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Abstract

Objective: Prenatal exposure to fluoride has been associated with adverse neurodevelopmental 
outcomes. However, the neuropsychological profile of fluoride’s developmental neiirolo.xicily at 
low levels and the stability of this relationship across childhood has not been characterized. We 
investigated the longitudinal and domain specific effect of prenatal fluoride exposure on IQ among 
children ages 4, 5, and 6-12 years in the Early Life Exposures in Mexico to Environmental 
Toxicants (ELEMENT) cohort.

Methods: We measured the average of maternal urinary fluoride at each trimester of pregnancy 
adjusted for creatinine (MUFcre) Children were administered the McCarthy Scales of Children’s 
Abilities at ages 4 (N = 386) and 5 (N = 308), and the Wechsler Abbreviated Scale of Intelligence 
at age 6-12 (N = 278). We used generalized estimating equation (GEE) models to estimate the 
population averaged effect of MUFcre concentration on longitudinal General Cognitive Index 
(GCI)/Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ) scores (N = 348). We 
tested for possible interactions between MUFcre and child sex as well as for MUFcre and time 
point on children’s IQ. All models controlled for relevant available covariates.
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Results: The mean/median MUFcre concentration was 0.90/0.83 mg/L (SD = 0.39; TQR, 0.64­

1.11 mg/L). A 0.5 mg/L increase in MUFcre predicted an average 2.12-point decrease in GCl/ 

FSIQ (95% Cl: -3.49, -0.75) and 2.63-point decrease inPIQ (95% Cl: -3.87, -1.40). MUFcre 
was marginally associated with VIQ across time (B = -1.29, 95% CI: -2.60, 0.01). No interactions 

between MUFcre and child sex or MUFcre and time were observed.

Conclusion: The negative association between prenatal fluoride exposure and longitudinal IQ 

was driven by decrements in non-verbal intelligence (i.e. PIQ), suggesting that visual-spatial and 

perceptual reasoning abilities may be more impacted by prenatal fluoride exposure as compared to 

verbal abilities.

Keywords

Fluoride; Pregnancy; Longitudinal; IQ; Verbal intelligence; Non-verbal intelligence; 
Neurodevelopment

1. Introduction

Fluoride is added to drinking water and salt for the prevention of dental caries (CDC, 2016). 
Other sources of fluoride include fluoridated dental products and supplements, certain foods 

that absorb naturally occurring fluoride, such as green and black tea, and foods tliat are 

sprayed with fluoride-containing pesticides (i.e., grapes; Nutrient Data Laboratory, 2015; 

Zohoori et al., 2013). Recent studies conducted in the United States (Abduweli Uyghurturk 

et al., 2020), Canada (Till et al., 2018), and Mexico (Thomas et al., 2016; Castiblanco-Rubio 

et al., 2021) have reported positive associations between fluoride from dietary sources, 

including drinking water and salt, and urinary fluoride levels in pregnant women. Because 

of its ubiquity and its ability to pass through the placenta and blood-brain barrier to reach 

the fetal brain (Agency for Toxic Substances and Disease Registry, 2003), the safety of 

fluoride exposure in pregnancy has received much attention, both in endemic fluorosis areas 

(Jimenez et al., 2017) and communities that have fluoridation programs (Green et al., 2019; 

Bashash ct al., 2017).

While it is not disputed that fluoride is a developmental neurotoxicant at high exposure 

levels, there are relatively few studies that have assessed fluoride’s potential neurotoxicity at 

levels found in fluoridated areas (i.e., 0.7 mg/L), particularly for pregnant women and young 

infants. In 2021, the National Toxicology Program (National Toxicology Program, 2020) 

conducted a systematic review on the impact of fluoride on neurodevelopmental outcomes. 

The NTP identified two high-quality prospective birth cohort studies that were conducted 

in Mexico City where salt is fluoridated at 250 ppm (Bashash et al., 2017) and in Canada 

where drinking water is fluoridated at 0.7 mg/L (Green et al., 2019). Both cohort studies 

found a 4-to 6-point lower Full-Scale IQ score in children per 1 mg/L increase in maternal 

urinary fluoride level; in the Canadian cohort the effect of maternal urinary fluoride on IQ 

was only found in boys while the effect of drinking water fluoride level on IQ was found in 

both boys and girls.

Most human developmental toxicology studies focus on global or composite test scores, 

such as Full-Scale IQ, which are derived from a diverse set of tasks (Kamphaus, 2019).
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While global outcomes are considered highly significant from a public health (Lanphear, 

2015) and economic standpoint (Gould, 2009), a low composite score does not convey 

specific information about the child’s intellectual and cognitive profile. When there are 

strengths and weaknesses in a cognihve profile, the use of a composite score may have high 

sensitivity, but at the cost of low specificity (Fiorello et al., 2007). Partitioning Full-Scale 

IQ into domain specific intellectual abilities, such as verbal and nonverbal skills, may 

reveal particular cognitive domains that are more sensitive to neurotoxic exposures or may 

be differentially affected over time (Bellinger et al., 2016). For example, studies have 

demonstrated that prenatal and early-life lead exposure is more strongly associated witli 

non-verbal intelligence compared to verbal intelligence between the ages of 2-7 (Bellinger 

et al., 1991; Desrochers-Couture et al., 2018; Dietrich et al., 1991, 1993; Factor-Litvak et al., 

1999; Jusko et al., 2008; Wassennan et al., 1997). Similarly, prenatal and early-life fluoride 

exposure has been associated with greater deficits in non-verbal abilities than verbal abilities 

in preschool years (Till et al., 2020; Farmus et al., 2021; Cantoral et al., 2021); however, 

other studies examining early-life exposure to fluoride did not find observe this profile 

(Ibarluzea et al., 2021) or did not report verbal and non-verbal intelligence (Bashash et al., 

2017). Whetlier non-verbal intelligence is associated witli early life exposure to fluoride over 
the course of child development has not been examined.

