human liver. <i>NMR in Biomedicine.</i> 2007. 20:485-92	One or more exclusion criteria
L1	Fernández Mdel, M., Wille, S. M., Kummer, N., Di Fazio, V., Ruyssinckx, E., Samyn, N Quantitative analysis of 26 opioids, cocaine, and their metabolites in human blood by ultra performance liquid chromatography-tandem mass spectrometry. <i>Ther Drug Monit.</i> 2013. 35:510-21	One or more exclusion criteria
L1	Jiang, F.,Lei, P.,Chen, Y.,Zuu, X.,Lao, P.,Pan, X Quantitative computed tomography measurement skeletal fluorosis rabbits bone density and the correlation with bone injury. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2017. 36:414-417	One or more exclusion criteria
L1	Maggitti, A. L.,Blum, L.,McMullin, M Quantitative testing for polychlorinated biphenyls (PCBs) in human serum utilizing gas chromatography tandem mass spectrometry (GC-MS/MS). <i>Clinical Chemistry.</i> 2016. 62 (10 Supplement 1):S112	One or more exclusion criteria
L1	Levine, K. E.,Redmon, J. H.,Elledge, M. F.,Wanigasuriya, K. P.,Smith, K.,Munoz, B.,Waduge, V. A.,Periris-John, R. J.,Sathiakumar, N.,Harrington, J.	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	M.,Womack, D. S.,Wickremasinghe, R Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples. <i>Environ Monit Assess.</i> 2016. 188:548	
L1	Taddei, C.,Pike, V Radiofluorination of a COX-1 specific ligand based on two nucleophilic addition strategies. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S115-S116	One or more exclusion criteria
L1	Lee, S. H.,Park, J. K.,Lee, S. Y.,Lee, J.,Ido, T Radiolabeling of SUV size liposome with hexadecyl-4-[¹⁸ F]fluorobenzoate ([¹⁸ F] HFB) for tumor imaging. <i>Journal of Labelled Compounds</i> <i>and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S373-S374	One or more exclusion criteria
L1	Helin, S.,Kirjavainen, A.,Arponen, E.,Forsback, S.,Marjamaki, P.,Haaparanta- Solin, M.,Bender, D.,Peters, D.,Solin, O Radiolabelling of the norepinephrine transporter ligand [^{11C}]NS8880 and its evaluation in the rat. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S103	One or more exclusion criteria
L1	Ozerskaya, A.,Belugin, K.,Tokarev, N.,Chanchikova, N.,Larkina, M.,Podrezova E.,Yusubov, M.,Belousov, M Radiopharmaceutical production technology at the Nuclear Medicine Centre Federal Siberian Research Clinical Centre, Russia. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S577	a, One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Olberg, D., Arukwe, J., Solbakken, M., Cuthbertson, A., Qu, H., Kristian, A., Hjelstuen, O Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with a novel [18F] fluorinated N-methylaminooxy containing prosthetic group. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2009. 1):S32	One or more exclusion criteria
L1	Graf, K.,Hellman, M.,Kavathas, S.,Dewey, S.,Schiffer, W.,Subramaniam, G.,Chaly, T Radiosynthesis and in vivo evaluation of [¹⁸ F]C8-ceramide analogues as potential tumor imaging agents. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S202	One or more exclusion criteria
L1	Yamamoto, F.,Yamahara, R.,Makino, A.,Kurihara, K.,Tsukada, H.,Hara, E.,Hara, I.,Kizaka-Kondoh, S.,Ohkubo, Y.,Ozeki, E.,Kimura, S Radiosynthesis and initial evaluation of (18)F labeled nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. <i>Nucl Med Biol.</i> 2013. 40:387-94	One or more exclusion criteria
L1	Honda, N.,Yoshimoto, M.,Mizukawa, Y.,Osaki, K.,Kanai, Y.,Kurihara, H.,Tateishi, H.,Takahashi, K Radiosynthesis of 2-[¹⁸ F]fluoro-4- borono-phenylaranine ([¹⁸ F]FBPA) using copper mediated oxidative aromatic nucleophilic [¹⁸ F]fluorination. <i>Journal of</i> <i>Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S512	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Brooks, A. F.,Rodnick, M. E.,Fawaz, M. V.,Desmond, T. J.,Scott, P. J. H Radiosynthesis of [¹⁸ F]gem-difluoroalkenes and [¹⁸ F]CF3 Groups-Preparation of [¹⁸ F]lansoprazole and related analogs for PET imaging of tau neurofibrillary tangles. <i>Journal of</i> <i>Labelled Compounds and Radiopharmaceuticals</i> . 2013. 1):S29	One or more exclusion criteria
L1	Malik, N.,Zlatopolskiy, B.,Voelter, W.,Solbach, C.,Machulla, H. J.,Reske, S. N Radiosynthesis of a new PSMA targeting ligand ([¹⁸ F]FPy-DUPA Pep). <i>NuklearMedizin.</i> 2011. 50 (2):A117-A118	
L1	Park, J. Y.,Son, J.,Yun, M.,Chun, J. H Radiosynthesis of mGlu5 PET tracer [¹⁸ F]PSS232 with protic solvent additives. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2017. 60 (Supplement 1):S289	One or more exclusion criteria
L1	Turkman, N.,Gelovani, J. G.,Alauddin, M Radiosynthesis of N5- [¹⁸ F]fluoroacetylornithine (N5-[¹⁸ F]FAO) for PET imaging of ornithine decarboxylase (ODC). <i>Molecular Imaging and Biology.</i> 2010. 2):S929	One or more exclusion criteria
L1	Baguet, T.,Verhoeven, J.,De Lombaerde, S.,Piron, S.,Descamps, B.,Vanhove, C.,Beyzavi, H.,De Vos, F Radiosynthesis, in vitro and in vivo evaluation of [¹⁸ F]Fluorphenylglutamine and [¹⁸ F]Fluorbiphenylglutamine as novel ASCT-2 directed tumor	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion		
	tracers. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62 (Supplement 1):S500-S502			
L1	Villeneuve, P. J., Morrison, H. I., Lane, R Radon and lung cancer risk: an extension of the mortality follow-up of the Newfoundland fluorspar cohort. <i>Health Phys.</i> 2007. 92:157-69	One or more exclusion criteria		
L1	Old, O. J., Isabelle, M., Lloyd, G., Kendall, C., Barr, H., Stone, N Raman mapping for pathology classification: The need for speed. <i>Gut.</i> 2015. 1):A485-A486	One or more exclusion criteria		
L1	Kirsch, M.,Schackert, G.,Salzer, R.,Krafft, C Raman spectroscopic imaging fo in vivo detection of cerebral brain metastases. <i>Anal Bioanal Chem.</i> 2010. 398:1707-13	r One or more exclusion criteria		
L1	Barr, H.,Isabelle, M.,Old, O.,Lloyd, G.,Lau, K.,Dorney, J.,Lewis, A.,Geraint, T.,Shepherd, N.,Bell, I.,Stone, N.,Kendall, C Raman spectroscopycancer diagnostic for pathology of barrett's oesophagus. <i>Gut.</i> 2016. 65 (Supplement 1):A177	One or more exclusion criteria		
L1	Aljammaz, I., Al-Otaibi, B., Aboussekhra, A., Okarvi, S Rapid and one-step radiofluorination of bioactive peptides: Potential PET radiopharmaceutical. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2013. 2):S281- S282	One or more exclusion criteria		

Level	Bibliography	Reason for Exclusion
_1	Valdora, F.,Houssami, N.,Rossi, F.,Calabrese, M.,Tagliafico, A. S Rapid review: radiomics and breast cancer. <i>Breast Cancer Res Treat.</i> 2018. 169:217- 229	One or more exclusion criteria
_1	Lisova, K., Chen, B. Y., Wang, J., Fong, K. M., Clark, P. M., van Dam, R. M Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[(18)F]fluoroethyl)-L-tyrosine ([(18)F]FET). <i>EJNMMI Radiopharm Chem.</i> 2019. 5:1	One or more exclusion criteria
_1	Family, L.,Zheng, G.,Cabezas, M.,Cloud, J.,Hsu, S.,Rubin, E.,Smith, L. V.,Kuo, T Reasons why low-income people in urban areas do not drink tap water. <i>J Am Dent Assoc.</i> 2019. 150:503-513	One or more exclusion criteria
_1	Craig, L.,Lutz, A.,Berry, K. A.,Yang, W Recommendations for fluoride limits in drinking water based on estimated daily fluoride intake in the Upper East Region, Ghana. <i>Science of the Total Environment.</i> 2015. 532:127-37	One or more exclusion criteria
_1	Kurland, E. S., Schulman, R. C., Zerwekh, J. E., Reinus, W. R., Dempster, D. W., Whyte, M. P Recovery from skeletal fluorosis (an enigmatic, American case). <i>J Bone Miner Res.</i> 2007. 22:163-70	One or more exclusion criteria
.1	Tripathi, M.,Gupta, R.,Sharma, U. D Recovery of adverse effects induced by fluoride after ascorbic acid treatment in Channa punctatus (bloch). <i>Journal of Ecophysiology and Occupational Health.</i> 2008. 8:147-152	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Laursen, K.,White, T. J.,Cresswell, D. J. F.,Wainwright, P. J.,Barton, J. R Recycling of an industrial sludge and marine clay as light-weight aggregates. <i>Journal of Environmental Management.</i> 2006. 80:208-213	One or more exclusion criteria
L1	Ishibashi, K.,Kawasaki, K.,Ishiwata, K.,Ishii, K Reduced uptake of 18F-FDG and 15O-H2O in Alzheimer's disease-related regions after glucose loading. <i>J Cereb Blood Flow Metab.</i> 2015. 35:1380-5	One or more exclusion criteria
L1	Indermitte, E.,Saava, A.,Karro, E Reducing exposure to high fluoride drinking water in Estonia-a countrywide study. <i>International Journal of Environmental Research & Public Health [Electronic Resource]</i> . 2014. 11:3132-42	One or more exclusion criteria
L1	Cherng, A. M., Takagi, S., Chow, L Reduction in dentin permeability using a slurry containing dicalcium phosphate and calcium hydroxide. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials.</i> 2006. 78:291-MA	One or more exclusion criteria
L1	Manne, M.,Validandi, V.,Khandare, A. L Reduction of fluoride toxicity by tamarind components: An in silico study. <i>Fluoride.</i> 2018. 51:122-136	One or more exclusion criteria
L1	Mandinic, Z., Curcic, M., Antonijevic, B., Carevic, M Relationship between dental fluorosis and fluoride content in hair of schoolchildren from fluorotic and non-fluorotic regions in Serbia. <i>Toxicology Letters.</i> 2009. 1):S236	One or more exclusion criteria
L1	Mandinic, Z., Curcic, M., Antonijevic, B., Lekic, C. P., Carevic, M Relationship between fluoride intake in Serbian children living in two areas with different	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	natural levels of fluorides and occurrence of dental fluorosis. <i>Food and Chemical Toxicology.</i> 2009. 47:1080-1084	
L1	 Yang, C. C., Li, B. L., Zhao, X. H., Huang, Y. X., Chen, J. K., Chen, S. H., Zhang, G. S., Ou, H. H., Chen, S. X Relationship between urinary fluoride level, incidences of dental fluorosis and caries of children in fluorosis areas after change of water sources. [Chinese]. <i>Chinese Journal of Endemiology</i>. 2013. 32:673-676 	One or more exclusion criteria
L1	Xiang, Q.,Zhou, M.,Wu, M.,Zhou, X.,Lin, L.,Huang, J.,Liang, Y Relationships between daily total fluoride intake and dental fluorosis and dental caries. <i>Journal of Nanjing Medical University.</i> 2009. 23:33-39	One or more exclusion criteria
L1	de Vries, A.,Moonen, R.,Yildirim, M.,Langereis, S.,Lamerichs, R.,Pikkemaat, J. A.,Baroni, S.,Terreno, E.,Nicolay, K.,Strijkers, G. J.,Grull, H Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. <i>Contrast Media and Molecular Imaging.</i> 2014. 9:83-91	One or more exclusion criteria
L1	Mirhashemi, A. H., Jahangiri, S., Kharrazifard, M. J Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes. <i>Progress in Orthodontics.</i> 2018. 19 (1) (no pagination):#pages#	One or more exclusion criteria
L1	Shen, J., Schafer, A Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. <i>Chemosphere.</i> 2014. 117:679-691	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jha, A. K., Mishra, B Removal of fluoride by bentonite minerals of Rajmahal Hills. <i>Journal of the Indian Chemical Society</i> . 2012. 89:519-521	One or more exclusion criteria
L1	Solangi, I. B., Memon, S., Bhanger, M. I Removal of fluoride from aqueous environment by modified Amberlite resin. <i>Journal of Hazardous Materials.</i> 2009. 171:815-9	One or more exclusion criteria
L1	Akafu, T., Chimdi, A., Gomoro, K Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide. <i>J Anal Methods</i> <i>Chem.</i> 2019. 2019:4831926	One or more exclusion criteria
L1	Ganvir, V.,Das, K Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash. <i>Journal of Hazardous Materials</i> . 2011. 185:1287-94	One or more exclusion criteria
L1	Ramaiah, K. P.,Satyasri, D.,Sridhar, S.,Krishnaiah, A Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers. <i>J Hazard Mater.</i> 2013. 261:362-71	One or more exclusion criteria
L1	Tran, H. N., Nguyen, H. C., Woo, S. H., Nguyen, T. V., Vigneswaran, S., Hossein, Bandegharaei, A., Rinklebe, J., Kumar Sarmah, A., Ivanets, A., Dotto, G. L., Bui, T. T., Juang, R. S., Chao, H. P Removal of various contaminants from water b renewable lignocellulose-derived biosorbents: a comprehensive and critical	

Level	Bibliography	Reason for Exclusion				
	review. <i>Critical Reviews in Environmental Science and Technology.</i> 2019. 49:2155-2219					
L1	Sen, S. K.,Rattan, R.,Meenakshi, V.,Sripradha,,Kumar, A.,Nanda, N Renal stones analysis: Our experience at Pondicherry institute of medical sciences. <i>Biomedicine (India).</i> 2009. 29:284-285	One or more exclusion criteria				
L1	Rocha, M. J. A., Tazinafo, L. F., Basso, P. J., Silva, M. F Replacing laboratory animals by alternative material for teaching diabetes in practical classes. <i>FASEB Journal. Conference: Experimental Biology.</i> 2012. 26:#pages#	One or more exclusion criteria				
L1	Whelan, E. M. Reply. <i>MedGenMed Medscape General Medicine</i> . 2008. 10 (4) (no pagination):#pages#	One or more exclusion criteria				
L1	Sun, D Report on the surveillance of endemic fluorosis of drinking water type in China in 2005 and 2006. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:175-180	One or more exclusion criteria				
L1	 Wei, S. Y., Ding, P., Ding, S. R., Zhang, H. Y., Li, S. B., Zhang, X. L., Chen, W. G., Lu, A., Li, Y. F Report on the surveillance results of endemic fluorosis in Qinghai Province in 2007. [Chinese]. <i>Chinese Journal of Endemiology</i>. 2008. 27:671-672 	One or more exclusion criteria				
L1	Khandare, A. L Report on the XXXIIIRD conference of the international society for fluoride research, debilitating fluorosis: Current status, health	One or more exclusion criteria				

Level	Bibliography	Reason for Exclusion			
	challenges, and mitigation measures, Hyderabad, India, November 9-11, 2016. <i>Fluoride.</i> 2016. Part 2. 49:467-470				
L1	Ema, M.,Naya, M.,Yoshida, K.,Nagaosa, R Reproductive and developmental toxicity of degradation products of refrigerants in experimental animals. <i>Reprod Toxicol.</i> 2010. 29:1-9				
L1	Hong, F.,Cao, Y.,Yang, D.,Wang, H Research on the effects of fluoride on child intellectual development under different environmental conditions. <i>Fluoride</i> . 2008. 41:156-160	One or more exclusion criteria			
L1	Chen, Y.,Han, F.,Zhou, Z.,Zhang, H.,Jiao, X.,Zhang, S.,Huang, M.,Chang, T.,Dong, Y Research on the intellectual development of children in high fluoride areas. <i>Fluoride.</i> 2008. 41:120-124	One or more exclusion criteria			
L1	Kumar, A.,Bajpai, S.,Tripathi, N.,Tripathi, M Respiratory response of asian catfish, clarias batrachus, to fluoride. <i>Fluoride.</i> 2010. 43:119-123	One or more exclusion criteria			
L1	Frood, R.,McDermott, G.,Scarsbrook, A Respiratory-gated PET/CT for pulmonary lesion characterisation-promises and problems. <i>Br J Radiol.</i> 2018. 91:20170640	One or more exclusion criteria			
L1	Farooqi, A.,Zafar, M. I Response to "Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk	One or more exclusion criteria			

assessment"	by R	Rasool e	et al.	2015.	Environ	Sci	Pollut	Res	Int.	2016.	23:1	3578-	
80													

- L1 Gartenschläger, M.,Schreckenberger, M.,Buchholz, H. G.,Reiner, I.,Beutel, M. One or more exclusion criteria
 E.,Adler, J.,Michal, M.,Jing, C.,Cui, J.,Huang, Y.,Li, A.. Resting Brain Activity
 Related to Fabrication, characterization, and application of a composite
 adsorbent for simultaneous removal of arsenic and fluoride. Mindfulness (N Y).
 2017. 8:1009-1017 Dispositional Mindfulness: a PET Study
- L1 Wu, J. Q., Dai, C. F., Wu, H. Y., Feng, G. H., Du, G. X.. Results of the national One or more exclusion criteria surveillance on endemic fluorosis in Fengshun County of Guangdong Province in 2005-2006. [Chinese]. *Chinese Journal of Endemiology*. 2008. 27:673-674
- L1 Zhang, H. M.,Luo, Z. W.,Nie, J.,Wen, T. A.,Ping, B.. Retrospective analysis of One or more exclusion criteria prevention of fluorosis of coal-burning type in Longli County, Guizhou.
 [Chinese]. *Chinese Journal of Endemiology.* 2006. 25:713-715
- L1 Selvam, P.,Bharatwaj, B.,Porcar, L.,da Rocha, S. R.. Reverse aqueous One or more exclusion criteria microemulsions in hydrofluoroalkane propellants and their aerosol characteristics. *Int J Pharm.* 2012. 422:428-35
- L1 Gebrewold, M. A.. Review article: Neurological complications of endemic One or more exclusion criteria skeletal fluorosis in Ethiopia. *European Journal of Neurology.* 2012. 19 (SUPPL.1):801

Level	Bibliography	Reason for Exclusion
L1	Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., Singh, P Review of fluoride removal from drinking water. <i>Journal of Environmental Management</i> . 2009. 91:67-77	One or more exclusion criteria
_1	Carton, R. J Review of the 2006 United States National Research Council report: Fluoride in drinking water. <i>Fluoride.</i> 2006. 39:163-172	One or more exclusion criteria
_1	Satur, J. G., Gussy, M. G., Morgan, M. V., Calache, H., Wright, C Review of the evidence for oral health promotion effectiveness. <i>Health Education Journal</i> . 2010. 69:257-266	One or more exclusion criteria
_1	Jarquin-Yanez, L.,Mejia-Saavedra, J.,Molina-Frechero, N.,Pozos-Guillen, A.,Alvarez, G Risk assessment by exposure to fluorine through water consumption, by determining susceptibility biomarkers and effect in child population of San Luis Potosi. <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S123-S124	One or more exclusion criteria
.1	Guissouma, W.,Hakami, O.,Al-Rajab, A. J.,Tarhouni, J Risk assessment of fluoride exposure in drinking water of Tunisia. <i>Chemosphere.</i> 2017. 177:102-108	One or more exclusion criteria
_1	Waugh, D. T., Potter, W., Limeback, H., Godfrey, M Risk assessment of fluoride intake from tea in the republic of ireland and its implications for public health and water fluoridation. <i>International Journal of Environmental Research and Public Health.</i> 2016. 13 (3) (no pagination):#pages#	e One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Nakatani, K.,Nakamoto, Y.,Togashi, K Risk factors for extensive skeletal muscle uptake in oncologic FDG-PET/CT for patients undergoing a 4-h fast. <i>Nuclear Medicine Communications.</i> 2012. 33:648-655	One or more exclusion criteria
L1	Arulazhagan, P.,Vasudevan, N Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. <i>Mar Pollut Bull.</i> 2009. 58:256-62	One or more exclusion criteria
L1	Liu, Q. B.,Liu, X. B.,Wang, S. J.,Liu, X. H.,Yu, B.,Jiang, Z. L.,Wang, Z. J.,Zhou, M. R.,Zhang, X. K.,Tian, S. C Role of brick tea with low-fluoride level in prevention of tea type fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:156-158	One or more exclusion criteria
L1	Daiwile, A. P., Tarale, P., Sivanesan, S., Naoghare, P. K., Bafana, A., Parmar, D., Kannan, K Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis. <i>Ecotoxicol Environ Saf.</i> 2019. 169:410-417	One or more exclusion criteria
_1	Chen, Y.,Li, H.,Li, M.,Niu, S.,Wang, J.,Shao, H.,Li, T.,Wang, H Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-kB signaling pathways. <i>J Ethnopharmacol.</i> 2017. 200:165-173	One or more exclusion criteria
L1	Wang, Z. L Sanitation of rural drinking water and endemic fluorosis in Hunyuan county of Shanxi province: An analysis of monitoring results. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:309-311	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Khandare, H. W. Scenario of nitrate contamination in groundwater: Its causes and prevention. <i>International Journal of ChemTech Research</i> . 2013. 5:1921- 1926	One or more exclusion criteria
L1	Allukian, M., Carter-Pokras, O. D., Gooch, B. F., Horowitz, A. M., Iida, H., Jacob, M., Kleinman, D. V., Kumar, J., Maas, W. R., Pollick, H., Rozier, R. G., Science, Politics, and Communication: The Case of Community Water Fluoridation in the US. <i>Annals of Epidemiology</i> . 2018. 28:401-410	One or more exclusion criteria
L1	 Kudinov, K. A., Cooper, D. R., Ha, J. K., Hill, C. K., Nadeau, J. L., Seuntjens, J. P., Bradforth, S. E Scintillation Yield Estimates of Colloidal Cerium-Doped LaF(3) Nanoparticles and Potential for "Deep PDT". <i>Radiat Res.</i> 2018. 190:28-36 	One or more exclusion criteria
L1	Kudinov, K. A., Cooper, D. R., Ha, J. K., Hill, C. K., Nadeau, J. L., Seuntjens, J. P., Bradforth, S. E Scintillation Yield Estimates of Colloidal Cerium-Doped LaF ₃ Nanoparticles and Potential for "Deep PDT". <i>Radiation Research.</i> 2018. 190:28-36	One or more exclusion criteria
L1	Zhu, C.,Bai, G.,Liu, X.,Li, Y Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shaanxi province in western China. <i>Water Research.</i> 2006. 40:3015-22	One or more exclusion criteria
L1	Sergeev, M., Morgia, F., Lazari, M., Van Dam, R Screening of catalytic activity of transition metal oxides in radiofluorination of tosylated substrates in highly	One or more exclusion criteria
1311		

.evel	Bibliography	Reason for Exclusion
	aqueous media. European Journal of Nuclear Medicine and Molecular Imaging 2014. 2):S244	g.
_1	Ebrahim, F. M., Nguyen, T. N., Shyshkanov, S., Gladysiak, A., Favre, P., Zacharia, A., Itskos, G., Dyson, P. J., Stylianou, K. C Selective, Fast- Response, and Regenerable Metal-Organic Framework for Sampling Excess Fluoride Levels in Drinking Water. <i>Journal of the American Chemical Society.</i> 2019. 141:3052-3058	One or more exclusion criteria
.1	Linhares, D. P. S., Garcia, P. V., Amaral, L., Ferreira, T., Cury, J. A., Vieira, W., Rodrigues, A. D. S Sensitivity of two biomarkers for biomonitoring exposure to fluoride in children and women: A study in a volcanic area. <i>Chemosphere.</i> 2016. 155:614-620	One or more exclusion criteria
.1	Jahanshahi, M.,Kowsari, E.,Haddadi-Asl, V.,Khoobi, M.,Lee, J. H.,Kadumudi, F. B.,Talebian, S.,Kamaly, N.,Mehrali, M Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting. <i>Int J Pharm.</i> 2019. 572:118791	One or more exclusion criteria
_1	Fernando, W. B. N. T., Nanayakkara, N., Gunarathne, L., Chandrajith, R Serum and urine fluoride levels in populations of high environmental fluoride exposure with endemic CKDu: a case-control study from Sri Lanka. <i>Environmental</i> <i>geochemistry and health</i> 2019. 22:#pages#	

Level	Bibliography	Reason for Exclusion
L1	Ba, Y.,Zhu, J. Y.,Yang, Y. J.,Yu, B.,Huang, H.,Wang, G.,Ren, L. J.,Cheng, X. M.,Cui, L. X.,Zhang, Y. W Serum calciotropic hormone levels, and dental fluorisis in children exposed to different concentrations of fluoride and iodine in drinking water. <i>Chin Med J (Engl).</i> 2010. 123:675-9	One or more exclusion criteria
L1	Koroglu, B. K., Ersoy, I. H., Koroglu, M., Balkarli, A., Ersoy, S., Varol, S., Tamer, M. N Serum parathyroid hormone levels in chronic endemic fluorosis. <i>Biological Trace Element Research.</i> 2011. 143:79-86	One or more exclusion criteria
L1	Flueck, W. T., Smith-Flueck, J. A Severe dental fluorosis in juvenile deer linked to a recent volcanic eruption in Patagonia. <i>J Wildl Dis.</i> 2013. 49:355-66	One or more exclusion criteria
L1	Fioravanti, A., Tenti, S., Giannitti, C., Fortunati, N. A., Galeazzi, M Short- and long-term effects of mud-bath treatment on hand osteoarthritis: A randomized clinical trial. <i>International Journal of Biometeorology.</i> 2014. 58:79-86	One or more exclusion criteria
L1	Yap, H. Y., Fung, S. Y., Ng, S. T., Tan, C. S., Tan, N. H Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. <i>J Ethnopharmacol.</i> 2015. 174:437-51	One or more exclusion criteria
L1	Kim, M.,Lee, S. J.,Ko, N. R.,Kim, D. H.,Kim, J. S.,Oh, S. J Simple and fully automatic production of [¹⁸ F]fluorodeprenyl-D2 using FXFN chemistry module. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2019. 62 (Supplement 1):S332	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Hyun, J. S.,Lee, S. J.,Ryu, J. S.,Oh, S. J Simple and high yield production of 3'-deoxy-3'-[¹⁸ F]fluorothymidine([¹⁸ F]FLT) using SPE method and the minimum precursor amount. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S463	One or more exclusion criteria
L1	Nandy, S. K., Chakraborty, A., Pawar, Y., Moghe, S. H., Rajan, M. G. R Simplified and automated synthesis of o-(2-[18f]fluoroethyl)-l-tyrosine ([18f]fet) using a single pot, two-stage procedure and solid-phase extraction purification. <i>European Journal of Nuclear Medicine and Molecular Imaging.</i> 2014. 2):S421	One or more exclusion criteria
L1	Soloviev, D.,Lewis, D. Y.,Ros, S.,Hu, D. E.,D'Santos, P.,Brindle, K. M Simplified synthesis of [18F]tetrafluoroborate for NIS reporter imaging by PET. <i>Molecular Imaging and Biology.</i> 2016. 18 (2 Supplement):S1197-S1198	One or more exclusion criteria
L1	Zhuang, X. M.,Liu, P. X.,Zhang, Y. J.,Li, C. K.,Li, Y.,Wang, J.,Zhou, L.,Zhang, Z. Q Simultaneous determination of triptolide and its prodrug MC002 in dog blood by LC-MS/MS and its application in pharmacokinetic studies. <i>J Ethnopharmacol.</i> 2013. 150:131-7	One or more exclusion criteria
L1	Komori, K.,Nada, J.,Nishikawa, M.,Notsu, H.,Tatsuma, T.,Sakai, Y Simultaneous evaluation of toxicities using a mammalian cell array chip prepared by photocatalytic lithography. <i>Anal Chim Acta.</i> 2009. 653:222-7	One or more exclusion criteria
L1	Ingallinella, A. M., Pacini, V. A., Fernandez, R. G., Vidoni, R. M., Sanguinetti, G Simultaneous removal of arsenic and fluoride from groundwater by	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	coagulation-adsorption with polyaluminum chloride. <i>Journal of Environmental</i> Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2011. 46:1288-1296	
L1	Schofield, R. C., Mendu, D., Ramanathan, L. V., Pessin, M. S., Carlow, D. C Simultaneous sensitive quantitation of testosterone and estradiol in serum by LC-MS/MS without derivatization. <i>Clinical Chemistry</i> . 2015. 1):S78-S79	One or more exclusion criteria
L1	Bajpai, A.,Lakshminarayanan, N.,Khushwaha, K.,Banerjee, S Simultaneous synthesis of O-(2'-[¹⁸ F] fluoroethyltyrosine and [¹⁸ F fluoromisonidazole using solid phase extraction method. <i>Indian Journal of</i> <i>Nuclear Medicine.</i> 2017. 32 (5 Supplement 1):S15	One or more exclusion criteria
L1	Guo, H.,Qian, H.,Idris, N. M.,Zhang, Y Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. <i>Nanomedicine.</i> 2010. 6:486-95	One or more exclusion criteria
L1	Kumar, H.,Boban, M.,Tiwari, M Skeletal fluorosis causing high cervical myelopathy. <i>J Clin Neurosci.</i> 2009. 16:828-30	One or more exclusion criteria
L1	Izuora, K.,Twombly, J. G.,Whitford, G. M.,Demertzis, J.,Pacifici, R.,Whyte, M. P Skeletal fluorosis from brewed tea. <i>J Clin Endocrinol Metab.</i> 2011. 96:2318 24	

Level	Bibliography	Reason for Exclusion
L1	Whyte, M. P., Totty, W. G., Lim, V. T., Whitford, G. M Skeletal fluorosis from instant tea. <i>J Bone Miner Res.</i> 2008. 23:759-69	One or more exclusion criteria
L1	Fabreau, G. E.,Bauman, P.,Coakley, A. L.,Johnston, K.,Kennel, K. A.,Gifford, J. L.,Sadrzadeh, H. M.,Whitford, G. M.,Whyte, M. P.,Kline, G. A Skeletal fluorosis in a resettled refugee from Kakuma refugee camp. <i>Lancet.</i> 2019. 393:223-225	One or more exclusion criteria
L1	Mohammadi, A. A., Yousefi, M., Yaseri, M., Jalilzadeh, M., Mahvi, A. H Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. <i>Sc Rep.</i> 2017. 7:17300	
L1	Hewavithana, P. B., Jayawardhane, W. M., Gamage, R., Goonaratna, C Skeletal fluorosis in Vavuniya District: an observational study. <i>Ceylon Med J.</i> 2018. 63:139-142	One or more exclusion criteria
L1	Kumar, S.,Kakar, A.,Gogia, A.,Byotra, S. P Skeletal fluorosis mimicking seronegative spondyloarthropathy: A deceptive presentation. <i>Tropical Doctor</i> . 2011. 41:247-248	One or more exclusion criteria
L1	Crowley, H Skeletal fluorosis: As encountered in rural India and its implications for physiotherapists in Asia and Africa. <i>Physiotherapy (United Kingdom).</i> 2011. 1):eS1464	One or more exclusion criteria
L1	McNally, R.,Blakey, K.,Feltbower, R.,Parslow, R.,James, P.,Pozo, B. G.,Stiller, C.,Vincent, T.,Norman, P.,McKinney, P.,Murphy, M.,Craft, A Small-area	One or more exclusion criteria
1316		

Level	Bibliography	Reason for Exclusion
	analyses of bone cancer in Great Britain, 1980-2005. <i>Pediatric Blood and Cancer.</i> 2010. 55 (5):932-933	
_1	Karunanidhi, D., Aravinthasamy, P., Kumar, D., Subramani, T., Roy, P. D Sobol sensitivity approach for the appraisal of geomedical health risks associated with oral intake and dermal pathways of groundwater fluoride in a semi-arid region of south India. <i>Ecotoxicol Environ Saf.</i> 2020. 194:110438	One or more exclusion criteria
_1	Frazao, P.,Capel Narvai, P Socio-environmental factors associated with dental occlusion in adolescents. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> . 2006. 129:809-816	One or more exclusion criteria
_1	 Bansal, A.,Peng, K. W.,Pandey, M. K.,Suksanpaisan, L.,Russell, S. J.,DeGrado, T. R Sodium [¹⁸F]Tetrafluoroborate ([¹⁸F]BF4) as a sodium/iodide symporter gene therapy reporter probe: Synthesis and effect of specific activity in a C6 glioma xenografted mice <i>Molecular Imaging and Biology.</i> 2013. 1):S117 	One or more exclusion criteria
_1	Sato, M.,Hanmoto, T.,Yachiguchi, K.,Tabuchi, Y.,Kondo, T.,Endo, M.,Kitani, Y.,Sekiguchi, T.,Urata, M.,Hai, T. N.,Srivastav, A. K.,Mishima, H.,Hattori, A.,Suzuki, N Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassius auratus. <i>Comparative Biochemistry and Physiology Part - C:</i> <i>Toxicology and Pharmacology.</i> 2016. 189:54-60	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Lu, X.,Wang, F.,Xu, C.,Soodvilai, S.,Peng, K.,Su, J.,Zhao, L.,Yang, K. T.,Feng, Y.,Zhou, S. F.,Gustafsson, J. Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. <i>Proc</i> <i>Natl Acad Sci U S A</i> . 2016. 113:E1898-906	One or more exclusion criteria
L1	Firempong, C.,Nsiah, K.,Awunyo-Vitor, D.,Dongsogo, J Soluble fluoride levels in drinking water-a major risk factor of dental fluorosis among children in Bongo community of Ghana. <i>Ghana medical journal.</i> 2013. 47:16-23	
L1	Ghosh, S.,Rabha, R.,Chowdhury, M.,Padhy, P. K Source and chemical species characterization of PM(10) and human health risk assessment of semi- urban, urban and industrial areas of West Bengal, India. <i>Chemosphere.</i> 2018. 207:626-636	One or more exclusion criteria
L1	Kumar, R.,Mittal, S.,Sahoo, P. K.,Sahoo, S. K Source apportionment, chemometric pattern recognition and health risk assessment of groundwater from southwestern Punjab, India. <i>Environ Geochem Health.</i> 2020. #volume#:#pages#	One or more exclusion criteria
L1	Atallah, A. N Sources of evidence. <i>Sao Paulo Medical Journal.</i> 2008. 126:73-74	One or more exclusion criteria
L1	Sakizadeh, M., Ahmadpour, E., Sharafabadi, F. M Spatial analysis of chromium in southwestern part of Iran: probabilistic health risk and multivariate global sensitivity analysis. <i>Environ Geochem Health.</i> 2019. 41:2023-2038	n One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Chen, H.,Yan, M.,Yang, X.,Chen, Z.,Wang, G.,Schmidt-Vogt, D.,Xu, Y.,Xu, J Spatial distribution and temporal variation of high fluoride contents in groundwater and prevalence of fluorosis in humans in Yuanmou County, Southwest China. <i>Journal of Hazardous Materials.</i> 2012. 235-236:201-9	One or more exclusion criteria
L1	Chowdhury, C. R., Shahnawaz, K., Kumari, D., Chowdhury, A., Bedi, R., Lynch, E., Harding, S., Grootveld, M Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects. <i>Perspectives in Public Health.</i> 2016. 136:353-360	One or more exclusion criteria
L1	Zhang, L.,Zhao, L.,Zeng, Q.,Fu, G.,Feng, B.,Lin, X.,Liu, Z.,Wang, Y.,Hou, C Spatial distribution of fluoride in drinking water and health risk assessment of children in typical fluorosis areas in north China. <i>Chemosphere.</i> 2020. 239:124811	One or more exclusion criteria
L1	Ranasinghe, N.,Kruger, E.,Tennant, M Spatial distribution of groundwater fluoride levels and population at risk for dental caries and dental fluorosis in Sri Lanka. <i>Int Dent J.</i> 2019. 69:295-302	One or more exclusion criteria
L1	Yousefi, M., Asghari, F. B., Zuccarello, P., Conti, G. O., Ejlali, A., Mohammadi, A. A., Ferrante, M Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: A case study in an endemic fluorosis region of northwest Iran. <i>Int J Environ Res Public Health.</i> 2019. 16 (4) (no pagination):#pages#	

Level	Bibliography	Reason for Exclusion
L1	Wyss, M. T., Hofer, S., Hefti, M., Bärtschi, E., Uhlmann, C., Treyer, V., Roelcke, U. Spatial heterogeneity of low-grade gliomas at the capillary level: a PET study on tumor blood flow and amino acid uptake. <i>J Nucl Med.</i> 2007. 48:1047-52	. One or more exclusion criteria
L1	Zheng, D.,Liu, Y.,Luo, L.,Shahid, M. Z.,Hou, D Spatial variation and health risk assessment of fluoride in drinking water in the Chongqing urban areas, China. <i>Environ Geochem Health.</i> 2020. #volume#:#pages#	One or more exclusion criteria
L1	Fallahzadeh, R. A., Miri, M., Taghavi, M., Gholizadeh, A., Anbarani, R., Hosseini- Bandegharaei, A., Ferrante, M., Oliveri Conti, G Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water. <i>Food</i> <i>Chem Toxicol.</i> 2018. 113:314-321	One or more exclusion criteria
L1	Sisay, T.,Beyene, A.,Alemayehu, E Spatiotemporal variability of drinking water quality and the associated health risks in southwestern towns of Ethiopia <i>Environ Monit Assess.</i> 2017. 189:569	One or more exclusion criteria
L1	Saifullah, N., Ahmed, I., Qayyum, S., Khan, N., Hameed Khan, M Spirometry changes due to prolonged exposure to high level of fluoride in drinking water. <i>European Respiratory Journal. Conference: European Respiratory Society Annual Congress.</i> 2013. 42:#pages#	One or more exclusion criteria
L1	de Silva-Sanigorski, A. M., Waters, E., Calache, H., Smith, M., Gold, L., Gussy, M., Scott, A., Lacy, K., Virgo-Milton, M Splash!: a prospective birth cohort study of the impact of environmental, social and family-level influences on child oral	One or more exclusion criteria
1320		

Level	Bibliography	Reason for Exclusion
	health and obesity related risk factors and outcomes. <i>BMC Public Health.</i> 2011. 11:505	
L1	Kaisam, J. P.,Kawa, Y. K.,Moiwo, J. P.,Lamboi, U State of well-water quality in Kakua Chiefdom, Sierra Leone. <i>Water Science and Technology: Water</i> <i>Supply.</i> 2016. 16:1243-1254	One or more exclusion criteria
L1	Nagaraju, A., Thejaswi, A., Sun, L Statistical analysis of high fluoride groundwater hydrochemistry in Southern India: Quality assessment and implications for source of fluoride. <i>Environmental Engineering Science</i> . 2016. 33:471-477	One or more exclusion criteria
L1	Usman, A.,Kontagora, N. M Statistical process control on production: A case study of some basic chemicals used in pure water production. <i>Pakistan Journa of Nutrition</i> . 2010. 9:387-391	
L1	Choubisa, S. L., Choubisa, D Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India. <i>Environmental science and pollution research international.</i> 2016. 23:7244-7254	One or more exclusion criteria
L1	Gryshuk, A.,Chen, Y.,Goswami, L. N.,Pandey, S.,Missert, J. R.,Ohulchanskyy, T.,Potter, W.,Prasad, P. N.,Oseroff, A.,Pandey, R. K Structure-activity relationship among purpurinimides and bacteriopurpurinimides: trifluoromethyl	One or more exclusion criteria

evel	Bibliography	Reason for Exclusion
	substituent enhanced the photosensitizing efficacy. <i>J Med Chem.</i> 2007. 50:1754-67	
1	Rathore, S.,Meena, C.,Gonmei, Z.,Toteja, G. S.,Bala, K Study of excess fluoride ingestion and effect on liver enzymes in children living in Jodhpur district of Rajasthan. <i>Indian Journal of Public Health Research and Development.</i> 2018. 9:412-416	One or more exclusion criteria
1	Rathore, S.,Meena, C.,Gonmei, Z.,Dwivedi, S.,Toteja, G. S.,Bala, K Study of excess fluoride ingestion and thyroid hormone derangement in relation with different fluoride levels in drinking water among children of Jodhpur District, Rajasthan, India. <i>Asian Journal of Microbiology, Biotechnology and</i> <i>Environmental Sciences.</i> 2018. 20:327-331	One or more exclusion criteria
	Gautam, R.,Bhardwaj, N.,Saini, Y Study of fluoride content in groundwater of Nawa Tehsil in Nagaur, Rajasthan. <i>Journal of Environmental Biology.</i> 2011. 32:85-9	One or more exclusion criteria
1	Sahu, A.,Vaishnav, M. M Study of fluoride in ground water around the BALCO, Korba area (India). <i>Journal of Environmental Science & Engineering.</i> 2006. 48:65-8	One or more exclusion criteria
1	Devesa, V.,Rocha, R.,Montoro, R.,Velez, D Study of intestinal transport of F using Caco-2 cell line. <i>Toxicology Letters</i> . 2010. 1):S306	One or more exclusion criteria
00		

Level	Bibliography	Reason for Exclusion
L1	Misra, A. K., Mishra, A Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis. <i>Journal of Hazardous Materials</i> . 2007. 144:438-48	One or more exclusion criteria
L1	Kumar, T.,Takalkar, A Study of the effects of drinking water naturally contaminated with fluorides on the health of children. <i>Biomedical Research.</i> 2010. 21:423-427	One or more exclusion criteria
L1	Liu, G.,Ye, Q.,Chen, W.,Zhao, Z.,Li, L.,Lin, P Study of the relationship between the lifestyle of residents residing in fluorosis endemic areas and adult skeletal fluorosis. <i>Environ Toxicol Pharmacol.</i> 2015. 40:326-32	One or more exclusion criteria
L1	Sigchi, S.,Khard, M.,Singh, K. N.,Khare, S Study of urinary fluoride estimation among infertility cases in fluorosis endemic area. <i>BJOG: An International</i> <i>Journal of Obstetrics and Gynaecology.</i> 2014. 2):77	One or more exclusion criteria
L1	Nagabhushana, S. R., Sunilkumar, Suresh, S., Sannappa, J., Srinivasa, E Study on activity of radium, radon and physicochemical parameters in ground water and their health hazards around Tumkur industrial area. <i>Journal of</i> <i>Radioanalytical and Nuclear Chemistry.</i> 2020. 323:1393-1403	One or more exclusion criteria
L1	Shashi, A.,Bhardwaj, M Study on blood biochemical diagnostic indices for hepatic function biomarkers in endemic skeletal fluorosis. <i>Biol Trace Elem Res</i> 2011. 143:803-14	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Liang, Y.,Wang, S. P.,Luo, H.,Zhou, J. H.,Wang, J. W.,Rao, H. X.,Chai, B Study on relationship between drinking water endemic fluorosis and urine fluorine in Linyi county, Shanxi province. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2010. 29:193-195	One or more exclusion criteria
L1	Huang, J. N., Zhou, X. Y., Ling, L., Xiang, Q. Y., Zhang, Z. D Study on the doser response relationships between the drinking water and bone mineral density, and serum osteocalcin. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:150-153	- One or more exclusion criteria
L1	Mitri, E.,Birarda, G.,Vaccari, L.,Kenig, S.,Tormen, M.,Grenci, G. SU-8 bonding protocol for the fabrication of microfluidic devices dedicated to FTIR microspectroscopy of live cells. <i>Lab Chip.</i> 2014. 14:210-8	One or more exclusion criteria
L1	Baglar, S Sub-ablative Er, Cr: YSGG laser irradiation under all-ceramic restorations: effects on demineralization and shear bond strength. <i>Lasers in Medical Science</i> . 2018. 33:41-49	One or more exclusion criteria
L1	Malde, M. K., Scheidegger, R., Julshamn, K., Bader, H. P Substance flow analysis: a case study of fluoride exposure through food and beverages in young children living in Ethiopia. <i>Environmental Health Perspectives</i> . 2011. 119:579-84	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jung, S.,An, J.,Na, H.,Kim, J Surface Energy of Filtration Media Influencing the Filtration Performance against Solid Particles, Oily Aerosol, and Bacterial Aerosol. <i>Polymers (Basel).</i> 2019. 11:#pages#	One or more exclusion criteria
L1	Tambe, V.,Thakkar, S.,Raval, N.,Sharma, D.,Kalia, K.,Tekade, R. K Surface Engineered Dendrimers in siRNA Delivery and Gene Silencing. <i>Curr Pharm</i> <i>Des.</i> 2017. 23:2952-2975	One or more exclusion criteria
L1	Boyer, J. C., Manseau, M. P., Murray, J. I., van Veggel, F. C Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. <i>Langmuir.</i> 2010. 26:1157-64	One or more exclusion criteria
L1	He, F. Z., Guo, M., Danzengsangbu,, Nimacangjue,, Baimayangjin,. Surveillance analysis of drinking water borne fluorosis in Tibet autonomous region in 2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:194-196	One or more exclusion criteria
L1	Hu, L. A., Wang, Y., Li, X. L., Wu, N Surveillance analysis of drinking water- born endemic fluorosis in 2009 in Xuchang city, Henan province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:318-320	One or more exclusion criteria
L1	Yu, B.,Liu, Y.,Yuan, C. S.,Kang, J. S.,Huang, H. Q.,Wei, J. J.,Hu, L. A.,Li, A. R Surveillance of coal-burning endemic fluorosis prevailing status in Henan province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:191-193	One or more exclusion criteria

Bibliography Reason for Exclusion Level L1 Sun, D. J.. Surveillance on endemic fluorosis of drinking water type in China: A One or more exclusion criteria two-year report of 2003 and 2004. [Chinese]. Chinese Journal of Endemiology. 2007. 26:161-164 L1 Wu, J. Q., Yin, D. M., Dai, C. F., Wu, H. Y., Feng, G. H., Du, G. X.. Surveillance on One or more exclusion criteria water-related endemic fluorosis in Fengshun County Guangdon Province from 1991 to 2005: An outcome analysis. [Chinese]. Chinese Journal of Endemiology. 2007. 26:165-167 L1 Liu, J. Y., Liu, H., Dong, W., Gao, B., Liu, Y. Q., Sun, D. J.. Survey of adult carotid One or more exclusion criteria atherosclerosis in water-related endemic fluorosis areas in Heilongjiang province in 2008. [Chinese]. Chinese Journal of Endemiology. 2010. 29:634-636 L1 Wang, S. X., Li, J., Wang, Z. H., Jia, Q. Z., Zhang, X. D., Cheng, X. T., Wen, X. P.. One or more exclusion criteria Survey of defluoridation water improvement project in Shanxi province from 2005 to 2009. [Chinese]. Chinese Journal of Endemiology. 2011. 30:56-59 L1 Chen, P. Z., Yun, Z. J., Li, H. X., Bian, J. C., Ma, A. H., Gao, H. X., Wang, Y. One or more exclusion criteria T.,Gao, Jie. Survey of water improvement project to reduce fluoride in Shandong province. [Chinese]. Chinese Journal of Endemiology. 2011. 30:64-67 L1 Bai, S. Y., Ge, P. F., Shao, J. Y., Xu, J. M., Jia, J. X., Wang, W. L., Ren, Y. G., One or more exclusion criteria Survey on water fluoride content and water-improving defluoridation projects in

Level	Bibliography	Reason for Exclusion
	the endemic fluorosis areas of Gansu Province in 2005. [Chinese]. Chinese Journal of Endemiology. 2008. 27:437-440	
_1	Faidallah, H. M., Al-Mohammadi, M. M., Alamry, K. A., Khan, K. A Synthesis and biological evaluation of fluoropyrazolesulfonylurea and thiourea derivatives as possible antidiabetic agents. <i>J Enzyme Inhib Med Chem.</i> 2016. 31:157-163	
L1	Kim, H.,Choi, J. Y.,Lee, K. H.,Kim, B. T.,Choe, Y. S Synthesis and characterization of a difluoroboron complex of fluorine-18 labeled curcumin derivative for beta-amyloid plaque imaging. <i>Journal of Labelled Compounds</i> <i>and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S390-S391	One or more exclusion criteria
L1	Yu, J.,Mason, R. P Synthesis and characterization of novel lacZ gene reporter molecules: detection of beta-galactosidase activity by 19F nuclear magnetic resonance of polyglycosylated fluorinated vitamin B6. <i>J Med Chem.</i> 2006. 49:1991-9	er One or more exclusion criteria
L1	Cai, L.,Liow, J. S.,Morse, C.,Davies, R.,Frankland, M.,Zoghbi, S.,Innis, R.,Pike V Synthesis and evaluation in rats of [¹¹ C] NR2B-Me as a PET radioligand for NR2B subunits in NMDA receptors. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S75-S77	e, One or more exclusion criteria
L1	Attia, K.,Visser, T.,Steven, J.,Slart, R.,Antunes, I.,Van Der Hoek, S.,Elsinga, P.,Heerspink, H Synthesis and evaluation of [¹⁸ F] canagliflozin	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	for imaging SGLT-2-transporters in diabetic patients. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S27-S29	
L1	Yoon, K. Y.,Lee, I.,Yang, J.,Lee, J. H.,Choe, Y. S. Synthesis and evaluation of [F-18] fluoroethyl-RS-0406 as a radioligand for beta-amyloid plaque imaging. <i>Journal of Nuclear Medicine. Conference: Society of Nuclear Medicine and</i> <i>Molecular Imaging Annual Meeting, SNMMI.</i> 2010. 51:#pages#	One or more exclusion criteria
L1	Lee, I.,Kang, C. M.,Choe, Y. S.,Choi, J. Y.,Lee, K. H.,Kim, B. T Synthesis and evaluation of a F-18 labeled reveratrol derivative for beta-amyloid plaque imaging. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S291	One or more exclusion criteria
L1	Mangaiyarkarasi, R.,Chinnathambi, S.,Aruna, P.,Ganesan, S Synthesis and formulation of methotrexate (MTX) conjugated LaF3:Tb(3+)/chitosan nanoparticles for targeted drug delivery applications. <i>Biomed Pharmacother.</i> 2015. 69:170-8	One or more exclusion criteria
L1	Ko, Y. J., Yun, K. J., Kang, M. S., Park, J., Lee, K. T., Park, S. B., Shin, J. H Synthesis and in vitro photodynamic activities of water-soluble fluorinated tetrapyridylporphyrins as tumor photosensitizers. <i>Bioorg Med Chem Lett.</i> 2007. 17:2789-94	One or more exclusion criteria
L1	Kumar, P.,Sun, W.,Wuest, M.,Knaus, E. E.,Wiebe, L. I Synthesis and initial in vitro and in vivo evaluation of 2'-[¹⁸ F]Fluoro-2'-deoxythymidine	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	([¹⁸ F]FT) in TK-expressing tumor cells and tissue. <i>Molecular Imaging and Biology.</i> 2010. 2):S1010	
.1	 Izuagie, A. A., Gitari, W. M., Gumbo, J. R Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: Towards fluorosis mitigation. <i>Journal of Environmental Science & Health Part A-Toxic/Hazardous Substances & Environmental Engineering.</i> 2016. 51:810-24 	One or more exclusion criteria
.1	Selivanova, S. V., Schubiger, A. P., Ametamey, S. M., Stellfeld, T., Heinrich, T. K., Meding, J., Bauser, M., Hutter, J Synthesis and radiofluorination of a high affinity MMP2/MMP9 inhibitor as a potential imaging tracer: Systematic study of diaryliodonium salts precursors. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S5	One or more exclusion criteria
.1	Rodriguez Castillo, A. S., Guihéneuf, S., Le Guével, R., Biard, P. F., Paquin, L., Amrane, A., Couvert, A Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor. <i>J Hazard Mater.</i> 2016. 307:221-30	One or more exclusion criteria
_1	Eskola, O.,Yim, C. B.,Johnson, T.,Bergman, J.,Solin, O Synthesis of (18)F- labelled fragmented antibody (18)F Fab. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S186-S187	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Jiang, H.,Pandey, M. K.,DeGrado, T. R Synthesis of 18F Tetrafluoroborate via Radiofluorination of BF3. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2015. 1):S255	a One or more exclusion criteria
L1	Jiang, H.,Bansal, A.,Pandey, M. K.,Peng, K. W.,Suksanpaisan, L.,Russell, S. J.,DeGrado, T. R Synthesis of 18F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation in a Murine C6-Glioma Tumor Model. <i>J Nucl Med.</i> 2016. 57:1454-9	One or more exclusion criteria
L1	Yoshimoto, M.,Honda, N.,Takahashi, K.,Kurihara, H.,Fujii, H Synthesis of 4- borono-2- ¹⁸ F-fluoro-phenylalanine using copper-mediated nucleophilic radiofluorination. <i>Journal of Nuclear Medicine. Conference</i> . 2019. 60:#pages#	One or more exclusion criteria
L1	Inkster, J.,Dearling, J.,Snay, E.,Packard, A Synthesis of ¹⁸ F- labeled acridinium cations: A new class of potential myocardial perfusion imaging agents. <i>Journal of Nuclear Medicine. Conference.</i> 2019. 60:#pages#	One or more exclusion criteria
L1	Li, M. H., Shiue, C. Y., Chang, H. C., Chu, H. H Synthesis of [18F]benzamide ([18F]INER-1577) as Histone Deacetylase (HDACs) imaging agent. <i>Journal of</i> <i>Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular</i> <i>Imaging Annual Meeting, SNMMI.</i> 2016. 57:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Rahman, O., Ulin, J., & Langstrom, B. (2010). Synthesis of [18F]fluoroacetate ([18F]FACE) from butyl acetate using commercial platform. Paper presented at the 2010 World Molecular Imaging Congress, Kyoto, Japan.	
L1	Huang, X.,Tian, H Synthesis of [¹⁸ F]IDO5L: A novel potential PET probe for imaging of IDO-1 expression. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2015. 1):S197	One or more exclusion criteria
L1	Apte, S. D., Chin, F. T., Graves, E. E Synthesis of a new PET radiotracer targeting carbonic anhydrase IX. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2009. 1):S408	One or more exclusion criteria
L1	Kniess, T.,Kuchar, M.,Steinbach, J.,Wuest, F Synthesis of a potential tyrosine kinase inhibitor by Knoevenagel condensation of oxindole with 4- [18F]fluorobenzaldehyde. <i>Journal of Labelled Compounds and</i> <i>Radiopharmaceuticals.</i> 2009. 1):S182	One or more exclusion criteria
L1	Park, J.,Kim, H. J.,Kim, S.,Hur, M. G.,Yang, S.,Yu, K. H Synthesis of F-18 labelled ammonium salts as inhibitor for hEAG1 channels. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2009. 1):S372	One or more exclusion criteria
L1	Rokka, J.,Snellman, A.,Zona, C.,La Ferla, B.,Re, F.,Masserini, M.,Haaparanta, M.,Rinne, J.,Solin, O Synthesis of functionalized [¹⁸ F]liposomes for preclinical PET imaging in Alzheimer's disease. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S246	
1331		

Level	Bibliography	Reason for Exclusion
L1	Xiong, L.,Shen, B.,Behera, D.,Gambhir, S. S.,Chin, F. T.,Rao, J Synthesis of ligand-functionalized water-soluble [18F]YF3 nanoparticles for PET imaging. <i>Nanoscale.</i> 2013. 5:3253-6	One or more exclusion criteria
L1	Akula, M. R.,Blevins, D. W.,Kabalka, G. W.,Osborne, D Synthesis of N-[4-(2'- [¹⁸ F]fluoroethyloxybenzoyl)]pyrrolidin-2-one, a potential new brain imaging agent. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2015. 1):S214	
L1	Mueller, D.,Klette, I.,Kalb, F.,Baum, R Synthesis of O-(-2[18F]Fluoroethyl)-L- tyrosine based on a cartridge cleaning method. <i>Journal of Nuclear Medicine.</i> <i>Conference: Society of Nuclear Medicine and Molecular Imaging Annual</i> <i>Meeting, SNMMI.</i> 2010. 51:#pages#	One or more exclusion criteria
L1	Kumar, N.,Hazari, P. P.,Sony, S.,Swatantra,,Panchal, K. K.,Ramgopal,,Mishra, A. K Synthesis of O-(2-[18F] fluoroethyl)-L-Tyrosine based on a cartridge purification method: A simple, fast, and high-yielding automated synthesis. <i>Indian Journal of Nuclear Medicine.</i> 2017. 32 (5 Supplement 1):S45	One or more exclusion criteria
L1	Mueller, D.,Klette, I.,Kalb, F.,Baum, R. P Synthesis of O-(2-[18F]fluoroethyl)- L-tyrosine based on a cartridge purification method. <i>Nucl Med Biol.</i> 2011. 38:653-8	One or more exclusion criteria
L1	Yim, C. B.,Mikkola, K.,Nuutila, P.,Solin, O Synthesis of pancreatic beta cell- specific [¹⁸ F]fluoro-exendin-4 via strain-promoted aza-	One or more exclusion criteria
1332		

Level	Bibliography	Reason for Exclusion
	dibenzocyclooctyne/azide cycloaddition. EJNMMI Radiopharmacy and Chemistry. Conference: 18th European Symposium on Radiopharmacy and Radiopharmaceuticals. Austria 2016. 1:#pages#	
L1	Seyedlar, R. M., Rezvani, M., Barari, S., Imani, M., Nodehi, A., Atai, M Synthesis of plate-like beta-tricalcium phosphate nanoparticles and their efficiency in remineralization of incipient enamel caries. <i>Progress in Biomaterials</i> . 2019. 8:261-276	One or more exclusion criteria
L1	 Tanpure, R. P., George, C. S., Strecker, T. E., Devkota, L., Tidmore, J. K., Lin, C. M., Herdman, C. A., Macdonough, M. T., Sriram, M., Chaplin, D. J., Trawick, M. L., Pinney, K. G Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents. <i>Bioorg Med Chem.</i> 2013. 21:8019-32 	One or more exclusion criteria
L1	Martić, M., Pernot, L., Westermaier, Y., Perozzo, R., Kraljević, T. G., Krištafor, S., Raić-Malić, S., Scapozza, L., Ametamey, S Synthesis, crystal structure, and in vitro biological evaluation of C-6 pyrimidine derivatives: new lead structures for monitoring gene expression in vivo. <i>Nucleosides Nucleotides Nucleic Acids</i> , 2011. 30:293-315	One or more exclusion criteria
L1	Caballero, J.,Munoz, C.,Alzate-Morales, J. H.,Cunha, S.,Gano, L.,Bergmann, R.,Steinbach, J.,Kniess, T Synthesis, in silico, in vitro, and in vivo	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	investigation of 5-[11C]methoxy-substituted sunitinib, a tyrosine kinase inhibito of VEGFR-2. <i>European Journal of Medicinal Chemistry</i> . 2012. 58:272-80	r
L1	Yrjölä, S.,Sarparanta, M.,Airaksinen, A. J.,Hytti, M.,Kauppinen, A.,Pasonen- Seppänen, S.,Adinolfi, B.,Nieri, P.,Manera, C.,Keinänen, O.,Poso, A.,Nevalainen, T. J.,Parkkari, T Synthesis, in vitro and in vivo evaluation of 1,3,5-triazines as cannabinoid CB2 receptor agonists. <i>Eur J Pharm Sci.</i> 2015. 67:85-96	One or more exclusion criteria
L1	 Wang, Y.,McKee, M.,Torbica, A.,Stuckler, D.,Herndon, J. M Systematic Literature Review on the Spread of Health-related Misinformation on Social Media Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification. Soc Sci Med. 2019. 240:112552 	One or more exclusion criteria
L1	Boyles, A. L.,Blain, R. B.,Rochester, J. R.,Avanasi, R.,Goldhaber, S. B.,McComb, S.,Holmgren, S. D.,Masten, S. A.,Thayer, K. A Systematic review of community health impacts of mountaintop removal mining. <i>Environment International.</i> 2017. 107:163-172	One or more exclusion criteria
L1	Czajka, M Systemic effects of fluoridation. <i>Journal of Orthomolecular Medicine</i> . 2012. 27:123-130	One or more exclusion criteria
L1	Indermitte, E.,Karro, E.,Saava, A Tap water fluoride levels in Estonia. <i>Fluoride</i> . 2007. 40:244-247	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Sikorska-Jaroszynska, M. H. J., Mielnik-Blaszczak, M., Krawczyk, D., Wrobel, R., Blaszczak, J Tea - Natural source of fluoride compounds. <i>Annales</i> <i>Universitatis Mariae Curie-Sklodowska, Sectio DDD: Pharmacia.</i> 2012. 25:247- 249	One or more exclusion criteria
L1	Hasan, R.,Talha, M.,Weinstein, R. S Tea drinker's fluorosis. <i>Endocrine Reviews. Conference: 99th Annual Meeting of the Endocrine Society, ENDO.</i> 2017. 38:#pages#	One or more exclusion criteria
L1	Yang, F.,Cui, M Technetium-99m labeled phenylquinoxaline derivatives as potential tau-selective imaging probes for diagnosis of Alzheimer's disease. <i>Nuclear Medicine and Biology.</i> 2019. 72-73 (Supplement 1):S56	One or more exclusion criteria
L1	Behnam, B. A., Ashique, R., Labiris, R., Chirakal, R Temperature effect on the stereospecificity of nucleophilic fluorination: Formation of [18F]trans-4-fluoro-L-proline during the synthesis of [18F]cis-4-fluoro-L-proline. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2009. 1):S206	
L1	Azad, B. B., Ashique, R., Labiris, N. R., Chirakal, R Temperature effects on the stereospecificity of nucleophilic fluorination: Formation of trans- [¹⁸ F]4-fluoro-I-proline during the synthesis of cis- [¹⁸ F]4-fluoro-I-proline. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> . 2012. 55:23-28	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Liu, G.,Sun, Z.,Fu, Z.,Ma, L.,Wang, X Temperature sensing and bio-imaging applications based on polyethylenimine/CaF(2) nanoparticles with upconversion fluorescence. <i>Talanta</i> . 2017. 169:181-188	One or more exclusion criteria
L1	Moon, S. H.,Wilks, M.,Takahashi, K.,Han, P.,Ma, C.,Yuan, H.,El Fakhri, G.,Shoup, T.,Normandin, M TEMPO as a PET/MR probe of oxidative stress in cell membranes. <i>Journal of Nuclear Medicine. Conference.</i> 2019. 60:#pages#	One or more exclusion criteria
L1	Ahrari, F.,Eslami, N.,Rajabi, O.,Ghazvini, K.,Barati, S The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. <i>Dent Res J (Isfahan).</i> 2015. 12:44-9	One or more exclusion criteria
L1	Leili, M.,Naghibi, A.,Norouzi, H. A.,Khodabakhshi, M The assessment of chemical quality of drinking water in Hamadan Province, West of Iran. <i>Journal of Research in Health Sciences</i> . 2015. 15:234-238	One or more exclusion criteria
L1	Angulo, M.,Cuitiño, E.,Molina-Frechero, N.,Emilson, C. G The association between the prevalence of dental fluorosis and the socio-economic status and area of residence of 12-year-old students in Uruguay. <i>Acta Odontol Scand.</i> 2020. 78:26-30	One or more exclusion criteria
L1	Allwood-Newhook, L. A., Chafe, R., Aslanov, R., Clarke, J., Gregory, P., Gill, N., Sarkar, A The association of type 1 diabetes mellitus and concentrations of	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	drinking water components in Newfoundland and Labrador, Canada. <i>Pediatric Diabetes.</i> 2017. 18 (Supplement 25):64	
L1	Feng, H. Q., Shi, Y. X., Sun, D. J The bone metabolism test of rats drinking brick tea liquor before and after defluoridation by Serpentine. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2006. 25:139-141	One or more exclusion criteria
L1	Skillman, S. M., Doescher, M. P., Mouradian, W. E., Brunson, D. K The challenge to delivering oral health services in rural America. <i>Journal of Public Health Dentistry</i> . 2010. 70 Suppl 1:S49-57	One or more exclusion criteria
L1	 Mirzabeygi Rad Fard, M., Yousefi, M., Soleimani, H., Mohammadi, A. A., Mahvi, A. H., Abbasnia, A., Wasana, H. M., Perera, G. D., De Gunawardena, P. S., Bandara, J The The impact of aluminum, fluoride, and aluminum-fluoride complexes in drinking water on chronic kidney disease. Data Brief. 2018. 18:40-46 concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran 	One or more exclusion criteria
L1	Genovesi, A.,Sachero, E.,Lorenzi, C The dental hygienist's role in the laser treatment of the dentine hipersensitivity. [Italian]. <i>Prevenzione e Assistenza Dentale.</i> 2010. 36:32-35	One or more exclusion criteria
L1	Yook, C. M.,Lee, S. J.,Oh, S. J.,Ha, H. J.,Lee, J. J The development of new amino acid derivatives using click reaction and simple SPE purification method. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2015. 1):S194	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Yook, C. M.,Lee, S. J.,Lee, J. J.,Ryu, J. S.,Oh, S. J The development of new amino acid derivatives using one pot simultaneous two click reaction. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S365	One or more exclusion criteria
L1	Spittle, B The diagnosis of chronic fluoride intoxication including the use of serum and urinary fluoride ion levels and a forearm radiograph in the diagnosis of stage II and III skeletal fluorosis. <i>Fluoride</i> . 2018. 51:3-12	One or more exclusion criteria
L1	Liu, Y.,Sun, J.,Li, B.,Liu, X.,Li, M.,Cui, J.,Liu, H.,Sun, Z.,Li, Y.,Wu, J.,Zhang, W.,Gao, Y The differences of brick-tea fluorosis of four ethnic in China. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:315-319	One or more exclusion criteria
L1	Lu, Q.,He, D.,Yang, P.,Li, S.,Jiang, H.,Chen, P.,Pa, G.,Wu, H.,La, C.,Wei, S The distribution of drinking-tea-borne fluorosis in the six ethnics in Qinghai Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:404-406	One or more exclusion criteria
L1	Tirapelli, C.,Panzeri, H.,Lara, E. H.,Soares, R. G.,Peitl, O.,Zanotto, E. D The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a long-term clinical study. <i>J Oral Rehabil.</i> 2011. 38:253-62	One or more exclusion criteria
L1	Lyaruu, D. M., Bronckers, A. L. J. J., Santos, F., Mathias, R., DenBesten, P The effect of fluoride on enamel and dentin formation in the uremic rat incisor. <i>Pediatric Nephrology.</i> 2008. 23:1973-1979	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ramesh, M.,Narasimhan, M.,Krishnan, R.,Aruna, R. M.,Kuruvilla, S The effect of fluorosis on human teeth under light microscopy: A cross-sectional study. <i>J</i> <i>Oral Maxillofac Pathol.</i> 2017. 21:345-350	t One or more exclusion criteria
L1	Crocombe, L. A., Brennan, D. S., Slade, G. D., Stewart, J. F., Spencer, A. J The effect of lifetime fluoridation exposure on dental caries experience of younger rural adults. <i>Aust Dent J.</i> 2015. 60:30-7	One or more exclusion criteria
L1	Spittle, B The effect of the fluoride ion on reproductive parameters and an estimate of the safe daily dose of fluoride to prevent female infertility and miscarriage, and foetal neurotoxicity. <i>Fluoride.</i> 2017. 50:287-291	One or more exclusion criteria
L1	Nguyen, A The effect of various hindered tertiary alcohols on the SN2 radiofluorination of 3'-deoxy-3'-[18 F]fluorothymidine and its in vivo application as a proliferation imaging probe in acute myeloid leukemia. <i>Molecular Imaging and Biology.</i> 2017. 19 (1 Supplement 1):S589	One or more exclusion criteria
L1	Shim, M. Y., Parr, C., Pesti, G. M The effects of dietary fluoride on growth and bone mineralization in broiler chicks. <i>Poult Sci.</i> 2011. 90:1967-74	One or more exclusion criteria
L1	Mendoza-Schulz, A.,Solano-Agama, C.,Arreola-Mendoza, L.,Reyes-Marquez, B.,Barbier, O.,Del Razo, L. M.,Mendoza-Garrido, M. E The effects of fluoride on cell migration, cell proliferation, and cell metabolism in GH4C1 pituitary tumour cells. <i>Toxicology Letters.</i> 2009. 190:179-86	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Spittle, B The effects of fluoride on inflammation and cancer. <i>Fluoride</i> . 2019. 52:7-8	One or more exclusion criteria
L1	Kim, S. Y., Kim, E. J., Kim, D. S., Lee, I. B The evaluation of dentinal tubule occlusion by desensitizing agents: a real-time measurement of dentinal fluid flow rate and scanning electron microscopy. <i>Oper Dent.</i> 2013. 38:419-28	One or more exclusion criteria
L1	Xu, G. Y.,Li, J. X.,Hua, J. L The evaluation report for restoration and reconstruction of endemic disease prevention needed in areas severely hit by the earthquake in Shaanxi province. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2010. 29:295-298	One or more exclusion criteria
L1	Mel'Nichuk, L. P.,Khodasevich, L. S The external application of "Plastunskaya" fluoride-containing mineral water in the course of the combined spa and health resort-based treatment of deforming osteoarthrosis. [Russian]. <i>Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury.</i> 2015. 92:48-50	One or more exclusion criteria
L1	Al-Jiboury, H.,Wilgus, J.,Benhammou, J.,Patel, A.,Jacob, N.,Ohning, G.,Otomo-Corgel, J.,Pisegna, J. R The gastric refluxate in patients with gastroesophageal reflux disease (GERD) has a protective effect on periodontal microbiota. <i>American Journal of Gastroenterology.</i> 2015. 1):S731	One or more exclusion criteria
L1	Foth, M The increasing relevance of public health research in the last 95 years. <i>Journal of Public Health (Germany).</i> 2012. 20:209-211	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Ramadan, A.,Hilmi, Y The influence of climate on the determination of the upper permissible fluoride level in potable water in sudan. <i>Fluoride.</i> 2014. 47:170-180	One or more exclusion criteria
L1	Dec, K.,Lukomska, A.,Maciejewska, D.,Jakubczyk, K.,Baranowska-Bosiacka, I.,Chlubek, D.,Wasik, A.,Gutowska, I The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. <i>Biological Trace</i> <i>Element Research.</i> 2017. 177:224-234	One or more exclusion criteria
L1	Esteves-Oliveira, M.,Zezell, D. M.,Velloso, W. F.,Meister, J.,Franzen, R.,Lampert, F.,Eduardo, C. P.,Apel, C The influence of pulse duration and irradiation time of a CO2 laser on enamel caries resistance. <i>Lasers in Medical</i> <i>Science.</i> 2009. 24 (3):496	One or more exclusion criteria
L1	Huang, D. Y., Zhang, X. H., Pu, Y., Yu, M. J The intervention effects of soybean, selenium powder, spiral algae on rats of fluoride poisoning with high aluminum. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:376-380	One or more exclusion criteria
L1	Jia, L. H.,Ma, J.,Du, Y. G.,Ma, D. R.,Yao, G. J.,Liang, S. L.,Zhang, J. Q.,Chong, Z. S.,Zhao, J.,Xu, D The investigation of drinking-water-borne endemic fluorosis in Hebei province in 2009. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:184-187	One or more exclusion criteria
L1	Chachra, D.,Limeback, H.,Willett, T. L.,Grynpas, M. D The long-term effects of water fluoridation on the human skeleton. <i>J Dent Res.</i> 2010. 89:1219-23	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Petrova, A.,Ol'shevskaya, V.,Zaitsev, A.,Tatarskiy, V.,Radchenko, A.,Kostyukov, A.,Kalinina, E.,Kuzmin, V.,Miyoshi, N.,Shtil, A The novel tetracarboranylchlorin derivative for binary anticancer treatment: rapid tumor elimination via superoxide anion production. <i>FEBS Open Bio.</i> 2019. 9 (Supplement 1):334-335	One or more exclusion criteria
L1	Bharatwaj, B.,Wu, L.,Whittum-Hudson, J. A.,da Rocha, S. R The potential for the noninvasive delivery of polymeric nanocarriers using propellant-based inhalers in the treatment of Chlamydial respiratory infections. <i>Biomaterials.</i> 2010. 31:7376-85	One or more exclusion criteria
L1	Jarvis, H. G., Heslop, P. S., Kissima, J., Walker, R The prevalence and characteristics of fluorosis causing skeletal deformities in rural Tanzania. <i>Arthritis and Rheumatism.</i> 2010. 10):1568	One or more exclusion criteria
L1	Akosu, T. J., Zoakah, A. I., Chirdan, O. A The prevalence and severity of denta fluorosis in the high and low altitude parts of Central Plateau, Nigeria. <i>Community Dent Health.</i> 2009. 26:138-42	al One or more exclusion criteria
L1	Alavi, A. A., Amirhakimi, E., Karami, B The prevalence of dental caries in 5 - 18-year-old insulin-dependent diabetics of Fars Province, southern Iran. <i>Arch Iran Med.</i> 2006. 9:254-60	One or more exclusion criteria
L1	Zhao, H.,Zhang, H.,Cui, P.,Ding, F.,Wang, G.,Li, R.,Jenks, M. A.,Lu, S.,Xiong, L The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis. <i>Plant Physiology.</i> 2014. 165:1255-1268	
L1	Mustafa, D. E., Younis, U. M., Elhag, S. A. A The relationship between the fluoride levels in drinking water and the schooling performance of children in rural areas of Khartoum state, Sudan. <i>Fluoride.</i> 2018. 51:102-113	One or more exclusion criteria
L1	Ding, Y.,YanhuiGao,,Sun, H.,Han, H.,Wang, W.,Ji, X.,Liu, X.,Sun, D The relationships between low levels of urine fluoride on children's intelligence, dental fluorosis in endemic fluorosis areas in Hulunbuir, Inner Mongolia, China <i>Journal of Hazardous Materials.</i> 2011. 186:1942-1946	One or more exclusion criteria
L1	Arpaia, D.,Montuori, P.,Ciancia, G.,Ippolito, S.,Ferraro, A.,Galante, F.,Lombardi, G.,Pettinato, G.,Triassi, M.,Biondi, B The risk of thyroid cancer related to the vesuvius in the region of Campania, Italy. <i>European Thyroid</i> <i>Journal.</i> 2011. Conference Publication: (var.pagings).:140-141	One or more exclusion criteria
L1	Gooch, B. F., Griffin, S. O., Malvitz, D. M The role of evidence in formulating public health programs to prevent oral disease and promote oral health in the United States. <i>J Evid Based Dent Pract.</i> 2006. 6:85-9	One or more exclusion criteria
L1	Pollick, H The Role of Fluoride in the Prevention of Tooth Decay. <i>Pediatric Clinics of North America.</i> 2018. 65:923-940	One or more exclusion criteria
L1	Wimalawansa, S. J The role of ions, heavy metals, fluoride, and agrochemicals: critical evaluation of potential aetiological factors of chronic	One or more exclusion criteria
1343		

Level	Bibliography	Reason for Exclusion
	kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication. <i>Environ Geochem Health.</i> 2016. 38:639-78	
L1	Shcherbatykh, I.,Carpenter, D. O The role of metals in the etiology of Alzheimer's disease. <i>Journal of Alzheimer's Disease.</i> 2007. 11:191-205	One or more exclusion criteria
L1	Shcaira, V.,Gambareli, F.,Correa, M. E.,Moraes, P The role of mouth disease diagnosis in the context of the Brazilian health system. A 19 years retrospective study in Cosmopolis city with emphasis in oral cancer. <i>Supportive Care in Cancer.</i> 2010. 3):S141	
L1	Chiu, R. S., Nahal, H., Provart, N. J., Gazzarrini, S The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. <i>BMC Plant Biol.</i> 2012. 12:15	One or more exclusion criteria
L1	Li, Z.,Zhang, H.,Zhao, C.,Li, Y.,Chen, B The situation of brick tea type fluorosis in inner mongolia in 2009 and 2012. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:530-533	One or more exclusion criteria
L1	Pepper, I. L The soil health-human health nexus. <i>Critical Reviews in Environmental Science and Technology.</i> 2013. 43:2617-2652	One or more exclusion criteria
L1	Stafford, R The spin-echo sequence; K-space. <i>Medical Physics.</i> 2017. 44 (6):3094	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Shen, Z.,Ning, L.,Wu, R.,Brindle, K The technique methods and progress of MR pH imaging. <i>Neuroradiology Journal.</i> 2010. 1):304	One or more exclusion criteria
L1	Whelan, E. M The top ten unfounded health scares of the year. <i>MedGenMed Medscape General Medicine.</i> 2008. 10 (2) (no pagination):#pages#	One or more exclusion criteria
L1	Kanduti, D., Sterbenk, P., Artnik, B The use of fluoride and its effect on health. [Slovene]. <i>Zdravniski Vestnik.</i> 2016. 85:348-353	One or more exclusion criteria
L1	Yu, S.,Zhang, W.,Hao, F.,Zhang, L Therapeutic mechanism of shen qi fu zheng zhu she ye toward the adrenal cortex ultrastructure in cancer-related fatigue. [Chinese]. <i>Chinese Journal of Clinical Oncology.</i> 2013. 40:621- 624+633	One or more exclusion criteria
L1	Tailor, R.,Tolani, N.,Ibbott, G. S Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water. <i>Med Phys.</i> 2008. 35:4063-9	One or more exclusion criteria
L1	Talpos, S They persisted. Science. 2019. 364:622-626	One or more exclusion criteria
L1	 Yu, X.,Chen, J.,Li, Y.,Liu, H.,Hou, C.,Zeng, Q.,Cui, Y.,Zhao, L.,Li, P.,Zhou, Z.,Pang, S.,Tang, S.,Tian, K.,Zhao, Q.,Dong, L.,Xu, C.,Zhang, X.,Zhang, S.,Liu, L.,Wang, A Threshold effects of moderately excessive fluoride exposure on children's health: A potential association between dental fluorosis 	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	and loss of excellent intelligence. <i>Environment International.</i> 2018. 118:116-124	
L1	Savchenkov, M. F.,Efimova, N. V.,Manueva, R. S.,Nikolaeva, L. A.,Shin, N. S Thyroid gland pathology in children population exposed to the combination of iodine deficiency and fluoride pollution of environment. [Russian]. <i>Gigiena i</i> <i>sanitariia.</i> 2016. 95:1201-1205	One or more exclusion criteria
L1	Abd El Naser Yamamah, G.,Kamel, A. F.,Abd-El Dayem, S.,Hussein, A. S.,Salama, H Thyroid volumes and iodine status in Egyptian South Sinai schoolchildren. <i>Archives of Medical Science</i> . 2013. 9:548-54	One or more exclusion criteria
L1	Yang, K., Yang, X., Zhao, X., Lamy de la Chapelle, M., Fu, W THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent. <i>Anal Chem.</i> 2019. 91:785-791	One or more exclusion criteria
L1	Chaithra, B.,Sarjan, H. N.,Shivabasavaiah,. Time-dependent effect of ground water fluoride on motility, abnormality and antioxidant status of spermatozoa: An in vitro study. <i>Toxicology and Industrial Health.</i> 2019. 35:368-377	One or more exclusion criteria
L1	Masuda, Y.,Ohji, T.,Kato, K Tin oxide nanosheet assembly for hydrophobic/hydrophilic coating and cancer sensing. <i>ACS Appl Mater Interfaces.</i> 2012. 4:1666-74	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Holmström, K. E., Berger, U Tissue distribution of perfluorinated surfactants in common guillemot (Uria aalge) from the Baltic Sea. <i>Environ Sci Technol.</i> 2008. 42:5879-84	
L1	Sankhala, S. S., Harshwal, R., Paliwal, P., Agarwal, A Toe nails as a biomarker of chronic fluoride exposure secondary to high water fluoride content in areas with endemic fluorosis. <i>Fluoride</i> . 2014. 47:235-240	One or more exclusion criteria
L1	Gore, F.,Fawell, J.,Bartram, J Too much or too little? A review of the conundrum of selenium. <i>Journal of Water & Health.</i> 2010. 8:405-16	One or more exclusion criteria
L1	Clark, D.,Levin, L Tooth hypersensitivity treatment trends among dental professionals. <i>Quintessence Int.</i> 2018. 49:147-151	One or more exclusion criteria
L1	Barros, E. L. D., Pinto, S. C. S., Borges, A. H., Tonetto, M. R., Ellwood, R. P., Pretty, I., Bandeca, M. C Toothpaste prevents debonded brackets on erosive enamel. <i>Scientific World Journal.</i> 2015. 2015 (no pagination):#pages#	One or more exclusion criteria
L1	Aurlene, N., Manipal, S., Rajmohan, Prabu, D., Sindhu, R Topical fluoride as a panacea for dental caries: A review. <i>Journal of Pharmaceutical Sciences and Research.</i> 2019. 11:3320-3325	One or more exclusion criteria
L1	Machado, I.,Buhl, V.,Manay, N Total arsenic and inorganic arsenic speciation in groundwater intended for human consumption in Uruguay: Correlation with	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	fluoride, iron, manganese and sulfate. <i>Science of the Total Environment.</i> 2019. 681:497-502	
L1	Zhu, L.,Zhang, H. H.,Xia, B.,Xu, D. R Total fluoride in Guangdong soil profiles China: Spatial distribution and vertical variation. <i>Environment International.</i> 2007. 33:302-308	, One or more exclusion criteria
L1	Paiste, M.,Levine, M.,Bono, J. V Total knee arthroplasty in a patient with skeletal fluorosis. <i>Orthopedics.</i> 2012. 35:e1664-7	One or more exclusion criteria
L1	McCready, R.,Dizdarevic, S Towards improving the sensitivity of ¹⁸ F bone imaging. <i>Nuclear Medicine Communications</i> . 2014. 35 (5):554	One or more exclusion criteria
L1	Johnson, C. A.,Berg, M.,Sabatini, D Towards sustainable safe drinking water supply in low- and middle-income countries: The challenges of geogenic contaminants and mitigation measures. <i>Science of the Total Environment</i> . 2014. 488-489:475-476	One or more exclusion criteria
L1	Steen, J.,Denk, C.,Norregaard, K.,Jorgensen, J.,Rossin, R.,Svatunek, D.,Edem, P.,Robillard, M.,Kjaer, A.,Kristensen, J.,Mikula, H.,Herth, M Towards the dual click ¹⁸ F-labeling of Antibodies. <i>Journal of</i> <i>Nuclear Medicine. Conference: Society of Nuclear Medicine and Molecular</i> <i>Imaging Annual Meeting, SNMMI.</i> 2018. 59:#pages#	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Farooqi, A.,Masuda, H.,Firdous, N Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. <i>Environmental Pollution.</i> 2007. 145:839-849	One or more exclusion criteria
L1	Choubisa, S. L., Modasiya, V., Bahura, C. K., Sheikhc, Z Toxicity of fluoride in cattle of the indian thar desert, Rajasthan, India. <i>Fluoride.</i> 2012. 45:371-376	One or more exclusion criteria
L1	Grandjean, P.,Herz, K. T Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic. <i>#journal#.</i> 2015. 31:#pages#	One or more exclusion criteria
L1	Frezzo, J. A., Hoang, D. M., Wadghiri, Y. Z., Montclare, J. K Traceable and thermoresponsive multifunctional engineered protein drug delivery agents for metastatic breast cancer. <i>Molecular Imaging and Biology.</i> 2016. 18 (2 Supplement):S279	One or more exclusion criteria
L1	Wickramarathna, S.,Balasooriya, S.,Diyabalanage, S.,Chandrajith, R Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach. <i>J Trace Elem Med Biol.</i> 2017. 44:298-306	
L1	Janka, Z Tracing trace elements in mental functions. [Hungarian]. Ideggyogyaszati Szemle. 2019. 72:367-379	One or more exclusion criteria
L1	Kislukhin, A. A.,Xu, H.,Adams, S. R.,Narsinh, K.,Tsien, R. Y.,Ahrens, E. T Tracking transplanted cells with paramagnetic fluorinated nanoemulsions.	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
	Cancer Research. Conference: 106th Annual Meeting of the American Association for Cancer Research, AACR. 2015. 75:#pages#	
L1	Chao, W.,Zhang, Y.,Chai, L.,Wang, H Transcriptomics provides mechanistic indicators of fluoride toxicology on endochondral ossification in the hind limb of Bufo gargarizans. <i>Aquat Toxicol.</i> 2018. 201:138-150	
L1	Sikora, B., Fronc, K., Kaminska, I., Koper, K., Szewczyk, S., Paterczyk, B., Wojciechowski, T., Sobczak, K., Minikayev, R., Paszkowicz, W., Stepien, P., Elbaum, D Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells. <i>Nanotechnology.</i> 2013. 24:235702	One or more exclusion criteria
_1	Wang, P.,Lu, Y.,Wang, T.,Zhu, Z.,Li, Q.,Zhang, Y.,Fu, Y.,Xiao, Y.,Giesy, J. P Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River estuary, China. <i>Environ Sci Pollut Res Int.</i> 2015. 22:9626-36	One or more exclusion criteria
_1	Farkas, A.,Wolf, M.,Landzberg, E.,Woods, K.,Lynch, M Treatment of ventricular fibrillation due to ammonium bifluoride poisoning with hemodialysis. <i>Clinical Toxicology.</i> 2018. 56 (10):1063	One or more exclusion criteria
_1	Wang, X. Y., Tao, F., Xiao, D., Lee, H., Deen, J., Gong, J., Zhao, Y., Zhou, W., Li, W., Shen, B., Song, Y., Ma, J., Li, Z. M., Wang, Z., Su, P. Y., Chang, N., Xu, J. H., Ouyang, P. Y., von Seidlein, L., Xu, Z. Y., Clemens, J. D Trend and disease	One or more exclusion criteria

evel	Bibliography	Reason for Exclusion
	burden of bacillary dysentery in China (1991-2000). Bull World Health Organ. 2006. 84:561-8	
1	An, N.,Zhu, J.,Ren, L.,Liu, X.,Zhou, T.,Huang, H.,Sun, L.,Ding, Z.,Li, Z.,Cheng, X.,Ba, Y Trends of SHBG and ABP levels in male farmers: Influences of environmental fluoride exposure and ESR alpha gene polymorphisms. <i>Ecotoxicology & Environmental Safety.</i> 2019. 172:40-44	One or more exclusion criteria
1	Loi, E. I. H., Yeung, L. W. Y., Taniyasu, S., Lam, P. K. S., Kannan, K., Yamashita, N Trophic magnification of poly- and perfluorinated compounds in a subtropical food web. <i>Environmental Science and Technology</i> . 2011. 45:5506-5513	One or more exclusion criteria
1	Sezgin, B. I.,Onur Ş, G.,Menteş, A.,Okutan, A. E.,Haznedaroğlu, E.,Vieira, A. R Two-fold excess of fluoride in the drinking water has no obvious health effects other than dental fluorosis. <i>J Trace Elem Med Biol.</i> 2018. 50:216-222	One or more exclusion criteria
1	Gooch, B. F., U.S. public health service recommendation for fluoride concentration in drinking water for the prevention of dental caries. <i>Public Health Reports</i> . 2015. 130:318-331	One or more exclusion criteria
1	Singh, P.,Das, T. K Ultrastructural localization of 4-hydroxynonenal adducts in fluoride-exposed cells: Protective role of dietary antioxidants. <i>Fluoride</i> . 2019. 52:49-58	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Daly, N.,Farren, M.,McKeating, A.,Moffitt, K.,Sheehan, S. R.,Turner, M. J Universal screening for gestational diabetes mellitus (GDM) with a fasting plasma glucose measurement under strict preanalytical conditions at the first prenatal visit. <i>American Journal of Obstetrics and Gynecology.</i> 2016. 1):S169- S170	One or more exclusion criteria
L1	Wanigasuriya, K Update on uncertain etiology of chronic kidney disease in Si Lanka's north-central dry zone. <i>MEDICC Rev.</i> 2014. 16:61-5	ri One or more exclusion criteria
L1	Degrossi, O. J., Gutierrez, S., Fadel, A., Degrossi, E. B., Valdivieso, M. C., Balbuena, R. L., Del, C. A. M., De Cabrejas, M Uptake of 131-I in maxillary bones mimicking salivary glands. False- positive images in patients with Differentiated Thyroid Carcinoma. DTC. [Spanish]. <i>Revista Argentina de Endocrinologia y Metabolismo</i> . 2008. 45:67-74	One or more exclusion criteria
L1	Babiuch, K., Pretzel, D., Tolstik, T., Vollrath, A., Stanca, S., Foertsch, F., Becer, C. R., Gottschaldt, M., Biskup, C., Schubert, U. S Uptake of well-defined, highly glycosylated, pentafluorostyrene-based polymers and nanoparticles by human hepatocellular carcinoma cells. <i>Macromol Biosci.</i> 2012. 12:1190-9	
L1	Diwan, V.,Sar, S. K.,Biswas, S.,Dewangan, R.,Baghel, T Uranium in ground water of Rajnandgaon District of Central India. <i>Journal of Radioanalytical and Nuclear Chemistry.</i> 2019. 321:293-302	One or more exclusion criteria

evel	Bibliography	Reason for Exclusion
.1	Srikanth, R.,Gautam, A.,Jaiswal, S. C.,Singh, P Urinary fluoride as a monitoring tool for assessing successful intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India. <i>Environmental Monitoring and Assessment.</i> 2013. 185:2343- 2350	One or more exclusion criteria
1	Liu, H. Y., Chen, J. R., Hung, H. C., Hsiao, S. Y., Huang, S. T., Chen, H. S Urinary fluoride concentration in children with disabilities following long-term fluoride tablet ingestion. <i>Res Dev Disabil.</i> 2011. 32:2441-8	One or more exclusion criteria
.1	Cox, K. D., English, J. C., Bhat, V Use of "read-across" and threshold of toxicological concern approaches to establish allowable concentrations in drinking water: A case study. <i>Toxicology Letters.</i> 2017. 280 (Supplement 1):S101	One or more exclusion criteria
.1	Renfrew, A. K., Scopelliti, R., Dyson, P. J Use of perfluorinated phosphines to provide thermomorphic anticancer complexes for heat-based tumor targeting. <i>Inorg Chem.</i> 2010. 49:2239-46	One or more exclusion criteria
.1	Samdan, N Use of some medicinal plants in ageing. <i>Wiener Klinische Wochenschrift.</i> 2009. 121:S80-S82	One or more exclusion criteria
.1	Campbell-Verduyn, L. S., Mirfeizi, L., Dierckx, R. A., Elsinga, P. H., Feringa, B. L. Using "Click" Chemistry as a Tool for Fluorine-18 Radiolabelling of Bombesin. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2011. 1):S487	. One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Wang, J.,Holloway, T.,Van Dam, R. M Using a microdroplet reactor for rapid, nucleophilic synthesis of [¹⁸ F]FDOPA. <i>Journal of Labelled</i> <i>Compounds and Radiopharmaceuticals.</i> 2019. 62 (Supplement 1):S337-S339	One or more exclusion criteria
L1	Mirfeizi, L., Campbell-Verduyn, L. S., Yu, Z., Feringa, B. L., Dierckx, R. R., De Jong, J. I., Helfrich, W., Elsinga, P. H Using copper free click chemistry for PET as a tool for fluorine-18 radiolabelling of Bombesin. <i>European Journal of</i> <i>Nuclear Medicine and Molecular Imaging.</i> 2011. 2):S208	One or more exclusion criteria
L1	Wang, Y., Chen, X. D., Wang, C. S Using inverse distance weighting in studying the distribution of endemic fluorosis in Jiangsu Province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:97-100	One or more exclusion criteria
L1	Dubey, S. P., Gopal, K., Bersillon, J. L Utility of adsorbents in the purification of drinking water: A review of characterization, efficiency and safety evaluation of various adsorbents. <i>Journal of Environmental Biology</i> . 2009. 30:327-332	
L1	Risheq, F. Y., Alrisheq, M. F., Al-Sadoon, S. J., Qwarik, A. A Utility of Delayed 18 FDG PET/CT imaging for lesions detection enhancement. <i>European Journa</i> <i>of Nuclear Medicine and Molecular Imaging.</i> 2015. 1):S395-S396	
L1	Bondu, J. D., Selvakumar, R., Fleming, J. J Validating a High Performance Liquid Chromatography-Ion Chromatography (HPLC-IC) Method with Conductivity Detection After Chemical Suppression for Water Fluoride Estimation. <i>Indian Journal of Clinical Biochemistry</i> . 2018. 33:86-90	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	De Arcocha Torres, M.,Ortega-Nava, F.,Portilla-Quattrociocchi, H.,Martinez- Rodriguez, I.,Quirce, R.,Medina-Quiroz, P.,Del Carpio-Bellido, L.,Carril, J Validation of the Synthesis of (18)F-FNa. <i>European Journal of Nuclear</i> <i>Medicine and Molecular Imaging.</i> 2011. 2):S292	One or more exclusion criteria
L1	Chang, E. T., Adami, H. O., Bailey, W. H., Boffetta, P., Krieger, R. I., Moolgavkar, S. H., Mandel, J. S Validity of geographically modeled environmental exposure estimates. <i>Critical Reviews in Toxicology</i> . 2014. 44:450-466	
L1	Leslie, D. L.,Lyons, W. B Variations in Dissolved Nitrate, Chloride, and Sulfate in Precipitation, Reservoir, and Tap Waters, Columbus, Ohio. <i>Int J Environ Re</i> <i>Public Health.</i> 2018. 15:#pages#	
_1	Hari Kumar, K. V. S.,Singh, Y Visual vignette. <i>Endocrine Practice.</i> 2019. 25:1082	One or more exclusion criteria
L1	Tian, Y.,Xiao, Y.,Wang, B.,Sun, C.,Tang, K.,Sun, F Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways. <i>Bioscience</i> <i>Reports.</i> 2018. 38 (4) (no pagination):#pages#	One or more exclusion criteria
L1	Minana, I. V Vitamins and trace elements. <i>Pediatria Integral.</i> 2015. 19:324- 336	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Connett, M. P Vulvar Paget's disease: Recovery without surgery following change to very low-fluoride spring and well water. <i>Fluoride</i> . 2007. 40:96-100	One or more exclusion criteria
L1	Su, L.,Zhang, Z.,Xiong, Y Water dispersed two-dimensional ultrathin Fe(iii)- modified covalent triazine framework nanosheets: peroxidase like activity and colorimetric biosensing applications. <i>Nanoscale.</i> 2018. 10:20120-20125	One or more exclusion criteria
L1	Newton, J. N., Young, N., Verne, J., Morris, J Water fluoridation and hypothyroidism: results of this study need much more cautious interpretation. <i>Epidemiol Community Health.</i> 2015. 69:617-8	One or more exclusion criteria
L1	Yeung, C. A Water fluoridation could save NHS millions every year. <i>BMJ</i> (Online). 2014. 348 (no pagination):#pages#	One or more exclusion criteria
L1	Rabb-Waytowich, D Water fluoridation in Canada: past and present. <i>J Can Dent Assoc.</i> 2009. 75:451-4	One or more exclusion criteria
L1	Osmunson, B Water fluoridation intervention: Dentistry's crown jewel or dark hour?. <i>Fluoride.</i> 2007. 40:214-221	One or more exclusion criteria
L1	Kumar, S Water fluoridation, dental fluorosis, bone fluorosis, and skeletal fluorosis among persons in the hojai sub-division, Nagaon District, Assam, India: A quantitative overview. <i>Fluoride</i> . 2012. 45 (3 PART 1):180-181	One or more exclusion criteria
L1	Connett, P Water fluoridationa public health hazard. Int J Occup Environ Health. 2006. 12:88-91	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Peckham, S., Awofeso, N Water fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. <i>The Scientific World Journal.</i> 2014. 2014 (no pagination):#pages#	One or more exclusion criteria
L1	Amenu, K.,Markemann, A.,Valle Zárate, A Water for human and livestock consumption in rural settings of Ethiopia: assessments of quality and health aspects. <i>Environ Monit Assess.</i> 2013. 185:9571-86	One or more exclusion criteria
L1	Fang, J.,Wu, X.,Xu, J.,Yang, X.,Song, X.,Wang, G.,Yan, M.,Yan, M.,Wang, D Water management challenges in the context of agricultural intensification and endemic fluorosis: the case of Yuanmou County. <i>Ecohealth.</i> 2011. 8:444-55	One or more exclusion criteria
L1	Pinto, U.,Thoradeniya, B.,Maheshwari, B Water quality and chronic kidney disease of unknown aetiology (CKDu) in the dry zone region of Sri Lanka: impacts on well-being of village communities and the way forward. <i>Environmental science and pollution research international.</i> 2020. 27:3892- 3907	One or more exclusion criteria
L1	 Bermejo, I. A., Usabiaga, I., Compañón, I., Castro-López, J., Insausti, A., Fernández, J. A., Avenoza, A., Busto, J. H., Jiménez-Barbero, J., Asensio, J. L., Peregrina, J. M., Jiménez-Osés, G., Hurtado-Guerrero, R., Cocinero, E. J., Corzana, F Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. J Am Chem Soc. 2018. 140:9952-9960 	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Varol, E., Varol, S Water-borne fluoride and primary hypertension. <i>Fluoride.</i> 2013. 46:3-6	One or more exclusion criteria
L1	Nemoto, A.,Chosa, N.,Kyakumoto, S.,Yokota, S.,Kamo, M.,Noda, M.,Ishisaki, A Water-soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells. <i>Mol</i> <i>Med Rep.</i> 2018. 17:3448-3454	One or more exclusion criteria
L1	Ogbu, I. S. I.,Okoro, O. I. O.,Ugwuja, E. I Well waters fluoride in Enugu, Nigeria. <i>International Journal of Occupational and Environmental Medicine.</i> 2012. 3:96-98	One or more exclusion criteria
L1	Samstein, M.,Kaplan, B.,Ponda, P What's Not in the Water? Pseudoallergic Reactions to Niacinamide Containing Flouridated Multivitamins. <i>Annals of Allergy, Asthma and Immunology.</i> 2019. 123 (5 Supplement):S67	One or more exclusion criteria
L1	Armfield, J. M When public action undermines public health: A critical examination of antifluoridationist literature. <i>Australia and New Zealand Health Policy</i> . 2007. 4 (1) (no pagination):#pages#	One or more exclusion criteria
L1	Baysoy, G., Uzulmez, R. H Who is your dietitian? Diet of breastfeeding mothers with an allergic infant lacks many essential nutrients. <i>Journal of Pediatric Gastroenterology and Nutrition.</i> 2018. 66 (Supplement 2):981	One or more exclusion criteria

Level	Bibliography	Reason for Exclusion
L1	Wasana, H. M., Perera, G. D., Gunawardena, P. S., Fernando, P. S., Bandara, WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. <i>Sci Rep.</i> 2017. 7:42516	J One or more exclusion criteria
L1	Johansson, E.,Lubberink, M.,Heurling, K.,Eriksson, J. W.,Skrtic, S.,Ahlstrom, H.,Kullberg, J Whole-body imaging of tissue-specific insulin sensitivity and body composition by using an integrated PET/MR system: A feasibility study. <i>Radiology.</i> 2018. 286:271-278	One or more exclusion criteria
L1	Kennett, J Will routine use of statins after age 50 become as common as fluoridating drinking water? It should!. <i>Mo Med.</i> 2013. 110:342-3	One or more exclusion criteria
L1	Huang, C. Q X-ray signs of bone and joint among residents of endemic fluorosis area 40 years after improvement of water. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:192-195	One or more exclusion criteria al
L1	Huang, C. Q X-rays changes of forearm and shank of residents from areas with different fluoride contents in drinking water in Jilin province. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:208-212	One or more exclusion criteria
L1	Li, Z.,Jia, K.,Duan, Y.,Wang, D.,Zhou, Z.,Dong, S Xanomeline derivative EUK1001 attenuates Alzheimer's disease pathology in a triple transgenic mouse model. <i>Mol Med Rep.</i> 2017. 16:7835-7840	One or more exclusion criteria
L1	Venault, A.,Lin, K. H.,Tang, S. H.,Dizon, G. V.,Hsu, C. H.,Maggay, I. V. B.,Chang, Y Zwitterionic electrospun PVDF fibrous membranes with a well-	One or more exclusion criteria
1359		

Level	Bibliography	Reason for Exclusion
	controlled hydration for diabetic wound recovery. <i>Journal of Membrane Science</i> . 2020. 598 (no pagination):#pages#	
L2	Bian, J.,Lin, X.,Yang, X.,Fan, T.,Zhu, Q. [Changes of certain oxidative, anti- oxidative and vascular function indexes of New Zealand rabbit exposed by high-fluoride]. [Chinese]. <i>Wei sheng yan jiu</i> = <i>Journal of hygiene research.</i> 2010. 39:751-754	Non-English publication
L2	Biloklyts'ka, H. F.,Pohrebniak, H. V.,Khalili, D [Effect of the diet with different microelement composition on the state of alveolar and pelvic bones in rats]. <i>Fiziol Zh.</i> 2008. 54:74-8	Non-English publication
L2	Chen, C.,Lu, Y.,Wang, S. Y.,Li, X. H Research on residual alveolar bone in fluorosis rats. [Chinese]. <i>Journal of Xi'an Jiaotong University (Medical Sciences)</i> . 2012. 33:110-113	Non-English publication
L2	Chen, R.,Zhu Li De Zi, T.,Zhao, L.,Tian, J. G.,Ruan, J. P Effects of fluoride on the expressions of MMP-20 and KLK4 in rat ameloblasts. [Chinese]. <i>Journal of</i> <i>Xi'an Jiaotong University (Medical Sciences).</i> 2013. 34:433-436	
L2	Chen, X. S., Yu, Y. N., Yi, W., Wan, L. B., Xie, Y Effect of fluoride on expression of mRNA and protein of Wnt3a and beta-catenin in osteoblast of rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:140-145	Non-English publication