In the present study, we examined the longitudinal and domain specific effects (i.e., veibal 

and nonverbal intelligence) of prenatal fluoride exposure on IQ in mother-child dyads from 

the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort. Since 

our prior publication on this cohort (Bashash et al., 2017), we received additional maternal 

urinary fluoride and creatinine data enabling us to examine children’s IQ at three separate 

time points (age 4, 5, and 6-12 years) and using a larger sample size at each time point 

relative to our prior work. We also examined the potential for sex-specific effects based on 

findings that boys may be more susceptible to prenatal exposure than girls (Cantoral et al., 

2021; Comfort and Re, 2017; Green et al., 2019, 2020; Torres-Rojas and Jones, 2018).

2. Methods

2.1. study sample

The ELEMENT project enrolled mother-child pairs from three hospitals in Mexico City 

serving low to middle income families. Participants were recruited as part of four 

longitudinal birth cohort studies and are described in a recent cohort profile paper (see 

Pemg et al., 2019). Of the four cohorts, cohorts 2 A and 3 had prenatal information 

and archived maternal urine samples collected during pregnancy. Cohort 2 A included 

327 women recruited between 1997 and 1999 for an observational study of prenatal lead 

exposure and neurodevelopment outcomes in children (Hu et al., 2006). Cohort 3 included 

670 women recruited between 2001 and 2003 for a randomized trial of the effect of calcium 

supplementation during pregnancy on maternal blood levels (Ettinger et al., 2009). Women 

were included in cohorts 2 A and 3 if they were planning to conceive or were pregnant 

at less than 14 weeks gestation and intended to reside in Mexico City for at least five 

years. Women were excluded if they reported a history of psychiatric disorders or substance 

use, a high-risk pregnancy, and other medical conditions (see Bashash et al., 2017). For

Environ Res. Author manuscript; available in PMC 2023 February 01.

Trial Ex. 115.003



Goodman et al. Page 4

A
uthor M

anuscript 
A

uthor M
anuscript 

A
uthor M

anuscript 
A

uthor M
anuscript

the purpose of the current study, women from cohorts 2 A and 3 were included if they 

were at least 18 years of age, had at least one biobanked urine sample collected during 

pregnancy available for fluoride analysis, a urinary creatinine concentration, and if their 

child underwent IQ testing at the ages of 4, 5, or 6-12 years.

The institutional review boards of Ilie National Institute of Public Health of Mexico, 

University of Toronto, University of Michigan, Indiana University, and Harvard TH. Chan 

School of Public Health and participating clinics approved the study procedures. Participants 

were informed of smdy procedures prior to signing an informed consent required for 

participation in the study.

2.2. Measures

2.2.1. Maternal urinary fluoride (MUF) concentration—Spot (second morning 

void) urine samples were collected during one or more trimesters of pregnancy . The samples 

were collected into fluoride-free containers and immediately frozen at the field site. Samples 

were then shipped and stored at -20 °C at the Harvard School of Public Health (HSPH), and 

then at -80 °C at the University of Michigan School of Public Health (UMSPH). All urine 

samples were analyzed at the Indiana University School of Dentistry using a modification 

of the hexamethyldisiloxane (Sigma Chemical Co., USA) microdifiusion method with the 

ion-selective electrode (Martinez-Mier et al., 2011).

To account for variations in urinary dilution, each tnmester MUF value (mg/L) was adjusted 

for urinary creatinine (prior to calculating the overall average MUF concentration) using this 

formula (Thomas et al., 2016; Till et al., 2018):

“UFcRE(mg/L) = (MUFj/CREi) * ( KI . ,,

where MUFcre (mg/L) is the creatinine adjusted fluoride concentration, MUFi is the 

obsen ed fluoride concentration, CRE; is the observed creatinine concentration for that 

individual, and CREavg is the average creatinine concentration of the sample available at 

each trimester.

The average creatinine concentration (CREavg) value used at each trimester were derived 

from the sample of participants in cohorts 2 A and 3 with MUF data at trimester 1,2, and 3: 

100.13, 83.34, and 71.42 (mg/L), respectively. After calculating MUFCRE, extreme outliers 

(values greater than 3.5 standard deviations from the mean) were dropped (consistent with 

Bashash et al., 2017). An average of all available maternal urinary fluoride adjusted for 

creatinine concentrations (MUFcre) during pregnancy (maximum 3 samples and minimum 

one sample) was computed and used as the exposure measure.