Level	Bibliography	Reason for Exclusion
L2	Chen, X. Y.,Liang, B.,Tang, F. W.,Zhang, Y. C.,Sun, F.,Gu, J.,Zhang, S. Role of stanniocalcin 1 in brain injury of coal-burning-borne fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:129-132	0
L2	Cui, Y. S.,Zhong, Q.,Li, W. F.,Liu, Z. H.,Wang, Y.,Hou, C. C [Effects of fluoride exposure on thyroid hormone level and intelligence in rats]. <i>Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi.</i> 2017. 35:888-892	Non-English publication
L2	Deng, C. N.,Yu, Y. N.,Xie, Y.,Zhao, L. N. [Expression of calcineurin and nuclear factor of activated T cells 1 in testis of rats with chronic fluorosis]. [Chinese]. <i>Zhonghua yu fang yi xue za zhi</i> [Chinese journal of preventive medicine]. 2013. 47:1142-1147	Non-English publication
L2	Deng, C. N.,Yu, Y. N.,Yang, D.,Zhu, H. Z Expression of nuclear factor kappa B-related mRNA and protein in bone tissue of fluorosis rats. [Chinese]. <i>Chinese</i> <i>Journal of Endemiology.</i> 2012. 31:135-139	0
L2	Deng, C. N.,Yu, Y. N.,Yang, D.,Zhu, H. Z. Relationship of nuclear factor kappa B-related gene expression and osteoclast apoptosis induced by fluoride in bone tissue. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:518-522	Non-English publication
L2	Deng, C. N., Zhang, Y., Xu, L., Zhao, L. N., Linghu, Y., Yu, Y. N [Change and relationship between Gli1 and beta-catenin on rats' bone formation with chronic fluorosis]. <i>Chung-Hua Ping Li Hsueh Tsa Chih - Chinese Journal of Pathology.</i> 2020. 49:168-173	
1001		

Level	Bibliography	Reason for Exclusion
L2	Deng, C.,Yu, Y.,Zhang, Y Expressions of transforming growth factor-beta1 and interleukin 6 mRNA and protein in bone of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:609-614	Non-English publication
L2	Dong, Y.,Wang, Y.,Wei, N.,Guan, Z Expression levels of brain muscarinic acetylcholine receptor in offspring rats of drinking-water borne fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:326-330	Non-English publication
L2	Dong, Y., Wang, Y., Wei, N., Guan, Z Expression of muscarinic acetylcholine receptors in the brain of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:84-88	Non-English publication
L2	Ersan, Y.,Koc, E.,Ari, I.,Karademir, B Histopathological effects of chronic fluorosis on the liver of mice (Swiss albino). [Turkish]. <i>Turkish Journal of Medical Sciences.</i> 2010. 40:619-622	Non-English publication
L2	Fan, S. L.,Bai, S. B.,Qin, W.,Zhang, Y. L.,Zhong, J. J.,Chen, R.,Li, T.,Feng, S. M.,Liu, K. T.,Luo, X. G.,Chen, L.,Liao, L. B Morphological changes of bone in the progress of rat chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2012. 31:151-155	Non-English publication
L2	Gao, Q.,Liu, Y. J.,Wu, C. X.,Long, Y. G.,Guan, Z. Z Level of oxidative stress in rat brains and learning and memory function of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2008. 27:371-373	Non-English publication

Level	Bibliography	Reason for Exclusion
L2	Gao, Y. H.,Fu, S. B.,Sun, H.,Zhou, L. W.,Yu, J.,Li, Y.,Wang, Y.,Sun, D. J Dynamic analysis on bone pathologic change of fluorosis in rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2007. 26:18-21	Non-English publication
L2	Gao, Y. H., Fu, S. B., Sun, H., Zhou, L. W., Yu, J., Li, Y., Wang, Y., Sun, D. J Expression of the transforming growth factor-beta superfamily in bone turnover of fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:374-378	Non-English publication
L2	Gao, Y. H.,Geng, L. B.,Zhao, L. J.,Zhang, L. W.,Wei, W.,Huo, L. L.,Liu, K. K Effect of fluoride on bone metabolism in rats. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2010. 29:613-615	Non-English publication
L2	Gao, Y. H., Sun, D. J., Zhou, L. W., Yu, J., Li, Y., Wang, Y Effect of subchronic fluoride intoxication on inducible nitric oxide synthase expression in rat bone tissue. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:124-127	Non-English publication
L2	Gui, C. Z.,Ran, L. Y.,Guan, Z. Z Expression levels of brain nicotinic acetylcholine receptor mRNA and protein in coal-burning type of fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:239-242	Non-English publication
L2	Guo, X.,Wu, S.,He, Y.,Zhang, Z.,Sun, G. [Effect of subchronic fluoride exposure on pathologic change and beta-catenin expression in rat bone tissue]. [Chinese]. <i>Wei sheng yan jiu = Journal of hygiene research.</i> 2011. 40:304-307	Non-English publication

Level	Bibliography	Reason for Exclusion
L2	Gutierrez-Salinas, J.,Morales-Gonzalez, J. A Sodium fluoride ingestion induced oxidative stress in buccal mucosa in rat. [Spanish]. <i>Revista Mexicana</i> <i>de Ciencias Farmaceuticas</i> . 2006. 37:11-22	Non-English publication
L2	Jia, Z.,Yu, Y.,Yang, X.,Wan, W.,Xu, W Effects of chronic fluorosis on expressions of matrix metalloproteinase-9 mRNA and protein in the osteoclast of bone tissue of rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:133-137	Non-English publication
L2	Jin, T. X., Guan, Z. Z., Zhang, H The effect of fluoride on alpha subunit of calcium/calmodulin-dependent protein kinase-II mRNA and protein expression in central nervous system. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:247-250	Non-English publication
L2	Kelimu, A.,Liu, K. T.,Lian, J.,Hu, H. H.,Zheng, Y. J.,Wang, T. M. Effects of vitamin C and E on the ultrastructure in liver, kidney and brain of fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:378-381	Non-English publication
L2	Li, H.,Cai, Q.,Wang, D Effects of fluoride on rat thyroid morphology, thyroid peroxidase activity and the expression of thyroid peroxidase protein. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:271-274	Non-English publication
L2	Li, J. Y.,Liang, Z. P.,Ma, H. S Changes of the femur biomechanics in fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:154-156	Non-English publication

Level	Bibliography	Reason for Exclusion
L2	Liu, Y. J.,Gao, Q.,Long, Y. G.,Yu, Y. N.,Guan, Z. Z. Influence of chronic fluorosis on expression of phospho-Elk-1 in rat brains. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:251-255	Non-English publication
L2	Liu, Y. J.,Gao, Q.,Wu, C. X.,Guan, Z. Z Changes of the c-Jun N-terminal kinase in the brains of rats with chronicfluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:608-612	Non-English publication
L2	Liu, Y. J.,Gao, Q.,Wu, C. X.,Long, Y. G.,Guan, Z. Z Modified expression of extracellular signal-regulated protein kinase signal transduction in rat brains and changed capacity of learning and memory of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:32-35	Non-English publication
L2	Lou, D. D.,Liu, Y. F.,Qin, S. L.,Zhang, K. L.,Yu, Y. N.,Guan, Z. Z Changed transcription level of mitochondrial fission and fusion gene loci in cortical neurons of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:125-129	Non-English publication
L2	Lou, D. D.,Liu, Y. F.,Zhang, K. L.,Yu, Y. N.,Guan, Z. Z Changes of reactive oxygen species level and mitochondria fission-fusion in cortical neurons of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:256-260	Non-English publication
L2	Lou, D. D.,Pan, J. G.,Zhang, K. L.,Qin, S. L.,Liu, Y. F.,Yu, Y. N.,Guan, Z. Z [Changed expression of mito-fusion 1 and mitochondrial fragmentation in the	Non-English publication
1365		

Level	Bibliography	Reason for Exclusion
	cortical neurons of rats with chronic fluorosis]. [Chinese]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]. 2013. 47:170-174	
L2	Lou, D. D., Zhang, K. L., Pan, J. G., Qin, S. L., Liu, Y. F., Yu, Y. N., Guan, Z. Z [Influence of chronic fluorosis on the expression of mitochondrial fission protein dynamin-related 1 in the cortical neurons of rats]. [Chinese]. <i>Zhonghua yu fang</i> <i>yi xue za zhi</i> [Chinese journal of preventive medicine]. 2013. 47:561-564	
L2	Lou, D. D., Zhang, K. L., Qin, S. L., Liu, Y. F., Liu, Y. J., Guan, Z. Z Effects of chronic fluorosis on 4.8 kb mitochondrial DNA in liver, kidney and brain of rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:121-124	Non-English publication
L2	Ma, T. X.,Yu, H. T.,Song, K. Q Expression of c-fos and Caspase 8 in cerebral cortex of rats with experimental fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:131-133	Non-English publication
L2	Mei, M.,Yu, Y. N.,Guo, B Effect of fluoride on expression of Runx2 mRNA and protein in bone tissue of rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:493-495	Non-English publication
L2	Mo, F.,Qu, W.,Xia, S. H.,Yu, M. J.,Tu, F Effects of soybean, selenium and spirulina on hemoglobin of rats intoxicated with fluorine and aluminium. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:384-386	Non-English publication
L2 1366	Ortega Garcia, J. A.,Ferris, I. Tortajada J.,Berbel Tornero, O.,Romero, K. J.,Rubalcava, L.,Martinez Salcedo, E.,Apolinar Valiente, E.,Crehua Gaudiza,	Non-English publication

Level	Bibliography	Reason for Exclusion
	E.,Hernandez Gil, M. D Environmental neurotoxins (IV). Tobacco, alcohol, solvents, fluoride, food additives: Adverse effects on the fetal and postnatal nervous system. Preventive measures. [Spanish]. <i>Acta Pediatrica Espanola.</i> 2006. 64:493-502	
L2	Qin, J. H.,Dilinuer, A.,Saimire, S.,Kalibinuer, A.,Yusufu, M.,Yirizhati, A.,Cui, S. S.,Nuersimanguli, M.,Chen, W. J.,Bai, S. B. [Excessive fluoride increases the expression of osteocalcin in the mouse testis]. <i>Zhong Hua Nan Ke Xue.</i> 2017. 23:782-785	Non-English publication
L2	Qin, S.,Lou, D. D.,Liu, Y. F.,Yu, Y. N.,Guan, Z. Z Expression of mitochondrial fission protein locus Fis1 and ultrastructural changes in the renal cells of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:125-128	Non-English publication
L2	Qiu, Y. H.,Kong, D. M.,Yang, Q.,Zhao, N Influence of high-fluoride on thyroid function and brain damage in rats. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2010. 29:146-149	0
L2	Shen, Q. F.,Li, H. N.,Xu, T. T.,Xia, Y. P. Damage of blood brain barrier of spinal cord in rats with chronic fluorosis. [Chinese]. <i>National Medical Journal of China.</i> 2012. 92:2357-2361	Non-English publication

Level	Bibliography	Reason for Exclusion
L2	Shen, Q., Tian, R., Li, H., Xu, T., Xia, Y White matter injury of spinal cord in rats with chronic fluorosis and recovery after defluoriation. [Chinese]. <i>National Medical Journal of China.</i> 2014. 94:1189-1192	Non-English publication
L2	Sun, D. J.,Gao, Y. H.,Zhou, L. W.,Yu, J.,Li, Y.,Wang, Yu. Effects of sodium fluoride on matrix metal proteinases-13 mRNA and tissue inhibitor of metal protease-1 mRNA in rat bone tissue. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:364-367	Non-English publication
L2	Sun, J. C., Wang, C. Y., Xu, H., Li, G. S Effect of endoplasmic reticulum stress in renal injury of fluorosis rats. [Chinese]. <i>Journal of Jilin University Medicine</i> <i>Edition</i> . 2009. 35:992-995	Non-English publication
L2	Tang, L.,Bai, S. B.,Zhang, Y. L.,Liu, K. T.,Zhang, Y. X.,Jin-jie, Z Experimental study of cartilage lesions and COLIXA 3 protein expression in rats cartilage with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:389-392	Non-English publication
L2	Tao, H.,Wang, L.,Hou, T. Z.,Zhang, L.,Wang, X. R Ameloblastin gene expression in fluoride-induced mus musculus incisors in mice. [Chinese]. <i>Journal of Xi'an Jiaotong University (Medical Sciences).</i> 2011. 32:238-241	Non-English publication
L2	Tao, H.,Wang, L.,Hou, T. Z.,Zhang, L.,Wang, X. R Amelogenin gene expression in fluoride-induced mus musculus incisors of mice. [Chinese]. <i>Journal of Xi'an Jiaotong University (Medical Sciences)</i> . 2010. 31:756-759	Non-English publication
1368		

Level	Bibliography	Reason for Exclusion
L2	Wang, C. S., Tang, Y., Wang, C Effect of subchronic exposure to fluoride on mRNA expression of estrogen receptor in female mice. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2013. 32:146-148	Non-English publication
L2	Wei, N.,Dong, Y.,Wang, Y.,Guan, Z Effects of chronic fluorosis on neurobehavioral development in offspring of rats and antagonistic effect of Vitamin E. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2014. 33:125-128	Non-English publication
L2	Wu, Y.,Xu, X.,Zeng, B.,Xiang, R.,Cao, F.,Fan, X.,Wei, Y Impact of excessive fluoride intake on bone tissue oxidative stress. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:729-732	Non-English publication
L2	Xiao, Y. M., Sun, X. J., Yu, Y. N Effect of fluoride on the expression of osteoprotegerin/receptor activator of nuclear factor kappabeta ligand/receptor activator of nuclear factor kappabeta system proteins of rats with fluorosis and the antagonism of Danlan Xianpeng capsule. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:487-492	Non-English publication
L2	Xie, Y.,Yu, Y. N.,Wan, L. B.,Chen, X. S Effect of fluoride on expression of CaN mRNA and protein in bone tissue of rats. [Chinese]. <i>Chinese Journal of Pathology</i> . 2012. 41:761-764	Non-English publication
L2	Xu, H.,Fan, H. Q.,Zhang, J. M.,Li, G. S Study on oxidative stress and activity of alkaline phosphatase of rats exposed to different period of fluoride. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2010. 29:124-126	Non-English publication
1369		

Level	Bibliography	Reason for Exclusion
L2	Xu, H.,Jing, L.,Zhang, J. M.,Li, G. S Proteomical analysis of kidney of the fluoride-treated rat. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:30-33	Non-English publication
L2	Xu, H.,Zhao, Z. T.,Jing, L.,Li, G. S Study on endoplasmic reticulum stress in bone tissue of fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2009. 28:36-40	Non-English publication
L2	Xu, P.,Yao, J.,Cai, Q.,Zhang, Y.,Du, X.,Guo, X Preventive effect of the supplemental dietary boron on bone damage of rats with excess fluoride ingestion. [Chinese]. <i>Journal of Xi'an Jiaotong University (Medical Sciences)</i> . 2008. 29:625-628	Non-English publication
L2	Yang, L. P., Wang, K. Y., Shi, X. Q., Li, H Joint effects of fluoride and aluminum on biomarkers of bone metabolism in mice. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2008. 27:374-377	Non-English publication
L2	Yang, L. P.,Wang, K. Y.,Shi, X. Q.,Li, H Study on pathology and histomorphometry of mouse bone in combined intoxication of fluoride and aluminum. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2008. 27:137-140	Non-English publication
L2	Yang, M.,Ren, Z.,Zhou, B.,Guan, Z.,Yu, W Expression of endonuclease G in the brain tissue of rats with chronic fluorosis. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2017. 36:327-332	Non-English publication

Level	Bibliography	Reason for Exclusion
L2	Yang, Q.,Chu, Y.,Jiang, W.,Li, J.,Li, Y.,Boo, Y.,Chen, F.,Li, B.,Yang, Y.,Guo, Y Effects of different doses of sodium fluoride on cartilage lesion and expression of interleukin-6 in Balb/c mice. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2017. 36:408-413	Non-English publication
L2	Yi, G. K.,Liu, L.,Li, X. Z Over-dose fluoride induces the degeneration and ossification of the ligamentum flavum. [Chinese]. <i>Chinese Journal of Tissue Engineering Research.</i> 2015. 19:5301-5305	Non-English publication
L2	Yuan, X. J.,Liu, N. Y.,Ma, F. H.,Suo, F.,Chen, J. M.,Yang, F Effect of selenium-germenium agent on antioxidase and major elements in fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2007. 26:137-139	Non-English publication
L2	Zhang, K. L.,Lou, D. D.,Guan, Z. Z Changes of syndecan-4 and nuclear factor kappaB in the kidney of rat with chronic fluorosis. [Chinese]. <i>Chinese Journal of</i> <i>Endemiology.</i> 2013. 32:133-135	U
L2	Zhang, K. L.,Lou, D. D.,Guan, Z. Z Expression of receptor for advanced glycation endproducts and nuclear factor kappaB in brain hippocampus of rat with chronic fluorosis. [Chinese]. <i>Chinese Journal of Endemiology</i> . 2013. 32:625-628	Non-English publication
L2	Zhang, K. L.,Lou, D. D.,Liu, Y. F.,Qin, S. L.,Guan, Z. Z Changes of P- glycoprotein and nuclear factor kappaB in the cerebral cortex of rat with chroni fluorosis. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2012. 31:613-616	Non-English publication ic

Level	Bibliography	Reason for Exclusion
L2	Zhang, W. L., Sun, L., Xue, L. J., Wu, Y., Li, G. S Study on the relationship of low nutritional calcium with over-load of intracellular calcium in fluorosis mice. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:622-624	Non-English publication
L2	Zhang, W. L., Xue, L. J., Cui, Y. N., Li, G. S The effect of different dosage of fluoride intake on activation of osteoblasts and the expression of BMP-2, BMP-4 and Smad-4. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2006. 25:125-128	Non-English publication
L2	Zhang, X. Y.,Lu, P.,Zhang, J. M.,Zhao, Z. T.,Xu, H.,Li, G. S Immunoglobulin binding protein gene and protein expression in femur tissue of fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:502-505	Non-English publication
L2	Zhao, Q.,Wu, Y.,Zhang, Z. G.,Yang, S. P Protective effect of selenium on fluoride-induced renal impairments in rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:137-141	Non-English publication
L2	Zhu, H. Z.,Yu, Y. N.,Deng, C. N.,Yang, D Effect of fluoride on expression of phosphoinositide 3-kinase, protein kinase B1 mRNA and protein in bone tissue of rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2011. 30:261-265	Non-English publication
L2	Zhu, Z.,Yu, Y.,Too, X.,Zhao, L Expression of Janus kinase/signal transduction and transcriptional activation (JAK1 and STAT3) in liver of fluorosis rats. [Chinese]. <i>Chinese Journal of Endemiology.</i> 2015. 34:733-738	Non-English publication
L2	Adejumobi, O.,Omobowale, T.,Oyagbemi, A.,Ayenuro, O.,Ola-Davies, O.,Adedapo, A.,Yakubu, M Amelioration of sodium fluorideinduced	Full-text not available
1372		

Level	Bibliography	Reason for Exclusion
	hypertension, cardio-renal oxidative stress and genotoxicity by azadirachta indica through antioxidant and extracellular signalregulated kinase (erk) 1/2 signal-ling. <i>FASEB Journal. Conference: Experimental Biology.</i> 2017. 31:#pages#	
L2	Afolabi, J. M.,Oyagbemi, A. A.,Omobowale, T. O.,Asenuga, E. R.,Ajibade, T. O.,Adejumobi, O. A.,Hassan, F. O.,Adedapo, A. A.,Yakubu, M. A Quercetin attenuates Sodium fluoride (NaF)-induced hypertension through reduction in oxidative stress and heat shock proteins (HSP 70)/extracellular signal regulated kinase (ERK) pathways in rats. <i>FASEB Journal. Conference: Experimental Biology.</i> 2017. 31:#pages#	Full-text not available
L2	Anacletus, F. C., Onyegeme-Okerenta, B. M., Iheka, C. U Management of fluoride toxicity on adult male wistar rats' fecundity using some selected antioxidants. <i>FASEB Journal. Conference: Experimental Biology.</i> 2016. 30:#pages#	Full-text not available
L2	Anonymous,. Translations of twelve Chinese studies on developmental fluoride neurotoxicity. <i>Fluoride</i> . 2008. 41:111-114	e Full-text not available
L2	Bhaskara Rao, A. V Genotoxicity in mice, mus norvegicus albinus on exposure to fluoride aluminum and their combination. <i>Environmental and Molecular Mutagenesis</i> . 2012. 1):S49	Full-text not available

Level	Bibliography	Reason for Exclusion
L2	Bielec, B., Stawiarska-Pieta, B., Iskra, A., Kabala-Dzik, A., Kubina, R., Zalejska- Fiolka, J. E., Grzegorzak, N., Birkner, E Morphological picture of the kidneys and the activity of selected enzymes after administration of vitamin e and methionine to rats exposed to sodium fluoride. <i>Fluoride.</i> 2012. 45 (3 PART 1):155-156	Full-text not available
L2	Brun, L. R., Roma, S. M., Perez, F., Rigalli, A Inflammation in rat bone induced by sodium fluoride. <i>Actualizaciones en Osteologia.</i> 2012. 8:19-28	Full-text not available
L2	Choi, A. L.,Sun, G.,Zhang, Y.,Grandjean, P Meta-analysis of 27 studies of fluoride neurotoxicity in children. <i>Epidemiology.</i> 2012. 1):S25	Full-text not available
L2	de Carvalho, J. G., Cestari, T. M., de Oliveira, R. C., Buzalaf, M. A. R Fluoride effects on ectopic bone formation in young and old rats. <i>Methods and Findings</i> <i>in Experimental and Clinical Pharmacology.</i> 2008. 30:287-294	Full-text not available
L2	de Carvalho, J. G.,Cestari, T. M.,de Oliveira, R. C.,Buzalaf, M. A Fluoride effects on ectopic bone formation in young and old rats. <i>Methods Find Exp Clin Pharmacol.</i> 2008. 30:287-94	Full-text not available
L2	Fina, B. L.,Lupo, M.,DaRos, E. R.,Moreno, H.,Roma, S. M.,Rigalli, A Effect of sodium fluoride on biomechanical and histomorphometric bone parameters: Identification of variables that determine the fracture load in NaF-treated rats. <i>Fluoride.</i> 2012. 45 (3 PART 1):163-164	Full-text not available

Level	Bibliography	Reason for Exclusion
L2	Guan, Z. Z.,Liu, Y. J.,Gui, C. Z.,Ran, L. Y.,Gao, Q Changed cholinergic system and neuronal signal transduction in rats with deficit of learning and memory induced by chronic fluorosis. <i>Fluoride.</i> 2012. 45 (3 PART 1):166-167	Full-text not available
L2	Han, H.,Sun, Z.,Luo, G.,Wang, C.,Wei, R.,Wang, J Fluoride exposure changed the structure and the expressions of reproductive related genes in the hypothalamus-pituitary-testicular axis of male mice. <i>Chemosphere.</i> 2015. 135:297-303	Full-text not available
L2	Jetti, R.,Raghuveer, C. V.,Chamallamudi, M. R.,Somayaji, S. N.,Billakanti, P. B Ameliorative effect of ginkgo biloba on neurodegeneration caused by fluoride. <i>Annals of Anatomy.</i> 2014. 1):62	Full-text not available
L2	Khan, I.,Ranga, A Sodium fluoride induced toxicity in the kidney of Swiss albino mice and its amelioration by ascorbic acid. <i>International Journal of Pharma and Bio Sciences</i> . 2014. 5:B187-B195	Full-text not available
L2	Krook, L. P., Justus, C Erratum: Fluoride poisoning of horses from artificially fluoridated drinking water (Flouride (2006) 39, 1 (1-3)). <i>Fluoride.</i> 2006. 39:156	Full-text not available
L2	Losso, E. M., Pereira, M., Dombrowski, P. A., Da Cunha, C., Andreatini, R Sodium fluoride induced memory impairment is associated with changes in striatal monoamInerglc levels. <i>European Neuropsychopharmacology.</i> 2009. 3):S329-S330	Full-text not available

Level	Bibliography	Reason for Exclusion
L2	Luis, H Commentary. Journal of Neurosciences in Rural Practice. 2012. 3:151	Full-text not available
L2	Manna, P.,Sinha, M.,Sil, P. C A 43 kD protein isolated from the herb Cajanus indicus L attenuates sodium fluoride-induced hepatic and renal disorders in vivo. <i>J Biochem Mol Biol.</i> 2007. 40:382-95	Full-text not available
L2	Oner, A. C.,Komuroglu, A. U.,Dede, S.,Yur, F.,Oner, A The effect of vitamin C and vitamin E on oxidative damage in ratswith fluorosis. <i>Turkish Journal of</i> <i>Biochemistry.</i> 2017. 42 (Supplement 1):24	Full-text not available
L2	Oner, A. C., Yur, F., Oner, A., Komuroglu, A. U., Dede, S Effect of vitamin C and vitamin E on serum biochemistry for protection inflorosis. <i>Turkish Journal of Biochemistry</i> . 2017. 42 (Supplement 1):50	l Full-text not available
L2	Raju, S., Sivanesan, S., Gudemalla, K., Mundugaru, R., Swaminathan, M Effect of ginkgo biloba extract on hematological and biochemical alterations in fluoride intoxicated wistar rats. <i>Research Journal of Pharmacy and</i> <i>Technology.</i> 2019. 12:3839-3846	Full-text not available
L2	Ranjan, R.,Swarup, D.,Patra, R. C.,Varshney, V. P Changes in cortisol, oxidative stress indices, and serum biochemistry in fluoride-intoxicated rabbits. <i>Fluoride</i> . 2012. 45 (3 PART 1):191	Full-text not available
L2	Shankar, P.,Khandare, A. L Regulation and reversal of effects of fluoride on calcium homeostasis in rats. <i>Fluoride.</i> 2012. 45 (3 PART 1):198-199	Full-text not available

Level	Bibliography	Reason for Exclusion
L2	Shanthakumari, D., Srinivasalu, S., Subramanian, S Effect of fluoride intoxication on the levels of intestinal antioxidants studied in rats. <i>Methods & Findings in Experimental & Clinical Pharmacology.</i> 2007. 29:93-9	Full-text not available
L2	Shashi, A.,Bhardwaj, M.,Sharma, N Pathologic alterations in endocrine pancreatic islet cells during experimental flruoosis. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences.</i> 2007. 9:977-981	Full-text not available
L2	Shashi, A.,Neeraj, S.,Sharma, N Cytotoxic effect of fluoride on rat pancreatic proteins. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences.</i> 2009. 11:349-353	Full-text not available
L2	Shashi, A., Sharma, N., Bhardwaj, M Fluoride induced DNA damage and apoptosis in rat pancreas. <i>Asian Journal of Microbiology, Biotechnology and Environmental Sciences</i> . 2007. 9:953-957	Full-text not available
L2	Singh, P. K., Feroz, A. D., Sheeba, H., Khalil, A., Samir, A. M Beneficial effect o Tamarindus indica on the testes of albino rat after fluoride intoxication. <i>International Journal of Pharma and Bio Sciences.</i> 2012. 3:B487-B493	f Full-text not available
L2	Singh, R., Srivastava, A. K., Gangwar, N. K Clinico-pathological studies on the co-exposure of cypermethrin and fluoride in experimental rats with ameliorative action of Vitamin E. <i>Veterinary Practitioner.</i> 2017. 18:207-210	

Level	Bibliography	Reason for Exclusion
L2	Spittle, B. J Fluoride-induced cell ultrastructure changes. <i>Fluoride.</i> 2012. 45 (3 PART 1):201-203	3 Full-text not available
L2	Spittle, B Fluoride and fertility. Fluoride. 2008. 41:98-100	Full-text not available
L2	Strunecka, A.,Blaylock, R. L.,Strunecky, O Fluoride, aluminum, and aluminofluoride complexes in pathogenesis of the autism spectrum disorders: A possible role of immunoexcitotoxicity. <i>Journal of Applied Biomedicine</i> . 2016. 14:171-176	Full-text not available
L2	Sumida, D. H., Chiba, F. Y., Colombo, N. H., Shirakashi, D. J., Garbin, C. A. S The chronic exposure to fluoride inhibits insulin signal in the adipose tissue and causes insulin resistance in rats. <i>Diabetes.</i> 2011. 1):A677	
L2	Tehrani, A., Morvaridi, A., Beikzadeh, B., Hamedani, A. P., Khadir, F., Tabari, M. M Histological and histometrical studies on the effects of Fluoride on the Femur in rats. <i>Research in Molecular Medicine</i> . 2015. 3:34-38	Full-text not available
L2	Braga, T. M.,Braga, D. N.,Moreno-Carvalho, E.,Bauer, J. O.,Turssi, C. P Calcium Pre-Rinse: Effect on permeability of dentin tubules by fluoride rinse. <i>J</i> <i>Clin Exp Dent.</i> 2019. 11:e303-e309	Only dental outcomes
L2	Kakei, M.,Sakae, T.,Yoshikawa, M.,Tamura, N Effect of fluoride ions on apatite crystal formation in rat hard tissues. <i>Annals of Anatomy.</i> 2007. 189:175-181	Only dental outcomes

Level	Bibliography	Reason for Exclusion
L2	Macicek, P., Krook, L. P Fluorosis in horses drinking artificially fluoridated water. <i>Fluoride</i> . 2008. 41:177-183	Only dental outcomes
L2	Mofatto, L. S., Frozoni, M. R., do Espírito Santo, A. R., Guimarães, G. N., de Souza, A. P., de Campos Vidal, B., Line, S. R Fluoride effect on the secretory- stage enamel organic extracellular matrix of mice. <i>Connect Tissue Res.</i> 2011. 52:212-7	Only dental outcomes
L2	Cao, J., Chen, J., Wang, J., Wu, X., Li, Y., Xie, L Tissue distributions of fluoride and its toxicity in the gills of a freshwater teleost, Cyprinus carpio. <i>Aquatic</i> <i>Toxicology.</i> 2013. 130-131:68-76	Other exclusion reasons (route of exposure other than drinking water mixture exposure, non-mammalian species etc)
L2	Cardenas-Gonzalez, M.,Jacobo Estrada, T.,Rodriguez-Munoz, R.,Barrera- Chimal, J.,Bobadilla, N. A.,Barbier, O. C.,Del Razo, L. M Sub-chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin. <i>Journal of Applied Toxicology.</i> 2016. 36:309-19	Other exclusion reasons (route of exposure other than drinking water mixture exposure, non-mammalian species etc)
L2	Casellato, S., Masiero, L., Ballarin, L Toxicity of fluoride to the freshwater mollusc Dreissena polymorpha: Effects on survival, histology, and antioxidant enzyme activity. <i>Fluoride</i> . 2012. 45:35-46	Other exclusion reasons (route of exposure other than drinking water mixture exposure, non-mammalian species etc)

Level	Bibliography	Reason for Exclusion
L2	Chai, L.,Dong, S.,Zhao, H.,Deng, H.,Wang, H Effects of fluoride on development and growth of Rana chensinensis embryos and larvae. <i>Ecotoxicology and Environmental Safety.</i> 2016. 126:129-137	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Chai, L.,Wang, H.,Zhao, H.,Dong, S Chronic Effects of Fluoride Exposure on Growth, Metamorphosis, and Skeleton Development in Bufo gargarizans Larvae. <i>Bull Environ Contam Toxicol.</i> 2017. 98:496-501	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Erciyas, K.,Sarikaya, R Genotoxic evaluation of sodium fluoride in the Somatic Mutation and Recombination Test (SMART). <i>Food Chem Toxicol.</i> 2009. 47:2860-2	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Feng, P.,Wei, J.,Zhang, Z Intervention of selenium on chronic fluorosis- induced injury of blood antioxidant capacity in rats. <i>Biological Trace Element</i> <i>Research</i> . 2011. 144:1024-31	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Gui, C. Z.,Ran, L. Y.,Li, J. P.,Guan, Z. Z Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis. <i>Neurotoxicology and Teratology</i> . 2010. 32:536-541	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
1380		

Level	Bibliography	Reason for Exclusion
L2	Jianjie, C.,Wenjuan, X.,Jinling, C.,Jie, S.,Ruhui, J.,Meiyan, L Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio). <i>Aquatic</i> <i>Toxicology.</i> 2016. 171:48-58	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Karademir, B Effects of fluoride ingestion on serum levels of the trace minerals Co, Mo, Cr, Mn, and Li in adult male mice. <i>Fluoride</i> . 2010. 43:174-178	Other exclusion reasons (route of 8 exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Khanum, Z.,Suleman, S.,Mustanser, A.,Ul Hassan, M. W.,Raees, K.,Kanwal, M. A.,Zia, A.,Ahmad, K. R Comparative teratological outcomes of fluoride iona and a fluoridated insecticide (Bifenthrin) in chick embryos. <i>Fluoride.</i> 2019. 52:59-65	Other exclusion reasons (route of s exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Lu, J.,Xu, Q.,Zheng, J.,Liu, H.,Li, J.,Chen, K Comparative proteomics analysi of cardiac muscle samples from pufferfish Takifugu rubripes exposed to excessive fluoride: Initial molecular response to fluorosis Cardiac muscle proteomics of fish Jian Lu et al. <i>Toxicology Mechanisms and Methods.</i> 2009. 19:468-475	s Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Lu, J.,Xu, Q.,Zheng, J.,Liu, H.,Li, J.,Chen, K Comparative proteomics analysi of cardiac muscle samples from pufferfish Takifugu rubripes exposed to	s Other exclusion reasons (route of exposure other than drinking water,

Level	Bibliography	Reason for Exclusion
	excessive fluoride: initial molecular response to fluorosis. <i>Toxicology</i> Mechanisms & Methods. 2009. 19:468-75	mixture exposure, non-mammalian species etc)
L2	Lu, J.,Zheng, J.,Liu, H.,Li, J.,Xu, Q.,Chen, K Proteomics analysis of liver samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis. <i>Journal of Biochemical & Molecular</i> <i>Toxicology</i> . 2010. 24:21-8	Other exclusion reasons (route of exposure other than drinking water, rmixture exposure, non-mammalian species etc)
L2	Mukhopadhyay, D., Priya, P., Chattopadhyay, A Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1. <i>Environmental Toxicology and Pharmacology.</i> 2016. 40:352-359	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Nabavi, S. F., Eslami, S., Moghaddam, A. H., Nabavi, S. M Protective effects of curcumin against fluoride-induced oxidative stress in the rat brain. <i>Neurophysiology</i> . 2011. 43:287-291	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Nabavi, S. F., Moghaddam, A. H., Eslami, S., Nabavi, S. M Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys. <i>Biological Trace Element Research</i> . 2012. 145:369-374	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Bibliography Level

Reason for Exclusion

L2	Nabavi, S. F., Moghaddam, A. H., Nabavi, S. M., Eslami, S Protective effect of	Other exclusi
	curcumin and quercetin on thyroid function in sodium fluoride intoxicated rats.	exposure oth
	Fluoride. 2011. 44:147-152	mixture expo

- L2 Nabavi, S. M., Nabavi, S. F., Eslami, S., Moghaddam, A. H.. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chemistry. 2012. 132:931-935
- L2 Nabavi, S. M., Nabavi, S. F., Habtemariam, S., Moghaddam, A. H., Latifi, A. M., Ameliorative effects of quercetin on sodium fluoride-induced oxidative stress in exposure other than drinking water, rat's kidney. Ren Fail. 2012. 34:901-6
- L2 Nabavi, S. M., Nabavi, S. F., Loizzo, M. R., Sureda, A., Amani, M. A., Moghaddam, A. H.. Cytoprotective effect of Silymarin against sodium fluoride-induced oxidative stress in rat erythrocytes. Fluoride. 2012. 45:27-34

sion reasons (route of her than drinking water, osure, non-mammalian species etc)

Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Other exclusion reasons (route of mixture exposure, non-mammalian species etc)

Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

L2 Palczewska-Komsa, M., Kalisinska, E., Kosik-Bogacka, D. I., Lanocha, N., Budis, Other exclusion reasons (route of H.,Baranowska-Bosiacka, I.,Gutowska, I.,Chlubek, D.. Fluoride accumulation in exposure other than drinking water, dog bones. Fluoride. 2014. 47:98-108 mixture exposure, non-mammalian

species etc)

Level	Bibliography	Reason for Exclusion
L2	Ranjan, R.,Swarup, D.,Patra, R. C Changes in levels of zinc, copper, cobalt, and manganese in soft tissues of fluoride-exposed rabbits. <i>Fluoride</i> . 2011. 44:83-88	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Santoyo-Sanchez, M. P., Del Carmen Silva-Lucero, M., Arreola-Mendoza, L., Barbier, O. C Effects of acute sodium fluoride exposure on kidney function, water homeostasis, and renal handling of calcium and inorganic phosphate. <i>Biological Trace Element Research.</i> 2013. 152:367-372	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Sarkar, S. D., Maiti, R., Ghosh, D Management of fluoride induced testicular disorders by calcium and vitamin-E co-administration in the albino rat. <i>Reprod Toxicol.</i> 2006. 22:606-12	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Schieferstein, H.,Betzel, T.,Haller, S.,Cindy, F.,Muller, C.,Ross, T. L Total evaluation of a new polar 18F-labeled PEG-click-folate. <i>Journal of Labelled Compounds and Radiopharmaceuticals.</i> 2013. 1):S183	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)
L2	Shashi, A.,Bhushan, B.,Bhardwaj, M Histochemical pattern of gastrocnemius muscle in fluoride toxicity syndrome. <i>Asian Pacific Journal of Tropical Medicine</i> . 2010. 3:136-140	Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Level Bibliography

L2 Shashi, A.,Sharma, N.,Bhardwaj, M.. Pathological evaluation of pancreatic exocrine glands in experimental fluorosis. *Asian Pacific Journal of Tropical Medicine*. 2010. 3:36-40

- L2 Shi, X.,Zhuang, P.,Zhang, L.,Feng, G.,Chen, L.,Liu, J.,Qu, L.,Wang, R.. The bioaccumulation of fluoride ion (F(-)) in Siberian sturgeon (Acipenser baerii) under laboratory conditions. *Chemosphere*. 2009. 75:376-80
- L2 Singh, R.,Hussain, M. A.,Kumar, J.,Kumar, M.,Kumari, U.,Mazumder, S.. Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus. *Aquat Toxicol.* 2017. 192:30-39
- L2 Singh, R.,Khatri, P.,Srivastava, N.,Jain, S.,Brahmachari, V.,Mukhopadhyay, A.,Mazumder, S.. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections. *Fish Shellfish Immunol.* 2017. 63:314-321
- L2 Srilatha, K.,Banji, D.,Banji, O. J. F.,Vinod, K. R.,Saidulu, A. Investigation on the anti-genotoxic effect of Ocimum Sanctum in Fluoride induced genotoxicity. *International Research Journal of Pharmacy.* 2013. 4:160-164

Reason for Exclusion

Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Other exclusion reasons (route of exposure other than drinking water, mixture exposure, non-mammalian species etc)

Level	Bibliography	Reason for Exclusion
L2	Thammitiyagodage, M. G., De Silva, N. R., Rathnayake, C., Karunakaran,	Other exclusion reasons (route of
	R.,Wgss, K.,Gunatillka, M. M.,Ekanayaka, N.,Galhena, B. P.,Thabrew, M. I	exposure other than drinking water,
	Biochemical and histopathological changes in Wistar rats after consumption of	mixture exposure, non-mammalian
	boiled and un-boiled water from high and low disease prevalent areas for	species etc)
	chronic kidney disease of unknown etiology (CKDu) in north Central Province	
	(NCP) and its comparison with low disease prevalent Colombo, Sri Lanka.	
	BMC Nephrology. 2020. 21 (1) (no pagination):#pages#	
L2	Thammitiyagodage, M. G., Gunatillaka, M. M., Ekanayaka, N., Rathnayake,	Other exclusion reasons (route of
	C.,Horadagoda, N. U.,Jayathissa, R.,Gunaratne, U. K.,Kumara, W.	exposure other than drinking water,
	G.,Abeynayake, P Ingestion of dug well water from an area with high	mixture exposure, non-mammalian
	prevalence of chronic kidney disease of unknown etiology (CKDu) and	species etc)
	development of kidney and liver lesions in rats. Ceylon Med J. 2017. 62:20-24	
L2	Vasant, R. A., Narasimhacharya, A. V. R. L Alleviation of fluoride-induced	Other exclusion reasons (route of
	hepatic and renal oxidative stress in rats by the fruit of Limonia acidissima.	exposure other than drinking water,
	Fluoride. 2011. 44:14-20	mixture exposure, non-mammalian
		species etc)
L2	Vasant, R. A., Narasimhacharya, A. V. R. L Ameliorative effect of tamarind lea	f Other exclusion reasons (route of
	on fluoride-induced metabolic alterations. Environmental Health and Preventive	· · · · · · · · · · · · · · · · · · ·
	Medicine. 2012. 17:484-493	mixture exposure, non-mammalian
		,

species etc)

Level	Bibliography	Reason for Exclusion
L2	Yu, Z.,Xu, C.,Yuan, K.,Gan, X.,Feng, C.,Wang, X.,Zhu, L.,Zhang, G.,Xu, D	Other exclusion reasons (route of
	Characterization and adsorption mechanism of ZrO(2) mesoporous fibers for	exposure other than drinking water,
	health-hazardous fluoride removal. J Hazard Mater. 2018. 346:82-92	mixture exposure, non-mammalian
		species etc)
L2	Broadbent, J. M., Thomson, W. M., Moffitt, T. E., Poulton, R Health effects of	Human subjects
	water fluoridation: A response to the letter by Menkes et al. New Zealand	
	Medical Journal. 2015. 128:73-74	
L2	Chaitanya, Ncsk,Karunakar, P.,Allam, N. S. J.,Priya, M. H.,Alekhya,	Human subjects
	B., Nauseen, S A systematic analysis on possibility of water fluoridation	
	causing hypothyroidism. Indian J Dent Res. 2018. 29:358-363	
L2	Choi, A. L., Sun, G., Zhang, Y., Grandjean, P Developmental fluoride	Human subjects
	neurotoxicity: a systematic review and meta-analysis. Environ Health Perspect	
	2012. 120:1362-8	
L2	Yeung, C. A A systematic review of the efficacy and safety of fluoridation.	Human subjects
	Evid Based Dent. 2008. 9:39-43	
L2	Yin, X. H.,Huang, G. L.,Lin, D. R.,Wan, C. C.,Wang, Y. D.,Song, J. K.,Xu, P	Human subjects
	Exposure to fluoride in drinking water and hip fracture risk: a meta-analysis of	-
	observational studies. PLoS One. 2015. 10:e0126488	

Level	Bibliography	Reason for Exclusion
L2	Matsui, H.,Morimoto, M.,Horimoto, K.,Nishimura, Y Some characteristics of fluoride-induced cell death in rat thymocytes: cytotoxicity of sodium fluoride. <i>Toxicology in Vitro.</i> 2007. 21:1113-20	In-vitro models (mammalian cells/ tissues, bacterial cells, plant cells etc.)
L2	Oliveira, R. C. D., Matsuda, S. S., Silva, T. L. D., Buzalaf, M. A. R Effects of sodium fluoride during osteoblasts mineralization in C57BL/6J and C3H/HeJ inbred strains of mice. <i>Bone.</i> 2012. 1):S84	In-vitro models (mammalian cells/ tissues, bacterial cells, plant cells etc.)
L2	Choubisaa, S. L A brief and critical review of endemic hydrofluorosis in Rajasthan, India. <i>Fluoride.</i> 2018. 51:13-33	Non-systematic review
L2	Dhar, V.,Bhatnagar, M Physiology and toxicity of fluoride. <i>Indian J Dent Res.</i> 2009. 20:350-5	Non-systematic review
L2	Dharmaratne, R. W Exploring the role of excess fluoride in chronic kidney disease: A review. <i>Human and Experimental Toxicology.</i> 2019. 38:269-279	Non-systematic review
L2	Gouri Pratusha, N.,Banji, O. J. F.,Banji, D.,Ragini, M.,Pavani, B Fluoride toxicity - A harsh reality. <i>International Research Journal of Pharmacy</i> . 2011. 2:79-85	Non-systematic review
L2	Kabir, H., Gupta, A. K., Tripathy, S Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. <i>Critical Reviews in Environmental Science and Technology.</i> . 2019. #volume#:#pages#	Non-systematic review

Level	Bibliography	Reason for Exclusion
L2	Perumal, E., Paul, V., Govindarajan, V., Panneerselvam, L A brief review on experimental fluorosis. <i>Toxicol Lett.</i> 2013. 223:236-51	Non-systematic review
L2	Prystupa, J Fluorine - A current literature review. An NRC and ATSDR based review of safety standards for exposure to fluorine and fluorides. <i>Toxicology Mechanisms and Methods</i> . 2011. 21:103-170	Non-systematic review
L2	Sharma, D.,Singh, A.,Verma, K.,Paliwal, S.,Sharma, S.,Dwivedi, J Fluoride: A review of pre-clinical and clinical studies. <i>Environ Toxicol Pharmacol.</i> 2017. 56:297-313	Non-systematic review
L2	Strunecka, A., Strunecky, O Chronic Fluoride Exposure and the Risk of Autism Spectrum Disorder. Int J Environ Res Public Health. 2019. 16:#pages#	Non-systematic review
L2	Barbier, O.,Cardenas-Gonzalez, M.,Parada-Cruz, B.,Lopez, V. D.,Jimenez- Cordova, M.,Solis-Angeles, S.,Del Razo, L. M. Fluoride: An underestimated nephrotoxic. <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S13	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Burgstahler, A. W., Freeman, R. F., Jacobs, P. N Toxic effects of silicofluoridated water in chinchillas, caimans, alligators, and rats held in captivity. <i>Fluoride.</i> 2008. 41:83-88	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Cardenas-Gonzalez, C.,Del Razo, L. M.,Barbier, O.,Jacobo, T Effect of nephrotoxic treatment with gentamicin on rats exposed to fluoride. <i>Toxicology Letters</i> . 2012. 1):S4	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation

Level	Bibliography	Reason for Exclusion
L2	Choi, A. L., Grandjean, P., Sun, G., Zhang, Y Developmental fluoride neurotoxicity: Choi et al. Respond. <i>Environ Health Perspect.</i> 2013. 121:A70	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Dian, B. J., Selvakumar, R., Joseph, F. J., Teresa, M. M., Thomas, V. P., Sheshadri, M. S Does Vitamin D Deficiency and Renal Dysfunction play a role in the pathogenesis of Fluorotoxic Metabolic Bone Disease (FMBD). <i>Indian Journal of Endocrinology and Metabolism.</i> 2017. 21 (7 Supplement 1):65	
L2	Fina, B. L.,Rigalli, A Effect of fluoride on oxygen consumption (OC) by rat tissues. <i>Bone.</i> 2011. 48 (6):S284	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Fina, B. L.,Roma, S. M.,Bues, F.,Di Loreto, V. E Effect of sodium fluoride (F) on rat growth plate cartilage (GPC). <i>Bone.</i> 2015. 71:258	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Gama-Dominguez, Y.,Jacobo-Estrada, T.,Lopez-Ventura, D.,Moreno-Licona, N. J.,Trevino, S.,Barbier, O Effect of renal ischemia on sub-chronically exposed rats to fluoride evaluated by the expression of hypoxia-inducible facto 1alpha (HIF-1alpha). <i>Toxicology Letters.</i> 2016. 259 (Supplement 1):S241-S242	
L2	Iano, F. G., Ferreira, M. C. F., Fernandes, M., Oliveira, R., Ximenes, V. F., Buzalaf, M. A. R Chronic toxicity of fluoride in the Liver antioxidant defense <i>Free Radical Biology and Medicine.</i> 2010. 1):S221	Commentary/ communication/ e. editorial/ letter/ conference abstract/ poster/ presentation

Level	Bibliography	Reason for Exclusion
L2	Iano, F. G., Ferreira, M. C. F., Quaggio, G. B., Oliveira, R. C., Ximenes, V. F., Buzalaf, M. A. R Effect of fluoride in antioxidant systems of the heart. <i>Free Radical Biology and Medicine</i> . 2011. 1):S57	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Jain, A.,Mehta, V. K.,Mahdi, A. A.,Bhatnagar, M The effects of fluoride and arsenic exposure on the cholinergic-nitrergic system, cognitive functions and inflammatory markers. <i>Journal of Neurochemistry</i> . 2015. 1):141-142	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Khalili, J.,Biloklytska, H The activity of fructose diphosphatase and acid-base status in rats exposed to fluoride and ammonium chloride. <i>Toxicology Letters.</i> 2009. 1):S108-S109	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Krook, L. P., Justus, C Fluoride poisoning of horses from artificially fluoridated drinking water. <i>Fluoride</i> . 2006. 39:3-10	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Sabour, S., Ghorbani, Z Developmental fluoride neurotoxicity: clinical importance versus statistical significance. <i>Environ Health Perspect.</i> 2013. 121:A70	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation
L2	Spittle, B. Fluoride toxicity and donkeys. <i>Fluoride</i> . 2010. 43:4	Commentary/ communication/ editorial/ letter/ conference abstract/ poster/ presentation

Level	Bibliography	Reason for Exclusion
L2	Spittle, B Halting the inertia of indifference: Fluoride and fertility revisited.	Commentary/ communication/
	Fluoride. 2009. 42:159-161	editorial/ letter/ conference
		abstract/ poster/ presentation

Supplementary Material 6. In vitro evidence

This supplement provides details of the search strategies for multiple bibliographic databases, with resulting eligible reviews of in vitro evidence. High-level search concepts and specific database search terms for Medline OVID, MEDLINE, Embase, and PubMed are described. To supplement the description of *in* vitro evidence in the main manuscript, a longer summary is included here.

6.1. Literature search for in vitro evidence

Strategy

Search Question	Are there any health risks due to fluoride exposure?	
Major Concepts	1. Fluoride	
	2. Outcomes: cancer, imm	unotoxicity, genotoxicity and all other potential adverse effects
Search Terms	Concept 1	Concept 2
	Concept i	Concept 2
	•	Mechanism of action, mode of action, cancer, immunotoxicity, genotoxicity,

6.2. Bibliographic database search terms and output for in vitro studies

Medline Ovid

Concept	#	Medline query
Fluoride	1	exp Fluorides/
	2	exp Fluoridation/
	3	fluorid*.tw.
	4	fluorin*.tw.
	5	flurin*.tw.
	6	flurid*.tw.
	7	or/1-6
Outcomes	8	Mechanism of action.mp.
	9	(mechanism* adj3 action*).tw.
	10	mode of action.mp.
	11	(mode* adj3 action*).tw.
	12	exp Adverse Outcome Pathways/
	13	exp Toxicity Tests/
	14	(toxic* adj3 test*).tw.
	15	exp Animal Testing Alternatives/
	16	(toxic* adj3 test*).tw.
	17	Molecular initiating events.mp.
	18	exp In Vitro Techniques/
	19	in vitro testing.mp.

Concept #	Medline query
20	in vitro test*.mp.
21	Structure-Activity Relationship/
22	structure activity relationship*.tw.
23	exp Pharmacokinetics/
24	pharmacokinetic*.tw.
25	toxicokinetics/
26	toxicokinetic*.tw.
27	exp Neoplasms/
28	neoplas*.tw.
29	cancer*.tw.
30	malignan*.tw.
31	tumor*.tw.
32	tumour*.tw.
33	sarcoma*.tw.
34	carcinoma*.tw.
35	Mutagens/
36	Mutagenicity Tests/
37	mutagen*.tw.
38	Mutation/
39	mutation*.tw.
40	genotox*.tw.
41	Toxicogenetics/

Concept #	Medline query
42	toxicogenetic*.tw.
43	micronucle*.tw.
44	electrophil*.tw.
45	Carcinogenesis/
46	carcinogen*.tw.
47	DNA Damage/
48	(dna adj3 damage*).tw.
49	Oxidative Stress/
50	oxidative stress.tw.
51	epigenetic*.tw.
52	Genomic Instability/
53	(gen* adj3 instabilit*).tw.
54	DNA Repair/
55	(dna adj3 repair).tw.
56	chronic inflamm*.tw.
57	immortaliz*.tw.
58	Immunosuppressive Agents/
59	(immunosuppressi* adj3 agent*).tw.
60	receptor mediated effect*.tw.
61	Cell Transformation, Neoplastic/
62	(cell* adj3 transformation*).tw.
63	Cell Proliferation/

Concept	#	Medline query
	64	(cell* adj3 proliferation*).tw.
	65	Cell Death/
	66	(cell* adj3 death*).tw.
	67	SAR.tw.
	68	ADME.tw.
	69	or/8-68
Fluoride +	70	7 and 69
outcomes		
2006 - current	71	limit 70 to yr="2006 -Current"

EMBASE

Concept	#	EMBASE query
	22	tumor*.tw.
	23	tumour*.tw.
	24	exp mutagenic agent/
	25	(mutagen* adj3 agen*).tw.
	26	exp mutagen testing/
	27	(mutagen* adj3 test*).tw.
	28	exp mutation/
	29	mutation*.tw.
	30	exp gene mutation/
	31	(gene* adj3 mutation*).tw.
	32	exp genotoxicity/
	33	exp genotoxicity assay/
	34	genotox*.tw.
	35	exp toxicogenetics/
	36	toxicogen*.tw.
	37	carcinogenesis/
	38	(cancer* adj3 induction).tw.
	39	(cancer* adj3 theor*).tw.
	40	cancerogen.tw.
	41	neoplasmogen.tw.
	42	oncogen.tw.
	43	tumorigen.tw.

Concept #	EMBASE query
44	tumourigen.tw.
45	(tumor* adj3 formation).tw.
46	(tumour* adj3 formation).tw.
47	(tumor* adj3 genesis).tw.
48	(tumour* adj3 genesis).tw.
49	(tumor* adj3 induction).tw.
50	(tumour* adj3 induction).tw.
51	exp micronucleus/
52	micronucle*.tw.
53	exp DNA damage/
54	(dna adj3 damag*).tw.
55	(dna adj3 break*).tw.
56	(dna adj3 lesion*).tw.
57	(dna adj3 fragment*).tw.
58	exp DNA repair/
59	(dna adj3 repair*).tw.
60	(gen* adj3 repair*).tw.
61	exp chromosome aberration/
62	(chromosom* adj3 aberration*).tw.
63	(chromosom* adj3 anomal*).tw.
64	(chromosom* adj3 abnormal*).tw.
65	(chromosom* adj3 defect*).tw.

Concept #	EMBASE query
66	(chromosom* adj3 error*).tw.
67	exp oxidative stress/
68	oxidative stress*.tw.
69	exp electrophilic stress/
70	electrophil* stress*.tw.
71	exp epigenetics/
72	epigenetic*.tw.
73	exp cell transformation/
74	(cell* adj3 transformation*).tw.
75	exp cell proliferation/
76	(cell* adj3 proliferat*).tw.
77	exp cell death/
78	(cell* adj3 death).tw.
79	(cell* adj3 necrosis).tw.
80	(cell* adj3 aging).tw.
81	(cell* adj3 degeneration).tw.
82	(cell* adj3 survival).tw.
83	(gene* adj3 transformation*).tw.
84	genomic instability/
85	gen* instabilit*.tw.
86	genetic stability/
87	(gen* adj3 stabilit*).tw.

Concept	#	EMBASE query
	88	(gen* adj3 damag*).tw.
	89	exp chronic inflammation/
	90	chronic inflammat*.tw.
	91	or/8-90
Fluoride +	92	7 and 91
outcomes		
2006 - current	93	limit 92 to yr="2006 -Current"

PubMed

Concept	#	Pubmed query	Results
Fluoride	1	(((fluoride[MeSH Terms]) OR fluorid*[Text Word]) OR	97522
		fluorin*[Text Word]) OR flurin*[Text Word]	
Mechanistic	2	(((((((((((((((()) ((())))))))))))))))	
		OR adverse outcome pathway*[Text Word]) OR	
		toxicity test[MeSH Terms]) OR toxicity test*[Text	
		Word]) OR animal testing alternatives[MeSH Terms])	
		OR animal testing alternative*[Text Word]) OR in	
		vitro[MeSH Terms]) OR in vitro stud*[Text Word]) OR	
		in vitro test*[Text Word]) OR structure activity	
		relationships[MeSH Terms]) OR structure activity	
		relationship*[Text Word]) OR	
		pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word]	
Cancer	3	((((((((((((((((((((((((((())))	
		cancer*[Text Word]) OR neoplasm[MeSH Terms])	
		OR neoplas*[Text Word]) OR malignancy[MeSH	
		Terms]) OR malignan*[Text Word]) OR	
		carcinoma[MeSH Terms]) OR carcino*[Text Word])	
		OR sarcoma[MeSH Terms]) OR sarco*[Text Word])	

Concept	#	Pubmed query	Results
		OR tumors[MeSH Terms]) OR tumor*[Text Word])	
		OR tumours[MeSH Terms]) OR tumour*[Text Word])	
		OR oncogenesis[MeSH Terms]) OR oncogens[MeSH	
		Terms]) OR oncogen*[Text Word]) OR	
		carcinogenesis tests[MeSH Terms]) OR	
		carcinogens[MeSH Terms]) OR tumor*	
		formation*[Text Word]) OR tumour* formation*[Text	
		Word]) OR tumor* genesis[Text Word]) OR tumour*	
		genesis) OR cancer induction[MeSH Terms]) OR	
		cancer* induction[Text Word]) OR induction cancer*)	
		OR cancer* theor*[Text Word]	
Genotoxicity	4	((((((((((((((((((((((((((((((((((((((
		tests[MeSH Terms]) OR genotoxicant induced	
		micronuclei[MeSH Terms]) OR genotoxic	
		stresses[MeSH Terms]) OR genotoxins[MeSH	
		Terms]) OR genotox*[Text Word]) OR micronucleus	
		assays[MeSH Terms]) OR micronucle* assa*[Text	
		Word]) OR dna damage[MeSH Terms]) OR dna	
		damag*[Text Word]) OR dna break[MeSH Terms])	
		OR dna break*[Text Word]) OR dna lesion*[Text	
		Word]) OR dna fragmentation[MeSH Terms]) OR dna	
		fragment*[Text Word]) OR dna repair[MeSH Terms])	

Concept	#	Pubmed query	Results
		OR dna repair*[Text Word]) OR chromosome	
		aberration[MeSH Terms]) OR chromosom*	
		aberration*[Text Word]) OR chromosom*	
		anomal*[Text Word]) OR chromosome	
		abnormality[MeSH Terms]) OR chromosom*	
		abnormal*[Text Word]) OR chromosome defective	
		micronucleus[MeSH Terms]) OR chromosom*	
		defect*[Text Word]) OR chromosom* error*[Text	
		Word]) OR oxidative stress[MeSH Terms]) OR	
		oxidative stress*[Text Word]) OR electrophilic	
		stress*[Text Word]) OR cell transformation,	
		neoplastic[MeSH Terms]) OR cell*	
		transformation*[Text Word]) OR cell	
		proliferation[MeSH Terms]) OR cell*	
		proliferation*[Text Word]) OR cell aging[MeSH	
		Terms]) OR cell* aging[Text Word]) OR cell*	
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		necros*[Text Word]) OR cell survival[MeSH Terms])	
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	

Concept	#	Pubmed query	Results
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word]	
Outcomes, all	5	earch (((((((((((((((((((())	1580398
		Terms]) OR adverse outcome pathway*[Text Word])	
		OR toxicity test[MeSH Terms]) OR toxicity test*[Text	
		Word]) OR animal testing alternatives[MeSH Terms])	
		OR animal testing alternative*[Text Word]) OR in	
		vitro[MeSH Terms]) OR in vitro stud*[Text Word]) OR	
		in vitro test*[Text Word]) OR structure activity	
		relationships[MeSH Terms]) OR structure activity	
		relationship*[Text Word]) OR	
		pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word])) OR ((((((((((((((((((((((((((()	
		Terms]) OR cancer*[Text Word]) OR	
		neoplasm[MeSH Terms]) OR neoplas*[Text Word])	

Concept	#	Pubmed query	Results
		OR malignancy[MeSH Terms]) OR malignan*[Text	
		Word]) OR carcinoma[MeSH Terms]) OR	
		carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR	
		sarco*[Text Word]) OR tumors[MeSH Terms]) OR	
		tumor*[Text Word]) OR tumours[MeSH Terms]) OR	
		tumour*[Text Word]) OR oncogenesis[MeSH Terms])	
		OR oncogens[MeSH Terms]) OR oncogen*[Text	
		Word]) OR carcinogenesis tests[MeSH Terms]) OR	
		carcinogens[MeSH Terms]) OR tumor*	
		formation*[Text Word]) OR tumour* formation*[Text	
		Word]) OR tumor* genesis[Text Word]) OR tumour*	
		genesis) OR cancer induction[MeSH Terms]) OR	
		cancer* induction[Text Word]) OR induction cancer*)	
		OR cancer* theor*[Text Word])) OR	
		((((((((((((((((((((((((((((((((((((((
		tests[MeSH Terms]) OR genotoxicant induced	
		micronuclei[MeSH Terms]) OR genotoxic	
		stresses[MeSH Terms]) OR genotoxins[MeSH	
		Terms]) OR genotox*[Text Word]) OR micronucleus	
		assays[MeSH Terms]) OR micronucle* assa*[Text	
		Word]) OR dna damage[MeSH Terms]) OR dna	
		damag*[Text Word]) OR dna break[MeSH Terms])	

Concept	#	Pubmed query	Results
		OR dna break*[Text Word]) OR dna lesion*[Text	
		Word]) OR dna fragmentation[MeSH Terms]) OR dna	
		fragment*[Text Word]) OR dna repair[MeSH Terms])	
		OR dna repair*[Text Word]) OR chromosome	
		aberration[MeSH Terms]) OR chromosom*	
		aberration*[Text Word]) OR chromosom*	
		anomal*[Text Word]) OR chromosome	
		abnormality[MeSH Terms]) OR chromosom*	
		abnormal*[Text Word]) OR chromosome defective	
		micronucleus[MeSH Terms]) OR chromosom*	
		defect*[Text Word]) OR chromosom* error*[Text	
		Word]) OR oxidative stress[MeSH Terms]) OR	
		oxidative stress*[Text Word]) OR electrophilic	
		stress*[Text Word]) OR cell transformation,	
		neoplastic[MeSH Terms]) OR cell*	
		transformation*[Text Word]) OR cell	
		proliferation[MeSH Terms]) OR cell*	
		proliferation*[Text Word]) OR cell aging[MeSH	
		Terms]) OR cell* aging[Text Word]) OR cell*	
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		2, 2,	
		necros*[Text Word]) OR cell survival[MeSH Terms])	

Concept	#	Pubmed query	Results
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word])	
Fluoride +	6	Search (((((fluoride[MeSH Terms]) OR fluorid*[Text	12181
outcomes (all)		Word]) OR fluorin*[Text Word]) OR flurin*[Text	
		Word])) AND ((((((((((((((((((((
		pathways[MeSH Terms]) OR adverse outcome	
		pathway*[Text Word]) OR toxicity test[MeSH Terms])	
		OR toxicity test*[Text Word]) OR animal testing	
		alternatives[MeSH Terms]) OR animal testing	
		alternative*[Text Word]) OR in vitro[MeSH Terms])	
		OR in vitro stud*[Text Word]) OR in vitro test*[Text	
		Word]) OR structure activity relationships[MeSH	
		Terms]) OR structure activity relationship*[Text	
		Word]) OR pharmacokinetics[MeSH Terms]) OR	

#	Pubmed query	Results
	pharmacokinetic*[Text Word]) OR	
	toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
	Word])) OR ((((((((((((((((((((((((((())	
	Terms]) OR cancer*[Text Word]) OR	
	neoplasm[MeSH Terms]) OR neoplas*[Text Word])	
	OR malignancy[MeSH Terms]) OR malignan*[Text	
	Word]) OR carcinoma[MeSH Terms]) OR	
	carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR	
	sarco*[Text Word]) OR tumors[MeSH Terms]) OR	
	tumor*[Text Word]) OR tumours[MeSH Terms]) OR	
	tumour*[Text Word]) OR oncogenesis[MeSH Terms])	
	OR oncogens[MeSH Terms]) OR oncogen*[Text	
	Word]) OR carcinogenesis tests[MeSH Terms]) OR	
	carcinogens[MeSH Terms]) OR tumor*	
	formation*[Text Word]) OR tumour* formation*[Text	
	Word]) OR tumor* genesis[Text Word]) OR tumour*	
	genesis) OR cancer induction[MeSH Terms]) OR	
	cancer* induction[Text Word]) OR induction cancer*)	
	OR cancer* theor*[Text Word])) OR	
	((((((((((((((((((((((((((((((((((((((
	tests[MeSH Terms]) OR genotoxicant induced	
	micronuclei[MeSH Terms]) OR genotoxic	
		pharmacokinetic*[Text Word]) OR toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text Word])) OR ((((((((((((((((cancer[MeSH Terms]) OR cancer*[Text Word]) OR neoplasm[MeSH Terms]) OR neoplas*[Text Word]) OR malignancy[MeSH Terms]) OR malignan*[Text Word]) OR carcinoma[MeSH Terms]) OR carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR sarco*[Text Word]) OR tumors[MeSH Terms]) OR tumor*[Text Word]) OR tumours[MeSH Terms]) OR tumour*[Text Word]) OR oncogenesis[MeSH Terms]) OR oncogens[MeSH Terms]) OR oncogen*[Text Word]) OR carcinogenesis tests[MeSH Terms]) OR carcinogens[MeSH Terms]) OR tumour* formation*[Text Word]) OR tumour* formation*[Text Word]) OR carcinogenesis tests[MeSH Terms]) OR carcinogens[MeSH Terms]) OR tumour* formation*[Text Word]) OR tumour* formation*[Text Word]) OR tumor* genesis[Text Word]) OR tumour* genesis) OR cancer induction[MeSH Terms]) OR cancer* induction[Text Word]) OR induction cancer*) OR cancer* theor*[Text Word]) OR induction cancer*) OR cancer* theor*[Text Word]) OR

Concept	#	Pubmed query	Results
		stresses[MeSH Terms]) OR genotoxins[MeSH	
		Terms]) OR genotox*[Text Word]) OR micronucleus	
		assays[MeSH Terms]) OR micronucle* assa*[Text	
		Word]) OR dna damage[MeSH Terms]) OR dna	
		damag*[Text Word]) OR dna break[MeSH Terms])	
		OR dna break*[Text Word]) OR dna lesion*[Text	
		Word]) OR dna fragmentation[MeSH Terms]) OR dna	
		fragment*[Text Word]) OR dna repair[MeSH Terms])	
		OR dna repair*[Text Word]) OR chromosome	
		aberration[MeSH Terms]) OR chromosom*	
		aberration*[Text Word]) OR chromosom*	
		anomal*[Text Word]) OR chromosome	
		abnormality[MeSH Terms]) OR chromosom*	
		abnormal*[Text Word]) OR chromosome defective	
		micronucleus[MeSH Terms]) OR chromosom*	
		defect*[Text Word]) OR chromosom* error*[Text	
		Word]) OR oxidative stress[MeSH Terms]) OR	
		oxidative stress*[Text Word]) OR electrophilic	
		stress*[Text Word]) OR cell transformation,	
		neoplastic[MeSH Terms]) OR cell*	
		transformation*[Text Word]) OR cell	
		proliferation[MeSH Terms]) OR cell*	

Concept	#	Pubmed query	Results
		proliferation*[Text Word]) OR cell aging[MeSH	
		Terms]) OR cell* aging[Text Word]) OR cell*	
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		necros*[Text Word]) OR cell survival[MeSH Terms])	
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word]))	
2006 - current	7	Search ((((((fluoride[MeSH Terms]) OR fluorid*[Text	5026
		Word]) OR fluorin*[Text Word]) OR flurin*[Text	
		Word])) AND ((((((((((((((((((((
		pathways[MeSH Terms]) OR adverse outcome	
		pathway*[Text Word]) OR toxicity test[MeSH Terms])	
		OR toxicity test*[Text Word]) OR animal testing	
		alternatives[MeSH Terms]) OR animal testing	

Concept	#	Pubmed query	Results
		alternative*[Text Word]) OR in vitro[MeSH Terms])	
		OR in vitro stud*[Text Word]) OR in vitro test*[Text	
		Word]) OR structure activity relationships[MeSH	
		Terms]) OR structure activity relationship*[Text	
		Word]) OR pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word])) OR ((((((((((((((((((((((((((()	
		Terms]) OR cancer*[Text Word]) OR	
		neoplasm[MeSH Terms]) OR neoplas*[Text Word])	
		OR malignancy[MeSH Terms]) OR malignan*[Text	
		Word]) OR carcinoma[MeSH Terms]) OR	
		carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR	
		sarco*[Text Word]) OR tumors[MeSH Terms]) OR	
		tumor*[Text Word]) OR tumours[MeSH Terms]) OR	
		tumour*[Text Word]) OR oncogenesis[MeSH Terms])	
		OR oncogens[MeSH Terms]) OR oncogen*[Text	
		Word]) OR carcinogenesis tests[MeSH Terms]) OR	
		carcinogens[MeSH Terms]) OR tumor*	
		formation*[Text Word]) OR tumour* formation*[Text	
		Word]) OR tumor* genesis[Text Word]) OR tumour*	
		genesis) OR cancer induction[MeSH Terms]) OR	

Concept	#	Pubmed query	Results
		cancer* induction[Text Word]) OR induction cancer*)	
		OR cancer* theor*[Text Word])) OR	
		((((((((((((((((((((((((((((((((((((((
		tests[MeSH Terms]) OR genotoxicant induced	
		micronuclei[MeSH Terms]) OR genotoxic	
		stresses[MeSH Terms]) OR genotoxins[MeSH	
		Terms]) OR genotox*[Text Word]) OR micronucleus	
		assays[MeSH Terms]) OR micronucle* assa*[Text	
		Word]) OR dna damage[MeSH Terms]) OR dna	
		damag*[Text Word]) OR dna break[MeSH Terms])	
		OR dna break*[Text Word]) OR dna lesion*[Text	
		Word]) OR dna fragmentation[MeSH Terms]) OR dna	
		fragment*[Text Word]) OR dna repair[MeSH Terms])	
		OR dna repair*[Text Word]) OR chromosome	
		aberration[MeSH Terms]) OR chromosom*	
		aberration*[Text Word]) OR chromosom*	
		anomal*[Text Word]) OR chromosome	
		abnormality[MeSH Terms]) OR chromosom*	
		abnormal*[Text Word]) OR chromosome defective	
		micronucleus[MeSH Terms]) OR chromosom*	
		defect*[Text Word]) OR chromosom* error*[Text	
		Word]) OR oxidative stress[MeSH Terms]) OR	

Concept	#	Pubmed query	Results
		oxidative stress*[Text Word]) OR electrophilic	
		stress*[Text Word]) OR cell transformation,	
		neoplastic[MeSH Terms]) OR cell*	
		transformation*[Text Word]) OR cell	
		proliferation[MeSH Terms]) OR cell*	
		proliferation*[Text Word]) OR cell aging[MeSH	
		Terms]) OR cell* aging[Text Word]) OR cell*	
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		necros*[Text Word]) OR cell survival[MeSH Terms])	
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word]))) AND ("2006"[Date -	
		Publication] : "2020"[Date - Publication])	

Concept	#	Pubmed query	Results
Rev /SR /MA	8	Search ((((((fluoride[MeSH Terms]) OR fluorid*[Text	248
/CR		Word]) OR fluorin*[Text Word]) OR flurin*[Text	
		Word])) AND (((((((((((((((((((((
		pathways[MeSH Terms]) OR adverse outcome	
		pathway*[Text Word]) OR toxicity test[MeSH Terms])	
		OR toxicity test*[Text Word]) OR animal testing	
		alternatives[MeSH Terms]) OR animal testing	
		alternative*[Text Word]) OR in vitro[MeSH Terms])	
		OR in vitro stud*[Text Word]) OR in vitro test*[Text	
		Word]) OR structure activity relationships[MeSH	
		Terms]) OR structure activity relationship*[Text	
		Word]) OR pharmacokinetics[MeSH Terms]) OR	
		pharmacokinetic*[Text Word]) OR	
		toxicokinetics[MeSH Terms]) OR toxicokinetic*[Text	
		Word])) OR (((((((((((((((((((((((((()	
		Terms]) OR cancer*[Text Word]) OR	
		neoplasm[MeSH Terms]) OR neoplas*[Text Word])	
		OR malignancy[MeSH Terms]) OR malignan*[Text	
		Word]) OR carcinoma[MeSH Terms]) OR	
		carcino*[Text Word]) OR sarcoma[MeSH Terms]) OR	
		sarco*[Text Word]) OR tumors[MeSH Terms]) OR	
		tumor*[Text Word]) OR tumours[MeSH Terms]) OR	

Concept	#	Pubmed query	Results
		tumour*[Text Word]) OR oncogenesis[MeSH Terms])	
		OR oncogens[MeSH Terms]) OR oncogen*[Text	
		Word]) OR carcinogenesis tests[MeSH Terms]) OR	
		carcinogens[MeSH Terms]) OR tumor*	
		formation*[Text Word]) OR tumour* formation*[Text	
		Word]) OR tumor* genesis[Text Word]) OR tumour*	
		genesis) OR cancer induction[MeSH Terms]) OR	
		cancer* induction[Text Word]) OR induction cancer*)	
		OR cancer* theor*[Text Word])) OR	
		((((((((((((((((((((((((((((((((((((((
		tests[MeSH Terms]) OR genotoxicant induced	
		micronuclei[MeSH Terms]) OR genotoxic	
		stresses[MeSH Terms]) OR genotoxins[MeSH	
		Terms]) OR genotox*[Text Word]) OR micronucleus	
		assays[MeSH Terms]) OR micronucle* assa*[Text	
		Word]) OR dna damage[MeSH Terms]) OR dna	
		damag*[Text Word]) OR dna break[MeSH Terms])	
		OR dna break*[Text Word]) OR dna lesion*[Text	
		Word]) OR dna fragmentation[MeSH Terms]) OR dna	
		fragment*[Text Word]) OR dna repair[MeSH Terms])	
		OR dna repair*[Text Word]) OR chromosome	
		aberration[MeSH Terms]) OR chromosom*	

Concept	#	Pubmed query	Results
		aberration*[Text Word]) OR chromosom*	
		anomal*[Text Word]) OR chromosome	
		abnormality[MeSH Terms]) OR chromosom*	
		abnormal*[Text Word]) OR chromosome defective	
		micronucleus[MeSH Terms]) OR chromosom*	
		defect*[Text Word]) OR chromosom* error*[Text	
		Word]) OR oxidative stress[MeSH Terms]) OR	
		oxidative stress*[Text Word]) OR electrophilic	
		stress*[Text Word]) OR cell transformation,	
		neoplastic[MeSH Terms]) OR cell*	
		transformation*[Text Word]) OR cell	
		proliferation[MeSH Terms]) OR cell*	
		proliferation*[Text Word]) OR cell aging[MeSH	
		Terms]) OR cell* aging[Text Word]) OR cell*	
		degeneration*[Text Word]) OR cell death[MeSH	
		Terms]) OR cell* death*[Text Word]) OR cell*	
		necros*[Text Word]) OR cell survival[MeSH Terms])	
		OR cell* survival[Text Word]) OR epigenetic[MeSH	
		Terms]) OR epigenetic process[MeSH Terms]) OR	
		epigenomic[MeSH Terms]) OR epigen*[Text Word])	
		OR genomic stability[MeSH Terms]) OR genomic	
		instability[MeSH Terms]) OR genomic stabilit*[Text	

Concept	#	Pubmed query	Results
		Word]) OR genomic instabilit*[Text Word]) OR	
		genom* stabilit*[Text Word]) OR genom*	
		instabilit*[Text Word]) OR chronic	
		inflammation[MeSH Terms]) OR chronic	
		inflammat*[Text Word]))) AND ("2006"[Date -	
		Publication] : "2020"[Date - Publication])) AND	
		((((("meta analysis"[Publication Type]) OR	
		"systematic review"[Publication Type]) OR	
		"review"[Publication Type]) OR "scientific integrity	
		review"[Publication Type]) OR "guideline"[Publication	
		Type])	

6.3. Summary of in vitro evidence

Evidence from in vitro models of humans and non-human animals

Data abstraction from original in vitro studies is not considered; however, literature reviews covering original studies investigating fluoride induced toxicity in various in vitro models would be reviewed and summarized, for weight of evidence assessment along with animal and human data. The current review examined in vitro studies to understand the mechanisms of action of fluoride in exposed animals or humans. The evidence collected from literature reviews on this subject was discussed by type of mechanism, and we summarized concentration ranges in which fluoride induced a positive effect, e.g., oxidative stress apoptosis, ER-stress pathway activation, [Ca²⁺] increase etc.

Characteristics of studies on oxidative stress

As described, "[o]xidative stress is a recognized mode of action of fluoride exposure that has been observed in vitro in several types of cells and also in vivo in soft tissues such as the liver, kidney, brain, lung, and testes in animals and in people living in areas of endemic fluorosis" ³⁵⁰. Reactive Oxygen species (ROS) can be generated from a variety of sources classified as exogenous and endogenous; UV irradiation, ozone and polyaromatic hydrocarbons (PAH) are key examples for exogenous sources. There are multiple sources considered as endogenous such as mitochondrial oxidative phosphorylation, xenobiotic metabolism, active peroxisomes and inflammation.

Numerous studies demonstrated that one of the downstream effects of increase in release of ROS and subsequent oxidative stress is induction of cytotoxicity by activating apoptotic pathways. At cellular level, fluoride appeared to induce oxidative stress, cell cycle arrest, and apoptosis through various pathways such as inhibition of metalloproteins, organelle disruption, altered pH, and electrolyte imbalance. For example, excess NaF (up to 3 mM) showed to cause DNA damage, oxidative stress, mitochondrial agglutination and cytoskeleton damage to neuronal cell lines ³⁵¹. Several in vitro studies that demonstrated oxidative stress upon fluoride exposure were identified by searching through published review studies on this association and are summarized in Table 4. In summary, based on these studies, fluoride

(mostly as NaF salt) caused cytotoxicity or another apical endpoint via induction of oxidative stress pathway (measured as ROS levels, SOD activity, LDH release etc.) in a range of cell lines at concentrations ranging between 0.005 mM and 6 mM. These concentrations may be compared to human plasma fluoride levels.

Reference	Cellular system	Fluoride Exposure	Endpoints assessed (positive effect)
Chen L 2017 352	Neuro-2A (mouse	1 – 6 mM	Cell viability
	neuroblastoma cell line)		Lactate dehydrogenase (LDH) release
Zhang 2015 353	PC 12 cells	0.005 mM	Intracellular ROS increase
	(pheochromocytoma		Apoptotic cells
	cells)		Cytotoxicity
Chen R 2017 354	BV-2 microglia cells	0.5 - 2 mM	Increase of IL-6 concentration
			Decrease of cell viability
			Decrease in SOD activity
			Increase of TNF-α level
Shuhua 2012 355	BV-2 microglia cells	0.024 mM	SOD activities decreased
			NOS (synthesizing NO) increased
Xu 2013 356	Human	0.48 - 0.95	LDH levels higher
	neuroblastoma	mM	
	SH-SY5 Y cells		
Ma 2017 357	Human umbilical vein	0, 4.2, and	Oxidative stress and impaired NO production
	endothelial cells	8.4 mg/L	are involved in their pro-inflammatory and pro-
	(HUVECs)		apoptotic effects.
Grzegorzewska 2020	Chicken embryonic	75, 150, 300,	Increased expression of antioxidant enzymes
<u>358</u>	gonads	and 600	(CAT and SOD) and nuclear respiratory
		mg/L	factors (Nrfs)

Table 4: Characteristics of studies on oxidative stress

Reference	Cellular system	Fluoride Exposure	Endpoints assessed (positive effect)
Peng 2019 359	F9 embryonic	0, 40, 80,	Decreased Sirtuin 1 (Sirt1) protein expression,
	carcinoma cells	and 160	promoted the acetylation of manganese
		mg/L	superoxide dismutase (SOD2), increased
			mitochondrial reactive oxygen species
			(mROS) production, and stimulated
			cytotoxicity
García-Montalvo	Mouse pancreatic	0.15 , 0.4, 3,	Decreased SOD activity, in a dose-dependent
2009 <u>164</u>	beta-cells (betaTC-6)	20, and 40	manner, increase in the generation of O(2)(-),
		mg/L	and decreased mitochondrial membrane
			potential
Zhang 2007 360	Primary rat	20, 40, and	Increased malondialdehyde levels, decreased
	hippocampal	80 mg/L	glutathione levels and glutathione peroxidase
	neurons		activities, reduced superoxide dismutase
			activity
Gao 2008 <u>361</u>	Neuroblastoma (SH-	1 to 100	Lipid peroxidation and protein oxidation in a
	SY5Y) cells	mg/L	dose-response manner

Characteristics of studies on apoptosis

Apoptosis is genetically programmed cell death, an irreversible process of cell senescence with characteristic features different from other cellular mechanisms of death such as necrosis. There are three pathways related to fluoride exposure induced apoptosis: mitochondrion-mediated, endoplasmic reticulum (ER) stress-mediated, and death receptor-mediated pathways ^{350, 362-366}.

Characteristics of studies on mitochondrial dysfunction

Mitochondrial dysfunction has been shown to contribute to the occurrence of apoptosis and it is central to the apoptotic pathway ³⁶⁷. There are three key types of proteins involving in this pathway: Bcl-2 family proteins, caspases, and mitochondrial pro-apoptosis proteins a rising level of intracellular reactive oxygen species (ROS), as a signal of oxidative stress, can also activate the apoptosis signaling pathway Mitochondrion is both a target of ROS and a source of the additional ROS generation ³⁶⁵.

Evidence show that fluoride exposure induces apoptosis by regulating the mitochondrial pathway (decreased MMP and increased ROS) in H9C2 cardiomyocytes ³⁶⁸, human thyroid cells ³⁶⁹, and umbilical vein endothelial cells ³⁵⁷. Fluoride exposure can trigger apoptosis via increasing mRNA or protein levels of Cyt c, caspase-3, and caspase-9 in HL-60 cells ³⁷⁰, Leydig cells ³⁷¹, H9C2 cardiomyocytes ³⁷², and human lung BEAS- 2B cells ³⁷³. Another study found that fluoride induced cell apoptosis is accompanied by increased Bax mRNA expression level and reduced Bcl-2 expression level in PC12 cell ³³⁵. More details are provided in Table 5.

Reference	Cell lines	Sodium fluoride concentrations	Findings and conclusion
Yan et al., 2015	H9c2	0, 2, 4, 8, and 16 mg/L	Induced apoptosis by increasing intracellular
<u>368</u>			reactive oxygen species and downregulating
			mitochondrial membrane potential
Liu et al., 2014	human thyroid c	0, 0.4, 4.2, and 12.6	Decreased cell viability improves the lactate
<u>369</u>	ells (Nthy-ori 3-	mg/L	dehydrogenase leakage rate, and reactive
	1)		oxygen species level.
Ma et al., 2017	human umbilical	0, 4.2, and 8.4 mg/L	Induced endothelial activation and apoptosis.
<u>357</u>	vein endothelial		Oxidative stress and impaired NO production
	cells (HUVECs)		are involved in their pro-inflammatory and pro-
			apoptotic effects.

Table 5: Characteristics of studies on mitochondrial dysfunction

Reference	Cell lines	Sodium fluoride concentrations	Findings and conclusion
Anuradha et al.,	HL-60	8.4 mg/L	Induced apoptosis by oxidative stress-induced
2001 <u>370</u>			lipid peroxidation, causing loss of deltaPsi(m),
			and thereby releasing cytochrome c into the
			cytosol and further triggering the caspase
			cascade.
Song et al.,	Leydig cells	0, 5, 10, and 20 mg/L	Increased expression levels of stress response
2014 <u>371</u>			factors, signal transduction components, and
			apoptosis-related proteins, including caspase-
			3/caspase-9, B-cell lymphoma 2 (Bcl-2), and
			Bax
Yan et al., 2017	H9c2	0, 5, 10, 20, and	Increased mRNA levels of caspase-3,
<u>372</u>		40 mg/L	caspase-9, and cytochrome c. Induced
			apoptosis through the mitochondrial pathway.
Ying et al.,	human lung	0, 1, 2.1, 4.2, 8.4, and	Induced apoptosis through mitochondria-
2017 <u>373</u> .	BEAS-2B	16.8 mg/L	mediated signal pathways. Increased bax,
			caspase-3, caspase-9, p53, and the
			cytoplasmic CytC, decreased bcl-2 and
			mitochondrial CytC. Increased ROS and
			decreased membrane potential of
			mitochondria.
Liao et al., 2017	PC12	0, 2.1, and 21 mg/L	Decreased cell activity, enhanced cell
335			apoptosis, increased c-fos, CAMKII, and Bax
			mRNA expression. Decreased Bcl-2
			expression.

Characteristics of studies on endoplasmic reticulum dysfunction

The endoplasmic reticulum is the main site for the folding and maturation of transmembrane, secretory, and ER-resident proteins. Accumulation of misfolded and unfolded proteins will cause ER stress, leading to the activation of self-protecting mechanisms called unfolded protein response (UPR). UPR is responsible for either relieving ER stress or inducing apoptosis 374, 375.

As shown in Table 6, Fluoride exposure could induce apoptosis by triggering ER stress through upregulated GRP78, PERK, phosphorylation-eukaryotic initiation factor 2α (p-eIF2α), and CHOP in Sertoli cells ³¹⁹ and human thyroid follicular epithelial cells ³⁶⁹. Studies on mouse ameloblast-derived LS8 cells showed that fluoride exposure could induce caspase-dependent apoptosis through overexpression of PERK, eIF2α, IRE1, activation of Xbp-1, BiP/GRP78, GADD153/CHOP, and JNK, which in turn inducing ER stress and UPR ^{376, 377}.

Reference	Cell lines	Sodium fluoride concentrations	Findings and conclusion
Yang et al.,	Sertoli cells	0, 6, 12 and 24 mg/L	Decreased cell viability and induced apoptosis.
2015 <u>³¹⁹</u>			Increased ER stress by up-regulating glucose-
			regulated protein 78 kDa (GRP78), PKR-like ER
			kinase (PERK), phosphorylation of eukaryotic
			translation initiation factor 2α (p-elF 2α) and
			CCAAT/enhancer-binding protein-homologous protein
			(CHOP)
Liu et al.,	human	0, 4.2 mg/L	Induced cytotoxicity related to IRE1 pathway-induced
2014 <u>369</u>	thyroid cells		apoptosis.
	(Nthy-ori 3-		
	1)		
Sharma et	ameloblast-	0, 5.1, 10.5, 21, and	Induced ER stress response interfering with protein
al., 2008 <u>³⁷⁶</u>	derived LS8	42 mg/L	synthesis and secretion. Extracellular secretion of
			SEAP decreased in a linear, dose-dependent
			manner.
Sharma et	ameloblast-	0, 2.1 mg/L	Increased cell stress by phosphorylating stress-
al., 2010 378	derived LS8	-	related proteins, PERK, eIF2 α , JNK and c-jun

Table 6: Characteristics of studies on endoplasmic reticulum dysfunction

Reference	Cell lines	Sodium fluoride concentrations	Findings and conclusion
Kubota et	ameloblast-	0, 21, 42, 63, and 84	Inhibited cell growth at low dose, whereas higher
al., 2005 <u>377</u>	derived LS8	mg/L	doses induced ER stress and caspase-mediated DNA fragmentation.

Characteristics of studies on death receptor-mediated pathways

Fluoride can induce apoptosis by regulating Fas ligand (FasL)/Fas signaling pathway and tumor necrosis factor- α (TNF- α)/tumor necrosis factor- α recpter-1 (TNF-R1) signaling pathway, which belongs to the death receptor pathways.

Fluoride exposure could induce apoptosis by upregulating the protein expression of FasL, Fas, caspase-8, caspase-3, and cleaved PARP in the primary rat ameloblasts ³⁷⁹, human neuroblast cells ³⁸⁰, and human gingival fibroblasts ³⁸¹. Studies using mice splenic lymphocytes show that fluoride exposure cause ER stress and UPR ³⁸² and decreasing mitochondria transmembrane potential, up-regulating Bax, Bak, Fas, FasL, caspase 9, caspase 8, caspase 7, caspase 6 and caspase 3, and down-regulating Bcl-2 and Bcl-xL ³⁸³. See Table 7 for more details on study characteristics.

Reference	Cell lines	Sodium	fluoride	Findings and conclusion
		concentrations		
Wang et al.,	primary rat	0.4, 0.8, 1.6, 3.2,	and 6.4	Induced apoptosis via activation of FasL/Fas
2016 <u>379</u>	ameloblast	mmol/L		signaling pathway and diminished secretion of
				AMBN

Reference	Cell lines	Sodium	fluoride	Findings and conclusion
		concentrations		
Deng et al.,	mice	0, 4.2, 8.4, and 16.	8 mg/L	Induced apoptosis and caused ER stress by up-
2016a <u>³⁸²</u>	splenic			regulating protein expression levels of glucose-
	lymphcytes			regulated protein 78 (BiP) and glucose-regulated
				protein 94 (GRP94), and by activating unfolded
				protein response (UPR).
Deng et al.,	mice	0, 4.2, 8.4, and 16.8	8 mg/L	Induced apoptosis by decrease of mitochondria
2016b 383	splenic			transmembrane potential, up-regulation of Bax,
	lymphcytes			Bak, Fas, FasL, caspase 9, caspase 8, caspase
				7, caspase 6 and caspase 3 protein expression,
				and down-regulation of Bcl-2 and Bcl-xL protein
				expression.
Lee et al.,	human	5, 10, 20, 30, and		Induced apoptosis through the Bcl-2 family and
2008 <u>381</u>	gingival	40 mmol/L		death receptor-mediated pathway. Increased
	fibroblasts			cytochrome c release from the mitochondria into
				the cytosol, enhanced the caspase-9, -8 and -3
				activities, the cleavage of poly (ADP-ribose)
				polymerase (PARP), and up-regulated the
				voltage-dependent anion channel (VDAC).
Xu et al.,	human	0, 20, 40, and 80 m	ng/L	Induce apoptosis by increasing caspase-3 and
2011 ³⁸⁰	neuroblasto			mRNA expression levels for Fas, Fas-L, and
	ma (SH-			caspases (-3 and -8).
	SY5Y)			

Characteristics of studies on Na, K-ATPase

Sodium, potassium-activated adenosine triphosphatase (Na, K-ATPase) is a member of the P-type family of active cation transport proteins, which maintains sodium and potassium homeostasis in animal cells by transporting Na+-ions to the outside and K+-ions to the inside of the cell, at the expense of ATP. Na, K-ATPase is responsible for the electrochemical gradient across the plasma membrane and the regulation of the cellular ionic homeostasis. In

addition, Na, K-ATPase activity plays a crucial role in the function of neurotransmitter transporters, which are essential for regulating neurotransmitter signaling and homeostasis. 384, 385

Fluoride exposure inhibits the activity of Na, K-ATPase through multiple pathways. In summary, fluoride has been shown to upregulate PKC, cAMP, cGMP, NO, Pi, PLA2, AA, PGE2, dopamine, glucose and PTH. The formation of these biomarkers inhibits Na, K-ATPase activity. See more details on study characteristics in Table 8.

Reference	Cell lines	Sodium fluoride concentrations	Findings and conclusion
Gutowska et	human	0.4, 1.2, 2.4, 4.0 mg/L	decreased the amount of synthesized cellular ATP
al., 2010 <u>³⁸⁶</u>	monocytic line		and increased formation of ROS and apoptosis in
	THP-1		a dose-dependent pattern
Agalakova &	rat	0, 4, 20, 80, 400 mg/L	Dose- and time-dependent decline of ATP a,
Gusev 2012 387	erythrocytes		diminishing to extremely low levels within 24h.
Cittanova et	rabbit kidney	0, 40, 200, and 400	Depletion of Na-K-ATPase activity and renal
al., 2002 <u>³⁸⁸</u>	thick	mg/L	mitochondrial dysfunction
	ascending		
	limb cells		

Table 8: Characteristics of studies on Na, K-ATPase

Characteristics of studies on inflammatory response

Inflammation is the body's immune system's response to an irritant, e.g., infection or tissue damage. The function of inflammation is to eliminate the initial cause of cell injury, clear out necrotic cells and tissues damaged from the original insult and the inflammatory process, and initiate tissue repair. Chronic inflammation plays an important role in the development of

chronic conditions, e.g., diabetes, atherosclerosis, cardiovascular disease, allergies, and COPD 350, 362, 363.

Studies have shown that fluoride exposure can promote inflammatory response via increasing oxidative stress and ROS in human umbilical vein endothelial cells (Ma 2017), human monocytic line THP-1 ³⁸⁶, and RAW 264.7 murine macrophage line ³⁸⁹. Fluoride related phosphorylation of c-Jun NH(2)-terminal kinase (JNK) was involved in the pro-inflammatory response in the MDPC-23 odontoblast-like cells ³⁹⁰ and human ameloblast lineage cells ³⁹¹. More details on studies are provided in Table 9.

Reference	Cell lines	Sodium fluoride concentrations	Findings and conclusion
Ma 2017 <u>357</u>	human	0, 4.2, and 8.4 mg/L	Endothelial activation and apoptosis. Oxidative stress
	umbilical vein		and impaired NO production are involved in their pro-
	endothelial		inflammatory and pro-apoptotic effects.
	cells		
	(HUVECs)		
De la Fuente	RAW 264.7	5, 10, 25, and 65	Increased ROS, redox imbalance, lipid peroxidation, and
2016 389	murine	mg/L	cytokines II6 and Mip2
	macrophage		
	line		
Gutowska	human	0.4, 1.2, 2.4, 4.0	Depleted ATP and increased ROS and apoptosis in a
2010 <u>386</u>	monocytic line	mg/L	dose-dependent pattern
	THP-1		
Karube 2009	MDPC-23	200 mg/L	phosphorylation of c-Jun NH(2)-terminal kinase (JNK)
<u>390</u>	odontoblast-		and p38, exhibited caspase-3 activation, cleavage of
	like cells		poly(ADP-ribose) polymerase, DNA fragmentation, and
			an increase in cytoplasmic nucleosomes
Zhang Y 2007	human	0.4 mg/L	Decreased MMP-20 protein levels and related to
<u>391</u>	ameloblast		suppression of JNK/c-Jun phosphorylation.
	lineage cells		
Zhang M 2007	primary rat	20, 40, and 80 mg/L	Induced S-phase cell-cycle arrest, up-regulation of NF-
<u>360</u>	hippocampal		kappaB and DNA damage
	neurons		

Table 9: Characteristics of studies on inflammatory response

1430

Supplementary Material 7. Weight of evidence using Bradford Hill considerations for causality

To supplement the discussion of Bradford Hill considerations, a more detailed discussion of evidence pertaining to each consideration is described for the four endpoints (in addition to dental fluorosis) considered candidates for developing a point of departure: cognitive dysfunction (specifically, reduction in IQ scores in children), thyroid dysfunction, kidney dysfunction, and sex hormone alterations. Tables are included to show cited supporting studies separately for each Bradford Hill consideration.

Criterion	Summary of recent evidence
Criterion Strength of association	 Summary of recent evidence A study of acceptable quality examined by NHMRC ³⁹² reported a significant negative correlation between IQ and drinking water fluoride levels. A reduction of 6.7, 11.2, 10.2 in performance, verbal and full IQ scores, respectively, was observed per increase in log fluoride values ³⁹². Although CADTH did not consider the North American cohort study conducted by Green et al ¹⁰¹ to be of acceptable quality, the study was subsequently assessed by the 2020 ¹⁰³ and 2022 NTP ¹⁰⁴ draft
	 reports as having an overall low risk of bias. This study showed a positive association between higher maternal fluoride intake and reduction in IQ. A reduction of 3.66 points was reported per 1 mg increase in daily maternal intake of fluoride. The current review identified sixteen new studies 9, 11, 14, 18, 26, 37-40, 53, 54, 72, 78, 83, 85, 90, which provided statistically significant results supporting a positive/possible association of reduced IQ levels in response to increasing exposure to water fluoride. Four studies reported either no association between reduction of IQ scores and

7.1. Reducing IQ scores

	drinking water 8, 13, 67, 89, or non-significant frequency differences				
	between urinary fluoride levels 42.				
	• Three studies $\frac{11}{53}$, $\frac{83}{53}$ reported that an increment of 0.5 mg/L in water				
	fluoride concentration corresponded to:				
	$\circ~$ A 9.3- and a 6.2-point reduction in performance IQ in formula-fed				
	and breastfed children, respectively. Such an association				
	remained significant upon controlling for fetal fluoride exposure				
	\circ A 40% reduction in the odds of having excellent IQ in those				
	exposed to low fluoride levels (0.20-1.40 mg/L) ⁸³ .				
	• A drop of 2 points in full-scale IQ scores $\frac{11}{1}$.				
	• A more recent study ²⁶ that used the same cohort (MIREC) reported				
	an association between children's performance IQ and fluoride				
	exposure during the perinatal period and into early childhood. Such				
	an association was reported to differ between boys and girls across				
	the different exposure periods, though more validation is proposed by				
	the authors.				
	Another recent study ¹³ examined prenatal fluoride exposure in a				
	small mother-child birth cohort in Spain: Results in boys suggest				
	improved scores in cognitive domains with maternal urinary				
	concentrations.				
Consistency	• A total of 15 studies 9, 11, 14, 18, 26, 37-40, 53, 54, 72, 83, 85, 90 identified in the				
	current review, and 1 earlier study ³⁹² of high/acceptable quality				
	concluded a positive association with reduced IQ ^{xli} levels in				
	children/adolescents.				
	 One study ⁷⁸ identified in the current review concluded a possible 				
	positive association, and 1 study 42 reported a non-significant				
	association with reducing IQ scores.				
	• Four studies 8. 13. 67. 89 identified in the current review and 3 earlier 393-395				
	studies of high/acceptable quality reported no association.				

^{xli} IQ: involving scores of different IQ tests, or the use of proxies to IQ such as school performance, school tests 1432

	 Within the 16 studies identified in the current review and showing a positive/possible association, the directionality of association did not differ by study design (12 studies were cross-sectional, and 4 were cohorts), geographic location (6 in China, 3 in India, 2 in each of Canada and Mexico, and 1 in each of Indonesia, Pakistan, and Sudan), studied population (12 studies in children and/or adolescents, 4 in mother-child pairs and 1 that examined patients of all ages), or sampling time-frame.
Specificity	Fluoride appears to play a role in the induction of a range of adverse health outcomes, and reduction in IQ levels can be caused by a number of risk factors including exposure to toxic factors other than fluoride.
Temporality	 Out of those that showed positive or possibly positive association, there were different follow up durations reported in two cohort studies Four cohort studies ^{11, 26, 85} reported an association of maternal fluoride exposure and reduced IQ levels in their offspring, where the long follow up period (at ages 1, 4 then at age 6-12) allowed a reasonable assessment of temporality Another cohort study ⁵³ reported on the association of water fluoride exposure in newborns using breast milk or formula, where IQ was measured at 3-4 years old. Fourteen studies ^{42, 54, 72, 78, 83, 90, 392, 9, 14, 18, 37-40} that showed positive or possibly positive association were cross sectional, whereby an inference of causality cannot be concluded.
Biological	• Seventeen studies 9, 11, 14, 18, 26, 37-40, 53, 54, 72, 78, 83, 85, 90, 392 provided
gradient	statistically significant exposure-response relationship supporting a
(exposure-	positive/possible association between exposure to fluoride and lower
response)	IQ levels, with varying categories of exposure (continuous vs. categorical).

- One study by Wang 2020 ⁵⁴ reported a change in IQ scores per 1 mg/L increment of water fluoride (continuous) or compared to a reference quartile.
 - Continuous: $\beta = -1.587$ (-2.607, -0.568), p-value= 0.002
 - Quartiles: IQ scores, β = (95% CI), p-value
 - Quartile 1 (≤0.70): reference
 - Quartile 2 (0.70–1.00): β= -0.506 (-3.764, 2.753), p-value= 0.761
 - Quartile 3 (1.00–1.90): β= -3.065(-5.636, -0.493), p-value=
 0.020
 - Quartile 4 (> 1.90): β= -3.471(-6.108, -0.835), p-value= 0.010

Fluoride has reportedly been capable of crossing the blood brain barrier with the subsequent accumulation in brain tissues ⁸³. Animal evidence showed fluoride in excess is capable of reducing the "fluidity of the synaptic membrane of the hippocampus in rats" leading to hippocampal neuronal impairment and neurodegenerative changes, resulting in impaired learning and memory ⁸³. Such neurologic/cognitive effects are more pronounced in children compared to adults due to the former's relatively less brain capacity to clear the toxicant (fluoride) burden ⁸³.