2.2.2. Assessment of intelligence—Trained psychologists administered the 

McCartliy Scales of Cliildren’s Abilities (MSCA; McCarthy, 1991) to cliildren aged 4 and 

5, translated into Spanish. The MSCA includes 18 subtests which yield scores on five 

domains: perceptual-performance, verbal, quantitative, memory, and a motor index. For the 

purposes of this study, we included children assessed on two of the five domains given our
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primary interest in examining the differential effects of flnoride on verbal and performance 

intelligence; specifically, children were assessed on the verbal scale (VIQ; a measure of 

verbal reasoning and comprehension) and the perceptual-performance scale (PIQ; a measure 

of nonverbal reasoning and perceptual information processing), which are each made up of 

seven subtests. Children were also assessed on the General Cognitive Index (GCl), which 

is the standardized composite score derived from the verbal, perceptual-performance, and 

quantitative scales produced by the MSCA.

Trained psychologists administered the Spanish version of Wechsler Abbreviated Scale of 

Intelligence (WASl; Wechsler, 1999) to children aged 6-12 years. The WASl includes four 

subtests; Vocabulary and Similarities are combined to provide estimates for Verbal (VIQ; 

a measure of verbal reasoning and comprehension). Block Design and Matrix Reasoning 

are combined to provide estimates for Performance (PIQ; a measure of nonverbal reasoning 

and spatial processing), and Full-Scale intelligence (FSIQ; a measure of global intellectual 

functioning) is the composite score of all 4 subtests.

Each child was evaluated by one of three psychologists who was unaware to the child’s 

prenatal fluoride exposure and supervised by an experienced developmental psychologist 

(L.S.). The inter-examiner reliability of the psychologists on the MSCA was evaluated by 

having all three psychologists participate in assessments on a set of 30 individuals. For 

these 30 participants, one examiner would administer and score the MSCA; the other two 

psychologists observed tlie assessment and scored the test independent from the person who 

was administering the test. Each psychologist was observed for 10 of the 30 participants. 

The intraclass correlation coefficient (r > 0.90) was evaluated by calculating the correlation 

in GCl scores (standardized for age and sex). Inter-examiner reliability was not examined on 

the WASl test. All raw scores were standardized (mean = 100; SD = 15) for age.

2.2.3. Covariates—We used the same covariates from a previous publication based on 

factors associated witli fluoride and cliildren’s intellectual abilities (Bashash et al., 2017). 

These included maternal education (coded as number of years), maternal age at delivery, 

marital status at delivery (coded as married: yes/no), maternal smoking (coded as ever 

smoked: ever/never), gestational age (in weeks), weight at birth (in kilograms), birth order 

(coded as first cliild: yes/no), cliild age (in years and months) at each outcome measurement 

(i.e., MSCA at age 4, MSCA at age 5, and WAS! between age 6-12), and cohort (coded as: 

Cohort 2 A, Cohort 3 + Ca supplement, and Cohort 3 + placebo). Given that we adjusted 

for maternal education (a proxy for IQ), and to preseiv e a larger sample size due to missing 

data, we did not include maternal IQ as a covariate in our main models, however, we 

included it as a covanate in sensitivity analyses. A continuous measure of quality of home 

environment using the Home Observation for Measurement of the Environment (HOME) 

- Revised Edition (Caldwell and Bradley, 1984) translated into Spanish was available on 

a subset of the cohort and therefore included as a covariate in sensitivity analyses (see 

Bashash et al., 2017 for more details). Furthermore, maternal one-month post-partum patella 

bone lead, and tibia bone lead were available on a subset of the cohort and were included 

in sensitivity analyses, to determine whether their inclusion significantly altered the results 

(Gomaaetal., 2002).
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2.2.4. Statistical analyses—^Descriptive statistics were computed for exposure and 

outcome variables, as well as model covariates. Chi-square tests for categorical covariates 

and t-tests for continuous covariates were used to test for sampling differences amongst 
our included sample and the excluded sample with data on MUFcre- Pearson correlation 

coefficients were used to determine the correlation between IQ scores at each time point 

(age 4, 5, and 6-12).

To estimate the average effect of MUFcre exposure on children’s IQ scores across time, 

we used generalized estimating equation (GEE) population averaged models for panel data 

with an autoregressive correlation structure. The panel data were ordered by timepoint, 

such tliat time one represented IQ testing at age 4, time two represented IQ testing at 

age 5, and time three represented IQ testing between the ages of 6-12. Individuals were 

included in the model if they had data for at least two time points; thus, using the first-order 

autoregressive stmcture enabled us to take into account the correlation between IQ scores 

even if observations were unequally spaced in time.

In supplemental analyses, we ran age-stratified multiple linear regression analyses to 

estimate the individual associations between MUFcre exposure and children’s IQ scores 

at each time point (i.e., age 4, 5, and 6-12). Regression diagnostics did not reveal any model 

specification issues and confirmed that absence of collinearity (all variance inflation factors 

<4.5) in any of the models. Model residuals were approximately normally distributed, and 

in sensitivity analyses, extreme outliers depicted in Q-Q plots did not substantially change 

the results. When we plotted model residuals against model fitted values, there were no 

indications that the assumption of linearity or heteroscedasticity was violated.

To assess whether sex might be an effect modifier, we re-estimated all models whir 

interactions between child sex and MUFcre concentration. We also tested the stability of the 

effect of MUFcre on IQ scores by including assessment time point by MUFcre interaction 

in all GEE models.