- Human studies also reported on the possibility of fluoride to cross the placental barrier from the mother to her developing fetus ⁸⁵, or via breastfeeding to her newborn ⁵³.
- Infants who are fed formula reconstituted with fluoridated water have approximately three to four times greater exposure to fluoride than adults on a per body-weight basis. Formula-fed infants residing in fluoridated areas have an approximate 70-fold higher fluoride intake than exclusively breastfed infants ⁵³
- However, based on the draft 2020 NTP ¹⁰³ review of evidence on mechanism of action related to fluoride induced neurocognitive effects,

	the available data is "too general" or "cannot necessarily be attributed to effects on learning and memory or other cognitive functions". Therefore, at this time no specific mechanism could be determined for fluoride effects on learning and memory or other neurodevelopmental or cognitive outcomes.
Coherence	Coherence with previous evidence cannot be assessed based on the findings: • No specific mechanisms were directly linked to fluoride and IQ • Non-human evidence was inconclusive/inadequate
Experimental	There has been no experimental evidence generated from human
evidence	studies.
	• The most recent systematic review of experimental evidencexlii found
	that the animal data were inadequate to evaluate the effects of fluoride
	on learning and memory due to reasons such as difficulty in parse out
	the observed learning and memory effects from the effects on motor
	activity or motor coordination and concerns of study quality.
	Additionally, one of the highest quality experimental studies ²³¹ found
	no fluoride treatment related effects on learning, memory or motor
	activity in rats provided with up to 20 ppm concentration in drinking water
	 This review concluded that "the experimental animal body of evidence
	does not contribute to confidence in conclusions derived from human
	epidemiological studies with respect to effects on human IQ. Although
	the evidence supports an association between fluoride exposure and
	neurodevelopmental effects, the data are not sufficient to support the
	primary effect evaluated in children (i.e., IQ) nor is it sufficient to

^{xlii} US NTP (2020) conducted a systematic review (including risk of bias assessment) of evidence on F induced neurodevelopmental and cognitive effects in experimental studies (non-human animals)

support a conclusion on cognitive effects in adults especially in the absence of additional adult human data"

Analogy No

No suitable analogies identified

Strength of association

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
Cui 2020 <u>42</u>	Mean (±SD) IQ by urinary fluoride levels •< 1.6 mg/L: 112.16 (±11.50) •1.6 - 2.5 mg/L: 112.05 (±12.01) •≥ 2.5 mg/L: 110.00 (±14.92)	0.578	Non- significant association	Children/ adolescents
Soto- Barreras 2019 ⁶⁷	Mean (\pm SD) water fluoride levels (mg/L) by intellectual grade categories • Grade I: 1.48 \pm 1.13 • Grade II: 1.05 \pm 1.06 • Grade III: 1.04 \pm 1.06 • Grade IV: 0.97 \pm 1.10 • Grade V: 0.79 \pm 1.17	0.645	No association	Children/ adolescents
	Mean (\pm SD) urinary fluoride levels (mg/L) by intellectual grade categories • Grade I: 0.45 \pm 0.34 • Grade II: 0.54 \pm 0.29 • Grade III: 0.61 \pm 0.38 • Grade IV: 0.56 \pm 0.33	0.559		

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	• Grade V: 0.35 ± 0.19			
	Mean (±SD) exposure dose/daily intake by intellectual grade categories	0.389		
	•Grade I: 0.03 ± 0.03 •Grade II: 0.026 ± 0.03 •Grade III: 0.027 ± 0.03			
	•Grade IV: 0.029 ± 0.03 •Grade V: 0.016 ± 0.02			
Bashash 2017 ⁸⁵	Change in outcome per 0.5 mg/L increase in maternal urinary		Positive	Children/ adolescents
	fluoride levels	p = 0.01		
	• GCI: $\beta = -3.15 (-5.42, -0.87)$	<u> </u>		
	• $IQ: \beta = -2.50 (-4.12, -0.59)$	<i>p</i> = 0.01		
	Change in outcome per 0.5 mg/L increase in child urinary fluoride levels			
	• IQ – Without adjustment of maternal urinary fluoride levels: β = - 0.89 (-2.63, 0.85)	Non- significant		
	• IQ – With adjustment of maternal urinary fluoride levels $\beta = -0.77$ (-2.53, 0.99)	Non- significant		

Study	Effect estimates	Statistical Significance	IQ scores	Population
Cui 2018 72	Change (95% CI) in IQ score per log-unit increase in urinary fluoride among all participants and by subgroups	p = 0.236	Positive	Children/ adolescents
	<u>Overall (N = 323)</u> β = -2.47 (-4.93, - 0.01), p = 0.049 [Bootstrapped estimate: 95%Cl = -4.97, 0.03]	p = 0.053		
	$\frac{DRD2 \text{ SNP of CC or CT (N =}}{\beta = -1.59 (-4.24, 1.05)}$	p = 0.236		
	[Bootstrapped estimate: 95%Cl= - 4.14, 0.95] DRD2 SNP of TT (N = 44)	p = 0.220		
	β = -12.31 (-18.69, -5.94), p=< 0.001 [Bootstrapped estimate: 95%Cl= -19.66, -4.96]			
	The safety threshold of urine fluoride levels in the subgroup TT: 1.73 mg/L (1.51-1.97)			
Kousik 2016 ⁹⁰	Correlation between exposure dose and IQ: r = -0.343	p < 0.01	Positive	Children/ adolescents

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
Mustafa 2018 ^{<u>78</u>}	Correlation between average level of fluoride in drinking water (mg/L) and <u>average school performance</u> score (%): Overall score: r = -0.51	p = 0.007	Possible positive	Children/ adolescents
	Correlation between average level of fluoride in drinking water (mg/L) and the <u>prevalence of high school</u> <u>performance</u> score (%): Overall score: r = -0.48	p = 0.012		
Till 2020 53	An increase of 0.5 mg/L in water fluoride concentration (almost equal to the difference between fluoridated and non-fluoridated regions) corresponded to reduction in performance IQ: • Formula-fed: 9.3-point (95% CI: -13.77, -4.76) • Breastfed: 6.2-point (95% CI: -10.45, -1.94). Association remained significant upon controlling for fetal fluoride exposure • Formula-fed: (b =-7.93, 95%	Significant	Positive	Children/ adolescents
	 Formula-fed: (b =−7.93, 95% CI: −12.84, −3.01) 			

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	●Breastfed: (b =-6.30, 95% CI: -10.92, -1.68)			
Wang 2020 ⁵⁴	Change in IQ scores per 1 mg/L increment of water fluoride • Water fluoride (continuous): b =-1.59 (-2.61, -0.57), p=0.002 Change in IQ scores per quartile increment of water fluoride compared to the reference (≤0.70 mg/L)	Significant	Positive	Children/ adolescents
	 Water fluoride (1.00–1.90): -3.07 (-5.64, -0.49), p: 0.02 			
Yu 2018 83	Odds (95% CI) of having excellent IQ level per 0.5 mg/L increment of fluoride in water; normal IQ is the control • Fluoride level of 0.20 – 1.40		Positive	Children/ adolescents
	mg/L: OR = 0.60 (0.47, 0.77) • Fluoride level of 1.40 – 3.90 mg/L: OR = 1.09 (0.88, 1.36)			

Consistency

Study	Design	Country	Population	Association	Time period
Ahmad 2022 ⁸	Cross-sectional	Pakistan	Children/ adolescents	None	NR
Feng 2022 ⁹	Cross-sectional	Pakistan	Children/ adolescents	Positive	2017
Goodman 2022 11	Cohort	Mexico	Mother/child pairs	Positive	Cohort 2A: 1997-1999
					Cohort 3: 2001-2003
Ibarluzea 2022 13	Cohort	Spain	Mother/child pairs	None	1997-2008
Kaur 2022 14	Cross-sectional	India	Children/ adolescents	Positive	2011
Cui 2020 42	Cross-sectional	China	Children/ adolescents	Non-significant	2014 - 2018
Saeed 2022 18	Cross-sectional	Pakistan	Children/ adolescents	Positive	NR
Farmus 2021 26	Cohort	Canada	Mother/child pairs	Positive	2008-2011
Wang 2021 37	Cross-sectional	China	Children/ adolescents	Positive	2015
Yani 2021 38	Cross-sectional	Indonesia	Children/ adolescents	Positive	NR
Yu 2021 39	Cross-sectional	China	Children/ adolescents	Positive	2015
Zhao 2021 40	Cross-sectional	China	Children/ adolescents	Positive	2018
Cui Y 2020 42	Cross-sectional	China	Children/ adolescents	Positive	2014-2018
Till 2020 53	Cohort	Canada	Mother/child pairs	Positive	2008-2011
Wang 2020 54	Cross-sectional	China	Children/ adolescents	Positive	2015

1441

Soto-Barreras 2019	Cross-sectional	Mexico	Children/ adolescents	None	2017
<u>67</u>					
Cui Y 2018 72	Cross-sectional	China	Children/ adolescents	Positive	2014-2015
Mustafa 2018 78	Cross-sectional	Sudan	Children/ adolescents	Possible	NR
Yu 2018 83	Cross-sectional	China	Children/ adolescents	Positive	2015
Bashash 2017 85	Cohort	Mexico	Mother/child pairs	Positive	1997-1999
					2001-2003
Heck 2016 89	Cross-sectional	United	Adults, children/	None	NR
		States	adolescents		
Kousik 2016 90	Cross-sectional	India	Children/ adolescents	Positive	NR

Temporality

Study	Design	Outcome, time of assessment
Bashash 2017 85	Cohort	GCI scores at the age of 4
		 Full-Scale IQ scores at the age of 6–12
Till 2020 53	Cohort	 IQ scores at the age of 3-4
Kousik 2016 90	Cross-sectional	N/A
Mustafa 2018 78	Cross-sectional	N/A
Wang 2020 54	Cross-sectional	N/A
Cui 2018 72	Cross-sectional	N/A
Yu 2018 83	Cross-sectional	N/A

Biological gradient (exposure-response)

Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
Change in outcome per 0.5 mg/L increase in maternal		Positive	Mother/child
urinary fluoride levels			pairs
• GCI: $\beta = -3.15$ (-5.42, -0.87)	<i>p</i> = 0.01		
• $IQ: \beta = -2.50 (-4.12, -0.59)$	p = 0.01	-	
Change in outcome per 0.5 mg/L increase in child urinary		-	
fluoride levels			
 IQ – Without adjustment of maternal urinary fluoride levels: 	Non- significant		
β = - 0.89 (-2.63, 0.85)			
o IQ – With adjustment of maternal urinary fluoride		-	
levels	Non-		
$\beta = -0.77 (-2.53, 0.99)$	significant		
Change (95% CI) in IQ score per log-unit increase in		Positive	Children/
urinary fluoride among all participants and by subgroups			adolescents
<u>Overall (N = 323)</u>			
	urinary fluoride levels • $GCl: \beta = -3.15 (-5.42, -0.87)$ • $IQ: \beta = -2.50 (-4.12, -0.59)$ Change in outcome per 0.5 mg/L increase in child urinary fluoride levels • $IQ - Without$ adjustment of maternal urinary fluoride levels: $\beta = -0.89 (-2.63, 0.85)$ • $IQ - With$ adjustment of maternal urinary fluoride levels $\beta = -0.77 (-2.53, 0.99)$ Change (95% CI) in IQ score per log-unit increase in urinary fluoride among all participants and by subgroups	Change in outcome per 0.5 mg/L increase in maternal urinary fluoride levels $p = 0.01$ \circ GCI: $\beta = -3.15$ (-5.42, -0.87) $p = 0.01$ \circ IQ: $\beta = -2.50$ (-4.12, -0.59) $p = 0.01$ Change in outcome per 0.5 mg/L increase in child urinary fluoride levelsNon- significant \circ IQ - Without adjustment of maternal urinary fluoride levels: $\beta = -0.89$ (-2.63, 0.85)Non- significant \circ IQ - With adjustment of maternal urinary fluoride levelsNon- significant $\beta = -0.77$ (-2.53, 0.99)significantChange (95% CI) in IQ score per log-unit increase in urinary fluoride among all participants and by subgroups	Change in outcome per 0.5 mg/L increase in maternal urinary fluoride levelsPositive \circ GCI: β = -3.15 (-5.42, -0.87) $p = 0.01$ \circ IQ: β = -2.50 (-4.12, -0.59) $p = 0.01$ \bigcirc IQ: β = -2.50 (-4.12, -0.59) $p = 0.01$ Change in outcome per 0.5 mg/L increase in child urinary fluoride levelsNon- significant \circ IQ - Without adjustment of maternal urinary fluoride levels: β = - 0.89 (-2.63, 0.85)Non- significant \circ IQ - With adjustment of maternal urinary fluoride levelsNon- significant β = - 0.77 (-2.53, 0.99)significantChange (95% CI) in IQ score per log-unit increase in urinary fluoride among all participants and by subgroupsPositive

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	β = -2.47 (-4.93, - 0.01), p = 0.049	p = 0.236		
	[Bootstrapped estimate: 95%Cl = -4.97, 0.03]	<i>p</i> = 0.053	-	
	DRD2 SNP of CC or CT (N = 279)		-	
	β = - 1.59 (- 4.24, 1.05)	<i>p</i> = 0.236		
	[Bootstrapped estimate: 95%Cl= -4.14, 0.95]	<i>p</i> = 0.220	-	
	DRD2 SNP of TT (N = 44)		-	
	β = -12.31 (-18.69, -5.94), p=< 0.001	p=< 0.001		
	[Bootstrapped estimate: 95%Cl= -19.66, -4.96]	<i>p</i> = 0.001	-	
	The safety threshold of urine fluoride levels in the			
	subgroup TT: 1.73 mg/L (1.51-1.97)			
Kousik 2016 90	Correlation between exposure dose and IQ: r = -0.343	p = < 0.01	Positive	Children/
				adolescents
Mustafa 2018 78	Correlation between average level of fluoride in drinking	p = 0.007	Possible	Children/
	water (mg/L) and average school performance score (%):		positive	adolescents

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	Overall score: r = -0.51			
	Correlation between average level of fluoride in drinking water (mg/L) and the <u>prevalence of high school</u> <u>performance</u> score (%): Overall score: r = -0.48	p = 0.012	-	
Till 2020 53	An increase of 0.5 mg/L in water fluoride concentration (almost equal to the difference between fluoridated and non-fluoridated regions) corresponded to reduction in performance IQ:	Significant	Positive	Mother/child pairs
	 Formula-fed: 9.3-point (95% CI: −13.77, −4.76) Breastfed: 6.2-point (95% CI: −10.45, −1.94). 			
	Association remained significant upon controlling for fetal fluoride exposure			
	 Formula-fed: (β =-7.93, 95% CI: -12.84, -3.01) Breastfed: (β =-6.30, 95% CI: -10.92, -1.68) 			
Wang 2020 <u>54</u>	Fluoride exposure was inversely related to IQ scores	P=0.002	Positive	Children/ adolescents

Study	Effect estimates	Statistical Significance	Effect on lowering IQ scores	Population
	• Water fluoride: β =-1.59 (95% CI: -2.61, -0.57)			
Yu 2018 83	Odds (95% CI) of having excellent IQ level per 0.5 mg/L increment of fluoride in water; normal IQ is the control		Positive	Children/ adolescents
	 Fluoride level of 0.20 – 1.40 mg/L: OR = 0.60 (0.47, 0.77) Fluoride level of 1.40 – 3.90 mg/L: OR = 1.09 (0.88, 1.36) 			

7.2. Thyroid dysfunction

Criterion	Summary of Evidence
Strength of	• Six studies of high/acceptable quality reported results demonstrating a positive/possible association
association	between thyroid dysfunction and water $\frac{54}{74}$, $\frac{76}{76}$, $\frac{81}{91}$ or urinary fluoride $\frac{25}{25}$.
	One study 74 reported a higher percent thyroid hormone level derangement in fluorosis-endemic
	areas (67.5%) compared to non-endemic areas (54%), and a significant increase in mean TSH
	(endemic: 3.849 μ IU/m; non-endemic: 2.588 μ IU/m, p = 0.02). Non-significant derangements were
	reported for mean free T3, and free T4 levels among participants from a fluorosis-endemic area
	compared to a fluorosis non-endemic area.
	• Another study ⁸¹ reported on levels of free T3, free T4, and TSH by villages belonging to one of four
	groups based on the fluoride levels in drinking water. These levels range from <1 ppm (group 1), 1-
	1.9 ppm (group 2), 2-2.9 ppm (group 3) and >4 ppm (group 4). Derangement of TSH (range of normal
	values: 0.5–2.5 µIU/mL) has been shown in all groups. However, only group 1 (TSH: 0.4-2.99
	μIU/mL) and group 2 (TSH: 0.29-3.76 μIU/mL) were relevant to North American water fluoride levels.
	• The third study ⁵⁴ reported a change in thyroid hormone levels per 1 mg/L increment of water fluoride
	(continuous) or compared to a reference quartile. Only hormones with significant results are listed
	below.
	TT4 (μg/dL)
	Continuous: β= −0.083 (−0.181, 0.015), p-value= 0.097
	 Quartiles: β= (95% CI), p-value
	 Quartile 1 (≤0.70): reference
1448	

- Quartile 2 (0.70–1.00): β= -0.376(-0.686, -0.066), p-value= 0.017
- Quartile 3 (1.00–1.90): β= −0.442(−0.687, −0.198), p-value= < 0.01
- Quartile 4 (> 1.90): β = -0.271(-0.522, -0.020), p-value= 0.034
- P-trend: 0.036

FT4 (ng/dL)

- Continuous: β= -0.010 (-0.021, 0.000), p-value= 0.054
- Quartiles: β = (95% CI), p-value
 - Quartile 1 (≤0.70): reference
 - Quartile 2 (0.70–1.00): β= -0.030 (-0.063, 0.003), p-value= 0.072
 - Quartile 3 (1.00−1.90): β= −0.027 (−0.053, −0.001), p-value= 0.042
 - Quartile 4 (> 1.90): β= −0.037 (−0.063, −0.010), p-value= 0.007
 - o P-trend: 0.009

TSH (µIU/mL)

- Continuous: β= 0.127 (0.014, 0.241), p-value= 0.028
- Quartiles: β = (95% CI), p-value
 - o Quartile 1 (≤0.70): reference
 - Quartile 2 (0.70−1.00): β= −0.154 (−0.517, 0.209), p-value= 0.404
 - Quartile 3 (1.00–1.90): β= 0.236 (-0.005, 0.522), p-value= 0.106
 - Quartile 4 (> 1.90): β = 0.306(0.012, 0.600), p-value= 0.041
 - P-trend: 0.019

	• A fourth study ⁷⁶ reported that every 1mg/L increment of urinary fluoride (in iodine-deficient adults)
	was associated with a 0.35 mIU/L increase in TSH [95% CI: 0.06, 0.64, p-value: 0.01, one-tailed].
Consistency	• Four studies 54, 74, 76, 81 found a positive association between thyroid dysfunction and higher exposure
	to water fluoride.
	• Two additional studies reported a possible ⁷⁶ , or a non-significant association ⁴² between urinary
	fluoride levels and thyroid dysfunction.
	Within studies showing a positive/possible association, the directionality of association did not differ
	by study design (all studies were cross-sectional), geographic location (two in India and one in each
	of Canada and China), studied population (three studies in children/adolescents and one included all
	ages), or sampling timeframe.
	 Two additional studies of acceptable quality identified by CADTH 2019 ³⁹⁶ and the current review ⁶⁶
	reported no association between fluoride and thyroid function.
Specificity	Fluoride appears to play a role in the induction of a range of adverse health outcomes, and
	dysregulating thyroid hormone levels can be caused by a number of risk factors including exposure to
	toxic factors other than fluoride.
Temporality	All of the four studies that suggest a positive/possibly positive association were of cross-sectional study
	designs, whereby an inference of causality cannot be inferred.
Biological	• Six studies reported results supporting a positive/possible association between thyroid dysfunction in
gradient	association with either water fluoride levels as categories 74, 81, or on a continuous scale 54, 76, or using
(exposure-	urinary fluoride levels 25, 42.
response)	
1450	
1450	

•	One study reported on four groups of exposure, and identified a consistent increase in mean
	levels of free T3, free T4, and TSH per increase in concentrations of fluoride in water 81.

- Another study reported that each 1mg/L increment of water fluoride is associated with an increase in TSH, FT3 and TT3, and a decrease in FT4 and TT4. However, the effect estimate for TSH was only statistically significant before correcting for multiple testing ⁵⁴.
- A third study ⁷⁴ reported a higher thyroid hormone level derangement in fluorosis-endemic areas compared to non-endemic areas. This derangement was significant for TSH and non-significant for FT3 and FT4 levels.
- The study by Malin et al. ⁷⁶ reported that each 1mg/L increment of urinary fluoride (in iodinedeficient adults) is associated with a 0.35 mIU/L increase in TSH.

Biological plausibility

- As halogens of lower atomic weight are capable of displacing halogens of higher atomic weight, fluoride (fluorine) can displace iodine from the body. Such displacement thus interferes with iodine uptake by the thyroid gland, leading to its dysfunction and increased secretion of the pituitary TSH hormone to stimulate the thyroid to produce more thyroid hormones ^{76, 81}.
- The effect of fluoride on thyroid function may depend on nutritional status and iodine deficiency. In the North American context, iodine deficiency is unlikely given that the intake exceeds 1mg/day due to the use of iodized salt ¹. However, the evidence also suggests that the effect of fluoride on the thyroid gland can occur independently of iodine ⁵⁴.
- Interference of fluoride with Na/K-ATPase and iodothyronine deiodinase: two enzymes that are required for proper thyroid functioning ⁷⁶.
- Fluoride may inhibit the prolactin hormone, which promotes thyroidal iodine uptake, lowers T4 secretion and inhibits stimulatory effects of exogenous TSH ⁷⁶.

	• Fluoride is a structural analog of thyroid stimulating hormone (TSH) and able to bind to TSH receptors
	leading to change in TSH levels and changes in secretion of thyroid hormones (by altering the
	regulation of hypothalamus-pituitary-thyroid axis)
	• The other plausible mechanism by which excess fluoride may affect thyroid structure and function is
	to induce endoplasmic reticulum stress pathways and subsequent apoptosis leading to cell death and
	changes in thyroid follicle morphology
Coherence	Coherence with previous evidence cannot be assessed based on the findings:
	 No specific mechanisms were directly linked to fluoride and thyroid dysfunction
	Animal evidence was inconclusive
Experimental	There has been no experimental evidence generated from human studies.
evidence	• Two experimental studies ^{210, 231} were identified, which evaluated fluoride effects on thyroid function
	(changes in thyroid hormone levels) at test concentrations required to achieve comparable blood
	fluoride levels in humans exposed to drinking water in Canada and are of lower risk of bias (more
	details are provided in the table containing results from selected animal studies)
	• Out of two studies (both were rat chronic studies), one study didn't find an association between
	increase in fluoride concentration and change in thyroid hormone levels; the other study reported
	inconsistent evidence (across two time points) on small but significant change in TSH and serum T4
	levels.
Analogy	No suitable analogies identified

1453

Strength of association

Study	Effect estimates	Statistical Significance	Effect on thyroid dysfunction	Population
Du 2021 25	Tvol (cm3)		Positive	Children/
	• All: β (95% CI): 0.22 (0.14, 0.31), p-value:	< 0.001	association	adolescents
	•Boys: β (95% CI): 0.34 (0.20, 0.48)	< 0.001	-	
	• Girls: β (95% Cl): 0.14 (0.03, 0.24)	0.011	-	
	• Interaction: β (95% CI): - 0.15 (- 0.30, - 0.01)	0.038	-	
	TT4 (nmol/l)		-	
	• All: β (95% Cl): 1.44 (- 1.28, 4.16)	0.297		
	•Boys: β (95% Cl): 2.13 (- 2.89, 7.14)	0.404	-	
	• Girls: β (95% Cl): 0.89 (- 2.27, 4.04)	0.580	-	
	• Interaction: β (95% CI): - 1.46 (- 6.17, 3.24)	0.542	-	
	TT3 (nmol/l)		-	
	• All: β (95% Cl): - 0.05 (- 0.10, 0.01), p-value:	0.087		
	•Boys: β (95% CI): - 0.08 (- 0.17, 0.01)	0.072	-	

Study	Effect estimates	Statistical Significance	Effect on thyroid dysfunction	Population
	• Girls: β (95% Cl): - 0.03 (- 0.10, 0.04)	0.381		
	•Interaction: β (95% CI): 0.01 (- 0.08, 0.10)	0.795	-	
Cui 2020 42	Median (q1-q3) TSH in uIU/mL by urinary fluoride levels	0.287	Non-	Children/
	●< 1.6 mg/L: 2.81 (2.21 – 3.81)		significant	adolescents
	•1.6 – 2.5 mg/L: 2.82 (2.01 – 3.82)		association	
	•≥ 2.5 mg/L: 3.29 (2.30 – 4.48)			
Kumar 2018 74	Thyroid hormone (Mean) levels by study group (A:	p = 0.26	Positive	Children/
	fluorosis endemic area, B: fluorosis non-endemic area)			adolescents
	• Free T3 (pg/ml): A: 3.125; B: 2.698			
	• Free T4 (ng/dL): A: 1.282; B: 1.193	p = 0.41	-	
	•TSH (µIU/m): A: 3.849; B: 2.588	p = 0.02	-	
	• Percent (%) of thyroid hormone level derangement: A:		-	
	67.5; B: 54			
Rathore 2018 81	• Exposure groups:	P value: NR	Positive	Children/
	Gp 1: <1ppm			adolescents
	Gp 2: 1-1.9 ppm			

/mL) - 3.89] - 3.56] - 4.26] - 4.42]	Significance	thyroid dysfunction	
- 3.89] - 3.56] - 4.26] - 4.42]		uysrunction	
- 3.89] - 3.56] - 4.26] - 4.42]			
- 3.89] - 3.56] - 4.26] - 4.42]			
- 3.89] - 3.56] - 4.26] - 4.42]			
- 3.56] - 4.26] - 4.42]			
- 4.26] - 4.42]			
- 4.42]			
-			
dL)			
1.79]			
1.89]			
1.98]			
- 1.89]			
L)			
2.99]			
9 – 3.76]			
- 3.74]			
_	nL) - 2.99] 9 - 3.76] 1 - 3.74]	- 2.99]	- 2.99] 9 – 3.76]

Study	Effect estimates	Statistical Significance	Effect on thyroid dysfunction	Population
Wang 2020 54	Every 1 mg/L increment of water fluoride was associated with • 0.006 ng/mL increase in TT3 • 0.013 pg/mL increase in FT3 • 0.083 ng/mL decrease in TT4 • 0.01 ng/mL decrease in FT4 • 0.13 µIU/mL increase in TSH	P=0.028 (significant only before correction for multiple testing)	Positive	Children/ adolescents
	Every 1 mg/L increment of urinary fluoride was associated with • 0.007 ng/mL increase in TT3 • 0.02 pg/mL increase in FT3 • 0.09 ng/mL decrease in TT4 • 0.009 ng/mL decrease in FT4 • 0.11 µIU/mL increase in TSH	0.013 (Remained significant after corrections for multiple testing)		
Malin 2018 76	Every 1mg/L increment of urinary fluoride (in iodine- deficient adults) was associated with a 0.35 mIU/L increase in TSH [95% CI: 0.06,	p = 0.01 (one-tailed)	Possible positive	Children/ adolescents and adults

Study	Effect estimates	Statistical	Effect on	Population
		Significance	thyroid	
			dysfunction	
	0.64].			
	0.04].			

Consistency

Study	Design	Country	Population	Time period
Du 2021 ²⁵	Cross-sectional	China	Children/ adolescents	2017
Cui 2020 42	Cross-sectional	China	Children/ adolescents	2014 - 2018
Kumar 2018 74	Cross-sectional	India	Children/ adolescents	NR
Rathore 2018 81	Cross-sectional	India	Children/ adolescents	NR
Wang 2020 54	Cross-sectional	China	Children/ adolescents	2015
Malin 2018 76	Cross-sectional	Canada	Children/ adolescents and adults	2012 – 2013

Biological gradient (exposure-response)

Study	Effect estimates	Statistical Significance	Effect thyroid dysfunction	on Population
Kumar 2018 74	Thyroid hormone (<u>Mean</u>) levels by study group (A: fluorosis endemic area, B: fluorosis non-endemic area) • Free T3 (pg/ml): A: 3.125; B: 2.698	p = 0.26		
	 Free T4 (ng/dL): A: 1.282; B: 1.193 TSH (μIU/m): A: 3.849; B: 2.588 	p = 0.41 p = 0.02		
	• Percent of thyroid hormone level derangement: A: 67.5; B: 54			
Rathore 2018 ⁸¹	 Exposure groups: Gp 1: <1ppm Gp 2: 1-1.9 ppm Gp 3: 2-3.9 ppm Gp 4: ≥ 4ppm Free T3: mean, ±SD, [range] (pg/mL) <u>Gp 1: 2.66 pg/mL ±0.46, [2.11 – 3.89]</u> <u>Gp 2: 2.73 pg/mL ±0.36, [2.13 – 3.56]</u> 	P value: NR	Positive	Children/ adolescents

Study	Effect estimates	Statistical Significance	Effect thyroid dysfunction	on Population
	<u>Gp 3: </u> 2.84 pg/mL ±0.46, [2.02 – 4.26]			
	<u>Gp 4: </u> 3.06 pg/mL ±0.78, [1.91 – 4.42]			
	 Free T4: mean ±SD, [range] (ng/dL) 			
	<u>Gp 1:</u> 0.98 ng/dL ±0.21, [0.79 – 1.79]			
	<u>Gp 2:</u> 1.02 ng/dL ±0.26, [0.78 – 1.89]			
	<u>Gp 3:</u> 1.11 ng/dL ±0.28, [0.76 – 1.98]			
	<u>Gp 4:</u> 1.22 ng/dL ± 0.33, [0.75 – 1.89]			
	 TSH: Mean ± SD, [range] (μIU/mL) 			
	<u>Gp 1:</u> 1.33 μIU/mL ±0.78, [0.4 – 2.99]			
	<u>Gp 2:</u> 1.64 μIU/mL ±0.88), [0.29 – 3.76]			
	<u> Gp 3:</u> 1.86 µIU/mL ±0.77, [0.76 – 3.74]			
	<u>Gp 4:</u> 1.91 uIU/mL ±1.10, [0.75 – 4.99]			
Wang 2020 <u>54</u>	Every 1 mg/L increment of water fluoride was	P=0.028	Positive	Children/
	associated with	(significant only		adolescent
	• 0.006 ng/mL increase in TT3	before		
	• 0.013 pg/mL increase in FT3			

Study	Effect estimates	Statistical Significance	Effect of thyroid dysfunction	on Population
	 0.083 ng/mL decrease in TT4 0.01 ng/mL decrease in FT4 0.13 μIU/mL increase in TSH 	correction for multiple testing)		
	Every 1 mg/L increment of urinary fluoride was associated with • 0.007 ng/mL increase in TT3 • 0.02 pg/mL increase in FT3 • 0.09 ng/mL decrease in TT4 • 0.009 ng/mL decrease in FT4 • 0.11 µIU/mL increase in TSH	0.013 (Remained significant after corrections for multiple testing)		
Malin 2018 76	Change (95%CI) in serum TSH (μ IU/L) per unit increase in UFsg (mg/L) No iodine deficiency: ß = -0.02 (-0.19, 0.15) Iodine deficiency: ß = 0.36 (-0.03, 0.75)	p = 0.43 p = 0.03	Possible positive	Children/ adolescents and adults

Experimental evidence

Selected animal studies (tier-1; medium to high quality) investigating thyroid dysfunction

Animal model	F in DW ^{xliii} (mg/L)	Significantly altered outcomes	D-R trend
Rat (chronic) (943)	0, 5, 10, 20	Serum T4, FT4 and TSH levels	Inconsistent change across time
		(no change in serum T3, FT3)	points and only occurred at higher
			doses
Rat (chronic) ^{xliv}	0, 10, 20	None	None
		(serum T3, T4 and TSH levels were	e
		assessed)	

^{xliii} "[t]he fluoride concentration in drinking water for rats must be about 4–5 times greater in order to achieve serum fluoride levels comparable to those in humans (Angmar-Mansson and Whitford, 1984)" (as cited in Cardenas-Gonzalez et al., 2013) (<u>NRC, 2006</u>; <u>McPherson et al, 2018</u>)

x^{liv} McPherson CA, Zhang G, Gilliam R, Brar SS, Wilson R, Brix A, Picut C, Harry GJ. 2018. An evaluation of neurotoxicity following fluoride exposure from gestational through adult ages in Long-Evans hooded rats. Neurotoxicol Res: 1-18.

7.3. Kidney dysfunction

Criterion	Summary of Evidence
Strength of	• Four studies 49, 57, 62, 73 of high/acceptable quality reported results demonstrating a possible
association	association between kidney dysfunction and fluoride exposure.
	One study ⁷³ reported a significantly positive association for each unit increase in water fluoride
	(mg/L) with ALB (β =1.20 µg/mL), Cys-C (β =0.03 mg/mL), OPN (β =0.10 mg/mL), TFF-3 (β =2.88
	ng/mL). Change in CLU, KIM-1, and eGFR was non-significant.
	Another study reported an inverse association per each 1mg/L increase in water fluoride with
	BUN concentration (β =-0.93 mg/dL, [-1.44, -0.42], p=0.007), whereas change in eGFR and ACR
	were non-significant. Additionally, a positive association was observed with SUA (non-significant) 62.
	 A third study ⁵⁷ reported a significant increase in serum fluoride of 1.43 (0.47–9.58) in CKDu
	patients compared to 1.07 (0.51–1.92) in controls. Similarly, a significant increase was reported
	for urinary fluoride as 1.53 ([0.45–6.92) in CKDu patients compared to 1.26 (0.36–3.80) in controls.
	• The fourth study 49 also reported that CKDu patients showed significantly higher serum fluoride
	concentrations than the healthy controls (p-value: <0.05).
Consistency	• Four studies 49, 57, 62, 73 suggested a possible association between kidney dysfunction and fluoride
	exposure.

	 Within studies showing a possible association, 3 studies were cross-sectional ^{49, 62, 73} and 1 was a case-control ⁵⁷, geographic location included Mexico, Sri Lanka, and United States, and the studied population involved children/adolescents ^{62, 73} and adults ^{49, 57}. The directionality of the association (positive vs. inverse association) varied depending on the indicator of kidney dysfunction assessed. Two additional studies reported inconclusive ⁵⁸ or no association ⁸⁷ between water fluoride and kidney
	dysfunction.
Specificity	Fluoride appears to play a role in the induction of a range of adverse health outcomes, and kidney dysfunction can be caused by a number of risk factors including exposure to toxic factors other than fluoride.
Temporality	Of the 4 studies that suggested a possible association, 3 were of cross-sectional design 49, 62, 73, whereby an inference of causality should not be inferred.
Biological	Of the two studies 62, 73 that reported results supporting a possible association between water fluoride
gradient	levels and kidney dysfunction, both examined the exposure on a continuous scale.
(exposure- response)	 One study reported a positive association for each unit increase in water fluoride (mg/L) with ALB (albumin), Cys-C (cystatin-C), OPN (osteopontin), TFF-3 (trefoil factor 3, significant), CLU (clusterin), KIM-1 (kidney injury molecule 1), and eGFR (estimated glomerular filtration rate, non-significant) ⁷³. The other study reported an inverse association for each 1mg/L increase in water fluoride with BUN (blood urea nitrogen, significant), eGFR, and ACR (urinary albumin to creatinine ratio, non-

significant). Additionally, a positive association was observed with SUA (serum uric acid, non-significant) ⁶².

Biological plausibility

- Histopathological changes in the kidney due to high fluoride exposure ⁵⁷.
- Increased apoptosis and tubular epithelial damage, including necrosis, have also been observed among children with high fluoride exposures ⁶².
- Studies with adult rats have shown that chronic low-level fluoride exposure can lead to glomerular hypercellularity and mesangial cell proliferation, reduced kidney enzyme activity, interstitial nephritis, and renal tubule hypertrophy and hyperplasia ⁶².
- In experimental studies, exposure to fluoride has been associated with enzymatic inhibition, mitochondrial dysfunction (by the sirtuin 3 (SIRT3) pathway), oxidative stress generation and apoptosis induction (via activation of Bax expression and Bcl-2), especially in the S3 segment of the proximal tubules, which is considered the section most susceptible to fluoride toxicity ⁷³
- In animal models, these kidney toxicants have been shown to target predominantly the proximal tubule causing reactive oxygen species generation followed by endoplasmic reticulum stress and mitochondrial damage, culminating in cellular necrosis/apoptosis ⁸⁷.
- In humans, chronic exposure to heavy metals and fluoride has been associated with kidney disease.
 However, most of these studies have been conducted in adults that are occupationally exposed and therefore, the effects of environmental exposure in children largely remains uninvestigated ⁸⁷.
- Primary route of elimination is fluoride through kidneys and large number of experimental studies provide evidence that tubular area of kidneys is the most vulnerable to excess amounts of fluoride ¹³⁵, ³⁹⁷

	• One of the plausible mechanisms of fluoride induced kidney damage particularly in renal tubules is by increasing lipid peroxidation and decreasing activities of antioxidant enzymes (oxidative stress) at cellular level or by activating apoptotic pathways leading to cell death and renal injury.
Coherence	 Coherence with previous evidence cannot be assessed based on the findings: No specific mechanisms were directly linked to fluoride and kidney dysfunction Animal evidence was inconclusive/inadequate
Experimental	There has been no experimental evidence generated from human studies.
evidence	• Six experimental studies 135, 139, 172, 197, 255, 305 were identified that evaluated fluoride effects on kidney
	function at test concentrations required to achieve comparable blood fluoride levels in humans
	exposed to drinking water in Canada and are of lower risk of bias
	• These studies investigated the impact of fluoride exposure in rodents (mice or rats) at different
	exposure durations (chronic or sub-chronic) given a range of drinking water fluoride concentrations
	(ranged from 0.05 – 150 mg/L); specific outcomes measured include kidney dysfunction markers
	such as blood urea nitrogen (BUN) or creatinine (CRE) levels or histological analysis
	• Three out of six studies found some histopathological changes in kidneys (such as proximal tubule
	injury) but none reported any significant changes in kidney dysfunction markers such as BUN or CRE
	at or above test concentrations relevant to humans (except one study found slight but significant
	increase in CRE levels after long term exposure at 20 ppm fluoride concentrations)
Analogy	No suitable analogies identified

Strength of association

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
Nanayakkara 2020 49	Mean serum fluoride level (±SD) by CKDu stage • Stage 0: 35.5 μg/L (±16.3) • Stage 1: 38.1 μg/L (±18.1) • Stage 2: 53.9 μg/L (±34.2) * • Stage 3: 82.8 μg/L (±41.9) * • Stage 4: 123.4 μg/L (±59.9) * • Stage 5: 123.9 μg/L (±52.6) *	p<0.05 * compared to _ controls _	Possible	Adult non- dialysis CKDu cases
Fernando 2019 93	 Serum fluoride: Mean ±SD [range] mg/L CKDu patients: 1.43 ±1.2 [0.47 – 9.58] Controls: 1.07 ±0.3 mg/L [0.51 – 1.92] p = 0.000 (showed a significant difference based on CKDu stage but not with sex or age) Urinary fluoride: Mean ±SD [range] mg/L 	p = 0.000 p = 0.004	Possible	Adult non- dialysis CKDu cases

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
	CKDu patients: 1.53 ±0.8 [0.45 – 6.92]			
	Controls: 1.26 ±0.63 [0.36 – 3.80]			
Malin 2019 62	1 mg/L increase in water fluoride was associated with:	p=0.007	Possible	Children/
	• 0.93 mg/dL lower blood urea nitrogen concentration			adolescents
	(95% CI: -1.44, -0.42).			
	• eGFR: -1.03 mL/min/m2 (95% CI: -2.93, 0.87)	p > 0.99	-	
	Water fluoride was log2 transformed in this model.			
	• SUA: 0.05 mg/dL (95% CI: -0.07, 0.18)	p > 0.99	-	
	 ACR: -0.01 mg/g (95% CI: -0.07, 0.06) 	p > 0.99	-	
	Water fluoride and outcome variables were log2			
	transformed.			
	1 µmol/L increase in plasma fluoride was associated with:		-	
	 10.36 mL/min/1.73m2 lower estimated glomerular 	p=0.05		
	filtration rate (95% CI: −17.50, −3.22)		_	
	 0.29 mg/dL higher serum uric acid concentration 	p=0.05		
	(95% CI: 0.09, 0.50)			

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
	 1.29 mg/dL lower blood urea nitrogen concentration 	p < 0.001		
	(95%Cl: -1.87, -0.70)		Describe	
Jimenez-Cordova	Change in outcome (p-value) per unit increase of fluoride		Possible	Adults
2018 ^{<u>73</u>}	in water (mg/L) and urine (µg/mL)			
	• ALB (μg/mL)	p= <0.001		
	Water: β = 1.20			
	Urine: β = 0.56	p= <0.001	-	
	• Cys-C (mg/mL)			
	Water: β = 0.03	p= 0.005		
	<i>Urine:</i> β = 0.022	p= 0.001		
	• OPN (mg/mL)			
	Water: β = 0.10	p= 0.028		
	Urine: β = 0.038	p=0.041		
	•CLU (μg/mL)			
	Water: β = 0.09	p= 0.118		
	Urine: β = 0.07	p= 0.100	-	

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
	•KIM-1 (ng/mL)			
	Water: b= 0.045	p= 0.162		
	Urine: b= 0.048	p= 0.008	-	
	•TFF-3 (ng/mL)		-	
	Water: β = 2.88	p= 0.010		
	Urine: β = 1.14	p= 0.115	-	
	• eGFR (mL/min/1.73 m2)			
	Water: β = 0.19	p= 0.675		
	Urine: β = 0.49	p= 0.030	-	

Consistency

Study	Design	Country	Association	Population	Time period
Nanayakkara 2020 49	Cross-sectional	Sri Lanka	Possible	Adult CKDu cases	NR
Fernando 2019 93	Case-control	Sri Lanka	Possible	Adult non-dialysis CKDu cases	NR
Jimenez-Cordova 2019 58	Cross-sectional	Mexico	Inconclusive	Children/ adolescents	2015
Malin 2019 62	Cross-sectional	United States	Possible	Children/ adolescents	2013–2016
Jimenez-Cordova 2018 73	Cross-sectional	Mexico	Possible	Adults	2013
Cardenas-Gonzalez 2016 87	Cross-sectional	Mexico	None	Children/ adolescents	2014

Biological gradient (exposure-response)

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
Nanayakkara 2020 ⁴⁹	Mean serum fluoride level (±SD) by CKDu stage • Stage 0: 35.5 µg/L (±16.3) • Stage 1: 38.1 µg/L (±18.1) • Stage 2: 53.9 µg/L (±34.2) * • Stage 3: 82.8 µg/L (±41.9) * • Stage 4: 123.4 µg/L (±59.9) *	p<0.05* compared to controls	Possible	Adult non- dialysis CKDu cases
Fernando 2019 93	• Stage 4: 123.4 µg/L (\pm 53.3) • Stage 5: 123.9 µg/L (\pm 52.6) * • Serum fluoride: Mean \pm SD [range] mg/L <i>CKDu patients:</i> 1.43 \pm 1.2 [0.47 – 9.58] <i>Controls:</i> 1.07 \pm 0.3 mg/L [0.51 – 1.92] p = 0.000 (showed a significant difference based on <i>CKDu stage but not with sex or age</i>)	p = 0.000	Possible	Adult non- dialysis CKDu cases
	• Urinary fluoride: Mean ±SD [range] mg/L <i>CKDu patients:</i> 1.53 ±0.8 [0.45 – 6.92] <i>Controls:</i> 1.26 ±0.63 [0.36 – 3.80]	p = 0.004	-	

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
Malin 2019 62	1 mg/L increase in water fluoride was associated with:		Possible	Children/
	 0.93 mg/dL lower blood urea nitrogen concentration (95% CI: -1.44, -0.42). 	p=0.007		adolescents
	• eGFR: -1.03 mL/min/m2 (95% CI: -2.93, 0.87) Water fluoride was log2 transformed in this model.	p > 0.99	-	
	• SUA: 0.05 mg/dL (95% CI: -0.07, 0.18)	p > 0.99	-	
	 ACR: -0.01 mg/g (95% CI: -0.07, 0.06) Water fluoride and outcome variables were log2 transformed. 	p > 0.99	-	
	 1 μmol/L increase in plasma fluoride was associated with: 10.36 mL/min/1.73m2 lower estimated glomerular filtration rate (95% CI: -17.50, -3.22) 	p=0.05		
	 0.29 mg/dL higher serum uric acid concentration (95% CI: 0.09, 0.50) 	p=0.05	-	
	 1.29 mg/dL lower blood urea nitrogen concentration (95%CI: -1.87, -0.70) 	p < 0.001	-	
	Change in outcome (p-value) per unit increase of fluoride in water (mg/L) and urine (µg/mL)		Possible	Adults

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
Jimenez-Cordova	•ALB (μg/mL)			
2018 ^{<u>73</u>}	Water: β = 1.20	p= <0.001		
	Urine: β = 0.56	p= <0.001	-	
	• Cys-C (mg/mL)		-	
	Water: β = 0.03	p= 0.005		
	<i>Urine:</i> β = 0.022	p= 0.001	-	
	• OPN (mg/mL)		-	
	Water: β = 0.10	p= 0.028		
	<i>Urine:</i> β = 0.038	p= 0.041	-	
	•CLU (μg/mL)		-	
	Water: β = 0.09	p= 0.118		
	Urine: β = 0.07	p= 0.100	-	
	•KIM-1 (ng/mL)		-	
	Water: b= 0.045	p= 0.162		
	Urine: b= 0.048	p= 0.008	-	

Study	Effect estimates	Statistical Significance	Effect on kidney dysfunction	Population
	•TFF-3 (ng/mL)			
	Water: β = 2.88	p= 0.010		
	Urine: β = 1.14	p= 0.115	-	
	•eGFR (mL/min/1.73 m2)		-	
	Water: β = 0.19	p= 0.675		
	Urine: β = 0.49	p= 0.030		

Experimental evidence

Selected animal studies (tier-1; medium to high quality) investigating kidney effects

Animal model	F in DW (mg/L)	Significantly altered outcomes	D-R trend
Rat (subchronic) (219)	0, 15, 50	Histology (proximal tubule injury)	Altered at all doses tested
Rat (subchronic) (820)	0, 2.3, 23	Histology	Altered at highest dose tested
Rat (subchronic) (1260)	0, 0.5, 5, 20	Kidney function (CRE levels)	Altered at highest dose tested
Mice (subchronic) (252)	0, 6.8, 68	Histology	Altered at all doses tested
Mice (chronic) (1751)	0, 0.05, 1.5, 10	None (histology and kidney function ^{xiv} were assessed)	None
Mice (subchronic) (631)	0, 150,	None (kidney function was assessed)	None
Rat (subchronic) (1215)	0, 15	Histology	Single dose (tier-2 study)

xlv Blood urea nitrogen and creatinine levels

7.4. Sex hormone disruptions

Criterion	Summary of Evidence
Strength of association	One human study ⁴¹ of high quality reported inverse association of fluoride in
	plasma and water with sex steroid hormones of total testosterone, where a
	possible biological gradient could be identified among all study groups except for
	male children. Similar disruptions of estradiol and sex hormone binding globulin
	(SHBG) could not be observed in U.S. children and adolescents.
	• Another human study ⁵⁵ reported chronic fluoride exposure from drinking water is
	associated with significant differences of serum SHBG concentration among local
	male farmers in the high-exposure gp. (30.07 ± 28.32) , compared to the low-
	exposure gp. (35.90 \pm 28.58). The effect of fluoride exposure on androgen binding
	protein (ABP) levels was non-significant, and varied depending on estrogen
	receptor α gene (ESRα) gene polymorphisms.
	• All 11 experimental animal studies 132, 137, 138, 205, 206, 285, 286, 300, 307, 311, 336 identified in
	this review reported statistically significant changes in one or more outcomes
	related to male reproductive system dysfunction (male infertility) such as change in
	sperm quality or testosterone levels or histology of testis
	• These changes are observed at test concentrations relevant to humans i.e.,
	concentrations required to achieve comparable serum fluoride levels in humans
	exposed to North American CWF levels.
	• These studies 132, 137, 138, 205, 206, 285, 286, 300, 307, 311, 336 included multiples species (rats
	and mice), dose ranges that relevant to current CWF levels, exposure pattern (i.e.,

	continuous exposure through drinking water) and sufficient group size (i.e., 10 or
	more animals per treatment group).
Consistency	• The two identified human studies 41, 55 reported significant inverse associations with
	serum levels of different sex hormones in male and female adults, children and
	adolescents.
	• Drinking water fluoride studies in mice and rats over a range of study durations
	(chronic and sub-chronic) and doses (5 to >20 ppm) that are relevant to current
	drinking water levels in Canada demonstrate a consistent association on the male
	reproductive outcomes such as sperm quality, histology of testis and testosterone
	levels (see experimental evidence table for male fertility in section 5 of the current
	supplementary material).
Specificity	Fluoride appears to play a role in the induction of a range of adverse health outcomes,
	and dysregulating male reproductive system/functions can be caused by a number of
	risk factors including exposure to toxic factors other than fluoride.
Temporality	• The 2 human studies $\frac{41}{55}$ are were cross-sectional design, and an inference of
	causality cannot be inferred.
	• In all experimental animal studies, the exposure (i.e., fluoride treatment) preceded
	the observation of outcomes (i.e., change in male reproductive outcomes)
Biological gradient (exposure-	• One human study ⁴¹ of high quality reported inverse association of fluoride in
response)	plasma and water with sex steroid hormones of total testosterone, where a
	possible biological gradient could be identified among all study groups except for

male children. Similar disruptions of estradiol and sex hormone binding globulin (SHBG) could not be observed in U.S. children and adolescents.

- A second study by An and colleagues ⁵⁵ did not provide enough comparison groups to allow for a proper assessment of a biological gradient (high exposure vs. low exposure only).
- All the included experimental animal studies reported significant changes in sperm quality with changes in fluoride levels in DW
- Four studies found a linear dose response relationship between fluoride concentration in DW and one or more outcomes related to sperm quality (e.g., reduction in sperm motility, count or hyperactivity or increase in sperm abnormalities)
- Animal experiments reported chronic fluoride exposure to damage Sertoli cells in, whether such damage can further alter serum ABP concentrations remains uncertain ⁵⁵.
- In addition to ABP regulation by SHBG, ABP regulation in vivo has been reported to be regulated by androgen and FSH ⁵⁵.
- Mounting evidence has indicated that both gene-gene and gene-environment interactions play important roles in regulating hormone levels. Males who carried different ESRα genotypes with the same fluoride exposure group had different serum ABP concentrations, suggesting that genetic polymorphisms also significantly affect serum ABP levels ⁵⁵.