We used a statistical significance level of a, = 0.05, two-tailed for all tests. We report 

coefficients corresponding to a 0.5 mg/L increase in MUFcre which represents the 

approximate difference between the 25th and 75th percentile of MUFcre in our sample. 

All analyses were conducted using STATA version 17.0 (STATA corporation).

2.2.5. Sensitivity analyses—As previously mentioned, sensitivity analyses were 

conducted with maternal IQ, HOME scores, maternal one-month post-partum patella 

bone lead, and tibia bone lead added to the model, to determine whether Ihcir inclusion 

significantly altered tire results. Consistent witli Bashash et al. (2017), participants in 

Cohort 3 randomized to the calcium intervention were excluded given the potential impact 

of calcium on fluoride (Mulualem et al., 2021). Models were also examined excluding 

IQ scores less than 70 to ensure that very low IQ scores were not influential outliers.

Models were further examined including the number/timing of urine samples provided (i.e., 

trimester 1, 2, 3, 1 and 2, 1 and 3, 2 and 3, or 1 and 2 and 3) as a covariate. Moreover, 

children’s quantitative scores on the MSCA were examined. These were not included in the
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primary analyses as there is no eqnivalent measure on the WASl to examine longitudinal 

changes in our GEE analyses.

3. Results

3.1. Sample characteristics

Out of the 997 mothers from cohorts 2 A and 3, 971 were at least 18 years of age. Of the 

971, 585 had urinary' fluoride and urinary creatinine measured for at least one trimester (6 

were excluded for liaving MUFcre concentrations greater tlian 3.5 standard deviations from 

the mean). Of the 585 mothers with MUFcre data, 391 had MSCA data at age 4, 314 had 

MSCA data at age 5, and 282 had WASl data at age 6-12. The final sample included 348 

mother-child dyads with complete covariate, MUFcre, and outcome data for at least two 

time points (see Fig. 1); from hereon, this sample is referred to as the primary sample.

Table 1 describes the sociodemographic characteristics of the mother-child dyads included 

in the current analysis. Mothers were approximately 27 years old at delivety and had on 

average 11 years of education. The majority of mothers were married (-70%) and about 

one-third were nulliparous (-34%). Roughly half of the participants reported ever smoking 
(-49%).

The cunent study sample consisted of about 36% of women from cohort 2 A, 35% from 

cohort 3-Ca, and 29% from cohort 3-Placebo. The mean birth weight of the children 

was within normal range (-3.13 kg) and the mean gestational age was within a full-term 

pregnancy (-39 weeks). Cliildren’s age at outcome testing ranged from 3 years and 8 

months to 11 years and 9 months. Approximately half of the sample was male (-48%). 

Demographic characteristics of the 348 mother-child dyads with MUFcre and IQ data did 

not significantly differ from the subset of participants without complete IQ data on any of 

the demographic characteristics other than the percentage of people from each cohort (n = 

210; Supplemental Table 1)

3.2. MUFqp^ data

The mean/median MUFcre concentration in our primary sample was 0.90/0.83 mg/L (SD 

= 0.39; range, 0.14-3.01 mg/L). Of the 348 mother-child dyads in our primary sample, 55 

had MUFcre data from each of the three trimesters; 141 had data from two of the three 

trimesters (n = 102, T1 and T2; n= 29, T1 and T3; and n= 10, T2 and T3); and 152 had data 

from one of the three trimesters (n= 72, Tl; n= 64, T2; and n= 16, T3).

3.3. IQ data

The mean scores of, and the correlation between, the MSCA and WASl are shown in Table 

2. GCI/FSIQ, PIQ, and VIQ scores across ages 4, 5 and 6-12 years were moderately to 

highly correlated, with correlations decreasing across time (r values ranging from 0.49 to 

0.76).
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3.4. Effects of MUFcre on IQ

3.4.1. GEE population-averaged models—We observed statistically significant 

negative associations between MUFcre concentration and GCI/FSIQ and PIQ scores 
(Table 3). Specifically, after covariate adjustment, every 0.5 mg/L increase in MUFcre 

concentration was significantly associated with an average 2.12-point decrease in GCI/FSIQ 

(95% CI: -3.49, -0.75,p= .002) and 2.63-point decrease inPIQ (95% CI: -3.87, -1.40, 

p< .001) across age The association of MUFcre concentration with VIQ across age was 

negative but only of borderline statistical significance (B = -1.29, 95% CI: -2.60, 0.01, p 

= .053). No interactions were observed between MUFcre and time in any of the models. 

Similarly, no interactions were observed between MUFcre and child sex (i.e., all values > 

. 10). Fig. 2 shows the longitudinal relationship between MUFcre and IQ outcomes.

3.4.2. Linear regression analyses—In Supplemental Table 2, we found a significant 

negative relationship between MUFcre concentration and FSIQ and PIQ at ages 4 and 5. 

Specifically, at age 4, we observed a 2.12-point decrease in FSIQ (95% CI: -3.83, -0.41, 

/»= .015) and a 3.08-point decrease in PIQ (95% CI: -4.69, -1.47, p< .001) for every 0.5 

mg/L increase IuMUFcre concentration. At age 5, we observed a 1.97-point decrease in 

FSIQ (95% CL -3.64, -0.30, p= .021) and a 2.46-point decrease inPIQ (95% CI: -4.04, 

-0.87, p = .003) for every 0.5 mg/L increase in MUFcre concentration. At both ages 4 and 

5, MUFcre concentration was not significantly associated with VIQ. Al ages 6-12 years, we 

obsen ed a significant negative association between MUFcre concentration and all three IQ 

outcomes. Specifically, for every 0.5 mg/L increase IuMUFcre concentration, we observed 

a 2.01-point decrease in FSIQ (95% CI: -3.66, -0.46, p^ .012), a L80-point decrease in 

PIQ (95% CI: -3.39, -0.21,p= .027), and a L93-point decrease in VIQ (95% CI: -3.67, 

-0.18, p = .031). No interactions were observed between MUFcre and cliild sex in any of 

the models (i.e., all /lvalues > .10).

3.5. Sensitivity analyses

The inclusion of number/timing of urine samples, maternal IQ, HOME scores, patella bone 

lead, or tibia bone lead in our GEE population-averaged models predicting FSIQ/GCI and 

PIQ, did not substantially alter the results. Similarly, the exclusion of participants with 

IQ scores less than 70 or in cohort 3 randomized to the calcium supplementation did not 

significantly affect our GEE population-averaged models predicting FSIQ/GCI and PIQ. The 

inclusion of maternal IQ and patella lead resulted in slightly more negative coefficients for 

our GEE population-averaged models predicting VIQ (see Supplemental Table 3). Models 

examining the effects of fluoride on the quantitative scale of the MSCA at ages 4 and 5 were 

non-significant (data not shown).

4. Discussion

We examined tlie association between prenatal fluoride exposure and IQ scores in cliildren 

of mothers included in the Early Life Exposures in Mexico to Environmental Toxicants 

(ELEMENT) study. Consistent with past research conducted on a smaller number of mother­

child dyads from this cohort (Bashash et al., 2017), an increment of 0.5 mg/L in maternal 

urinary fluoride concentration was associated with a 2-point decrement in children’s Full-
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Scale IQ scores. Results remained consistent when we averaged IQ scores across ages 4, 5, 

and 6-12 or looked at fluoride-IQ associations separately at each age. We then examined 

the domain specific effects for the association between prenatal fluoride exposure and 

children’s intelligence. Using a repeated-measures approach, results showed that higher 

maternal urinary fluoride (MUFcre exposure was significantly associated with deficits in 

non-verbal intelligence (PIQ) and marginally associated with deficits in verbal intelligence 

(VIQ). These findings indicate that the association between prenatal fluoride exposure and 

IQ is stable over time, and that visual-spatial and perceptual reasoning abilities may be more 

impacted by fluoride exposure as compared to verbal abilities.

Wlrile we found dial prenatal fluoride exposure was more negatively associated witli PIQ 

than VIQ using a repeated-measures approach, our age-stratified analyses only indicated this 

pattern at ages 4 and 5. Between ages 6-12, prenatal fluoride exposure was significantly 

associated with decreases in both PIQ and VIQ, perhaps reflecting the use of an abbreviated 

measure (i.e. WASl) to assess intelligence as opposed to the full-length MSCA used with 

pre-school-aged children. Our findings of lower non-verbal intelligence in preschool years 

are in line with previous shidies conducted in Canada and Mexico. Specifically, a Canadian 

prospective cohort study found that every 0.5 mg/L increase in prenatal fluoride exposure 

was significantly associated with a 4-point decrement in PIQ in boys but not similarly 

associated with VIQ in boys at age 3-4 (Farmus et al., 2021). A recent prospective study 

conducted in Mexico City on the PROGRESS cohort found that higher dietary fluoride 

intake during pregnancy was associated with poorer non-verbal abilities in boys at age 2 

(Cantoral et al., 2021). In contrast, a study conducted in Spain found that higher maternal 

urinary fluoride was positively associated with IQ in boys at age 4 (Ibarluzea et al., 2021). 

However, the positive association between maternal urinary fluoride and higher verbal and 

performance IQ was driven by those living in non-fluoridated communities and further, was 

attenuated when adjusting for other neurotoxicants.

Despite consistencies with the Canadian and Mexican study with the specificity of our 

findings on non-verbal intelligence, we did not similarly find boys to be more vulnerable 

than girls in the current cohort. This discrepancy may reflect differences in contextual 

factors, such as socioeconomic status that interact with sex-specific genetic expressions or a 

lack of statistical power to detect effect modification with precision (Bellinger, 2000). Given 

these mixed findings, cliild sex should continue to be investigated in relation to fluoride 

neurotoxicity.

Qne reason for the stronger effects of fluoride on non-verbal intelligence, especially at 

younger ages, may relate lo die influence of modifiable enviromnental factors. Witliin llie 

context of neurotoxic exposures, social and parenting factors have been found to account 

for 40% or more of the variance in children’s neurocognitive outcomes (Weiss, 2000), 

emphasizing the importance of the home environment. A more enriched home environment, 

involving parental responsiveness, involvement, and acceptance, as well as social, academic, 

and language stimulation, predicts greater verbal intelligence in young cliildren (Luster and 

Dubow, 1992). Thus, our findings showing a marginal negative association between fluoride 

exposure and verbal abilities at earlier ages may reflect a potential buffering effect of the 

home environment. Future research is needed to explore whether the home erodronment may
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differentially influence offspring outcomes and whether other outcomes, such as executive 

functioning and self-regulation, may also be affected (Morawska et al., 2019; Shonkoff et 

al., 2016) in the context of chemical exposures.