Biological plausibility

	 One of the plausible mechanisms proposed for fluoride induced male reproductive
	toxicity is reducing gene/protein expression of NGF and other genes in MAPK
	pathways; nerve growth factor (NGF) plays a critical role in male reproductive
	system such as in sperm motility, inducing proliferation and differentiation of stem
	Leydig cells and production of testosterone $\frac{330}{2}$.
	 Another proposed mechanism is by induction of reactive oxygen species mediated
	endoplasmic reticulum (ER) stress pathway followed by apoptosis of Sertoli cells
	which play an important role in spermatogenesis 398. Several studies linked
	toxicant induced ER stress pathways to impairment of male reproductive function
	such as changes in spermatogenesis, sperm function/ hyperactivation $\frac{398}{2}$.
Coherence	Evidence is predominantly based on animal stream
Experimental evidence	There has been no experimental evidence generated from human studies.
	Evidence is predominantly based on animal experimental studies
Analogy	No suitable analogies identified

Strength of association

Study	Effect estimates	Statistical Significance	Effect on male reproduction	Population
Bai 2020 <u>41</u>	Compared with subjects at the first tertile of plasma	P trend	Inverse	Children/
	fluoride, percent changes (95% CI) in testosterone were:	<0.001		adolescents
	 Second tertile: -8.08% (-17.36%, 2.25%) 			
	 Third tertile: -21.65% (-30.44%, -11.75%) 			
	Male adolescents at the third tertile of plasma fluoride		-	
	had decreased levels of testosterone: -21.09% (-			
	36.61% to -1.77%).			
	 Similar inverse associations were also found when 			
	investigating the relationships between plasma fluoride			
	and estradiol.			
	 Decreased levels of SHBG associated with water and 			
	plasma fluoride			
	\circ Male adolescents (third tertile): –9.39% (–17.25%			
	to -0.78%)			
	 Female children (second tertile): –10.78% (– 			
	17.55% to –3.45%)			

Study	Effect estimates	Statistical Significance	Effect on male reproduction	Population
	Sex steroid hormones in serum	<0.001		
	 Testosterone (ng/dL) 			
	 Total: 28.74 (26.11, 31.37) 			
	 Male children: 4.48 (4.01, 4.95) 			
	 Male adolescents: 281.91 (258.56, 305.26) 			
	 Female children: 5.32 (4.96, 5.68) 			
	 Female adolescents: 23.80 (22.71, 24.89) 			
	• Estradiol (pg/mL)	<0.001	-	
	 Total: 12.22 (11.35, 13.08) 			
	 Male children: 2.30 (2.23, 2.37) 			
	 Male adolescents: 15.02 (13.93, 16.11) 			
	 Female children: 4.89 (4.33, 5.45) 			
	 Female adolescents: 49.32 (45.15, 53.48) 			
	• SHBG (nmol/L)	<0.001	-	
	 Total: 55.27 (52.90, 57.63) 			
	 Male children: 89.91 (84.42, 95.40) 			
	 Male adolescents: 34.69 (32.62, 36.77) 			
	 Female children: 77.09 (71.35, 82.82) 			

Study	Effect estimates	Statistical Significance	Effect on male reproduction	Population
	 Female adolescents: 54.01 (50.78, 57.25) 			
An 2019 55	Water fluoride (Mean ± SD)		Inverse	Adults
	 Group of villages with high exposure (HEG): 2.44±1.88 mg/L 			
	 Group of villages with low exposure (LEG): 0.37± 0.15 mg/L 			
	Urinary fluoride (Mean ± SD), mg/L	P = <0.001	-	
	• HEG: 2.66 ± 1.03			
	•LEG: 0.95 ± 0.31			
	Reproductive hormones (Mean ± SD), nmol/L		-	
	ABP	P = 0.144		
	• HEG: 19.86 ± 22.46			
	•LEG: 24.04 ± 26.94			
	SHBG	P = 0.012	-	
	• HEG 30.07 ± 28.32			
	•LEG 35.90 ± 28.58			

Consistency

Study	Design	Country	Population	Time period
Bai 2020 <u>41</u>	Cross-sectional	USA	Children/ adolescents	2013–2016
An 2019 55	Cross-sectional	China	Adults (males)	2011-2012

Experimental evidence

Selected animal studies (tier-1; medium to high quality) investigating male fertility

Animal	model	F in DW (mg/L)	Significantly altered outcomes	D-R trend
Rat	(subchronic)	0, 10, 50, 100	Sperm quality ^{xlvi} , testicular 3β-HSDH, serum	Altered at all doses tested
(237)			testosterone levels, histology of testis and counts	
			of germ cells	
Rat	(subchronic)	0, 5, 110	Sperm quality ^{xlvii} , serum testosterone and	Altered at all doses tested
(238)			histology of testis	
Mice	(subchronic)	0, 11, 22, 45	Sperm quality ^{xlviii} , serum testosterone and	Altered at all doses tested
(211)			histology of testis	
Mice	(subchronic)	0, 11, 22, 45	Ultra-structure of testicular tissuesxlix and	Altered at all doses tested
(924)			mitophagy in Leydig cells	
Mice	(subchronic)	0, 11, 22, 45	Testicular morphology and ultrastructure of sperm	Altered at higher doses
(925)				
Mice	(subchronic)	0, 13, 32, 68	Sperm quality ^I , hyperactivation and [Ca ²⁺] levels	Altered at higher doses
(1595)				

^{xlvi} Total Sperm Count, Motility, and Abnormality

xlvii Sperm motility and abnormality

xlviii The sperm count, the abnormal ratio of sperm and sperm head

xlix Mitochondrial structural impairment in germ cells, Sertoli cells and Leydig cells

¹ Sperm motility, count and survival

Mice	(subchronic)	0, 13, 32, 68	Sperm abnormalities and DNA integrity	Altered at higher doses
(1596)				
Mice (1718)	(subchronic)	0, 22, 45, 68	Gonad weights, sperm quality ^{li}	Altered at higher doses
Mice (c	hronic) (1759)	0, 11, 22, 45	Sperm quality and histology of testis	Altered at all doses tested
Mice (c	hronic) (1799)	0, 11, 22, 45	Sperm quality ^{lii} and histology of testis	Altered at higher doses

^{li} Sperm count, viability and morphology

^{lii} Sperm count, motility and viability

¹⁴⁸⁹

Supplementary Material 8. Point of departure derivation

This supplement provides more information and technical detail on statistically deriving the POD for dental fluorosis. A list of extant international health-based values is provided. A reanalysis of the data published by Dean (1942) with dose-response modelling to derive a POD to protect against moderate and severe dental fluorosis is presented. The rationale for not deriving PODs for thyroid dysfunction, kidney dysfunction, and sex hormone disruptions is given. For cognitive IQ reductions in children, results from meta-analyses of NTP and the benchmark dose modelling of Grandjean et al. (2022) ³⁹⁹ are discussed. The conversion of urinary benchmark concentrations to drinking water concentrations to estimate the POD for fluoride based on the modeling results of Grandjean and colleagues is described. Issues for consideration in selecting the most appropriate endpoint for setting a health-based value for fluoride in drinking water are discussed.

8.1. HBV and MAC values reported by different authoritative agencies

The following table presents a selection of international HBV and MAC for fluoride in drinking water. These guidelines were based on considerations of the beneficial prevention of dental caries and the protection against dental fluorosis (as the most appropriate endpoint). The selection of candidate endpoints in the current review and the derivation of points of departure in a subsequent section were based on a review of all other health endpoints, excluding dental fluorosis.

Country / Organization	Reference Values	Source
WHO	"The guideline value for fluoride in drinking-water is 1.5 mg/L,	WHO 2019 400
	based on increasing risk of dental fluorosis at higher	
	concentrations and that progressively higher levels lead to	
	increasing risks of skeletal fluorosis. This value is higher than	
	that recommended for artificial fluoridation of water supplies for	
	prevention of dental caries, which is usually 0.5–1.0 mg/L." (p. 3)	

Country / Organization	Reference Values	Source
Canada	" the optimal concentration of fluoride in drinking water for dental health has been determined to be 0.7 mg/L for communities who wish to fluoridate." (p. 2)	Health Canada 2010 ¹ .
	"The maximum acceptable concentration (MAC) for fluoride in drinking water is 1.5 mg/L Mild and very mild dental fluorosis are not considered to be adverse effects, whereas moderate dental fluorosis is found to be an adverse effect, based on its potential cosmetic concern, and is used as the endpoint of concern in the risk assessment used to establish the Maximum Acceptable Concentration." (p. 1)	
	"Health Canada has calculated a health-based value of 0.9 mg/L for fluoride in drinking water, which is deemed protective against any potential adverse health effect from fluoride." (p. 64)	
USA	"For community water systems that add fluoride to their water, PHS recommends a fluoride concentration of 0.7 mg/L (parts per million [ppm]) to maintain caries prevention benefits and reduce the risk of dental fluorosis." (p. 319)	U.S. Department of Health and Human Services 2015 ⁴⁰¹
	"The current enforceable drinking water standard for fluoride is 4.0 mg/L. This is the maximum amount that is allowed in water from public water systems. It is set to meet the current public health goal for protection against increased risk of crippling skeletal fluorosis, a condition characterized by pain and tenderness of the major joints." (p. 2)	US Environmental Protection Agency 2011 402
	"EPA also has a non-enforceable secondary standard for fluoride of 2.0 mg/L, which is recommended to protect children against the tooth discoloration and/or pitting that can be caused by excess fluoride exposures during the formative period prior to eruption of the teeth. Although water systems are not required to comply with secondary standards, for fluoride, EPA does require that systems notify customers if the average water levels exceed the secondary standard." (p. $2 - 3$)	

Country /		
Organization	Reference Values	Source
Australia	"Based on health considerations, the concentration of fluoride in	National Health and
	drinking water should not exceed 1.5 mg/L." (p. 668)	Medical Research
	"The guideline value of 1.5 mg/L has been set to protect children	Council, Australia
	from the risk of dental fluorosis." (p. 669)	2021 ^{<u>100</u>}
	"NHMRC supports Australian states and territories fluoridating	National Health and
	their drinking water supplies within the range of 0.6 to 1.1 mg/L.	Medical Research
	This range is aimed at reducing tooth decay, while avoiding any	Council, Australia
	occurrence of dental fluorosis of aesthetic concern. In each	2017 ¹⁰⁰
	Australian state or territory, the government health authority	
	determines the appropriate operational levels within the range of	
	0.6 to 1.1 mg/L." (p. 1)	
Ireland	"Community water fluoridation at a level of 1 ppm began in	Sutton et al. 2015 403
	Ireland in 1964 as a measure to prevent dental caries. A major	
	review of Ireland's water fluoridation policy in 2002 showed an	
	increasing occurrence of dental fluorosis. As a result, in 2007,	
	the fluoride level in drinking water in Ireland was lowered to a	
	range of 0.6 to 0.8 ppm, with a target of 0.7 ppm. This remains	
	the target and range applied in Ireland today." (p. 6)	
	"In Europe, the maximum level of fluoride currently allowed in	Food Safety
	drinking water is 1.5 parts per million (ppm) (2). However, in	Authority of Ireland
	Ireland, the 1960 Health (Fluoridation of Water Supplies) Act	2006 <u>404</u>
	restricts the maximum level of fluoride to only 1ppm and this	
	supersedes the European maximum limit." (p. 18)	
New Zealand	"The NZMoH [New Zealand Ministry of Health] recommends	Royal Society of
	that, for oral health reasons, the level of fluoride in drinking	New Zealand 2014
	water in New Zealand should be between 0.7 and 1.0 mg/L.	<u>405</u>
	Based on WHO advice, the maximum acceptable value for	
	fluoride in drinking water is 1.5 mg/L to prevent any known	
	adverse health effects (dental or skeletal fluorosis)." (p. 22)	

8.2. Derivation of a point of departure for moderate dental fluorosis

Methodology

In its 2010 report ⁴⁰⁶ entitled *Fluoride: Dose-Response Analysis For Non-cancer Effects*, the US EPA performed a dose-response analysis on severe dental fluorosis as a function of fluoride in drinking water. The dose-response analysis was conducted using the dataset from Dean (1942) ⁴⁰⁷. Five models were fit to the data (log Probit model, Probit model, log logistic model, logistic model, and dichotomous Hill model) with the dichotomous Hill model as the preferred model based on its AIC value (see Table 4-2 from EPA (2010) ⁴⁰⁶). The resulting benchmark dose (BMD) for 1% severe dental fluorosis was 2.43 mg/L, while the corresponding lower bound of the benchmark dose (BMDL) was found to be 2.18 mg/L. It should also be noted that US EPA ⁴⁰⁶ attempted to fit these models to data on moderate dental fluorosis; however, none of the models provided an acceptable model fit to derive benchmark dose using the selected analytic strategy.

Identification of the key study

As described above in the systematic review methods and results sections, a bibliographic search was conducted for all epidemiologic studies on fluoride in drinking water and dental fluorosis. The review was an update of the CADTH (2019) systematic review. However, in considering whether there existed a preferable study to Dean (1942) ⁴⁰⁷, candidate key studies were considered from all studies published after 1942. The selection of a preferable key study involved several considerations: the study would have a low risk of bias based on its design and analytic methodology, there would be data adequate for a dose-response analysis of moderate dental fluorosis, the design of the study would not be entirely ecologic (that is, aggregate statistics) to allow for proper inference, other sources of fluoride would ideally be considered, the study would be based on a child or adolescent study population, ideally drinking water fluoride levels would be reflected in a range that includes levels below 0.7 ppm, the study

size would be sufficiently large for dose-response modelling, and the study setting would offer natural parallels to a North American context. The team did not further consider studies published before 2008 (as the US EPA had already reviewed these in detail). Risk of bias of studies published after 2008 were based on assessments conducted by Iheozor-Ejiofor et al 2015 ¹⁰⁶ and CADTH 2019 ², and within the current review.

Epidemiologic studies published to date were of variable risk of bias levels, particularly based on concerns for exposure assessment and potential confounding, among other issues. A major consideration was that other sources of fluoride (such as dental cleaning products and rinses) are common in more recent eras. This poses considerable uncertainty in dose-response modelling of the effects of fluoride in drinking water, as was also noted by the US EPA (2008) ⁴⁰⁶. At the time of its review, the US EPA also preferred Dean (1942) ⁴⁰⁷ because it used a standardized protocol to assess dental fluorosis, had a relatively large study size, and had a requirement for continuous residency of the children participating in the study. As no candidate key studies were identified, for the reasons described above, Dean (1942) ⁴⁰⁷ was still preferred for statistical modeling purposes.

Dataset

Dean (1942) ⁴⁰⁷ was a cross-sectional study for 5824 children, in 22 cities across 10 states of the U.S. The children were 9-19 years old or in grades 2-12, depending on the township where they resided. The design was comprised of a comparison of regions with varying water fluoride levels. Drinking water was the only route of exposure considered in the study. Dental fluorosis was measured using Dean's Index. Community fluoride concentrations were based on the Elvove (1933) ⁴⁰⁸ method, derived from the mean of twelve-monthly samples.

The data used for the dose-response analysis is summarized in Table 10, which is generated by aggregating from Dean (1942) ⁴⁰⁷ and sorting by the fluoride concentration levels in the drinking water supplies. The number of moderate (DFI=3) or severe (DFI=4) dental fluorosis cases for each community is calculated by combining proportions of moderate and severe dental fluorosis and multiplying by the number of study participants in each town.

The US EPA (2010) ⁴⁰⁶ argued that data from the town of Bauxite, AR, was an outlier, with a confounding factor of the excessive amounts of alumina in the environment due to the 1494

Trial Ex. 131.1494

aluminum mine and smelter in the region. Therefore, data for Bauxite (26 children at an exposure level of 14.1mg/L) is excluded from the present analysis.

Tours	State	Sample	Age	F	Cases
Town	State	size	(Years)	(mg/L)	(Moderate + Severe)
Waukegan	IL	423	12-14	0	0
Michigan City	IN	236	12-14	0.1	0
Zanesville	OH	459	12-14	0.2	0
Lima	OH	454	12-14	0.3	0
Marion	OH	263	12-14	0.4	0
Elgin	IL	403	12-14	0.5	0
Pueblo	CO	614	12-14	0.6	0
Kewanee	IL	123	12-14	0.9	0
Aurora	IL	633	12-14	1.2	0
Joliet	IL	447	12-14	1.3	0
Elmhurst	IL	170	12-14	1.8	2
Galesburg	IL	273	12-14	1.9	3
Clovis	NM	138	9-11	2.2	16
Colorado Springs	СО	404	12-14	2.6	42
Plainview	ТΧ	97	9-12	2.9	26
Amarillo	ТΧ	289	9-13	3.9 ¹	136
Conway	SC	59	9-14	4	21
Lubbock	ТΧ	189	9-15	4.4	121
Post	ТΧ	38	~8-11 ³	5.7 ²	34
Chetopa	KS	65	~7-17 ⁴	7.6 ²	45
Ankeny	IA	21	~6-17 ⁵	8.0 ²	19
Bauxite	AR	26	14-19	14.1 ²	24

Table 10: Fluoride concentration in drinking water supplies and number of cases of moderate/ severe dental fluorosis (modified from Dean, 1942)

¹ "Subject to possible correction to 4.2mg/L during susceptible period of age group examined." (Dean, 1942)

² Those observations are based on a single determination. Others are calculated as the average of samples across 12-month timeline.

- ³ Corresponds to children in grades 4 to 6
- ⁴ Corresponds to children in grades 3 to 12

⁵ Corresponds to children in grades 2 to 12

Bayesian vs. frequentist dose-response modelling

As mentioned in the US EPA (2010) report ⁴⁰⁶, none of the models used in the dose-response modelling on the moderate and severe dental fluorosis provided acceptable fit to the data. For the current review, a Bayesian framework was employed for the benchmark dose estimation using the more recently available Benchmark BMD software (BBMD) developed by Shao and Shapiro (2018) ⁴⁰⁹. This approach would in principle provide improved model fit to a given dataset. Briefly, the Bayesian analysis calculates the posterior probability for parameter set θ given data (i.e., $p(\theta|\text{Data})$) as

$$p(\boldsymbol{\theta}|\text{Data}) \propto \pi(\boldsymbol{\theta})L(\text{Data}|\boldsymbol{\theta})$$
,

where $\pi(\theta)$ denotes the prior distribution for θ , $L(\text{Data}|\theta)$ represents the likelihood function. In particular, since the data is dichotomous (i.e., "success" if a study participant exhibits moderate or severe dental fluorosis, or "failure" otherwise), the likelihood function can be described using binomial distribution.

$$L(\text{Data}|\boldsymbol{\theta}) = \prod_{i=1}^{l} {n_i \choose y_i} p(d_i|\boldsymbol{\theta})^{y_i} [1 - p(d_i|\boldsymbol{\theta})]^{n_i - y_i} ,$$

where n_i represents the number of participants in each exposure group, and y_i corresponds to number of participants developing moderate or severe dental fluorosis in ith exposure group, and $p(d_i|\theta)$ is the probability of developing moderate or severe dental fluorosis given exposure concentration at ith group. For all analyses, to derive a BMD and POD to protect against moderate dental fluorosis, a DFI cutoff of 3+ was used for modelling (i.e., a combination of moderate (DFI=3) and severe (DFI=4) categories, as described in Dean (1942) $\frac{407}{}$). There are a number of plausible dose-response model that can be used for the analysis. In particular, the BBMD software provides eight models available for the dose-response analysis to fit dichotomous data:

- Quantal linear model
- Probit model
- Logistic model
- Weibull model
- Multistage (2nd order) model
- Log logistic model
- Log Probit model
- Dichotomous Hill model

All eight models provided by the BBMD software were used for the dose-response analysis; however, only log logistic, log Probit, and dichotomous Hill models provided convergence and adequate fit for the analysis. These three models, as well as the prior distributions for corresponding model parameters are shown below.

Log logistic model

$$f(d) = a + \frac{1-a}{1+e^{-(c+b \times \log(d))}},$$

where the prior distributions for the parameters are given by: $a \sim Uniform(0,1)$; $b \sim Uniform(1,15)$; and $c \sim Uniform(-5,15)$.

Log Probit model

$$f(d) = a + (1 - a) \times \Phi(c + b \times \log(d)),$$

where the prior distributions for the parameters are given by: $a \sim Uniform(0,1)$; $b \sim Uniform(1,15)$; and $c \sim Uniform(-5,15)$.

Dichotomous Hill model

$$f(d) = a \times g + \frac{a(1-g)}{a + e^{-(c+b \times \log(d))}},$$

where the prior distributions for the parameters are given by: $a \sim Uniform(0,1)$; $b \sim Uniform(1,15)$; $c \sim Uniform(-5,15)$; and $g \sim Uniform(0,1)$.

For the prior distributions for all parameters, the uniform distribution with the default lower and upper bounds are used. These default values were chosen based on the biological considerations ⁴⁰⁹. See section 2 of the supplemental material from Shao and Shapiro (2018) ⁴⁰⁹ for the details of the remaining models.

Benchmark-dose modelling of added and extra risks

The objective of the dose-response analysis conducted in this section is to derive a point-ofdeparture (POD) using the BMD and the BMDL. The added-risk and extra-risk-based BMDs, for a prespecified benchmark response (BMR), can be defined as

$$BMD_{ad} = \{d: f(d) - f(0) = BMR\},\$$

and

$$BMD_{ex} = \left\{ d: \frac{f(d) - f(0)}{1 - f(0)} = BMR \right\},$$

where f(d) and f(0) correspond to the risk of developing moderate or severe dental fluorosis at exposure levels *d* and 0, respectively.

Choice of benchmark response

Derivation of BMD and BMDL estimates were based on the extra-risk BMR of 1%, 5%, and 10%, given that extra-risk based BMR would always produce an estimate less than or equal to the BMD based on added risk.

Adequacy of model fit

As in classical (i.e., frequentist) statistics, the model fit to the data can be checked for adequacy in the Bayesian analysis. One such measure is called the posterior predictive p-value (PPP). The PPP indicates the discrepancy between the observed data and the plausibility of generating the observed data based on the posterior predictive distribution. If the model's PPP value is between 0.05 and 0.95, the model's fit it thought to be adequate. For a more detailed explanation of the PPP, see Gelman (2013) ⁴¹⁰.

Model selection and model averaging

When there is more than one plausible model to describe the dose-response relationship, there would be more than one BMD estimate derived. There are two ways to determine a single "best" BMD estimate from a set of BMDs. One way is to choose the BMD from the most plausible model (model selection), and another way is to calculate the weighted average of the BMD estimates (model averaging). Either way, such determination requires the use of posterior model weights.

First, assume that equal prior model weights are assigned to each of candidate model, as there is no reason to believe one model is more plausible than others. Consequently, the model weight ⁴¹¹ for the jth model can be calculated as

$$\widehat{m}_j = \exp\left(\widehat{l}_j - \frac{d_j}{2}\log(n)\right),\,$$

where \hat{l}_j denotes the estimated log-likelihood value, d_j represents the number of parameters used in jth model, with sample size represented by *n*. Therefore, using equal prior model weights, the posterior model weight for each of the model included in model selection/averaging can be calculated as

$$p\widehat{m}_j = rac{\widehat{m}_j}{\sum_{t=1}^T \widehat{m}_t}$$
,

and therefore, the BMD estimate for model selection is given by

$$\widehat{\text{BMD}}_{MS} = \underset{\widehat{pm}_j}{\operatorname{argmax}} \widehat{\text{BMD}}_j .$$

Similarly, the BMD estimate for the model averaging is given by

$$\widehat{\mathrm{BMD}}_{MA} = \sum_{t=1}^{T} \widehat{pm}_t \times \widehat{\mathrm{BMD}}_j \,.$$

Results

NOAEL and LOAEL

Although the purpose of this section is to determine the POD based on BMD, it is worthwhile noting that the no observed adverse effect level (NOAEL) and lowest observed adverse effect level (LOAEL) for the moderate or severe dental fluorosis are 1.3 mg/L and 1.8 mg/L, respectively. The LOAEL corresponds to a 1.2% positivity rate in the study participants from Elmhurst, IL (when all communities in Dean (1942) ⁴⁰⁷ are sorted by fluoride concentration, the lowest concentration at which moderate dental fluorosis manifests is within the Elmhurst community, which had 1.8 ppm F concentration).

BMD estimates based on individual models

Dose-response analysis using log logistic model

Figure 1 shows the estimated dose-response curve using log logistic model. With the PPP value of 0.453, there is no reason to believe the inadequacy of the model fit. The estimated BMD and BMDL based on extra-risk based BMR of 1%, 5%, and 10% are presented in Table 11. When the BMR is set to 1%, the BMD and BMDL estimates are 1.45 mg/L and 1.35 mg/L, respectively. The estimated model weight for log logistic model is less than 0.001%, indicating that, of the three models used in this analysis, log logistic model has the lowest loglikelihood.

It should also be noted that, as the estimated background risk of developing moderate or severe dental fluorosis is 2.4×10^{-4} (Table 12), the added-risk based BMD and BMDL estimates would be the same as those shown in Table 11. The parameter estimates given in Table 12 uses the normalized exposure levels. In short, exposure levels in all data sets are normalized to the scale between 0 to 1 by dividing the exposure level *d* by the maximum exposure level (8.0mg/L) from the study.

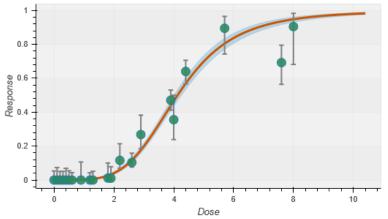


Figure 1: Estimated dose-response curve using log logistic model (orange line), with 90% confidence interval shown in light blue shade.

(Green dots represent the observed data while the vertical bars denote the 90% confidence interval about the observation.)

Table 11: Estimated BMD and BMDL values based on log logistic model. The extra-riskbased BMR are used.

BMR	Log Logistic Model				
	BMD (mg/L)	BMDL (mg/L)			
1%	1.45	1.35			
5%	2.11	2.01			
10%	2.50	2.41			

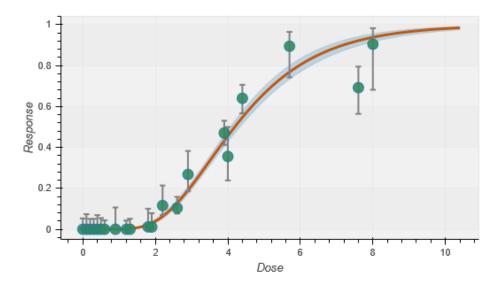

	Log Logistic model					
Parameter [–]	Mean SE(Mean)		Standard Deviation			
a	2.4×10^{-4}	2.0×10^{-6}	2.4×10^{-4}			
b	4.38	2.1×10^{-3}	0.2			
С	2.9	1.9×10^{-3}	0.18			
lp	-737.6	0.01	1.27			

 Table 12: Estimated parameters for log logistic model.

Dose-response analysis using log Probit model

Figure 2 shows the estimated dose-response curve using log Probit model. With the PPP value of 0.396, there is no reason to believe the inadequacy of the model fit. Table 13 summarizes the estimated BMD and BMDL based on extra-risk based BMR of 1%, 5%, and 10%. When the BMR is set to 1%, the BMD and BMDL estimates are 1.58 mg/L and 1.49 mg/L, respectively. The estimated model weight for log Probit model is 0.046%, implying that log Probit model is a more plausible underlying model than the log logistic model for describing dose-response relationship between fluoride concentration in drinking water and development of moderate or severe dental fluorosis.

Similar to the log logistic model, as the estimated background risk of developing moderate or severe dental fluorosis is 2.4×10^{-4} (Table 14), the added-risk based BMD and BMDL estimates would be the same as those shown in Table 13. Note also that the parameter estimates given in Table 14 uses the normalized exposure levels.

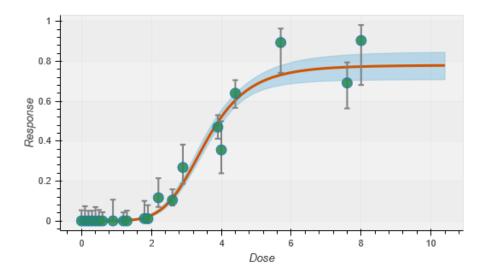
Figure 2: Estimated dose-response curve using log Probit model (orange line), with 90% confidence interval shown in light blue shade.

(Green dots represent the observed data while the vertical bars denote the 90% confidence interval about the observation.)

Table 13: Estimated BMD and BMDL values based on log Probit model. The extra-riskbased BMR are used.

BMR	Log Probit Model				
	BMD (mg/L)	BMDL (mg/L)			
1%	1.58	1.49			
5%	2.10	2.02			
10%	2.45	2.37			

 Table 14: Estimated parameters for log Probit model.


	Log Probit Model					
Parameter ⁻	Mean	SE(Mean)	Standard Deviation			
а	2.4×10^{-4}	2.0×10^{-6}	2.4×10^{-4}			

b	2.38	1.1×10^{-3}	0.10
С	1.5	1.0×10^{-3}	0.10
lp	-732.5	0.01	1.29

Dose-response analysis using dichotomous Hill model

Figure 3 shows the estimated dose-response curve using log logistic model. With the PPP value of 0.452, there is no reason to believe the inadequacy of the model fit. As shown in Figure 3, the dichotomous Hill model plateaus at 78% response rate, meaning that the Hill model assumes that even as fluoride concentration increase infinitely, only about 78% of population would develop either moderate or severe dental fluorosis. The estimated BMD and BMDL based on extra-risk based BMR of 1%, 5%, and 10% are presented in Table 15. When the BMR is set to 1%, the BMD and BMDL estimates are 1.66 mg/L and 1.56 mg/L, respectively, which are slightly larger than those based on the log logistic and the log Probit models. When considering the model averaging results, the estimates were heavily weighted toward those of the Hill model (with an estimated model weight of 99.95%).

The background rate for the Hill model is given by $(a \times g)$. From Table 16, we obtain that $a \times g = 2.5 \times 10^{-4}$, and therefore the added-risk based BMD and BMDL estimates for the Hill model are identical to those presented in Table 15. Note also that the parameter estimates given in Table 16 uses the normalized exposure levels.

Figure 3: Estimated dose-response curve using dichotomous Hill model (orange line), with 90% confidence interval shown in light blue shade.

(Green dots represent the observed data while the vertical bars denote the 90% confidence interval about the observation.)

Table 15: Estimated BMD and BMDL values based on dichotomous Hill model. The extrarisk based BMR are used.

BMR	Dichotomous Hill Model				
	BMD (mg/L)	BMDL (mg/L)			
1%	1.66	1.56			
5%	2.22	2.13			
10%	2.53	2.46			

_	Dichotomous Hill Model					
Parameter	Mean	SE(Mean)	Standard Deviation			
a	0.78	4.3×10^{-4}	0.04			
b	5.77	4.3×10^{-3}	0.38			
С	4.71	5.3×10^{-3}	0.46			
g	3.2×10^{-4}	2.5×10^{-6}	3.2×10^{-4}			
lp	-732.5	0.01	1.29			

 Table 16: Estimated parameters for dichotomous Hill model.

BMD estimates using model averaging

In the previous section, based on estimated model weights and fit statistics, the Hill model may be the single most plausible model to describe the dose-response relationship based on the data from Dean (1942) ⁴⁰⁷. Since there always is an uncertainty about which model is the "true" model, it may be beneficial to adjust the BMD and BMDL estimates by taking the weighted average of the BMD estimates from different models. As shown in Table 17, the BMD and BMDL estimates based on model averaging is identical to those of the Hill model. This is because the model weight for the Hill model is 99.95%. Therefore, whether model averaging or model selection is used, the BMD and BMDL estimates corresponding to 1% BMR would be 1.66 mg/L and 1.56 mg/L, respectively.

Table 17: Estimated BMD and BMDL values by model averaging. The extra-risk basedBMR are used.

BMR	Model Averaging				
Divity	BMD (mg/L)	BMDL (mg/L)			
1%	1.66	1.56			
5%	2.22	2.13			
10%	2.53	2.46			

Sensitivity analysis

Effect of correction in exposure

As stated in the footnote on Table 10, Dean (1942) ⁴⁰⁷ indicated the exposure level in Amarillo, TX, may be subject to a possible correction to 4.2 mg/L (instead of 3.9 mg/L) "during susceptible period of age group examined". Although the age group of study participants from Amarillo does not seem to differ greatly from children from other communities, a sensitivity analysis was performed with a modified fluoride concentration for the Amarillo subjects.

The BMD and BMDL estimates under the log logistic, log Probit, and Hill models, as well as from model averaging are provided in Table 18. As expected, these estimates are very similar to those from the original analysis (Table 11, Table 13, Table 15, and Table 17). In particular, BMD and BMDL estimates for 1% extra risk based on model averaging are 1.63 mg/L and 1.52 mg/L, respectively.

Table 18: BMD and BMDL estimates under various models. The exposure level for Amarillo, TX, has been modified to 4.2 mg/L for possible susceptible period of age group examined, as noted by Dean (1942).

BMR	Log logistic Model			Probit odel		tomous Model		odel erage
	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL
1%	1.63	1.52	1.44	1.34	1.58	1.49	1.63	1.52
5%	2.21	2.12	2.13	2.04	2.12	2.03	2.22	2.12
1 0 %	2.55	2.46	2.54	2.45	2.48	2.39	2.55	2.46

Effect of higher concentration groups

The Hill model provided the best fit in the main analysis. This may be due to the extra parameter in the Hill model that allows for the model to plateau before reaching a 100% incidence rate. To investigate the effect of the plateauing effect on the estimation of BMD, two additional analyses were considered, where the highest concentration group (i.e., Ankeny, IA at 8.0 mg/L) and two highest concentration groups (i.e., Ankeny, IA, and Chetopa, KS at 7.6 mg/L) are removed. The BMD estimates based on these additional analyses are presented in Table 19 and Table 20. 1507

When only the highest concentration group is excluded, the resulting model average BMD and BMDL estimates are nearly identical to those found in the original analysis (1.68 mg/L vs. 1.66 mg/L for BMD, and 1.57 mg/L vs. 1.56 mg/L for BMDL for 1% BMR). When the two highest exposure groups are excluded, the model average BMD estimates are slightly increased at 1.72mg/L for 1% BMR. Although the BMD estimates are mostly unaffected by the plateauing effect, when both Ankeny and Chetopa subjects were excluded from the analysis, the log Probit model became the dominant dose-response model (with the model weight of 91.2%). This indicates that the model fit may be heavily influenced by the plateauing effect (i.e., whether incidence rate will become 100% as exposure increase or not), and therefore it would be preferable to use the BMD and BMDL estimates from model averaging, rather than using only the most plausible model.

Table 19: BMD and BMDL estimates under various models. The highest exposure group(Ankeny, IA) is excluded from this dose-response analysis.

BMR		ogistic odel	C Log Probit Model		Dichotomous Hill Model		Model Average	
	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL
1%	1.45	1.35	1.58	1.49	1.68	1.57	1.68	1.57
5%	2.11	2.02	2.1	2.02	2.22	2.13	2.22	2.13
10%	2.50	2.42	2.45	2.37	2.53	2.45	2.53	2.45

 Table 20: BMD and BMDL estimates under various models. The two highest exposure

 groups (Ankeny, IA, and Chetopa, KS) are excluded from this dose-response analysis.

BMR	Log logistic Model		Log Probit Model		Dichotomous Hill Model		Model Average	
	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL
1%	1.60	1.50	1.72	1.63	1.63	1.52	1.72	1.59
5%	2.21	2.12	2.2	2.11	2.22	2.13	2.2	2.11
10%	2.57	2.48	2.5	2.42	2.55	2.47	2.51	2.43

Conclusion

The dose-response analysis using data from Dean (1942) ⁴⁰⁷ was performed to investigate the relationship between the fluoride concentration in drinking water and the development of moderate or severe dental fluorosis. The model average benchmark dose for 1% extra-risk and corresponding BMDL were determined to be 1.66 mg/L, and 1.56 mg/L, respectively. These values are slightly less than the LOAEL (1.8 mg/L), which had the positivity rate of 1.2% in the study population. Although three models were used to derive the model average BMD, the Hill model was the dominant model with a 99.95% model weight.

There were some uncertainties in some of the collected data. For example, Dean (1942) suggested that a potential correction for the exposure level for the town of Amarillo may be needed. A sensitivity analysis with modified data suggested that the 1% BMD and BMDL are slightly decreased at 1.62mg/L and 1.53mg/L, respectively. Another sensitivity analysis was performed to investigate the impact of plateauing effect on the BMD estimates. When two of the highest exposure groups were excluded, the BMD and BDML estimates increased slightly, to 1.72 mg/L and 1.59 mg/L. Although the BMD estimates were stable, removal of highest concentration groups led to a change in the dominant model (log Probit model had model weight of 91.2%), indicating that the BMD estimation should be based on model averaging rather than model selection.

8.3. Derivation of points of departure for other candidate endpoints

The selection of candidate endpoints in the current review and the derivation of points of departure in a subsequent section were based on a review of all other health endpoints, excluding dental fluorosis. See Section 8.1 above for a summary of a selection of international HBV and MAC for fluoride in drinking water. These guidelines were based on considerations of the beneficial prevention of dental caries and the protection against dental fluorosis (as the most appropriate endpoint).

Cognition, IQ

The body of evidence considered in the current review suggests a positive association of reduced IQ scores for children and fluoride exposures relevant to current North American drinking water levels. Using the 2022 NTP dose-response mean-effects meta-analysis ¹⁰⁴ of 29 human epidemiologic studies with aggregate-level exposure measurement, the linear dose-response model resulted in a change (a reduction) in IQ of -0.15 (standardized mean difference (SMD), 95% CL: -0.20, -0.11) between the drinking water fluoride exposed group and the reference group within each study.

Restricting the dose-response meta-analysis to those studies that included an exposed (nonreference) group with mean fluoride concentrations below 1.5 mg/L (7 studies contributed 7 observations to the dose-response estimate) resulted in an estimate of the change in IQ of 0.05 (standardized mean difference, 95% CL: -0.36, 0.45) between the exposed group and the reference group using a linear model. This latter result could be used as evidence to reconsider the HBV for fluoride in drinking water in Canada; however, the estimate was based on largely cross-sectional studies with high risk of bias, including lack of adjustment for effects of other contaminants, such as arsenic and lead.

The 2022 NTP draft ¹⁰⁴ also includes a mean effects meta-analysis, with studies that reported sex-stratified results (14 studies of boys, 13 studies of girls) with these subgroup analyses resulting in IQ changes of (SMD) –0.62 (95% CI: –0.81, –0.42) in boys and –0.53 (95% CI: –0.72, –0.34) in girls. The 2022 NTP draft ¹⁰⁴ includes a regression slopes meta-analysis of epidemiologic studies with individual-level fluoride exposure measures (including several cohort studies) with an estimated -4.77 IQ point change for a 1-mg/L increase in water fluoride ($\beta = -4.77$; 95% CI: –9.09, –0.45) and -1.81 (-2.80, -0.81) for urinary fluoride.

Benchmark dose (BMD) modelling results have been recently published, based on high-quality birth cohort data. Grandjean and colleagues ³⁹⁹ conducted a BMD analysis using the pooled MIREC and ELEMENT cohorts, with assessment of maternal urinary fluoride levels. The MIREC North American cohort (Maternal–Infant Research on Environmental Chemicals) was the basis of previous assessments of prenatal fluoride exposure and childhood IQ (^{53, 101} and) and the ELEMENT longitudinal birth cohort (Early Life Exposures in Mexico to Environmental

Toxicants) was used to assess maternal and fetal fluoride exposure and childhood IQ in a Mexican population ⁸⁵.

The combined cohort represents high quality evidence partly based on a North American population, conducted within a context relevant to North American drinking water fluoride exposure levels. Both studies included prospective data collection, with prenatal exposure assessment (maternal urine collection over successive trimesters) and follow-up during the early life of the infants and children. In risk of bias assessments conducted by NTP, the earlier publications by ^{53, 85, 101} were assessed at low risk of bias due to unlikely concerns from measurement error on cognition and urine F concentration, selection of study samples, and confounding adjustment from known factors [These assessments are relevant to the publication by Grandjean et al. ³⁹⁹, which used the same data sources].

Exposure coverage in the cohort reflects (urinary) fluoride levels below the current health-based value of 0.9 mg/L for fluoride in drinking water (with Grandjean reporting the mean urinary fluoride concentration [creatinine-adjusted] among pregnant women was 0.89 mg/L in Mexico City and 0.84 mg/L in Canada). Regression modelling by Grandjean et al. (2022) ³⁹⁹ included adjustment for critical confounders, including other chemical neurotoxicants in drinking water and socioeconomic impacts that would affect cognitive and mental health development. Adjustment included arsenic and lead exposures, as well as non-chemical determinants (gestational age, age at measurement, maternal education, race/ethnicity, child sex, parity, second-hand smoke, city, and quality of home environment [emotional support; cognitive stimulation]).

Stratified and models with interaction terms were include to the relationship between sex and urinary-fluoride exposure. In the BMD modelling, various regression models (linear, quadratic, segmented) were used to estimate the benchmark concentration for a benchmark response of a 1-point reduction in IQ. Model fits were similar but resulted in widely varying estimated benchmark concentrations, with some models for girls not converging.

At present, mode and mechanism of action information is insufficient to establish a preference for the linear or nonlinear models considered by Grandjean and colleagues ³⁹⁹. Based on a benchmark response (BMR) of 1 IQ point and using the linear model results, the benchmark concentration (BMC) for maternal urinary fluoride (MUF) was 0.312 mg MUF/L, and the one-

sided lower limit of the BMC (the BMCL) was 0.192 mg MUF/L) when pooling General Cognitive Index (GCI) scores for the youngest children of both sexes in both cohorts. In sex-stratified results, estimated benchmark concentrations were lower in boys than in girls.

Results varied in the two cohorts and by age at measurement – but when pooled for the youngest aged children, the derived BMCL from the linear model for boys was 0.125 MUF/L and for girls was 0.315 MUF/L.

To derive a potential *BMCL* for fluoride in drinking water based on the maternal urinary results from the pooled analysis of the MIREC and ELEMENT cohorts conducted by Grandjean and colleagues ³⁹⁹ requires a conversion based on the following assumptions:

- Because of the uncertainty as to the shape of the dose-response curve at low concentrations of drinking water, the more stringent linear model, rather than the squared or break-point models considered by Grandjean and colleagues ^{399]}, was selected in order that the BMCL not be overestimated.
- For a BMR of 1 IQ point, the BMCL_{MUF} was 0.192 mg MUF/L, based on the linear model results from Grandjean and colleagues for the pooled cohorts at younger ages
- Daily drinking water intake is 1.53 L/day (Health Canada default value).
- 24-hour fraction of fluoride excretion in adults is 0.75 $\frac{412}{10}$. This fractional urinary fluoride excretion (FUFE) is the ratio of fluoride excreted and fluoride ingested, FUFE = F_{excr}/F_{ing} ,
- F_{excr} is a product of urinary volume (over 24h) and the urinary fluoride concentration. A normal range of 24-hour urine volume is 800 to 1,200 mL,^{liii} with 2 L of fluid intake per day. Given the mid-value of 1.4 L of urine volume per 2 L of fluid intake, and assuming linearity, the 24-hour urine volume for North Americans (with 1.53 L intake) would be 1.07 L.
- The susceptible population was young school-aged children, with the critical window of exposure being during prenatal periods and thus based on maternal intake.

Under these assumptions, the amount of fluoride ingested per day corresponding to the BMCL_{MUF} is:

Fing = [BMCL_{MUF} x 24-hour urine volume] / FUFE

iii Urine 24-hour volume Information | Mount Sinai - New York

= 0.274 mg/day

And the BMCL for fluoride in drinking water is then calculated as:

BMCL_{DW} =
$$F_{ing}$$
 / water intake
= (0.274 mg/day) / (1.53 L/day)
= 0.179 mg F/L^{liv}

Grandjean and colleagues ³⁹⁹ fit different linear and non-linear models, which resulted in lower bounds of benchmark concentrations which differed by more than 9-fold (when converted to drinking water concentration, with the method described above, the variously derived BMCLs ranged from 0.077 mg F/L to 0.753 mg F/L drinking water).

The point of departure of 0.179 mg F/L from the combined high-quality cohorts stands in contrast to the 2022 draft NTP report conclusions that evidence for fluoride effects on cognitive function in children is less consistent below 1.5 mg F/L. In choosing between the BMCL of 0.179 mg F/L based on the more stringent model fit to the MIREC and ELEMENT cohorts by Grandjean and colleagues ³⁹⁹, and a weight of evidence conclusion that evidence for neurological effects of fluoride in children below concentrations of 1.5 mg F/L was less consistent, consideration was also given to the quality of evidence.

While the BMCL derived from the cohort data suggests a much lower POD than 1.5 mg/L, the overall body of evidence suggests significant uncertainty in any low exposure-range derivation with current evidence. At this point in time, 1.5 mg/L may be considered as a provisional point of departure for establishing an HBV for fluoride in North American drinking water based on protection against neurocognitive effects in children. This POD should be reviewed as additional data accumulates on the biological mechanisms by which fluoride impacts cognitive function, providing additional insights into the shape of the exposure-response curve at lower concentrations.

^{liv} The derivation of the drinking water BMCL was based on Grandjean et al 2022. Results from Villa et al 2004, assume that all fluoride ingested is via drinking water. They reported for their participants, about 75% of fluoride could be attributed to drinking fluids (but food, drinks, and toothpaste were all controlled in the study, and the study was conducted in Chile, which may be less applicable a North American Population).

Thyroid dysfunction

The current review and weighing of evidence under Bradford Hill considerations provided reasonable credibility from generally low to acceptable risk of bias – albeit cross-sectional – human epidemiologic studies to suggest a possible association of fluoride exposure in North American drinking water contexts and effects on thyroid dysfunction. No study was considered adequate to derive a point of departure. In considering the animal stream of evidence, only 2 low risk of bias studies with dose-response information were considered relevant ^{210, 231}. Out of these 2 rat chronic studies, one study did not find a change in thyroid hormone levels (T3, T4, or TSH) at the highest test concentrations (20 ppm), and the other study did not consistently demonstrate significant change across time points. Overall, these studies were considered insufficient for derivation of a point of departure for thyroid-related effects in humans.

No point of departure was derived.

Kidney dysfunction

Epidemiologic human studies were broadly consistent on supporting a possible association of fluoride exposure in North American contexts and effects on kidney dysfunction, with weighing of evidence under Bradford-Hill considerations supportive of the association being possibly causal. However, all human studies were cross-sectional in design and were not considered adequate for a derivation of a point of departure. Although a few low risk-of-bias animal studies demonstrated selective histopathological changes in the kidney (such as proximal tubule injury, but without any significant changes in kidney dysfunction markers such as BUN or CRE), the studies were of insufficient duration (mostly sub-chronic), or small group size (less than 10 per sex per group), or considered inadequate to derive a point of departure for kidney dysfunction in humans. Overall, these studies were considered insufficient for derivation of a point of departure for kidney dysfunction in humans.

No point of departure was derived.

Sex hormone disruptions

In the human stream of evidence, 2 low-risk of bias cross-sectional studies were identified. While considered low risk of bias in the OHAT scoring, cross-sectional studies were not considered adequate for consideration in deriving a point of departure. Recent animal studies identified in the current review suggested an association with proxy measures of male infertility such as sperm quality and testicular damage; however, older multi-generational guideline rodent studies on reproductive toxicity indicated no association with number of pups delivered or with a fertility index. Weighing of evidence under Bradford Hill considerations was not strongly supportive of a causal association with fluoride in drinking water. Overall, these studies were considered insufficient for derivation of a point of departure for sex hormone derangement effects in humans.

No point of departure was derived.

8.4. Considerations for selection of most appropriate endpoint and a point of departure

The current review encompassed a thorough, multi-pronged examination of the effects of exposure to fluoride in drinking water on adverse health outcomes. The ultimate goal of this review was to provide evidence with which Health Canada could consider updating the current MAC for fluoride in drinking water. To identify the most sensitive and most appropriate endpoint of concern, the review included considerations for deriving an appropriate POD, for which there is good quality data demonstrating a well-defined exposure-response relationship. This examination involved the identification and assessment of quality of all new evidence from human, animal, and in vitro studies that had been published after the release of two CADTH reports in 2019 ², ³, the NTP report in 2016 ⁴¹³, and the Health Canada report in 2010 ¹. In synthesizing this evidence, the quality and potential risk of bias of individual studies was taken into consideration. The combined evidence generated from these different streams was then examined via the Bradford Hill considerations ⁴¹⁴ for identification of credible causal adverse effects due to fluoride exposure.

In reconsidering an update of the MAC for fluoride in drinking water for North Americans, the HBV based on dental fluorosis was revisited using the newly published scientific evidence and 1515

results from new modelling of the Dean (1942) data on dental fluorosis. Moderate dental fluorosis was selected as the level of fluorosis of concern by Health Canada. Furthermore, based on weight of evidence, four new endpoints were considered as credible candidates for most appropriate endpoint. While effects on sex hormones, thyroid dysfunction, and kidney dysfunction are potential adverse effects of fluoride exposure through drinking water, with enough supporting evidence to warrant concern, no points of departure were derived because of inadequate data sources to conduct dose-response modelling. The overall evidence identified to date strongly suggests that fluoride can affect cognitive outcomes in children (specifically, reduction in IQ scores), at levels close to those currently seen in North American drinking water.

Hence, the selection of the most appropriate endpoint requires a comparison of the point of departure for moderate dental fluorosis and the point of departure for IQ effects. For both endpoints, the vulnerable population is young, school-aged children, though critical periods of exposure likely differ (prenatal vs. early life).

First, the POD for moderate/ severe dental fluorosis was derived in the current report as:

 1.56 mg/L for a BMR of 1%, 2.13 mg/L for a BMR of 5%, and 2.46 mg/L for a BMR of 10%

While data on moderate dental fluorosis could not be fit at the time of the US EPA report (2010) ⁴⁰⁶ using a classical approach, the current values were estimated using Bayesian model averaging to derive the extra risk-based BMDL across three alternative dose-response models using Bayesian BMD software, which only recently became available. The BMDL of 1.56 mg/L lies between the NOAEL of 1.3 mg/L and the LOAEL of 1.8 mg/L for moderate dental fluorosis in the Dean study.

Second, based on the weight of evidence to date, fluoride can credibly be considered to have an effect on childhood IQ. There is, however, significant uncertainty as to the POD. The draft NTP 2020 ¹⁰³ and 2022 ¹⁰⁴ reports concluded that evidence for effects below 1.5 mg/L was less consistent than that above 1.5 mg/L. Based on high quality MIREC and ELEMENT cohorts with individual-level measures, Grandjean and colleagues (2022) ³⁹⁹ estimated the benchmark concentration for maternal urinary fluoride associated with a 1-point reduction in IQ. Different linear and non-linear models fit by Grandjean and colleagues ³⁹⁹ resulted in benchmark 1516

Trial Ex. 131.1516

concentrations differing by more than 9-fold. Although the NRC concluded that fluoride is an endocrine disruptor, leading to thyroid dysfunction at very low exposure levels among individuals with iodine deficiency ⁴¹⁵, the mechanism of action of fluoride for neurotoxicity is still poorly understood. Uncertainties in the shape of the dose-response curve at low levels of exposure to fluoride based on epidemiologic data will likely require extrapolation with a better understanding of the mechanism of action. For these reasons, a POD for IQ effects was provisionally selected as:

 1.5 mg F/L, but acknowledging that credible support exists that the POD may be lower than this concentration (based on cohort data) and that the majority of studies to date are cross-sectional studies with significant concerns regarding exposure assessment and potential confounding.

Consideration should also be given to the severity of the two end points - moderate dental fluorosis and IQ reduction – for which PODs have been derived. The choice of a BMR of 1 IQ point (corresponding to a 1% reduction from a mean IQ of 100) has been adopted as an appropriate benchmark on this endpoint by several regulatory bodies, including the US EPA and EFSA. This level of cognitive effect (in the context of assessing the exposure to lead) has been shown to be associated with reduced educational attainment, employment status, productivity, and earned wages, reflecting substantial public health concerns ⁴¹⁶.

Although outside of the scope of the present report, the establishment of an HBV for fluoride in drinking water will require consideration of possible adjustment factors to be applied to either of the two PODs derived above. Since the POD of 1.56 mg F/L for moderate dental fluorosis is based on high-quality population-based data in the target population (children), with only minor concern about other sources of ingested fluoride, a minimal adjustment factor could be entertained in deriving an HBV based on fluorosis. However, with currently available evidence suggesting that fluoride leads to reductions in children's IQ – arguably of more concern than moderate dental fluorosis – the possibility of cognitive effects in children should be taken into account in setting an HBV for fluoride in drinking water. As the POD for IQ reduction is not yet well defined, the POD of 1.56 mg F/L for moderate dental fluorosis may be preferred as a starting point for deriving the HBV. To allow for protection against potential cognitive effects in children at levels below the POD of 1.56 mg F/L, an additional overall database uncertainty factor could be applied to this POD.

As additional information on the association between fluoride in drinking water and reduction in children's IQ becomes available, the choice of the most appropriate endpoint on which to base the POD to serve as the starting point to deriving an HBV for fluoride can be revisited.