Another reason why non-verbal skills may be more vulnerable to prenatal fluoride exposure 

may relate to the mechanism of fluoride neurotoxicity. There is evidence from animal 

(Bobek et al., 1976; Cinar and Selcuk, 2005; Wang et al., 2009) and human studies 

(Chaitanya et al., 2018) that disraption to thyroid function may be involved. Thyroid 

hormones play an important role in brain development (Bemal, 2005), especially during 

early fetal development when the fetus is entirely dependent on maternal thy roid hormone 

but also from mid-gestation until birtli when the fetus is partially dependent on maternal 

thyroid hormone (Morreale de Escobar, 2001; Thorpe-Beeston et al., 1991). Several studies 

demonstrate that low maternal free T4 is associated with decreased intelligence in children 

(Haddow et al., 1999; Henrichs et al., 2010; Julvez et al., 2013; Korevaar et al., 2016), and 

a recent meta-analysis of thyroid function and child IQ in 9036 mother-child dyads from 

Spain, the Netherlands, and the United Kingdom, found that decreased free T4 in early 

pregnancy was associated with a significant decrease in non-verbal intelligence (decrease 

of 3.9 points) but not in verbal intelligence (Levie et al., 2018). Taken together, fluoride 

exposure across pregnancy may cause reductions in maternal thyroid hormone, which in 

turn may result in more pronounced effects on non-verbal intelligence. Future research 

should explore free T4 as a mediator between prenatal fluoride exposure and non-verbal 

intelligence in children.

Lastly, there is neurochemical evidence from some (Ferreira et al., 2021; Niu et al., 2018; 

Qian et al., 2013), but not all (McPherson et al., 2018), animal studies that fluoride alters 

synaptic structures of the hippocampus. Further, fluoride has been found to be related to 

spatial learning and memoty impairment in mice (Jiang et al., 2014) and human studies 

have demonstrated a direct role of the hippocampus in higher-order visual-spatial perception 

(Lee et al., 2012). Therefore, non-verbal skills may be more susceptible to prenatal fluoride 

exposure due to fluoride’s impact on the hippocampus.

5. Limitations

A limitation of our study is that fluoride exposure was estimated through maternal non­

fasting spot urine samples. Urinary fluoride lias a short half-life (approximately 5 h), 

and measurement of fluoride may be diluted by lack of control for behaviours that 

could contribute to acute changes in fluoride levels, such as consumption of fluoride-free 

bottled water prior to urine sampling. We minimized these limitations by collecting serial 

urine samples across more than one trimester of pregnancy (i.e., 1-3 urine samples) and 

adjusting for urinary dilution; however, only 196 of 348 (56.3%) of women included in the 

longitudinal sample provided 2 or 3 urine samples and the timing of urine collection was 

not standardized across the sample. Further, the correlations of MUF between trimesters 

were weak (rvalues ranging from 0.15 to 0.27). Future research should examine prenatal 

fluoride exposure using biomarkers that capture more chronic exposure to fluoride, such as 

fingernails or toenails, 24-h urine samples, or measurement of fluoride in shed deciduous 

teeth (Arora and Austin, 2013). Furthermore, the performance and verbal subscales of
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the MSCA and WASl are made up of different subtests, which may capture different 

abilities, and are normed on different populations. For better interpretation, future studies 

should assess longitudinal outcomes using more similar tests across age such as the 

Wechsler Preschool & Primary Scale of Intelligence and the Wechsler Intelligence Scale 

for Children (Wahlstrom et al., 2018; Wechsler, 1989). A final limitation is that we are 

missing important covariate data for a large number of participants (for example, HOME 

scores and maternal lead), and as such, these variables could not be included in the main 

analyses. Important strengths of the study included the prospective and longitudinal design 

and blinded assessment of intelligence using standardized measures.

6. Conclusion

In conclusion, prenatal exposure to fluoride is associated with sustained impacts on IQ. 

Non-verbal abilities may be more susceptible to impairment from prenatal fluoride exposure 

as compared to verbal abilities. These results were found among mother-child pairs living 

in a region of Mexico in which fluoride is added to salt. These findings contribute to 

the growing body of evidence on fluoride’s neurotoxicity, and indicate a need to develop 

recommendations for pregnant women. Future research should continue to investigate the 
mechanisms of action of low-level fluoride exposure with an emphasis on differences 

between non-verbal and verbal intelligence, which is important for risk assessment.
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Fig. 1.
Study sample inclusion flow chart.
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Visual representation of the adjusted GEE coefficients (and 95% CI) for the longitudinal 
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Table 1

Sociodemographic characteristics of the mother-child pairs included in the present study and at each time 

point (M ± SD for continuous variables, n (%) for categorical variables).

Abbreviation: MUFcre, maternal urinary fluoride adjusted for creatinine collected during pregnancy.