A better understanding of low concentration fluoride risks

One of the challenges in evaluating the potential human health risks of fluoride is estimating risks at low levels of exposure. Following a comprehensive review of the scientific literature on health effects of fluoride in drinking water, neurological effects in children and dental fluorosis emerged as the two key endpoints with exposure-response data suitable for determination of a point of departure for risk assessment purposes. Dental fluorosis demonstrates a very steep exposure-response curve, with risk increasing markedly between 1 ppm F in drinking water, at which there is a low risk of mild dental fluorosis, and 4 ppm, where there is a high risk of severe dental fluorosis. Reductions in children's IQ – the key indicator of neurological impairment noted in human epidemiological studies – demonstrated a shallower exposure-response relationship, with less evidence of the threshold-like behavior seen for dental fluorosis.

Considering the currently available evidence, possible fluoride effects on childhood IQ should be taken into consideration as an area of public health concern, although less consistent evidence at low exposure levels remains a source of significant uncertainty. Benchmark dose modeling of high-quality epidemiologic data by Grandjean et al. 2022 ³⁹⁹ predicted increased risks at levels lower than 1 mg/L F in drinking water; however, different models – including linear, quadratic, and segmented models – predicted notably different levels of risk from fluoride at these low concentrations. At this point in time, mechanistic explanation and key mode of action events are insufficiently understood to guide the choice of the most appropriate model to use for predicting risks at low exposure levels.

Given the challenges of using available epidemiological data to characterize potential fluoride health effects at low levels of exposure with a high degree of precision, an evaluation of the biological mode and mechanisms of action underlying fluoride toxicity was included in the current review to provide some guidance on extrapolation at low concentrations. Although fluoride was found to cause a number of biological changes through various toxicity pathways (including oxidative stress, changes in gene expression, mitochondrial dysfunction, ER stress, 1518 perturbation of the Na/K+ ATPase pathway, apoptosis, inflammation, or death receptormediated pathways), the evidence from in vitro studies was considered to be too non-specific for health endpoints to, in particular, explain the occurrence of neurological effects in children following fluoride exposure. Absent a clear understanding of the underlying biological mechanisms and mode of action by which exposure to fluoride may act to reduce children's IQ, evidence for such effects below 1.5 mg/L remains uncertain. Experimental studies are needed to better understand the key mode of action events and their timing with respect to neurodevelopmental effects following maternal and early life exposure to fluoride ³⁹⁴. Future epidemiologic studies incorporating molecular and genetic components may also be of value in clarifying the shape of the exposure-response curve at low concentrations.

Supplementary Material References

- Guidelines for Canadian Drinking Water Quality: Guideline Technical Document -Fluoride [homepage on the Internet]; c2010. Available from: <u>https://www.canada.ca/content/dam/canada/health-canada/migration/healthy-</u> <u>canadians/publications/healthy-living-vie-saine/water-fluoride-fluorure-eau/alt/water-fluoride-fluorure-eau-eng.pdf</u>
- Community Water Fluoridation Programs: A Health Technology Assessment Review of Dental Caries and Other Health Outcomes (CADTH technology review; no. 12) [homepage on the Internet]. Ottawa, ON: Canadian Agency for Drugs and Technologies in Health; c2019. Available from: <u>https://www.cadth.ca/sites/default/files/pdf/HT0022%20CWF%20-</u> %20Clinical%20report.pdf
- Community Water Fluoridation Exposure: A Review of Neurological and Cognitive Effects [homepage on the Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; c2019. Available from: <u>https://www-ncbi-nlm-nih-gov.proxy.bib.uottawa.ca/books/NBK551870/pdf/Bookshelf_NBK551870.pdf</u>
- Chauhan DS, Mishra S, Tripathi S. Fluoride induced alteration in hypothalamic testicular axis hormones and deterioration in antioxidants status in fluorotic patients. Indian Journal of Clinical Biochemistry. 2017;32 (1 Supplement 1):S236. (in English).
- Stephenson J, Sabic H, Huber R, Renshaw P. Halides in drinking water are inversely correlated with suicide rates. Biological Psychiatry. 2017;81 (10 Supplement 1):S332. (in English).
- Mercado S, Mercado JL, Mercado LD, Mercado G. Relationship between Fluoride Concentration in Drinking Water Wells and the Degree of Dental Fluorosis in Students Aged 12-15 Years. Journal of Pharmaceutical Negative Results. 2023;14:531-8. (in English).

- Tang H, Li G, Wang M, Luo C, Zhou G, Zhao Q, et al. Association between dental fluorosis prevalence and inflammation levels in school-aged children with low-tomoderate fluoride exposure. Environmental Pollution. 2023;320:120995. (in English).
- Ahmad MS, Sarker MNI, Ahmad MN, Ali M, Sadiq, Abbas M. DOES HIGH FLUORIDE INTAKE CAUSE LOW IQ? A CASE OF ISLAMIC RELIGIOUS SCHOOLS (MADRASSAS) IN RURAL AND URBAN AREAS OF SINDH, PAKISTAN. Fluoride. 2022;55:49-62. (in English).
- Feng Z, An N, Yu F, Ma J, Li N, Du Y, et al. Do methylenetetrahydrofolate dehydrogenase, cyclohydrolase, and formyltetrahydrofolate synthetase 1 polymorphisms modify changes in intelligence of school-age children in areas of endemic fluorosis? Chin Med J (Engl). 2022;135:1846-54. (in eng).
- García-Escobar TM, Valdivia-Gandur I, Astudillo-Rozas W, Aceituno-Antezana O, Yamadala B, Lozano de Luaces V, et al. Moderate and Severe Dental Fluorosis in the Rural Population of Anantapur, India: Change in Their Biological Susceptibility? Int J Environ Res Public Health. 2022;19. (in eng).
- Goodman CV, Bashash M, Green R, Song P, Peterson KE, Schnaas L, et al. Domainspecific effects of prenatal fluoride exposure on child IQ at 4, 5, and 6-12 years in the ELEMENT cohort. Environ Res. 2022;211:112993. (in eng).
- Gupta S, Poddar AN, Kumar C, Pervez S. RECEIVER OPERATING CURVE (ROC) ANALYSIS FOR FLUOROSIS USING SIMPLE BLOOD PARAMETER NEUTROPHIL LYMPHOCYTE RATIO. Biochemical and Cellular Archives. 2022;22:3969-74. (in English).
- Ibarluzea J, Gallastegi M, Santa-Marina L, Jiménez Zabala A, Arranz E, Molinuevo A, et al. Prenatal exposure to fluoride and neuropsychological development in early childhood: 1-to 4 years old children. Environ Res. 2022;207:112181. (in eng).

- Kaur D, Kaur K, Sharma A, Goyal H, Pahuja A, Solanki D. Assessment of Fluoride Content in Water and Its Impact on the Intelligence Quotient of School Children Aged 12-13 Years. Cureus. 2022;14:e30157.
- Marques RB, Lima CCB, de Abreu Costa MLV, de Deus Moura de Lima M, de Fátima Almeida de Deus Moura L, Tabchoury CPM, et al. Fluoridated water impact on tooth decay and fluorosis in 17-20-year-olds exposed to fluoride toothpaste. J Public Health Dent. 2022;82:385-94. (in eng).
- McLaren L, Patterson SK, Faris P, Chen G, Thawer S, Figueiredo R, et al. Fluoridation cessation and children's dental caries: A 7-year follow-up evaluation of Grade 2 schoolchildren in Calgary and Edmonton, Canada. Community dentistry and oral epidemiology. 2022;50:391-403.
- Rani R, Singhal R, Singhal P, Namdev R, Sikk N, Jha S, et al. Prevalence of dental fluorosis and dental caries in fluoride endemic areas of Rohtak district, Haryana. Journal of the Indian Society of Pedodontics and Preventive Dentistry. 2022;40:140-5.
- Saeed M, Rehman MYA, Farooqi A, Malik RN. Arsenic and fluoride co-exposure through drinking water and their impacts on intelligence and oxidative stress among rural school-aged children of Lahore and Kasur districts, Pakistan. Environmental geochemistry and health. 2022;44:3929-51.
- Tawfik G, Khattab N, El-Yazeed MA, Radwan EM, Salam MSAE. Impact of dental Fluorosis on quality of life of a group of Children in a Rural area in Nubia Region. Indian Journal of Public Health Research and Development. 2022;13:127-33. (in English).
- 20. Thilakarathne BKG, Ekanayake L. Dental fluorosis among 15- year- old school children in an endemic district in Sri Lanka. Community dental health. 2022;39:54-8.

- Al-Omoush SA, Al-Tarawneh S, Abu-Awwad M, Sartawi S, Elmanaseer W, Alsoleihat F. Comparison of oral health indicators between two places of endemic dental fluorosis in Jordan. Saudi Dental Journal. 2021. (in English).
- 22. Ayele BA, Godebo TR, Tekle-Haimanot R, Yifru YM. Neuro-medical manifestations of fluorosis in populations living in the Main Ethiopian Rift Valley. Environmental geochemistry and health. 2021.
- Cao XY, Xu YQ, Liao DD. Monitoring results of drinking water-borne endemic fluorosis in fuzhou from 2017 to 2019. Chinese Journal of Disease Control and Prevention. 2021;25:1097-101. (in Chinese).
- Dong H, Yang X, Zhang S, Wang X, Guo C, Zhang X, et al. Associations of low level of fluoride exposure with dental fluorosis among U.S. children and adolescents, NHANES 2015-2016. Ecotoxicology and environmental safety. 2021;221:112439.
- 25. Du Y, An N, Gao M, Yang M, Huang H, Zhou G, et al. Iodine Modifies the Susceptibility of Thyroid to Fluoride Exposure in School-age Children: a Cross-sectional Study in Yellow River Basin, Henan, China. Biological Trace Element Research. 2021. (in English).
- Farmus L, Till C, Green R, Hornung R, Martinez-Mier EA, Ayotte P, et al. Critical Windows of Fluoride Neurotoxicity in Canadian Children. Environmental research. 2021:111315. (in English).
- Fernandes IC, Forte FDS, Sampaio FC. Molar-incisor hypomineralization (MIH), dental fluorosis, and caries in rural areas with different fluoride levels in the drinking water. International journal of paediatric dentistry. 2021;31:475-82.
- 28. Helte E, Donat Vargas C, Kippler M, Wolk A, Michaëlsson K, Åkesson A. Fluoride in Drinking Water, Diet, and Urine in Relation to Bone Mineral Density and Fracture

Incidence in Postmenopausal Women. Environ Health Perspect. 2021;129:47005. (in eng).

- James P, Harding M, Beecher T, Browne D, Cronin M, Guiney H, et al. Impact of Reducing Water Fluoride on Dental Caries and Fluorosis. Journal of dental research. 2021;100:507-14.
- Meghe AD, Malpe DB, Meshram DC. Effect of fluoride contaminated groundwater on human health in fluorosis endemic areas. Indian Journal of Forensic Medicine and Toxicology. 2021;15:529-34. (in English).
- 31. Meng X, Yao Y, Ma Y, Zhong N, Alphonse S, Pei J. Effect of fluoride in drinking water on the level of 5-methylcytosine in human and rat blood. Environmental toxicology and pharmacology. 2021;81:103511.
- 32. Mohd Nor NA, Chadwick BL, Farnell DJJ, Chestnutt IG. Factors associated with dental fluorosis among Malaysian children exposed to different fluoride concentrations in the public water supply. Journal of public health dentistry. 2021.
- Rojanaworarit C, Claudio L, Howteerakul N, Siramahamongkol A, Ngernthong P, Kongtip P, et al. Hydrogeogenic fluoride in groundwater and dental fluorosis in Thai agrarian communities: a prevalence survey and case-control study. BMC oral health. 2021;21:545.
- 34. Sharma N, Saxena V, Naithani M, Khan S. Geomedical assessment of areas having varying groundwater fluoride levels in rudraprayag district, uttarakhand. Indian Journal of Public Health Research and Development. 2021;12:122-7. (in English).
- 35. Silva MCC, Lima CCB, Lima MDM, Moura LFAD, Tabchoury CPM, Moura MS. Effect of fluoridated water on dental caries and fluorosis in schoolchildren who use fluoridated dentifrice. Brazilian dental journal. 2021;32:75-83. (in English).

- Tkachenko H, Kurhaluk N, Osadowski Z, Skaletska N, Maksin V. Elemental Status and Lipid Peroxidation in the Blood of Children with Endemic Fluorosis. Biological Trace Element Research. 2021;199:1237-45. (in English).
- Wang S, Zhao Q, Li G, Liu H, Yu X, Chen J, et al. The cholinergic system, intelligence, and dental fluorosis in school-aged children with low-to-moderate fluoride exposure. Ecotoxicology and Environmental Safety. 2021;228:112959. (in English).
- 38. Yani SI, Seweng A, Mallongi A, Nur R, Abdullah MT, Salmah U, et al. The influence of fluoride in drinking water on the incidence of fluorosis and intelligence of elementary school students in Palu City. Gaceta sanitaria. 2021;35 Suppl 2:S159-S63.
- 39. Yu X, Xia L, Zhang S, Zhou G, Li Y, Liu H, et al. Fluoride exposure and children's intelligence: Gene-environment interaction based on SNP-set, gene and pathway analysis, using a case-control design based on a cross-sectional study. Environment international. 2021;155:106681. (in English).
- 40. Zhao L, Yu C, Lv J, Cui Y, Wang Y, Hou C, et al. Fluoride exposure, dopamine relative gene polymorphism and intelligence: A cross-sectional study in China. Ecotoxicology and environmental safety. 2021;209:111826.
- Bai R, Huang Y, Wang F, Guo J. Associations of fluoride exposure with sex steroid hormones among U.S. children and adolescents, NHANES 2013-2016. Environ Pollut. 2020;260:114003. (in eng).
- 42. Cui Y, Yu J, Guo B, Gao T, Zhang B, Liu H. The relationships between thyroidstimulating hormone and/or dopamine levels in peripheral blood and IQ in children with different urinary iodine concentrations. Neuroscience Letters. 2020;729:134981. (in English).
- 43. Das G, Tirth V, Algahtani A, Arora S, Bavabeedu SS, Kafeel M, et al. Effect of fluoride concentration in drinking water on dental fluorosis in southwest saudi arabia.

International Journal of Environmental Research and Public Health. 2020;17:3914. (in English).

- Fernandes IC, Forte FDS, Sampaio FC. Molar-incisor hypomineralization (MIH), dental fluorosis, and caries in rural areas with different fluoride levels in the drinking water.
 International journal of paediatric dentistry. 2020;31:475-82.
- Godebo TR, Jeuland M, Tekle-Haimanot R, Shankar A, Alemayehu B, Assefa G, et al. Bone quality in fluoride-exposed populations: A novel application of the ultrasonic method. Bone Reports. 2020;12 (no pagination). (in English).
- Kim FM, Hayes C, Douglass CW, Burgard SL, Couper D, Kim HD, et al. A Case-Control Study of Fluoridation and Osteosarcoma. Journal of dental research. 2020;99:1157-64. (in English).
- 47. Krishna M, Munilakshmi U, Saideepika R, Shashidhar KN, Yadav B. Estimation of serum fluoride and renal parameters in diabetic nephropathy- A facility based observational case control study. Biomedical and Pharmacology Journal. 2020;13:571-6. (in English).
- Lee N, Kang S, Lee W, Hwang SS. The Association between Community Water Fluoridation and Bone Diseases: A Natural Experiment in Cheongju, Korea. Int J Environ Res Public Health. 2020;17. (in eng).
- Nanayakkara S, Senevirathna STMLD, Harada KH, Chandrajith R, Nanayakkara N, Koizumi A. The Influence of fluoride on chronic kidney disease of uncertain aetiology (CKDu) in Sri Lanka. Chemosphere. 2020;257:127186.
- Russ TC, Killin LOJ, Hannah J, Batty GD, Deary IJ, Starr JM. Aluminium and fluoride in drinking water in relation to later dementia risk. British Journal of Psychiatry. 2020;216:29-34. (in English).

- Stangvaltaite-Mouhat L, Pūrienė A, Stankeviciene I, Aleksejūnienė J. Erosive Tooth Wear among Adults in Lithuania: A Cross-Sectional National Oral Health Study. Caries Res. 2020;54:283-91. (in eng).
- 52. Sun R, Zhou G, Liu L, Ren L, Xi Y, Zhu J, et al. Fluoride exposure and CALCA methylation is associated with the bone mineral density of Chinese women. Chemosphere. 2020;253:126616. (in English).
- Till C, Green R, Flora D, Hornung R, Martinez-Mier EA, Blazer M, et al. Fluoride exposure from infant formula and child IQ in a Canadian birth cohort. Environ Int. 2020;134:105315. (in eng).
- 54. Wang M, Liu L, Li H, Li Y, Liu H, Hou C, et al. Thyroid function, intelligence, and lowmoderate fluoride exposure among Chinese school-age children. Environ Int. 2020;134:105229. (in eng).
- 55. An N, Zhu J, Ren L, Liu X, Zhou T, Huang H, et al. Trends of SHBG and ABP levels in male farmers: Influences of environmental fluoride exposure and ESR alpha gene polymorphisms. Ecotoxicology & Environmental Safety. 2019;172:40-4. (in English).
- Crnosija N, Choi M, Meliker JR. Fluoridation and county-level secondary bone cancer among cancer patients 18 years or older in New York State. Environ Geochem Health. 2019;41:761-8. (in eng).
- 57. Fernando WBNT, Nanayakkara N, Gunarathne L, Chandrajith R. Serum and urine fluoride levels in populations of high environmental fluoride exposure with endemic CKDu: a case-control study from Sri Lanka. Environmental geochemistry and health. 2019;22. (in English).
- 58. Jimenez-Cordova MI, Gonzalez-Horta C, Ayllon-Vergara JC, Arreola-Mendoza L, Aguilar-Madrid G, Villareal-Vega EE, et al. Evaluation of vascular and kidney injury

biomarkers in Mexican children exposed to inorganic fluoride. Environmental Research. 2019;169:220-8. (in English).

- Jiménez-Córdova MI, Sánchez-Peña LC, Barrera-Hernández Á, González-Horta C, Barbier OC, Razo LMd. Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population. Science of the Total Environment. 2019;684:621-8. (in English).
- Khanoranga, Khalid S. Using urinary fluoride and dental fluorosis as biomarkers of fluoride exposure in brick kiln workers in Balochistan, Pakistan. Fluoride. 2019;52:415-25. (in English).
- Liu L, Wang M, Li Y, Liu H, Hou C, Zeng Q, et al. Low-to-moderate fluoride exposure in relation to overweight and obesity among school-age children in China. Ecotoxicol Environ Saf. 2019;183:109558. (in eng).
- Malin AJ, Lesseur C, Busgang SA, Curtin P, Wright RO, Sanders AP. Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013-2016. Environment International. 2019;132 1-9. (in English).
- 63. Malin AJ, Bose S, Busgang SA, Gennings C, Thorpy M, Wright RO, et al. Fluoride exposure and sleep patterns among older adolescents in the United States: a crosssectional study of NHANES 2015-2016. Environ Health. 2019;18:106. (in eng).
- 64. Pei J, Xu J, Gao Y, Sun H, Lv C, Jiang Y, et al. Identification of pathogenesis-related microRNA profiles in skeletal fluorosis. Fluoride. Fluoride. 2019;52:29-41. (in English).
- 65. Riddell JK, Malin AJ, Flora D, McCague H, Till C. Association of water fluoride and urinary fluoride concentrations with attention deficit hyperactivity disorder in Canadian youth. Environment international. 2019;133:105190.

- Shaik N, Shanbhog R, Nandlal B, Tippeswamy HM. Fluoride ingestion and thyroid function in children resident of naturally fluoridated areas - An observational study. Journal of Clinical & Experimental Dentistry. 2019;11:e883-e9. (in English).
- 67. Soto-Barreras U, Escalante-Villalobos KY, Holguin-Loya B, Perez-Aguirre B, Nevarez-Rascon A, Martinez-Martinez RE, et al. Effect of fluoride in drinking water on dental caries and IQ in children. Fluoride. 2019;52:474-82. (in English).
- Zhang X, Lu E, Stone SL, Diop H. Dental Cleaning, Community Water Fluoridation and Preterm Birth, Massachusetts: 2009-2016. Matern Child Health J. 2019;23:451-8. (in eng).
- 69. Zhou G, Song H, Liu H, Bin G, Ding X, Zhao C, et al. The prevalence of eye diseases among residents in areas in Northeast China with high and acceptable drinking-water fluoride levels. Fluoride. 2019;52:169-83. (in English).
- Zhou G, Yang L, Luo C, Li P, Chen J, Zhao Q, et al. Low-to-moderate fluoride exposure, relative mitochondrial DNA levels, and dental fluorosis in Chinese children. Environment International. 2019;127:70-7. (in English).
- Bashash M, Marchand M, Hu H, Till C, Martinez-Mier EA, Sanchez BN, et al. Prenatal fluoride exposure and attention deficit hyperactivity disorder (ADHD) symptoms in children at 6–12 years of age in Mexico City. Environment international. 2018;121:658-66.
- Cui Y, Zhang B, Ma J, Wang Y, Zhao L, Hou C, et al. Dopamine receptor D2 gene polymorphism, urine fluoride, and intelligence impairment of children in China: A school-based cross-sectional study. Ecotoxicology and Environmental Safety. 2018;165:270-7. (in English).
- 73. Jimenez-Cordova MI, Cardenas-Gonzalez M, Aguilar-Madrid G, Sanchez-Pena LC, Barrera-Hernandez A, Dominguez-Guerrero IA, et al. Evaluation of kidney injury

biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels. Toxicology and Applied Pharmacology. 2018;352:97-106. (in English).

- 74. Kumar V, Chahar P, Kajjari S, Rahman F, Bansal DK, Kapadia JM. Fluoride, Thyroid Hormone Derangements and its Correlation with Tooth Eruption Pattern Among the Pediatric Population from Endemic and Non-endemic Fluorosis Areas. J Contemp Dent Pract. 2018;19:1,513 - 1,7. (in eng).
- 75. Kumar S, Chauhan A, Kumar A, Kumar S, Gupta A, Roy S, et al. Dental fluorosis and associated risk factors in early adolescents in India. International Journal of Adolescent Medicine and Health. 2018;32:20170200. (in English).
- Malin AJ, Riddell J, McCague H, Till C. Fluoride exposure and thyroid function among adults living in Canada: Effect modification by iodine status. Environment international. 2018;121:667-74.
- 77. Mohd Nor NA, Chadwick BL, Farnell DJJ, Chestnutt IG. The impact of a reduction in fluoride concentration in the Malaysian water supply on the prevalence of fluorosis and dental caries. Community dentistry and oral epidemiology. 2018;46:492-9.
- 78. Mustafa DE, Younis UM, Elhag SAA. The relationship between the fluoride levels in drinking water and the schooling performance of children in rural areas of Khartoum state, Sudan. Fluoride. 2018;51:102-13. (in English).
- Oweis RR, Levy SM, Eichenberger-Gilmore JM, Warren JJ, Burns TL, Janz KF, et al. Fluoride intake and cortical and trabecular bone characteristics in adolescents at age 17: A prospective cohort study. Community Dent Oral Epidemiol. 2018;46:527-34. (in eng).
- Quadri JA, Sarwar S, Sinha A, Kalaivani M, Dinda AK, Bagga A, et al. Fluorideassociated ultrastructural changes and apoptosis in human renal tubule: a pilot study. Human & experimental toxicology. 2018;37:1199-206. (in eng).

- Rathore S, Meena C, Gonmei Z, Dwivedi S, Toteja GS, Bala K. Study of excess fluoride ingestion and thyroid hormone derangement in relation with different fluoride levels in drinking water among children of Jodhpur District, Rajasthan, India. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 2018;20:327-31. (in English).
- 82. Shruthi MN, Anil NS. A comparative study of dental fluorosis and non-skeletal manifestations of fluorosis in areas with different water fluoride concentrations in rural Kolar. Journal of Family Medicine and Primary Care. 2018;7:1222-8. (in English).
- Yu X, Chen J, Li Y, Liu H, Hou C, Zeng Q, et al. Threshold effects of moderately excessive fluoride exposure on children's health: A potential association between dental fluorosis and loss of excellent intelligence. Environment International. 2018;118:116-24. (in English).
- Arulkumar M, Vijayan R, Penislusshiyan S, Sathishkumar P, Angayarkanni J, Palvannan T. Alteration of paraoxonase, arylesterase and lactonase activities in people around fluoride endemic area of Tamil Nadu, India. Clinica Chimica Acta. 2017;471:206-15. (in English).
- Bashash M, Thomas D, Hu H, Angeles Martinez-Mier E, Sanchez BN, Basu N, et al. Prenatal fluoride exposure and cognitive outcomes in children at 4 and 6–12 years of age in Mexico. Environmental health perspectives. 2017;125:097017.
- 86. Verma A, Shetty BK, Guddattu V, Chourasia MK, Pundir P. High prevalence of dental fluorosis among adolescents is a growing concern: a school based cross-sectional study from Southern India. Environmental health and preventive medicine. 2017;22:17.
- Cardenas-Gonzalez M, Osorio-Yanez C, Gaspar-Ramirez O, Pavkovic M, Ochoa M, Lopez-Ventura D, et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Toxicology Letters. 2016;259 (Supplement 1):S158. (in English).

- 88. de Moura MS, Moura LdFAdD, de Lima MdDM, Barbosa PRR, Nunes-Dos-Santos DL, Dantas-Neta NB. Epidemiological surveillance of dental fluorosis in a city with a tropical climate with a fluoridated public drinking water supply. Ciencia & saude coletiva. 2016;21:1247-54. (in Portuguese).
- 89. Heck B. Essays on health, education, and consumer information. University of California Santa Cruz; 2016.
- 90. Kousik D, Mondal NK. Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of Laxmisagar, Simlapal Block of Bankura District, W.B., India. Environmental Monitoring and Assessment. 2016;188:218. (in English).
- 91. Sabokseir A, Golkari A, Sheiham A. Distinguishing between enamel fluorosis and other enamel defects in permanent teeth of children. PeerJ. 2016;4:e1745.
- 92. Xiang J, Yan L, Wang YJ, Wang C, Qin Y, Xiang Q. The effects of ten years of defluoridation on urinary fluoride, dental fluorosis, defect dental fluorosis, and dental caries, in Jiangsu province, PR China. Fluoride. 2016;49:23-35. (in English).
- 93. Fernando W, Nanayakkara N, Gunarathne L, Chandrajith R. Serum and urine fluoride levels in populations of high environmental fluoride exposure with endemic CKDu: a case-control study from Sri Lanka. Environmental geochemistry and health. 2019;42:1497-504. (in English).
- 94. Grandjean P. Developmental fluoride neurotoxicity: an updated review. Environmental Health. 2019;18:1-17.
- Saeed M, Malik RN, Kamal A. Fluorosis and cognitive development among children (6-14 years of age) in the endemic areas of the world: a review and critical analysis. Environ Sci Pollut Res Int. 2020. (in eng).

- 96. Chaitanya N, Karunakar P, Allam NSJ, Priya MH, Alekhya B, Nauseen S. A systematic analysis on possibility of water fluoridation causing hypothyroidism. Indian Journal of Dental Research. 2018;29:358-63. (in English).
- 97. Duan Q, Jiao J, Chen X, Wang X. Association between water fluoride and the level of children's intelligence: a dose-response meta-analysis. Public Health. 2018;154:87-97. (in eng).
- 98. Evidence review for adverse health effects of drinking optimally fluoridated water: evidence since the 2010 Health Canada fluoride document. Toronto, ON: Queen's Printer for Ontario [homepage on the Internet]; c2018. Available from: <u>https://www.publichealthontario.ca/-/media/documents/E/2018/evidence-review-health-affects-fluoridated-water.pdf?la=en</u>
- 99. Health Effects of Water Fluoridation: Technical Report [homepage on the Internet]. Canberra, Australia; c2016. Available from: <u>https://www.nhmrc.gov.au/sites/default/files/documents/reports/fluoridation-evidence.pdf</u>
- 100. Information paper Water fluoridation: dental and other human health outcomes, report prepared by the Clinical Trials Centre at University of Sydney [homepage on the Internet]. Canberra; c2017. Available from: <u>https://www.nhmrc.gov.au/aboutus/publications/water-fluoridation-dental-and-other-human-health-outcomes#blockviews-block-file-attachments-content-block-1</u>
- 101. Green R, Lanphear B, Hornung R, Flora D, Martinez-Mier EA, Neufeld R, et al. Association between Maternal Fluoride Exposure during Pregnancy and IQ Scores in Offspring in Canada. JAMA Pediatrics. 2019;173:940-8. (in English).
- 102. Community Water Fluoridation Exposure: A Review of Neurological and Cognitive Effects – A 2020 Update [homepage on the Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; c2020. Available from:

https://cadth.ca/sites/default/files/pdf/htis/2020/RC1314%20-%20CWF%20exposure%20Final.pdf

- 103. Draft NTP monograph on the systematic review of fluoride exposure and neurodevelopmental and cognitive health effects - Revised September 16, 2020 [homepage on the Internet]; c2020. Available from: <u>https://www.nationalacademies.org/event/10-19-2020/review-of-the-revised-ntp-monograph-on-fluoride-exposure-and-neurodevelopmental-and-cognitive-health-effects-meeting-2</u>
- 104. DRAFT NTP Monograph on the State of the Science Concerning Fluoride Exposure and Neurodevelopmental and Cognitive Health Effects: A Systematic Review (September 2022 version) [homepage on the Internet]; c2022. Available from: <u>https://ntp.niehs.nih.gov/whatwestudy/assessments/noncancer/ongoing/fluoride/index.</u> <u>html</u>
- 105. McLaren L, Patterson SK, Faris P, Chen G, Thawer S, Figueiredo R, et al. Fluoridation cessation and oral health equity: a 7-year post-cessation study of Grade 2 schoolchildren in Alberta, Canada. Canadian journal of public health = Revue canadienne de sante publique. 2022;113:955-68.
- Iheozor-Ejiofor Z, Worthington HV, Walsh T, O'Malley L, Clarkson JE, Macey R, et al. Water fluoridation for the prevention of dental caries. Cochrane Database Syst Rev. 2015;2015:Cd010856. (in eng).
- 107. Adedara IA, Ojuade TJD, Olabiyi BF, Idris UF, Onibiyo EM, Ajeigbe OF, et al. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride. Biol Trace Elem Res. 2017;175:388-95. (in eng).
- 108. Ahmad KR, Nauroze T, Raees K, Abbas T, Kanwal MA, Noor S, et al. Protective role of jambul (Syzygium cumini) fruit-pulp extract against fluoride-induced toxicity in mice testis: A histopathological study. Fluoride. 2012;45:281-9. (in English).

- 109. Akimov OY, Kostenko VO. Role of NF-kappaB transcriptional factor activation during chronic fluoride intoxication in development of oxidative-nitrosative stress in rat's gastric mucosa. Journal of Trace Elements in Medicine and Biology. 2020;61:126535. (in English).
- 110. Al-Sabaawy HB, Al-Kaisie BI. Effects of sub lethal concentrations of sodium fluoride on sperm activity and on the level of sex hormones of adult male albino rats. Iraqi Journal of Veterinary Medicine. 2020;44:92-8. (in English).
- 111. Ali SM, Nawfal AJ, Al-Okaily BN. Protective effects of coenzyme Q10 against sodium fluoride-induced reproductive disorders in male rats. Iraqi Journal of Veterinary Sciences. 2019;33:143-9. (in English).
- 112. Altindag F, Ozdek U. Protective effects of chitosan and chitosan oligosaccharide on sodium fluoride-induced testicular damage in male rats: A stereological and histopathological study. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2021;27:183-9. (in English).
- 113. Altintas L, Essiz D, Eraslan G, Ince S, Arslanbas E. Prophylactic effect of Nacetylcysteine against sodium fluoride-induced blood oxidative stress in mice. Food and Chemical Toxicology. 2010;48:2838-41. (in English).
- 114. Baba N, Raina R, Verma P, Sultana M. Free radical-induced nephrotoxicity following repeated oral exposure to chlorpyrifos alone and in conjunction with fluoride in rats. Turkish Journal of Medical Sciences. 2016;46:512-7. (in English).
- 115. Balaha M, Ahmed N, Geddawy A, Kandeel S. Fraxetin prevented sodium fluorideinduced chronic pancreatitis in rats: Role of anti-inflammatory, antioxidant, antifibrotic and anti-apoptotic activities. Int Immunopharmacol. 2021;93:107372. (in eng).

- 116. Balaji B, Kumar EP, Kumar A. Evaluation of standardized Bacopa monniera extract in sodium fluoride-induced behavioural, biochemical, and histopathological alterations in mice. Toxicology and Industrial Health. 2015;31:18-30. (in English).
- 117. Bartos M, Gumilar F, Gallegos CE, Bras C, Dominguez S, Monaco N, et al. Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the alpha7 nicotinic receptor and oxidative stress. Reproductive Toxicology. 2018;81:108-14. (in English).
- 118. Basha MP, Saumya SM. Influence of fluoride on streptozotocin induced diabetic nephrotoxicity in mice: protective role of Asian ginseng (Panax ginseng) & banaba (Lagerstroemia speciosa) on mitochondrial oxidative stress. Indian J Med Res. 2013;137:370-9. (in eng).
- Basha PM, Rai P, Begum S. Fluoride toxicity and status of serum thyroid hormones, brain histopathology, and learning memory in rats: a multigenerational assessment. Biological Trace Element Research. 2011;144:1083-94. (in English).
- Basha PM, Rai P, Begum S. Evaluation of fluoride-induced oxidative stress in rat brain: A multigeneration study. Biological Trace Element Research. 2011;142:623-37. (in English).
- Basha PM, Sujitha NS. Combined influence of intermittent exercise and temperature stress on the modulation of fluoride toxicity. Biological Trace Element Research. 2012;148:69-75. (in English).
- Bataineh HN, Nusier MK. Impact of 12-week ingestion of sodium fluoride on aggression, sexual behavior, and fertility in adult male rats. Fluoride. 2006;39:293-301. (in English).

- Bharti VK, Srivastava RS. Effects of epiphyseal proteins and melatonin on blood biochemical parameters of fluoride-intoxicated rats. Neurophysiology. 2011;42:258-64. (in English).
- Bharti VK, Srivastava RS. Effect of pineal proteins and melatonin on certain biochemical parameters of rats exposed to high-fluoride drinking water. Fluoride. 2011;44:30-6. (in English).
- 125. Birkner E, Grucka-Mamczar E, Zwirska-Korczala K, Zalejska-Fiolka J, Stawiarska-Pieta B, Kasperczyk S, et al. Influence of sodium fluoride and caffeine on the kidney function and free-radical processes in that organ in adult rats. Biological Trace Element Research. 2006;109:35-47. (in English).
- 126. Blaszczyk I, Birkner E, Gutowska I, Romuk E, Chlubek D. Influence of methionine and vitamin E on fluoride concentration in bones and teeth of rats exposed to sodium fluoride in drinking water. Biological Trace Element Research. 2012;146:335-9. (in English).
- 127. Blaszczyk I, Grucka-Mamczar E, Kasperczyk S, Birkner E. Influence of methionine upon the concentration of malondialdehyde in the tissues and blood of rats exposed to sodium fluoride. Biological Trace Element Research. 2009;129:229-38. (in English).
- 128. Bondu JD, Selvakumar, Seshadri MS, Fleming JJ. Do vitamin D deficiency and renal dysfunction play a role in the pathogenesis of fluorotoxic metabolic bone disease (FMBD)? Indian Journal of Clinical Biochemistry. 2017;32 (1 Supplement 1):S106. (in English).
- 129. Bondu JD, Seshadri MS, Selvakumar R, Fleming JJ. Effects of Fluoride on Bone in an Animal Model of Vitamin D Deficiency. Indian J Clin Biochem. 2019;34:60-7. (in eng).

- Bouaziz H, Croute F, Boudawara T, Soleilhavoup JP, Zeghal N. Oxidative stress induced by fluoride in adult mice and their suckling pups. Experimental and Toxicologic Pathology. 2007;58:339-49. (in English).
- Bulduk M, Oto G, Ozdemir H, Demirel-Yilmaz E. The effect of resveratrol therapy on the vascular responses caused by chronic fluorosis. Fluoride. 2020;53:23-9. (in English).
- Cao J, Chen Y, Chen J, Yan H, Li M, Wang J. Fluoride exposure changed the structure and the expressions of Y chromosome related genes in testes of mice. Chemosphere. 2016;161:292-9. (in English).
- 133. Cao K, Xiang J, Dong YT, Xu Y, Li Y, Song H, et al. Exposure to fluoride aggravates the impairment in learning and memory and neuropathological lesions in mice carrying the APP/PS1 double-transgenic mutation. Alzheimer's Research and Therapy. 2019;11 (1) (no pagination). (in English).
- 134. Cao Q, Wang J, Hao Y, Fu R, Yu Y, Zhao F, et al. Exercise Ameliorates Fluorideinduced Anxiety- and Depression-like Behavior in Mice: Role of GABA. Biological Trace Element Research. 2021. (in English).
- 135. Cárdenas-González MC, Del Razo LM, Barrera-Chimal J, Jacobo-Estrada T, López-Bayghen E, Bobadilla NA, et al. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations. Toxicol Appl Pharmacol. 2013;272:888-94. (in eng).
- Cenesiz S, Yarim GF, Nisbet C, Ciftci G. Effects of fluoride on C-reactive protein, adenosine deaminase, and ceruloplasmin in rabbit sera. Fluoride. 2008;41:52-6. (in English).

- 137. Chaithra B, Sarjan HN, Shivabasavaiah. A Comparative Analysis of Fluoride-Contaminated Groundwater and Sodium Fluoride-Induced Reproductive Toxicity and Its Reversibility in Male Rats. Biological Trace Element Research. 2019. (in English).
- 138. Chaithra B, Sarjan HN, Shivabasavaiah. Sodium Fluoride and Fluoride Contaminated Ground Water Induced Altered Reproductive Performances in Male Rats. Biological Trace Element Research. 2019. (in English).
- 139. Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S. Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Archives of Toxicology. 2011;85:327-35. (in English).
- 140. Chaudhary S, Singh PK, Gupta AK, Singh AP. Combined effect of Tamarindus indica and Emblica officinalis on enzyme profile and lipid profile after fluoride intoxication in albino rats. Journal of Ecophysiology and Occupational Health. 2010;10:77-83. (in English).
- Chen X, Qin B, Li X, Jin T, Zhu G, Zhou W, et al. Effects of fluoride and cadmium coexposure on bone in male rats. Biological Trace Element Research. 2013;154:396-402. (in English).
- 142. Cheng X, Zhou B, Yan X, Guo Y, Wang J. Effects of protein and calcium on bone metabolism and biomechanical indexes in nutritionally deficient rabbits exposed to high fluoride. Fluoride. 2008;41:18-27. (in English).
- 143. Choudhary S, Mathur P. Assessment of protective role of quinoa against sodium fluoride induced skeletal deformities in mice fetuses. Research Journal of Pharmacy and Technology. 2020;13:2129-34. (in English).
- 144. Chiba FY, Colombo NH, Shirakashi DJ, Gomes WDDS, Moimaz SAS, Garbin CAS, et al. Insulin signal decrease in muscle but not in the liver of castrated male rats from chronic exposure to fluoride. Fluoride. 2010;43:25-30. (in English).

- Chiba FY, Garbin CAS, Mattera MSLC, Mota MSO, Pereira RF, Sumida DH. Chronic treatment with a mild dose of NaF promotes dyslipidemia in rats. Fluoride. 2015;48:205-12. (in English).
- 146. Chiba FY, Tsosura TVS, Pereir RF, Mattera MSLC, Dos Santos RM, Marani F, et al. Mild chronic NaF intake promotes insulin resistance and increase in inflammatory signaling in the white adipose tissue of rats. Fluoride. 2019;52:18-28. (in English).
- 147. Chioca LR, Raupp IM, Da Cunha C, Losso EM, Andreatini R. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats. European Journal of Pharmacology. 2008;579:196-201. (in English).
- Chouhan S, Kushwaha P, Kaul R, Flora SJS. Co-administration of selenium but not iron prevents fluoride toxicity in rats. Biomedicine and Preventive Nutrition. 2013;3:113-20. (in English).
- 149. Chu Y, Gao Y, Yang Y, Liu Y, Guo N, Wang L, et al. β-catenin mediates fluorideinduced aberrant osteoblasts activity and osteogenesis. Environ Pollut. 2020;265:114734. (in eng).
- Das S, Maiti R, Ghosh D. Management of fluoride induced testicular disorders by calcium and Vitamin-E co-administration in the albino rat. Reproductive Toxicology. 2006;22:606-12. (in English).
- 151. Das SS, Maiti R, Ghosh D. Fluoride-induced immunotoxicity in adult male albino rat: a correlative approach to oxidative stress. Journal of Immunotoxicology. 2006;3:49-55. (in English).
- 152. de Cássia Alves Nunes R, Chiba FY, Pereira AG, Pereira RF, de Lima Coutinho Mattera MS, Ervolino E, et al. Effect of Sodium Fluoride on Bone Biomechanical and Histomorphometric Parameters and on Insulin Signaling and Insulin Sensitivity in Ovariectomized Rats. Biol Trace Elem Res. 2016;173:144-53. (in eng).

- 153. Dec K, Łukomska A, Baranowska-Bosiacka I, Pilutin A, Maciejewska D, Skonieczna-Żydecka K, et al. Pre-and postnatal exposition to fluorides induce changes in rats liver morphology by impairment of antioxidant defense mechanisms and COX induction. Chemosphere. 2018;211:112-9. (in eng).
- 154. Dec K, Lukomska A, Skonieczna-Zydecka K, Kolasa-Wolosiuk A, Tarnowski M, Baranowska-Bosiacka I, et al. Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures. NeuroToxicology. 2019;74:81-90. (in English).
- 155. Dey Bhowmik A, Shaw P, Mondal P, Chakraborty A, Sudarshan M, Chattopadhyay A. Calcium and Vitamin D Supplementation Effectively Alleviates Dental and Skeletal Fluorosis and Retain Elemental Homeostasis in Mice. Biological trace element research. 2021;199:3035-44.
- 156. Dhurvey V, Thakarea M. The effect of sodium fluoride intoxication on the estrous cycle and ovarian hormones in rats. Fluoride. 2016;Part 1. 49:223-32. (in English).
- 157. Dong YT, Wang Y, Wei N, Zhang QF, Guan ZZ. Deficit in learning and memory of rats with chronic fluorosis correlates with the decreased expressions of M1 and M3 muscarinic acetylcholine receptors. Archives of Toxicology. 2015;89:1981-91. (in English).
- 158. Dong YT, Wei N, Qi XL, Liu XH, Chen D, Zeng XX, et al. Attenuating effect of vitamin e on the deficit of learning and memory of rats with chronic fluorosis: The mechanism may involve muscarinic acetylcholine receptors. Fluoride. 2017;50:354-64. (in English).
- 159. Faruk EM, Alasmari WA, Fouad H, Nafea OE, Hasan RAA. Extracellular vesicles derived from bone marrow mesenchymal stem cells repair functional and structural rat adrenal gland damage induced by fluoride. Life Sciences. 2021;270:119122. (in English).

- 160. Feng P, Wei JR, Zhang ZG. Influence of selenium and fluoride on blood antioxidant capacity of rats. Experimental and Toxicologic Pathology. 2012;64:565-8. (in English).
- 161. Ferreira MKM, Aragão WAB, Bittencourt LO, Puty B, Dionizio A, Souza MPC, et al. Fluoride exposure during pregnancy and lactation triggers oxidative stress and molecular changes in hippocampus of offspring rats. Ecotoxicol Environ Saf. 2021;208:111437. (in eng).
- 162. Foda DS, Shams SG. A trial for improving thyroid gland dysfunction in rats by using a marine organism extract. Braz J Biol. 2021;81:592-600. (in eng).
- Gao Q, Liu YJ, Guan ZZ. Decreased learning and memory ability in rats with fluorosis: Increased oxidative stress and reduced cholinesterase activity in the brain. Fluoride. 2009;42:277-85. (in English).
- Garcia-Montalvo EA, Reyes-Perez H, Del Razo LM. Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress. Toxicology. 2009;263:75-83. (in English).
- 165. Ge Y, Chen L, Yin Z, Song X, Ruan T, Hua L, et al. Fluoride-induced alterations of synapse-related proteins in the cerebral cortex of ICR offspring mouse brain. Chemosphere. 2018;201:874-83. (in English).
- 166. Geng Y, Qiu Y, Liu X, Chen X, Ding Y, Liu S, et al. Sodium fluoride activates ERK and JNK via induction of oxidative stress to promote apoptosis and impairs ovarian function in rats. Journal of Hazardous Materials. 2014;272:75-82. (in English).
- 167. Grucka-Mamczar E, Birkner E, Blaszczyk I, Kasperczyk S, Wielkoszynski T, Swietochowska E, et al. The influence of sodium fluoride and antioxidants on the concentration of malondialdehyde in rat blood plasma. Fluoride. 2009;42:101-4. (in English).

- 168. Gupta AR, Dey S, Saini M, Swarup D. Toxic effect of sodium fluoride on hydroxyproline level and expression of collagen-1 gene in rat bone and its amelioration by Tamrindus indica L. fruit pulp extract. Interdisciplinary Toxicology. 2016;9:12-6. (in English).
- 169. Gupta AR, Dey S, Swarup D, Saini M. Tamarind (Tamarindus indica) fruit pulp supplementation prevents collagen degradation and down regulation of collagen 1 gene expression in fluoride-exposed rats. Fluoride. 2015;48:131-8. (in English).
- 170. Gutierrez-Salinas J, Morales-Gonzalez JA, Madrigal-Santillan E, Esquivel-Soto J, Esquivel-Chirino C, Garcia-Luna M, et al. Exposure to sodium fluoride produces signs of apoptosis in rat leukocytes. International Journal of Molecular Sciences. 2010;11:3610-22. (in English).
- 171. Han H, Du W, Zhou B, Zhang W, Xu G, Niu R, et al. Effects of chronic fluoride exposure on object recognition memory and mRNA expression of SNARE complex in hippocampus of male mice. Biological Trace Element Research. 2014;158:58-64. (in English).
- 172. Hosokawa M, Asakawa H, Kaido T, Sugaya C, Inoue Y, Tsunoda M, et al. Deterioration of renal function in ICR-derived glomerulonephritis (ICGN) mice by subacute administration of fluoride in drinking water. Fluoride. 2010;43:31-44. (in English).
- 173. Hosokawa M, Sugaya C, Tsunoda M, Kodama Y, Sugita-Konishi Y, Ohta H, et al. The effects of fluoride on the bones and teeth from ICR-derived glomerulonephritis (ICGN) mice and ICR mice after subacute exposure. Fluoride. 2016;Part 1. 49:417-28. (in English).
- 174. Hosokawa M, Tsunoda M, Liu Y, Nakano K, Itai K, Tsunoda H, et al. The immunotoxic effects of fluoride on mice after subacute administration by evaluating cytokine mrna expression in splenocytes. Fluoride. 2015;48:329-37. (in English).

- Hu CY, Ren LQ, Li XN, Wu N, Li GS, Liu QY, et al. Effect of fluoride on insulin level of rats and insulin receptor expression in the MC3T3-E1 cells. Biol Trace Elem Res. 2012;150:297-305. (in eng).
- 176. Inkielewicz-Stepniak I, Knap N. Effect of exposure to fluoride and acetaminophen on oxidative/nitrosative status of liver and kidney in male and female rats. Pharmacological Reports. 2012;64:902-11. (in English).
- 177. Interlandi V, Fontanetti PA, Ponce RH, Gallará RV, Centeno VA. Chronic Exposure to Fluoride During Gestation and Lactation Increases Mandibular Bone Volume of Suckling Rats. Biol Trace Elem Res. 2018;185:395-403. (in eng).
- 178. Izquierdo-Vega JA, Sanchez-Gutierrez M, Del Razo LM. Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss. Toxicology and Applied Pharmacology. 2008;230:352-7. (in English).
- 179. Jaiswal P, Mandal M, Mishra A. Effect of hesperidin on fluoride-induced neurobehavioral and biochemical changes in rats. Journal of Biochemical and Molecular Toxicology. 2020;34:e22575. (in English).
- 180. Jana L, Maity PP, Perveen H, Dash M, Jana S, Dey A, et al. Attenuation of uterotoxicity, metabolic dysfunction and inflammation by soy protein concentrate in rats exposed to fluoridated water: consequence of hyperlipidemia in parallel with hypohomocysteinemia. Environ Sci Pollut Res Int. 2018;25:36462-73. (in eng).
- 181. Jetti R, Raghuveer CV, Mallikarjuna RC. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride. Toxicology and Industrial Health. 2016;32:183-7. (in English).

- 182. Jiang C, Zhang S, Liu H, Guan Z, Zeng Q, Zhang C, et al. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain. Neuromolecular Med. 2014;16:94-105. (in eng).
- 183. Jiang S, Su J, Yao S, Zhang Y, Cao F, Wang F, et al. Fluoride and arsenic exposure impairs learning and memory and decreases mGluR5 expression in the hippocampus and cortex in rats. PLoS ONE. 2014;9 (4) (no pagination). (in English).
- 184. Kanagaraj VV, Panneerselvam L, Govindarajan V, Ameeramja J, Perumal E. Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: A possible mechanism. BioFactors. 2015;41:90-100. (in English).
- Kanbur M, Eraslan G, Silici S, Karabacak M. Effects of sodium fluoride exposure on some biochemical parameters in mice: Evaluation of the ameliorative effect of royal jelly applications on these parameters. Food and Chemical Toxicology. 2009;47:1184-9. (in English).
- 186. Kant V, Srivastava AK, Raina R, Verma PK, Singh P. Negligible amelioration by aluminium sulphate on subacute fluoride-induced enzymatic alterations in goats. Fluoride. 2010;43:246-52. (in English).
- 187. Karadeniz A, Altintas L. Effects of Panax ginseng on fluoride-induced haematological pattern changes in mice. Fluoride. 2008;41:67-71. (in English).
- Kaya N, Kocer B, Devrim AK. Calciotropic hormone levels in fluorosed TUJ sheep. Fluoride. 2012;45:251-6. (in English).
- 189. Khan ZN, Sabino IT, de Souza Melo CG, Martini T, da Silva Pereira HAB, Buzalaf MAR. Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water. Biological Trace Element Research. 2019;187:107-19. (in English).