Characteristic Samples

Primary Sample

N = 348

Age 4_________

N = 386

Ages_________

N = 308

Age 6-12

N = 278

Maternal Characteristics

Married (yes) 246 (70.69) 273 (70.73) 216 (70.13) 200 (71.94)

Age at delivery^ (yrs) 26.77(18-44) 26.77 (18M4) 26.48 (18^3) 27.04 (18M4)

Education (yrs) 10.77 ±2.82 10.77 ± 2.83 10.61 ±2.87 10.91 ±2.87

Ever smoked 171 (49.14) 189 (48.96) 158 (51.30) 138 (49.64)

First Child 120 (34.48) 134 (34.72) 103 (33.44) 93 (33.45)

Cohort

2 A 124 (35.63) 131 (33.94) 123 (39.94) 93 (33.45)

3 Calcium 123 (35.34) 134 (34.72) 100 (32.47) 104 (37.41)

3 Placebo 101 (29.02) 121 (31.35) 85 (27.60) 81 (29.14)

r^IUFcRE (mg/L)* 0.90 (0.64-1.11) 0.91(0.64-1.12) 0.91(0.64-1.13) 0.89 (0.61-1.10)

Child Characteristics

Birth Weight (kg) 3.13± 0.51 3.13 ± 0.50 3.13± 0.51 3.13 ± 0.52

Gestational Age (wks) 38.62 ± 1.85 38.69 ± 1.81 38.61 ± 1.84 38.65 ± 1.76

Child age^ (yrs) - 4.04 (3.81M.31) 5.06 (4.83-5.24) 8.40 (6.3-11.9)

Males 167 (47.99) 183 (47.41) 151 (49.03) 132 (47.48)

Reported as the.

Mean (range)

*Mean (IQR).
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MSCA and WASl scores (Mean ± SD) and Pearson correlations among the scores at each time point.

FSIQ/GCI K M± SD Pearson Correlations________

Age 4 Ages Age 6-12

Age 4 386 96.58 ± 13.96 -

Age 5 308 96.62 ± 12.52
0.76 -

Age 6-12 278 96.20 ± 11.12 0.58 0.64 **'^ -

PIQ A M± SD Age 4 Ages Age 6-12

Age 4 386 102.51 ± 13.31 -

Age 5 308 101.95 ± 11.80 0.63**" -

Age 6-12 278 95.54 ± 10.99 0.49**^ TA0.53 -

VIQ N M± SD Age 4 Ages Age 6 12

Age 4 386 97.49 ± 11.86 -

Age 5 308 97.03 ± 12.62 0.71**" -

Age 6-12 278 97.63 ± 11.85 0.54*** TA - ..0.54 -

Abbreviations: FSIQ = Full-Scale IQ; GCl = General Cognitive Index; PIQ = Performance Intelligence; VIQ = Verbal Intelligence; MSCA = 
McCai tliy Scales of Children’s Abilities; WASl = Wechsler Abbrexiated Scales of Intelligence.

p <.01.

V = 297.

b
N = 262.

‘^N= 219.
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Adjusted GEE models for the association between MUFcre and IQ longitudinally (N = 348).

FSIQ/GCI PIQ VIQ

B 95% CI B 95%CI B 95%CI

MUFcre^ -2.12** -3.49,-0.75 -2.63 ** -3.87,-1.40 -1.29 -2.60, 0.01

Abbreviations: MUFcre = Maternal Urinary Fluoride Adjusted for Creatinine; GCl = General Cognitive Index; FSIQ = Full-Scale Intelligence; 

PIQ = Performance Intelligence; VIQ = Verbal Intelligence.

**
7? value is < .010.

All models adjusted for gestational age, weight at birth, sex, parity (being the first child), age at outcome measurement, time of testing, smoking 
history (ever smoked during the pregnancy vs. non-smoker), marital status (married vs. others), maternal age at delivery, maternal education, and 

cohort/calcium treatment.
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Supplemental Tables and Figures

Supplemental Table 1.

Comparison between our primary sample and the excluded sample with MUFcre data but

without IQ data (M ± SD for continuous variables, n(%) for categorical variables)

Characteristic Primary Included Sample Excluded Sample p-value

N = 348 N = 210

Maternal Characteristics

Married 246 (70.69) 146 (69.52) .770

Age^ 26.77 (18-44) 26.90(18-42) .781

Education (yrs) 10.77 ±2.82 10.81 ±3.01 .253

Ever smoked 171 (49.14) 102 (48.57) .897

First Child 120 (34.48) 72 (34.29) .962

Cohort

2A 124 (35.63) 38 (18.10) <001

3 Calcium 123 (35.34) 78 (44.76)

3 Placebo 101 (29.02) 94 (37.14)

MUFcre (mg/E)'’ 0.90 (0.64-1.11) 0.88 (0.64-1.03) .558

Child Characteristics

Birth Weight (kg) 3.13±0.51 3.14 ±0.48 1.00

Gestational Age (wks) 38.62 ± 1.85 38.76± 1.59 .362

Males 167 (47.99) 110 (52.38) .315

Reported as the ^ean(range), ’’mean(IQR)
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Supplemental Table 2.

Adjusted multiple linear regression models for the association between MUFcre and IQ stratified

by age.

Abbreviations: MUFcre = Maternal Urinary Fluoride Adjusted for Creatinine; GCl = General Cognitive Index; 
FSIQ = Full-Scale Intelligence; PIQ = Performance Intelligence; VIQ = Verbal Intelligence
** p value is < .010, * p value is < .050.
All models are reported for every 0.5 mg/L increase of MUFcre

“All models adjusted for gestational age, weight at birth, sex, parity (being the first child), age at outcome 
measurement, smoking history (ever smoked during the pregnancy vs. non-smoker), marital status (married vs. 
otliers), maternal age at deliveiy, maternal education, and cohort/calcium treatment.