- 190. Khandare A, Kumar U, Rao S. Magnesium hydroxide for protection against fluoride toxicity in rabbits. Fluoride. 2011;44:21-6. (in English).
- 191. Khandare AL, Uday Kumar P, Hari Shankar N, Kalyanasundaram S, Shanker Rao G. Effect of calcium deficiency induced by fluoride intoxication on lipid metabolism in rabbits. Fluoride. 2007;40:184-9. (in English).
- Kido T, Sugaya C, Yanagisawa H, Sugita-Konishi Y, Itai K, Tsunoda M. The effects on renal function, in institute of cancer research-derived glomerulonephritis (ICGN) mice, of the subacute administration of the fluoride ion in drinking water. Fluoride. 2017;Part 2. 50:161-74. (in English).
- Kido T, Tsunoda M, Sugaya C, Hano H, Yanagisawa H. Fluoride potentiates tubulointerstitial nephropathy caused by unilateral ureteral obstruction. Toxicology. 2017;392:106-18. (in eng).
- 194. Kivrak Y. Effects of fluoride on anxiety and depression in mice. Fluoride. 2012;45:302-6. (in English).
- Kobayashi CA, Leite AL, Peres-Buzalaf C, Carvalho JG, Whitford GM, Everett ET, et al. Bone response to fluoride exposure is influenced by genetics. PLoS One. 2014;9:e114343. (in eng).
- 196. Kobayashi CAN, Leite ADL, Silva TLD, Santos LDD, Nogueira FCS, Santos KS, et al. Proteomic analysis of urine in rats chronically exposed to fluoride. Journal of Biochemical and Molecular Toxicology. 2011;25:8-14. (in English).
- 197. Kobayashi CAN, Leite AL, Silva TL, Santos LD, Nogueira FCS, Oliveira RC, et al. Proteomic analysis of kidney in rats chronically exposed to fluoride. Chemico-Biological Interactions. 2009;180:305-11. (in English).

- 198. Krishnamoorthy P, Gowda NKS, Vallesha NC, Rajendran D, Maya G, Verma S, et al. Effect of subchronic fluoride exposure on immune status and histopathology in rats and its amelioration. Fluoride. 2015;48:123-30. (in English).
- 199. Kuang P, Deng H, Cui H, Chen L, Fang J, Zuo Z, et al. Sodium fluoride (NaF) causes toxic effects on splenic development in mice. Oncotarget. 2017;8:4703-17. (in eng).
- 200. Leite Ade L, Santiago JF, Jr., Levy FM, Maria AG, Fernandes Mda S, Salvadori DM, et al. Absence of DNA damage in multiple organs (blood, liver, kidney, thyroid gland and urinary bladder) after acute fluoride exposure in rats. Hum Exp Toxicol. 2007;26:435-40. (in eng).
- 201. Li BY, Gao YH, Pei JR, Yang YM, Zhang W, Sun DJ. ClC-7/Ostm1 contribute to the ability of tea polyphenols to maintain bone homeostasis in C57BL/6 mice, protecting against fluorosis. Int J Mol Med. 2017;39:1155-63. (in eng).
- 202. Li X, Zhang J, Niu R, Manthari RK, Yang K, Wang J. Effect of fluoride exposure on anxiety- and depression-like behavior in mouse. Chemosphere. 2019;215:454-60. (in English).
- 203. Li X, Yang J, Yang W, Zhu Q, Luo H, Liu X, et al. Potential Protective Effect of Riboflavin Against Pathological Changes in the Main Organs of Male Mice Induced by Fluoride Exposure. Biological Trace Element Research. 2021. (in English).
- Li Y, Du X, Zhao Y, Wang J, Wang J. Fluoride Can Damage the Spleen of Mice by Perturbing Th1/Th2 Cell Balance. Biological Trace Element Research. 2021;199:1493-500. (in English).
- 205. Liang C, Gao Y, He Y, Han Y, Manthari RK, Tikka C, et al. Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies. Environ Pollut. 2020;256:113438. (in eng).

- 206. Liang C, He Y, Liu Y, Gao Y, Han Y, Li X, et al. Fluoride exposure alters the ultrastructure of sperm flagellum via reducing key protein expressions in testis. Chemosphere. 2020;246 (no pagination). (in English).
- 207. Lima Leite A, Gualiume Vaz Madureira Lobo J, Barbosa da Silva Pereira HA, Silva Fernandes M, Martini T, Zucki F, et al. Proteomic analysis of gastrocnemius muscle in rats with streptozotocin-induced diabetes and chronically exposed to fluoride. PLoS One. 2014;9:e106646. (in eng).
- Liu F, Ma J, Zhang H, Liu P, Liu YP, Xing B, et al. Fluoride exposure during development affects both cognition and emotion in mice. Physiology and Behavior. 2014;124:1-7. (in English).
- 209. Liu G, Zhang W, Jiang P, Li X, Liu C, Chai C. Role of nitric oxide and vascular endothelial growth factor in fluoride-induced goitrogenesis in rats. Environ Toxicol Pharmacol. 2012;34:209-17. (in eng).
- 210. Liu H, Hou C, Zeng Q, Zhao L, Cui Y, Yu L, et al. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide. Environmental Toxicology and Pharmacology. 2016;46:277-85. (in English).
- Liu H, Niu R, He Y, Wang J. Changes caused by fluoride and lead in energy metabolic enzyme activities in the reproductive system of male offspring rats. Fluoride. 2008;41:184-91. (in English).
- 212. Liu J, Wang HW, Zhao WP, Li XT, Lin L, Zhou BH. Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure. Toxicol Ind Health. 2019;35:43-52. (in eng).
- Liu L, Zhang Y, Gu H, Zhang K, Ma L. Fluorosis Induces Endoplasmic Reticulum Stress and Apoptosis in Osteoblasts In Vivo. Biological Trace Element Research. 2015;164:64-71. (in English).

- 214. Liu YJ, Gao Q, Wu CX, Guan ZZ. Alterations of nAChRs and ERK1/2 in the brains of rats with chronic fluorosis and their connections with the decreased capacity of learning and memory. Toxicology Letters. 2010;192:324-9. (in English).
- 215. Liu Y, Yang Y, Liu X, Li B, Chu Y, Huang W, et al. sKlotho is associated with the severity of brick tea-type skeletal fluorosis in China. Science of the Total Environment. 2020;744:140749. (in English).
- 216. Liu P, Zhao Y, Li M, Wang M, Ying X, Yuan J, et al. Co-exposure to fluoride and arsenic disrupts intestinal flora balance and induces testicular autophagy in offspring rats. Ecotoxicology and Environmental Safety. 2021;222:112506. (in English).
- 217. Lobo JG, Leite AL, Pereira HA, Fernandes MS, Peres-Buzalaf C, Sumida DH, et al. Low-Level Fluoride Exposure Increases Insulin Sensitivity in Experimental Diabetes. J Dent Res. 2015;94:990-7. (in eng).
- 218. Lombarte M, Fina BL, Lupion PM, Lupo M, Rigallia A. In vivo measurement of fluoride effects on glucose homeostasis: An explanation for the decrease in intelligence quotient and insulin resistance induced by fluoride. Fluoride. 2016;Part 1. 49:204-10. (in English).
- 219. Lopes GO, Ferreira MKM, Davis L, Bittencourt LO, Aragao WAB, Lima RR, et al. Effects of fluoride long-term exposure over the cerebellum: Global proteomic profile, oxidative biochemistry, cell density, and motor behavior evaluation. International Journal of Molecular Sciences. 2020;21:1-20. (in English).
- 220. Lou DD, Guan ZZ, Liu YJ, Liu YF, Zhang KL, Pan JG, et al. The influence of chronic fluorosis on mitochondrial dynamics morphology and distribution in cortical neurons of the rat brain. Archives of Toxicology. 2013;87:449-57. (in English).
- 221. Lu Z, Wang S, Sun Z, Niu R, Wang J. In vivo influence of sodium fluoride on sperm chemotaxis in male mice. Archives of Toxicology. 2014;88:533-9. (in English).

- 222. Łukomska A, Baranowska-Bosiacka I, Dec K, Pilutin A, Tarnowski M, Jakubczyk K, et al. Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2 and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain. Int J Mol Sci. 2020;22. (in eng).
- Lupo M, Buzalaf MA, Rigalli A. Effect of fluoridated water on plasma insulin levels and glucose homeostasis in rats with renal deficiency. Biol Trace Elem Res. 2011;140:198-207. (in eng).
- 224. Ma Y, Yao Y, Zhong N, Angwa LM, Pei J. The dose-time effects of fluoride on the expression and DNA methylation level of the promoter region of BMP-2 and BMP-7 in rats. Environ Toxicol Pharmacol. 2020;75:103331. (in eng).
- Madhusudhan N, Basha PM, Begum S, Ahmed F. Fluoride-induced neuronal oxidative stress and its amelioration by antioxidants in developing rats. Fluoride. 2009;42:179-87. (in English).
- 226. Mahaboob Basha P, Saumya SM. Suppression of mitochondrial oxidative phosphorylation and TCA enzymes in discrete brain regions of mice exposed to high fluoride: amelioration by Panax ginseng (Ginseng) and Lagerstroemia speciosa (Banaba) extracts. Cellular & Molecular Neurobiology. 2013;33:453-64. (in English).
- 227. Mahaboob Basha P, Saumya SM. Influence of fluoride on streptozotocin induced diabetic nephrotoxicity in mice: Protective role of Asian ginseng (Panax ginseng) & banaba (Lagerstroemia speciosa) on mitochondrial oxidative stress. Indian Journal of Medical Research. 2013;137:370-9. (in English).
- 228. Malvezzi M, Pereira H, Dionizio A, Araujo TT, Buzalaf NR, Sabino-Arias IT, et al. Lowlevel fluoride exposure reduces glycemia in NOD mice. Ecotoxicology & Environmental Safety. 2019;168:198-204. (in English).

- 229. Mandic J, Mandinic Z, Radovanovic J, Antonijevic B, Bulat Z, Curcic M, et al. Genotoxicity of fluoride subacute exposure in rats and selenium intervention. Chemosphere. 2020:128978. (in English).
- Martin-Pardillos A, Sosa C, Millan A, Sorribas V. Effect of water fluoridation on the development of medial vascular calcification in uremic rats. Toxicology. 2014;318:40-50. (in English).
- 231. McPherson CA, Zhang G, Gilliam R, Brar SS, Wilson R, Brix A, et al. An Evaluation of Neurotoxicity Following Fluoride Exposure from Gestational Through Adult Ages in Long-Evans Hooded Rats. Neurotoxicity Research. 2018;34:781-98. (in English).
- 232. Miao K, Zhang L, Yang S, Qian W, Zhang Z. Intervention of selenium on apoptosis and Fas/FasL expressions in the liver of fluoride-exposed rats. Environmental Toxicology and Pharmacology. 2013;36:913-20. (in English).
- 233. Min c, Zhao Y, Wang J, Wang J, Li Y. Effects of fluoride on PIWI-interacting RNA expression profiling in testis of mice. Chemosphere. 2021;269:128727. (in English).
- 234. Mohamed NE. The Role of Calcium in Ameliorating the Oxidative Stress of Fluoride in Rats. Biological Trace Element Research. 2016;170:128-44. (in English).
- 235. Mrvelj A, Womble MD. Fluoride-Free Diet Stimulates Pineal Growth in Aged Male Rats.Biol Trace Elem Res. 2020;197:175-83. (in eng).
- 236. Mujahid M, Ramaswamy C, Shanthi Naidu K, Shobha M. Ameliorative effect of selenium as antioxidant on fluoride toxicity induced oxidative degenerative changes on cardiac tissue. International Journal of Pharma and Bio Sciences. 2015;6:B1335-B41. (in English).
- 237. Nabavi SM, Habtemariam S, Nabavi SF, Sureda A, Daglia M, Moghaddam AH, et al. Protective effect of gallic acid isolated from Peltiphyllum peltatum against sodium

fluoride-induced oxidative stress in rat's kidney. Molecular and Cellular Biochemistry. 2013;372:233-9. (in English).

- 238. Nadei OV, Khvorova IA, Agalakova NI. Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling. Biological Trace Element Research. 2019. (in English).
- 239. Nageshwar M, Sudhakar K, Reddy KP. Quercetin ameliorates oxidative stress, neural damage of brain and behavioral impairment of rat with fluoride exposure. International Journal of Pharmaceutical Sciences and Research. 2018;9:3247-56. (in English).
- 240. Niu R, Sun Z, Cheng Z, Li Z, Wang J. Decreased learning ability and low hippocampus glutamate in offspring rats exposed to fluoride and lead. Environmental Toxicology and Pharmacology. 2009;28:254-8. (in English).
- 241. Nkpaa KW, Onyeso GI. Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats. Neuroscience Letters. 2018;682:92-9. (in English).
- 242. Oka S, Liu Y, Li X, Zhang F, Taguchi C, Arikawa K, et al. Oral toxicity to high level sodium fluoride causes impairment of autophagy. Journal of Physiology and Pharmacology. 2020;71:749-60. (in English).
- 243. Ola-Davies OE. Ameliorative effect of gallic acid against sodium fluoride-induced hypertension and hepato-renal complications in wistar rats. African Journal of Biomedical Research. 2018;21:285-94. (in English).
- 244. Omóbòwálé TO, Oyagbemi AA, Alaba BA, Ola-Davies OE, Adejumobi OA, Asenuga ER, et al. Ameliorative effect of Azadirachta indica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated kinase 1/2 signaling. J Basic Clin Physiol Pharmacol. 2018;29:155-64. (in eng).

- 245. Oncu M, Gulle K, Karaoz E, Gultekin F, Karaoz S, Karakoyun I, et al. Effect of chronic fluorosis on lipid peroxidation and histology of lung tissues in first and second generation rats. Toxicology and Industrial Health. 2006;22:375-80. (in English).
- 246. Oncu M, Kocak A, Karaoz E, Darici H, Savik E, Gultekin F. Effect of long-term fluoride exposure on lipid peroxidation and histology of testes in first- and second-generation rats. Biological Trace Element Research. 2007;118:260-8. (in English).
- 247. Oner AC, Oner A, Dede S, Yur F. The effect of vitamin c and vitamin E on DNA damage, oxidative status, and some biochemical parameters in rats with experimental fluorosis. Fluoride. 2020;53:154-63. (in English).
- 248. Owumi SE, Aliyu-Banjo NO, Danso OF. Fluoride and diethylnitrosamine coexposure enhances oxido-inflammatory responses and caspase-3 activation in liver and kidney of adult rats. J Biochem Mol Toxicol. 2019;33:e22327. (in eng).
- 249. Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, et al. Luteolin-mediated Kim-1/NF-kB/Nrf2 signaling pathways protects sodium fluoride-induced hypertension and cardiovascular complications. BioFactors. 2018;44:518-31. (in English).
- 250. Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, et al. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARgamma signaling pathways. BioFactors. 2018;44:465-79. (in English).
- 251. Oyagbemi AA, Hassan FO, Ola-Davies OE, Adejumobi OA, Ogunpolu BS, Omobowale TO, et al. Clofibrate, a Peroxisome Proliferator-Activated Receptor-Alpha (PPARalpha) Agonist, and Its Molecular Mechanisms of Action against Sodium Fluoride-Induced Toxicity. Biological Trace Element Research. 2021. (in English).

- 252. Pei J, Yao Y, Li B, Wei W, Gao Y, Darko GM, et al. Excessive fluoride stimulated osteoclast formation through up-regulation of receptor activator for nuclear factor-kappaB ligand (RANKL) in C57BL/6 mice. International Journal of Clinical and Experimental Medicine. 2017;10:15260-8. (in English).
- 253. Pereira M, Dombrowski PA, Losso EM, Chioca LR, Da Cunha C, Andreatini R. Memory impairment induced by sodium fluoride is associated with changes in brain monoamine levels. Neurotoxicity Research. 2011;19:55-62. (in English).
- 254. Pereira AG, Chiba FY, de Lima Coutinho Mattera MS, Pereira RF, de Cássia Alves Nunes R, Tsosura TVS, et al. Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats. J Trace Elem Med Biol. 2017;39:140-6. (in eng).
- 255. Perera T, Ranasinghe S, Alles N, Waduge R. Effect of fluoride on major organs with the different time of exposure in rats. Environ Health Prev Med. 2018;23:17. (in eng).
- 256. Podder S, Chattopadhyay A, Bhattacharya S. Reduction in fluoride-induced genotoxicity in mouse bone marrow cells after substituting high fluoride-containing water with safe drinking water. J Appl Toxicol. 2011;31:703-5. (in eng).
- 257. Podder S, Chattopadhyay A, Bhattacharya S, Ray MR. Differential in vivo genotoxic effects of lower and higher concentrations of fluoride in mouse bone marrow cells. Fluoride. 2008;41:301-7. (in English).
- Puranik CP, Ryan KA, Yin Z, Martinez-Mier EA, Preisser JS, Everett ET. Fluoride Modulates Parathyroid Hormone Secretion in vivo and in vitro. Cells Tissues Organs. 2015;200:413-23. (in eng).
- 259. Qing-Feng S, Tian-Tong X, Ying-Peng X. Matrix metalloproteinase-9 and p53 involved in chronic fluorosis induced blood-brain barrier damage and neurocyte changes. Archives of Medical Science. 2019;15:457-66. (in English).

- 260. Radovanovic J, Antonijevic B, Kolarevic S, Milutinovic-Smiljanic S, Mandic J, Vukovic-Gacic B, et al. Genotoxicity of fluoride subacute exposure in rats and selenium intervention. Chemosphere. 2021;266:128978.
- 261. Raju S, Sivanesan SK, Gudemalla K. Cognitive enhancement effect of ginkgo biloba extract on memory and learning impairments induced by fluoride neurotoxicity. International Journal of Research in Pharmaceutical Sciences. 2019;10:129-34. (in English).
- 262. Raju S, Sivanesan S, Gudemalla K. Ginkgo biloba ameliorates fluoride toxicity in rats by altering histopathology, serum enzymes of heme metabolism and oxidative stress without affecting brain mGluR5 gene. Pharmacognosy Magazine. 2020;16:S320-S6. (in English).
- 263. Ran L-Y, Xiang J, Zeng X-X, Dong Y-T, Yu W-F, Qi X-L, et al. Integrated transcriptomic and proteomic analysis indicated that neurotoxicity of rats with chronic fluorosis may be in mechanism involved in the changed cholinergic pathway and oxidative stress. Journal of Trace Elements in Medicine and Biology. 2021;64:126688. (in English).
- 264. Ranjan R, Swarup D, Patra RC. Oxidative stress indices in erythrocytes, liver, and kidneys of fluoride-exposed rabbits. Fluoride. 2009;42:88-93. (in English).
- 265. Ray D, Roy S, Mukherjee S, Panda P, Nandi P, Ghosh S. The leaf extracts of Camellia sinensis (green tea) ameliorate sodium fluoride-induced oxidative stress and testicular dysfunction in rats. Asian Pacific Journal of Reproduction. 2020;9:267-74. (in English).
- 266. Reddy YP, Tiwari SK, Shaik AP, Alsaeed A, Sultana A, Reddy PK. Effect of sodium fluoride on neuroimmunological parameters, oxidative stress and antioxidative defenses. Toxicology Mechanisms and Methods. 2014;24:31-6. (in English).

- 267. Sakallioglu EE, Muglali M, Bas B, Gulbahar MY, Lutfioglu M, Aksoy A. Effects of excessive fluoride intake on bone turnover in mandible: An immunohistochemical study in rabbits. Fluoride. 2014;47:23-30. (in English).
- 268. Sanchez-Gutierrez M, Martinez-Loredo E, Madrigal-Santillan EO, Betanzos-Cabrera G, Hernandez-Zavala A, Mojica-Villegas MA, et al. Exposure of fluoride with streptozotocin-induced diabetes aggravates testicular damage and spermatozoa parameters in mice. Journal of Toxicology. 2019;2019 (no pagination). (in English).
- Sarkar C, Pal S. Ameliorative effect of resveratrol against fluoride-induced alteration of thyroid function in male wistar rats. Biological Trace Element Research. 2014;162:278-87. (in English).
- 270. Shalini B, Sharma JD. Beneficial effects of Emblica officinalis on Fluoride-induced toxicity on brain biochemical indexes and learning-memory in rats. Toxicology International. 2015;22:35-9. (in English).
- 271. Shankar P, Ghosh S, Bhaskarachary K, Venkaiah K, Khandare AL. Amelioration of chronic fluoride toxicity by calcium and fluoride-free water in rats. British Journal of Nutrition. 2013;110:95-104. (in English).
- 272. Shankar P, Khandare AL, Validandi V, Khandare S. Supplementation of Calcium and Fluoride-Free Water Mitigates Skeletal Fluorosis in Fluoride-Intoxicated Rats. Biological trace element research. 2021;199:2225-37.
- 273. Sharma C, Suhalka P, Bhatnagar M. Curcumin and resveratrol rescue corticalhippocampal system from chronic fluoride-induced neurodegeneration and enhance memory retrieval. International Journal of Neuroscience. 2018;128:1007-21. (in English).

- 274. Sharma A, John PJ, Bhatnagar P. Combination of fluoride and endosulfan induced teratogenicity and developmental toxicity in Swiss albino mice exposed during organogenesis. Toxicology and Industrial Health. 2019;35:604-13. (in English).
- 275. Sharma A, Bhatnagar P, John P. Fluoride and endosulfan together potentiate cytogenetic effects in Swiss albino mice bone marrow cells. Toxicology and Industrial Health. 2021;37:68-76. (in English).
- 276. Sharma P, Verma PK, Sood S, Singh R, Gupta A, Rastogi A. Distribution of Fluoride in Plasma, Brain, and Bones and Associated Oxidative Damage After Induced Chronic Fluorosis in Wistar Rats. Biological Trace Element Research. 2021. (in English).
- 277. Shashi A, Khan I. Efficacy of Boerhaavia diffusa L. on disruption of gonadotropins and testosterone in fluoride intoxicated male rats. Asian Journal of Pharmaceutical and Clinical Research. 2017;10:68-73. (in English).
- 278. Sm S, Mahaboob Basha P. Fluoride Exposure Aggravates the Testicular Damage and Sperm Quality in Diabetic Mice: Protective Role of Ginseng and Banaba. Biol Trace Elem Res. 2017;177:331-44. (in eng).
- 279. Song GH, Gao JP, Wang CF, Chen CY, Yan XY, Guo M, et al. Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage. J Physiol Biochem. 2014;70:857-68. (in eng).
- Song J, Zhang J, Chen X, Zhou M, Cheng G, Xie X. Combined effects of fluoride and cadmium on liver and kidney function in male rats. Biological Trace Element Research. 2013;155:396-402. (in English).
- 281. Song YE, Tan H, Liu KJ, Zhang YZ, Liu Y, Lu CR, et al. Effect of fluoride exposure on bone metabolism indicators ALP, BALP, and BGP. Environmental Health and Preventive Medicine. 2011;16:158-63. (in English).

- 282. Stawiarska-Pieta B, Bielec B, Birkner K, Birkner E. The influence of vitamin E and methionine on the activity of enzymes and the morphological picture of liver of rats intoxicated with sodium fluoride. Food and Chemical Toxicology. 2012;50:972-8. (in English).
- 283. Stawiarska-Pieta B, Paszczela A, Grucka-Mamczar E, Szaflarska-Stojko E, Birkner E. The effect of antioxidative vitamins A and E and coenzyme Q on the morphological picture of the lungs and pancreata of rats intoxicated with sodium fluoride. Food and Chemical Toxicology. 2009;47:2544-50. (in English).
- 284. Sudhakar K, Reddy KP. Protective effects of Abelmoschus moschatus seed extract on neurotransmitter system of developing brain of Wistar rats with gestational and postnatal exposure of sodium fluoride. International Journal of Green Pharmacy. 2018;12:S131-S9. (in English).
- 285. Sun Z, Niu R, Su K, Wang B, Zhang J, Wang J. Effects of sodium fluoride on hyperactivation and Ca2+ signaling pathway in sperm from mice: An in vivo study. Archives of Toxicology. 2010;84:353-61. (in English).
- 286. Sun Z, Niu R, Wang B, Wang J. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water. Environmental Toxicology. 2014;29:690-6. (in English).
- 287. Sun Z, Wang B, Niu R, Zhang J, Wang J. Decreased sperm hyperactivation and low Catsper1 expression in mice exposed to fluoride. Fluoride. 2009;42:167-73. (in English).
- 288. Sun N, Ni X, Wang H, Xin J, Zhao Y, Pan K, et al. Probiotic Lactobacillus johnsonii BS15 Prevents Memory Dysfunction Induced by Chronic High-Fluorine Intake through Modulating Intestinal Environment and Improving Gut Development. Probiotics Antimicrob Proteins. 2020;12:1420-38. (in eng).

- 289. Teng Y, Zhang J, Zhang Z, Feng J. The Effect of Chronic Fluorosis on Calcium Ions and CaMKIIalpha, and c-fos Expression in the Rat Hippocampus. Biological Trace Element Research. 2018;182:295-302. (in English).
- 290. Tian X, Feng J, Dong N, Lyu Y, Wei C, Li B, et al. Subchronic exposure to arsenite and fluoride from gestation to puberty induces oxidative stress and disrupts ultrastructure in the kidneys of rat offspring. Science of the Total Environment. 2019;686:1229-37. (in English).
- 291. Tian X, Xie J, Chen X, Dong N, Feng J, Gao Y, et al. Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring. Archives of Toxicology. 2019. (in English).
- Trivedi MH, Verma RJ, Sangai NP, Chinoy NJ. Mitigation by black tea extract of sodium fluoride induced histopathological changes in brain of mice. Fluoride. 2012;45:13-26. (in English).
- 293. Turkekul R, Arihan SK, Yildirim S, Arihan O, Oto G, Ekin S, et al. Effect of acute and chronic fluoride administration on bone histopathology, bone fluoride accumulation, and locomotor activity in an animal model of paleopathological fluorosis. Fluoride. 2020;53:77-89. (in English).
- 294. Usuda K, Ueno T, Ito Y, Dote T, Yokoyama H, Kono K, et al. Risk Assessment Study of Fluoride Salts: Probability-Impact Matrix of Renal and Hepatic Toxicity Markers. Biol Trace Elem Res. 2016;173:154-60. (in eng).
- 295. Validandi V, Gourineni SR, Dheeravath S, Nagalla B, Khandarea AL. Tamarind supplementation ameliorates fluoride-induced glucose intolerance and insulin resistance in rats. Fluoride. 2017;50:314-23. (in English).
- 296. Vasant RA, Kotadiya DR, Bhole KL, Narasimhacharya AVRL. Therapeutic benefits of glibenclamide in fluoride intoxicated diabetic rats. Fluoride. 2010;43:141-9. (in English).

- 297. Vasant RA, Narasimhacharya AV. Ameliorative effect of tamarind leaf on fluorideinduced metabolic alterations. Environ Health Prev Med. 2012;17:484-93. (in eng).
- 298. Vasant RA, Narasimhacharya AVRL. Antihyperglycemic and antihyperlipemic effects of Mangifera indica L. in fluoride induced toxicity. Pharmacologyonline. 2011;3:265-74. (in English).
- 299. Wan S, Zhang J, Wang J. Effects of high fluoride on sperm quality and testicular histology in male rats. Fluoride. 2006;39:17-21. (in English).
- 300. Wang C, Chen Y, Manthari RK, Wang J. Abnormal spermatogenesis following sodium fluoride exposure is associated with the downregulation of CREM and ACT in the mouse testis. Toxicology and Industrial Health. 2018;34:219-27. (in English).
- 301. Wang H, Yang Z, Zhou B, Gao H, Yan X, Wang J. Fluoride-induced thyroid dysfunction in rats: roles of dietary protein and calcium level. Toxicol Ind Health. 2009;25:49-57. (in eng).
- 302. Wang HW, Liu J, Zhao WP, Zhang ZH, Li SQ, Li SH, et al. Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats. Biol Trace Elem Res. 2019;189:511-8. (in eng).
- 303. Wang HW, Zhao WP, Tan PP, Liu J, Zhao J, Zhou BH. The MMP-9/TIMP-1 System is Involved in Fluoride-Induced Reproductive Dysfunctions in Female Mice. Biol Trace Elem Res. 2017;178:253-60. (in eng).
- 304. Wang J, Yue B, Zhang X, Guo X, Sun Z, Niu R. Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. Sci Total Environ. 2021;760:143376. (in eng).

- 305. Wasana HM, Perera GD, De Gunawardena PS, Bandara J. The impact of aluminum, fluoride, and aluminum-fluoride complexes in drinking water on chronic kidney disease. Environmental Science & Pollution Research. 2015;22:11001-9. (in English).
- 306. Wei N, Dong YT, Deng J, Wang Y, Qi XL, Yu WF, et al. Changed expressions of Nmethyl-D-aspartate receptors in the brains of rats and primary neurons exposed to high level of fluoride. Journal of Trace Elements in Medicine and Biology. 2018;45:31-40. (in English).
- Wei R, Luo G, Sun Z, Wang S, Wang J. Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice. Chemosphere. 2016;153:419-25. (in eng).
- 308. Wei Y, Zeng B, Zhang H, Chen C, Wu Y, Wang N, et al. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis. Int J Mol Sci. 2016;17. (in eng).
- 309. Whitford GM, Whitford JL, Hobbs SH. Appetitive-based learning in rats: lack of effect of chronic exposure to fluoride. Neurotoxicol Teratol. 2009;31:210-5. (in eng).
- 310. Wu N, Zhao Z, Gao W, Li X. Behavioral teratology in rats exposed to fluoride. Fluoride.2008;41:129-33. (in English).
- 311. Wu P, Sun Z, Lv X, Pei X, Manthari RK, Wang J. Fluoride Induces Autoimmune Orchitis Involved with Enhanced IL-17A Secretion in Mice Testis. J Agric Food Chem. 2019;67:13333-43. (in eng).
- 312. Xin J, Zeng D, Sun N, Khalique A, Zhao Y, Wu L, et al. Lactobacillus johnsonii BS15 improves intestinal environment against fluoride-induced memory impairment in mice-a study based on the gut-brain axis hypothesis. PeerJ. 2020;8:e10125. (in English).

- 313. Xin J, Wang H, Sun N, Bughio S, Zeng D, Li L, et al. Probiotic alleviate fluorideinduced memory impairment by reconstructing gut microbiota in mice. Ecotoxicol Environ Saf. 2021;215:112108. (in eng).
- 314. Xu H, Zhou YL, Zhang JM, Liu H, Jing L, Li GS. Effects of fluoride on the intracellular free Ca²⁺ and Ca ²⁺-ATPase of kidney. Biological Trace Element Research. 2007;116:279-87. (in English).
- 315. Xu H, Liu QY, Zhang JM, Zhang H, Li GS. Elevation of PTH and PTHrp induced by excessive fluoride in rats on a calcium-deficient diet. Biological Trace Element Research. 2010;137:79-87. (in English).
- 316. Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET. Genetic background influences fluoride's effects on osteoclastogenesis. Bone. 2007;41:1036-44. (in eng).
- 317. Yan D, Willett TL, Gu XM, Martinez-Mier EA, Sardone L, McShane L, et al. Phenotypic variation of fluoride responses between inbred strains of mice. Cells Tissues Organs. 2011;194:261-7. (in eng).
- 318. Yan N, Liu Y, Liu S, Cao S, Wang F, Wang Z, et al. Fluoride-Induced Neuron Apoptosis and Expressions of Inflammatory Factors by Activating Microglia in Rat Brain. Mol Neurobiol. 2016;53:4449-60. (in eng).
- 319. Yang Y, Lin X, Huang H, Feng D, Ba Y, Cheng X, et al. Sodium fluoride induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress pathway in Sertoli cells. Journal of environmental sciences (China). 2015;30:81-9. (in eng).
- 320. Yang CC, Li BL, Zhao XH, Huang YX, Chen JK, Chen SH, et al. Relationship between urinary fluoride level, incidences of dental fluorosis and caries of children in fluorosis

areas after change of water sources. [Chinese]. Chinese Journal of Endemiology. 2013;32:673-6. (in Chinese).

- 321. Yao Y, Ma Y, Zhong N, Pei J. The Inverted U-Curve Association of Fluoride and Osteoclast Formation in Mice. Biological Trace Element Research. 2019;191:419-25. (in English).
- 322. Yildirim S, Ekin S, Huyut Z, Oto G, Comba A, Uyar H, et al. Effect of chronic exposure to sodium fluoride and 7,12-dimethylbenz[a]anthracene on some blood parameters and hepatic, renal, and cardiac histopathology in rats. Fluoride. 2018;51:278-90. (in English).
- 323. Yildiz M, Oral B. The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats. Toxicology & Industrial Health. 2006;22:217-22. (in English).
- 324. Yu J, Gao Y, Sun D. Effect of fluoride and low versus high levels of dietary calcium on mRNA expression of osteoprotegerin and osteoprotegerin ligand in the bone of rats. Biol Trace Elem Res. 2013;152:387-95. (in eng).
- 325. Yu Q, Shao D, Zhang R, Ouyang W, Zhang Z. Effects of drinking water fluorosis on Ltype calcium channel of hippocampal neurons in mice. Chemosphere. 2019;220:169-75. (in English).
- 326. Yue B, Zhang X, Li W, Wang J, Sun Z, Niu R. Fluoride exposure altered metabolomic profile in rat serum. Chemosphere. 2020;258:127387. (in English).
- 327. Zhang C, Huo S, Fan Y, Gao Y, Yang Y, Sun D. Autophagy May Be Involved in Fluoride-Induced Learning Impairment in Rats. Biological Trace Element Research. 2020;193:502-7. (in English).

- 328. Zhang C, Ren C, Chen H, Geng R, Fan H, Zhao H, et al. The analog of Ginkgo biloba extract 761 is a protective factor of cognitive impairment induced by chronic fluorosis. Biol Trace Elem Res. 2013;153:229-36. (in eng).
- 329. Zhang G, Zhou B, Han T, Wang M, Du X, Li Q, et al. Decreased percentages of CD4⁺CD25⁺ regulatory t cells and foxp3 expression in the spleen of female mice exposed to fluoride. Fluoride. 2012;45:357-64. (in English).
- 330. Zhang J, Zhang Y, Liang C, Wang N, Zheng H, Wang J. Choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and MEK expression in mice. Toxicology and Applied Pharmacology. 2016;310:205-14. (in English).
- 331. Zhang J, Zhang Z. Effects of chronic fluorosis on camkiialpha, c-FOS, BAX, and BCL-2 channel signaling in the hippocampus of rats. Fluoride. 2013;46:135-41. (in English).
- 332. Zhang J, Zhu WJ, Xu XH, Zhang ZG. Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B rho65 in rat hippocampus. Experimental & Toxicologic Pathology. 2011;63:407-11. (in English).
- 333. Zhang J, Zhu Y, Liang C, Qie M, Niu R, Sun Z, et al. Effects of Fluoride on Expression of P450, CREM and ACT Proteins in Rat Testes. Biological Trace Element Research. 2017;175:156-60. (in English).
- 334. Zhang KL, Lou DD, Guan ZZ. Activation of the AGE/RAGE system in the brains of rats and in SH-SY5Y cells exposed to high level of fluoride might connect to oxidative stress. Neurotoxicol Teratol. 2015;48:49-55. (in eng).
- 335. Liao Q, Zhang R, Wang X, Nian W, Ke L, Ouyang W, et al. Effect of fluoride exposure on mRNA expression of cav1.2 and calcium signal pathway apoptosis regulators in PC12 cells. Environmental toxicology and pharmacology. 2017;54:74-9. (in eng).

- 336. Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, et al. Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol. 2013;271:206-15. (in eng).
- 337. Zhang Z, Shen X, Xu X. Effect of fluoride exposure on synaptic structure of brain areas related to learning-memory in mice. Fluoride. 2008;41:139-43. (in English).
- 338. Zhao Y, Zhao J, Wang J. Fluoride exposure changed the structure and the expressions of HSP related genes in testes of pubertal rats. Chemosphere. 2017;184:1080-8. (in English).
- 339. Zhao W, Wang H, Tan P, Liu J, Zhang C, Zhou B. Fluoride exposure changed the structure and the function of sperm in the testis and epididymis of male rats. Fluoride. 2018;51:340-54. (in English).
- Zhao Q, Niu Q, Chen J, Xia T, Zhou G, Li P, et al. Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats and children. Archives of Toxicology. 2019;93:709-26. (in English).
- 341. Zhao L, Deng C, Linghu Y, Yu Y, Xu L, Zhang Y. The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury. Journal of orthopaedic surgery and research. 2021;16:160. (in English).
- 342. Zheng X, Sun Y, Ke L, Ouyang W, Zhang Z. Molecular mechanism of brain impairment caused by drinking-acquired fluorosis and selenium intervention. Environmental Toxicology and Pharmacology. 2016;43:134-9. (in English).
- 343. Zhou Y, Zhang H, He J, Chen X, Ding Y, Wang Y, et al. Effects of sodium fluoride on reproductive function in female rats. Food and Chemical Toxicology. 2013;56:297-303. (in English).

- 344. Zhu JQ, Si YJ, Cheng LY, Xu BZ, Wang QW, Zhang X, et al. Sodium fluoride disrupts DNA methylation of H19 and Peg3 imprinted genes during the early development of mouse embryo. Arch Toxicol. 2014;88:241-8. (in eng).
- 345. Zhu W, Zhang J, Zhang Z. Effects of fluoride on synaptic membrane fluidity and PSD-95 expression level in rat hippocampus. Biological Trace Element Research. 2011;139:197-203. (in English).
- 346. Zigui Z, Xiaoyu W, Weiwei N, Qiuxia L, Rui Z, Wei O. Effects of calcium on drinking fluorosis-induced hippocampal synaptic plasticity impairment in the offspring of rats. Translational Neuroscience. 2017;8:191-200. (in English).
- 347. Canada H. Human health risk assessment for priority substances. Ottawa, ON: Ministry of Health. Health Canada; 1994.
- 348. Sun D, Gao Y, Zhao L, Wang C, Wang W, Gao L. Analysis on the monitoring results of drinking water borne endemic fluorosis in China (2009-2011). Fluoride. 2012;45 (3 PART 1):204-5. (in English).
- 349. Keeler JF, Robbins TW. Translating cognition from animals to humans. Biochem Pharmacol. 2011;81:1356-66. (in eng).
- 350. Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chemico-biological interactions. 2010;188:319-33.
- 351. Johnston NR, Strobel SA. Principles of fluoride toxicity and the cellular response: a review. Archives of Toxicology. 2020;94:1051-69. (in English).
- 352. Chen L, Ning H, Yin Z, Song X, Feng Y, Qin H, et al. The effects of fluoride on neuronal function occurs via cytoskeleton damage and decreased signal transmission. Chemosphere. 2017;185:589-94. (in eng).

- 353. Zhang S, Zheng X, Sun Y, Wang Y, Zhang Z. Alterations in oxidative stress and apoptosis in cultured PC12 cells exposed to fluoride. Fluoride. 2015;48:213.
- 354. Chen R, Zhao LD, Liu H, Li HH, Ren C, Zhang P, et al. Fluoride Induces Neuroinflammation and Alters Wnt Signaling Pathway in BV2 Microglial Cells. Inflammation. 2017;40:1123-30. (in eng).
- 355. Shuhua X, Ziyou L, Ling Y, Fei W, Sun G. A role of fluoride on free radical generation and oxidative stress in BV-2 microglia cells. Mediators Inflamm. 2012;2012:102954. (in eng).
- 356. Xu Z, Xu B, Xia T, He W, Gao P, Guo L, et al. Relationship between intracellular Ca²⁺ and ROS during fluoride-induced injury in SH-SY5Y cells. Environ Toxicol. 2013;28:307-12. (in eng).
- 357. Ma Y, Ma Z, Yin S, Yan X, Wang J. Arsenic and fluoride induce apoptosis, inflammation and oxidative stress in cultured human umbilical vein endothelial cells. Chemosphere. 2017;167:454-61. (in eng).
- 358. Grzegorzewska AK, Ocłoń E, Kucharski M, Sechman A. Effect of in vitro sodium fluoride treatment on CAT, SOD and Nrf mRNA expression and immunolocalisation in chicken (Gallus domesticus) embryonic gonads. Theriogenology. 2020;157:263-75. (in eng).
- 359. Peng W, Xu S, Zhang J, Zhang Y. Vitamin C Attenuates Sodium Fluoride-Induced Mitochondrial Oxidative Stress and Apoptosis via Sirt1-SOD2 Pathway in F9 Cells. Biological trace element research. 2019;191:189-98. (in eng).
- 360. Zhang M, Wang A, He W, He P, Xu B, Xia T, et al. Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicology. 2007;236:208-16. (in eng).

- 361. Gao Q, Liu Y-J, Guan Z-Z. Oxidative stress might be a mechanism connected with the decreased alpha 7 nicotinic receptor influenced by high-concentration of fluoride in SH-SY5Y neuroblastoma cells. Toxicology in vitro : an international journal published in association with BIBRA. 2008;22:837-43. (in eng).
- 362. Goschorska M, Baranowska-Bosiacka I, Gutowska I, Metryka E, Skorka-Majewicz M, Chlubek D. Potential Role of Fluoride in the Etiopathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences. 2018;19:09. (in English).
- 363. Perumal E, Paul V, Govindarajan V, Panneerselvam L. A brief review on experimental fluorosis. Toxicol Lett. 2013;223:236-51. (in eng).
- 364. Ribeiro DA, Cardoso CM, Yujra VQ, De Barros Viana M, Aguiar O, Pisani LP, et al. Fluoride induces apoptosis in mammalian cells: In vitro and in vivo studies. Anticancer Research. 2017;37:4767-77. (in English).
- 365. Wei Q, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. A mini review of fluoride-induced apoptotic pathways. Environ Sci Pollut Res Int. 2018;25:33926-35. (in eng).
- 366. Zuo H, Chen L, Kong M, Qiu L, Lu P, Wu P, et al. Toxic effects of fluoride on organisms. Life Sciences. 2018;198:18-24. (in English).
- 367. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential ($\Delta \psi$ m) in apoptosis; an update. Apoptosis. 2003;8:115-28.
- 368. Yan X, Yang X, Hao X, Ren Q, Gao J, Wang Y, et al. Sodium Fluoride Induces Apoptosis in H9c2 Cardiomyocytes by Altering Mitochondrial Membrane Potential and Intracellular ROS Level. Biol Trace Elem Res. 2015;166:210-5. (in eng).
- 369. Liu H, Zeng Q, Cui Y, Zhao L, Zhang L, Fu G, et al. The role of the IRE1 pathway in excessive iodide- and/or fluoride-induced apoptosis in Nthy-ori 3-1 cells in vitro. Toxicology Letters. 2014;224:341-8.

- 370. Anuradha CD, Kanno S, Hirano S. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radical Biology and Medicine. 2001;31:367-73.
- 371. Song GH, Wang RL, Chen ZY, Zhang B, Wang HL, Liu ML, et al. Toxic effects of sodium fluoride on cell proliferation and apoptosis of Leydig cells from young mice. Journal of physiology and biochemistry. 2014;70:761-8.
- 372. Yan X, Wang L, Yang X, Qiu Y, Tian X, Lv Y, et al. Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway. Chemosphere. 2017;182:159-65. (in eng).
- 373. Ying J, Xu J, Shen L, Mao Z, Liang J, Lin S, et al. The Effect of Sodium Fluoride on Cell Apoptosis and the Mechanism of Human Lung BEAS-2B Cells In Vitro. Biol Trace Elem Res. 2017;179:59-69. (in eng).
- 374. Liu CY, Kaufman RJ. The unfolded protein response. Journal of cell science. 2003;116:1861-2.
- 375. Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis. 2006;11:5-13.
- Sharma R, Tsuchiya M, Bartlett JD. Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environmental health perspectives. 2008;116:1142-6. (in eng).
- 377. Kubota K, Lee DH, Tsuchiya M, Young CS, Everett ET, Martinez-Mier EA, et al. Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. The Journal of biological chemistry. 2005;280:23194-202. (in eng).
- 378. Sharma R, Tsuchiya M, Skobe Z, Tannous BA, Bartlett JD. The Acid Test of Fluoride: How pH Modulates Toxicity. PLOS ONE. 2010;5:1-9.

- Wang L, Zhu Y, Wang D. High-Dose Fluoride Induces Apoptosis and Inhibits Ameloblastin Secretion in Primary Rat Ameloblast. Biological Trace Element Research. 2016;174:402-9.
- 380. Xu B, Xu Z, Xia T, He P, Gao P, He W, et al. Effects of the Fas/Fas-L pathway on fluoride-induced apoptosis in SH-SY5Y cells. Environmental toxicology. 2011;26:86-92. (in eng).
- 381. Lee J-H, Jung J-Y, Jeong Y-J, Park J-H, Yang K-H, Choi N-K, et al. Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts. Toxicology. 2008;243:340-7.
- 382. Deng H, Kuang P, Cui H, Chen L, Luo Q, Fang J, et al. Sodium fluoride (NaF) induces the splenic apoptosis via endoplasmic reticulum (ER) stress pathway in vivo and in vitro. Aging. 2016;8:3552-67. (in eng).
- 383. Deng H, Kuang P, Cui H, Chen L, Fang J, Zuo Z, et al. Sodium fluoride induces apoptosis in cultured splenic lymphocytes from mice. Oncotarget. 2016;7:67880-900. (in eng).
- 384. Jorgensen PL, Håkansson KO, Karlish SJ. Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annual review of physiology. 2003;65:817-49.
- 385. Waugh DT. Fluoride exposure induces inhibition of sodium/iodide symporter (NIS) contributing to impaired iodine absorption and iodine deficiency: molecular mechanisms of inhibition and implications for public health. International Journal of Environmental Research and Public Health. 2019;16:1086. (in English).
- 386. Gutowska I, Baranowska-Bosiacka I, Baśkiewicz M, Milo B, Siennicka A, Marchlewicz M, et al. Fluoride as a pro-inflammatory factor and inhibitor of ATP bioavailability in

differentiated human THP1 monocytic cells. Toxicology letters. 2010;196:74-9. (in eng).

- 387. Agalakova NI, Gusev GP. Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro. Environmental toxicology and pharmacology. 2012;34:334-7. (in eng).
- 388. Cittanova ML, Estepa L, Bourbouze R, Blanc O, Verpont MC, Wahbe E, et al. Fluoride ion toxicity in rabbit kidney thick ascending limb cells. European journal of anaesthesiology. 2002;19:341-9. (in eng).
- 389. De la Fuente B, Vázquez M, Rocha RA, Devesa V, Vélez D. Effects of sodium fluoride on immune response in murine macrophages. Toxicology in vitro : an international journal published in association with BIBRA. 2016;34:81-7. (in eng).
- 390. Karube H, Nishitai G, Inageda K, Kurosu H, Matsuoka M. NaF activates MAPKs and induces apoptosis in odontoblast-like cells. Journal of dental research. 2009;88:461-5. (in eng).
- 391. Zhang Y, Li W, Chi HS, Chen J, Denbesten PK. JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro. Matrix biology : journal of the International Society for Matrix Biology. 2007;26:633-41. (in eng).
- 392. Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderón J. Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saude Publica. 2007;23 Suppl 4:S579-87. (in eng).
- 393. Choi AL, Zhang Y, Sun G, Bellinger DC, Wang K, Yang XJ, et al. Association of lifetime exposure to fluoride and cognitive functions in Chinese children: a pilot study. Neurotoxicol Teratol. 2015;47:96-101. (in eng).

- 394. Broadbent JM, Thomson WM, Ramrakha S, Moffitt TE, Zeng J, Foster Page LA, et al. Community Water Fluoridation and Intelligence: Prospective Study in New Zealand. American journal of public health. 2015;105:72-6. (in eng).
- 395. Aggeborn L, Öhman M. The Effects of Fluoride in the Drinking Water, IFAU Working Paper 2017:20. 2017. (in English).
- 396. Barberio AM, Hosein FS, Quiñonez C, McLaren L. Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation. Journal of epidemiology and community health. 2017;71:1019-25. (in eng).
- 397. Dharmaratne RW. Exploring the role of excess fluoride in chronic kidney disease: A review. Human and Experimental Toxicology. 2019;38:269-79. (in English).
- 398. Karna KK, Shin YS, Choi BR, Kim HK, Park JK. The Role of Endoplasmic Reticulum Stress Response in Male Reproductive Physiology and Pathology: A Review. The world journal of men's health. 2020;38:484-94. (in eng).
- 399. Grandjean P, Hu H, Till C, Green R, Bashash M, Flora D, et al. A Benchmark Dose Analysis for Maternal Pregnancy Urine-Fluoride and IQ in Children. Risk Anal. 2022;42:439-49. (in eng).
- 400. Inadequate or excess fluoride: A major public health concern. [homepage on the Internet]. Geneva; c2019. Available from: <u>https://www.who.int/publications/i/item/WHO-CED-PHE-EPE-19.4.5</u>
- 401. U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries. Public Health Reports / July–August 2015 / Volume 130 [homepage on the Internet]; c2015. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547570/pdf/phr130000318.pdf

- 402. Questions and Answers on Fluoride [homepage on the Internet]; c2011. Available from: https://www.epa.gov/sites/default/files/2015-10/documents/2011_fluoride_questionsanswers.pdf
- 403. Health Effects of Water Fluoridation. An evidence review [homepage on the Internet]. Dublin: Health Research Board-Department of Health-Ireland; c2015. Available from: <u>https://www.hrb.ie/fileadmin/publications_files/Health_Effects_of_Water_Fluoridation.pdf</u>
- 404. Safety of Potable Water in Ireland. Report to the Board of the Food Safety Authority of Ireland [homepage on the Internet]. Dublin; c2006. Available from: <u>https://www.fsai.ie/WorkArea/DownloadAsset.aspx?id=802</u>
- 405. Health effects of water fluoridation: A review of the scientific evidence. A report on behalf of the Royal Society of New Zealand and the Office of the Prime Minister's Chief Science Advisor [homepage on the Internet]; c2014. Available from: <u>https://www.pmcsa.org.nz/wp-content/uploads/Health-effects-of-water-fluoridation-Aug2014.pdf</u>
- 406. USEPA. Fluoride: Dose-response analysis for non-cancer effects. Office of Water. Washington DC. EPA 820-R-10-019.; 2010.
- 407. Dean HT. The investigation of physiological effects by the epidemiological method. Fluorine and dental health. 1942:23-31.
- 408. Elvove E. Estimation of fluorides in waters. Public Health Reports (1896-1970). 1933:1219-22.
- 409. A web-based system for Bayesian benchmark dose estimation [homepage on the Internet]; c2018. Available from: <u>https://benchmarkdose.com</u>

- 410. Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D. Bayesian Data Analysis, 3rd: Boca Raton. New York. Chapman and Hall/CRC; 2013.
- 411. Wasserman L. Bayesian Model Selection and Model Averaging. J Math Psychol. 2000;44:92-107. (in eng).
- 412. Villa A, Cabezas L, Anabalón M, Garza E. The fractional urinary fluoride excretion of adolescents and adults under customary fluoride intake conditions, in a community with 0.6-mg F/L in its drinking water. Community dental health. 2004;21:11-8. (in eng).
- 413. Systematic literature review on the effects of fluoride on learning and memory in animal studies. NTP Research Report 1 [homepage on the Internet]; c2016. Available from: https://ntp.niehs.nih.gov/ntp/results/pubs/rr/reports/rr01_508.pdf
- 414. Hill AB. The Environment and diseases: association or causation? Proc R Soc Med. 1965;58:295-300. (in eng).
- 415. Fluoride in Drinking Water: A Scientific Review of EPA's Standards [homepage on the Internet]. Washington, DC; c2006. Available from: <u>https://www.nap.edu/download/11571</u>
- 416. Grosse SD, Matte TD, Schwartz J, Jackson RJ. Economic gains resulting from the reduction in children's exposure to lead in the United States. Environmental health perspectives. 2002;110:563-9.