MUFcre N GCI/FSIQ PIQ VIQ

B 95% CI B 95%CI B 95%CI

Age 4^ 386 -2.12* -3.83, -0.41 -3.08** -4.69, -1.47 -0.81 -2.30, 0.69

Age 5^ 308 -1.97* -3.64, -0.30 -2.46** -4.04, -0.87 -1.24 -2.97, 0.49

Age 6-12^ 278 -2.01* -3.66, -0.46 -1.80* -3.39, -0.21 -1.93* -3.67, -0.18

Age 4 Age 5 Age 6-12

2.5 -
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Supplemental Figure 7. Visual representation of the adjusted multiple linear regression

coefficients (and 95% CI) for the association between MUFcre and IQ stratified by age. 
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Supplemental Table 3.

Adjusted GEE models for the association between METFcre and IQ

FSIQ/GCI PIQ VIQ

n B 95% CI B 95% CI B 95% CI

Model A“ 348 -2.10 -3.47, -0.73 -2.61 -3.85, -1.38 -1.28 -2.58, 0.03

Model A + num samples 348 -2.12 -3.49, -0.75 -2.63 -3.86, -1.39 -1.30 -2.60, 0.01

Model A - IQ < 70 340 -1.67 -2.93, -0.41 -2.61 -3.81, -1.42 ' -1.05 -2.31, 0.21*’

Model A - Cohort 3 Ca 225 -1.98 -3.70, -0.27 -3.13 -4.67, -1.58 -0.69 -2.31, 0.94

Model A - Mat IQ 319 -2.40 -3.79, -1.01 -2.78 -4.04, -1.52 -1.55 -2.86, -0.24

Model A + Mat IQ 319 -2.09 -3.44, -0.73 -2.46 -3.68, -1.24 -1.33 -2.62, -0.04

Model A - HOME 189 -2.33 -4.46, -0.20 -3.67 -5.52, -1.82 -0.71 -2.72, 1.30

Model A + HOME 189 -2.11 -4.06, -0.16 -3.44 -5.15, -1.72 -0.54 -2.43, 1.35

Model A - Patella Lead 280 -2.42 -3.98, -0.86 -2.66 -4.05, -1.27 -1.62 -3.12, -0.11

Model A + Patella Lead 280 -2.41 -3.98, -0.85 -2.65 -4.04, -1.27 -1.62 -3.13, -0.11

Model A - Tibia Lead 237 -2.75 -4.61, -0.89 -2.81 -4.46,-1.16 -2.09 -3.88, -0.31

Model A + Tibia Lead 237 -2.23 -4.09,- 0.38 -2.41 -4.07, -0.76 -1.65 -3.44,0.14

Model A - Tibia and
Patella Lead

225 -2.73 -4.71, -0.76 -2.75 -4.50, -1.00 -2.09 -3.99, -0.19

Model A + Tibia and
Patella Lead

225 -2.20 -4.18, -0.22 -2.32 -4.08, -0.56 -1.63 -3.55, 0.28

Abbreviations: MUFcre = Maternal Urinary Fluoride Adjusted for Creatinine; GCl = General Cognitive Index; 
FSIQ = Full-Scale Intelligence; PIQ = Performance Intelligence; VIQ = Verbal Intelligence 
Bolded values represent those with a p-\ ahic < .050
All models are reported for every 0.5 mg/L increase of MUFcre

"Coeflrcients from GEE models adjusted for gestational age, weight at birth, sex, parity (being the first child), age at 
outcome measurement, time of testing, smoking history (ever smoked during the pregnancy vs. non-smoker), marital 
status (married vs. others), maternal age at delivery, maternal education, and cohort/calcium treatment. Model A + 
num samples, model A including the number/timing of urine samples provided as a covariatc. Model A - IQ < 70, 
model A excluding cases with FSIQ/GCI, PIQ, or VIQ scores less than 70. Model A - Cohort 3 Ca, model A 
excluding the subset of cases who received calcium supplementation. Model A - Mat IQ, model A for the subset of 
cases who have data on maternal IQ. Model A + Mat IQ, model A for the subset of cases who have data on maternal 
IQ, adjusted for maternal IQ. Model A - HOME, model A for the subset of cases who have data on Home 
Observation for the Measurement of the Environment (HOME) scores. Model A+HOME, model A for subset of 
cases with HOME score, adjusted for HOME score. Model A- Patella Lead, model A for subset of cases who have 
data on maternal patella lead. Model A + Patella Lead, model A for subset of cases with data on maternal patella 
lead, adjusted for maternal patella lead. Model A- Tibia Lead, model A for subset of cases who have data on 
maternal tibia lead. Model A + Tibia Lead, model A for subset of cases with data on maternal tibia lead, adjusted for 
maternal tibia lead. Model A- Tibia and Patella Lead, model A for subset of cases who have data on maternal tibia 
and patella lead. Model A + Tibia and Patella Lead, model A for subset of cases with data on maternal tibia and 
patella lead, adjusted for maternal tibia and patella lead.
’’N = 346
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