Tree Strike Risk Calculation for

Bucks Creek 1101

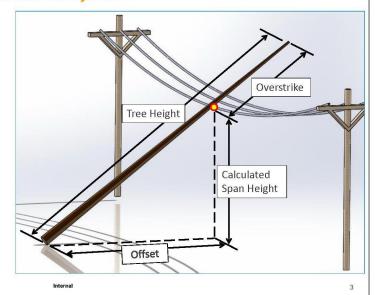
- Count Trees within 6 ft of Conductor
- · Calculate Tree Strike Residual Risk for
 - Non-Hardened Circuit.
 - ☐ Circuits generically hardened with 1/0 ACSR XLP
 - Circuits generically hardened with 397.5 AAC XLPI

Applied Technology Services

Committed to delivering practical solutions to challenging problems

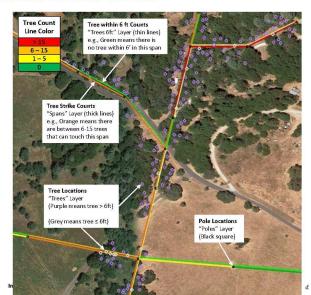
CALCULATION WORKFLOW

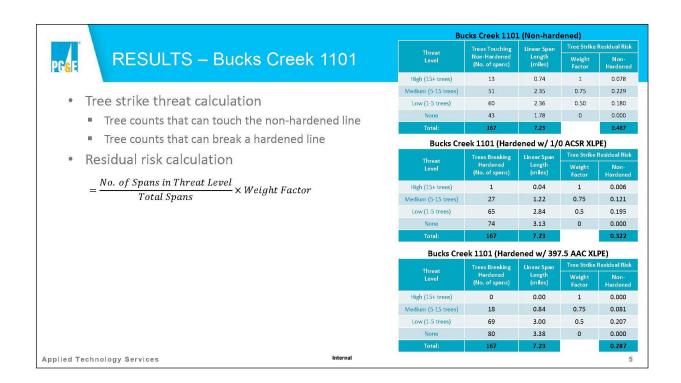
- · LiDAR data processing
 - Extract pole, span, and fall-in tree geospatial information from LiDAR database
- · Import processed data into Excel spreadsheet
 - Determine Tree-Span-Pole associations based on the LiDAR geospatial info
 - Tree strike threat: Calculate number of fall-in trees in each span that can touch the line
 - Trees within 6 ft: Calculate number of fall-in trees in each span that are within 6 ft from the line
 - Rank and color code the spans in each category based on the number of trees in each span
- Output results to Google Earth for visualization
 - For each circuit, span, pole, and tree results are output to separate KMZ files such that they are shown as different layers in Google Earth

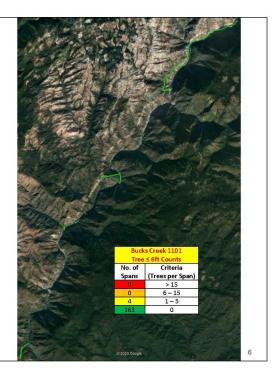


2

Assumptions for Non-Hardened System

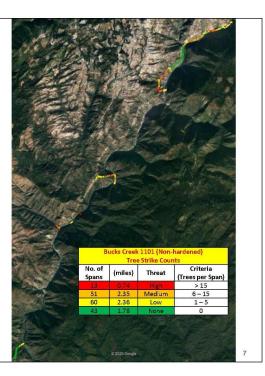

- Tree-Span relationship is tagged in LiDAR (see figure)
- All fall-in trees have potential to strike the span regardless of wind speed and wind direction
- Tree strike failure is counted as true when a tree is tagged as fall-in with non-zero Overstrike
- · Spans are ranked based on the number of fall-in trees in each span




Definition of KMZ Layer Symbols and Line Colors

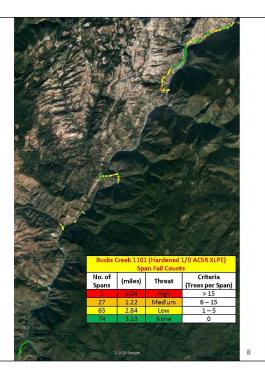
- · Tree strike threat color coding
 - Thick red lines: Spans that have more than 15 fall-in trees that can touch the line
 - Thick orange lines: Spans that have 6 to 15 fall-in trees that can touch the line
 - Thick yellow lines: Spans that have 1 to 5 fall-in trees that can touch the line
 - Thick green lines: Spans that have zero fall-in tree that can touch the line
- Tree distance color coding
 - Thin red lines: Spans that have more than 15 fall-in trees within 6 ft of the line
 - Thin orange lines: Spans that have 6 to 15 fall-in trees within 6 ft of the line
 - Thin yellow lines: Spans that have 1 to 5 fall-in trees within 6 ft of the line
 - Thin green lines: Spans that have zero 15 fall-in tree within 6 ft of the line

- * Trees 6ft.kmz
- Trees that are within 6 ft of line
 - 0 span have more than 15 trees in each span that are within 6 ft
 - 0 span have 6 to 15 trees in each span that are within 6 ft
 - 4 spans have 1 to 5 trees in each span that are within 6 ft
 - 163 spans have zero tree in each span that are within 6 ft

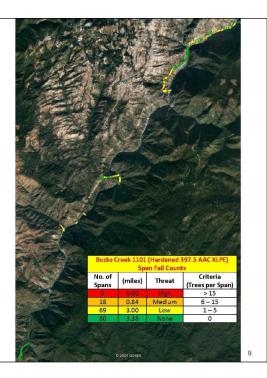


Applied Technology Services

Internal



- * Spans.kmz
- Based on 2019 LiDAR
- · Trees that can touch the line
 - 13 spans have more than 15 trees in each span that can strike
 - 51 spans have 6 to 15 trees in each span that can strike
 - 60 spans have 1 to 5 trees in each span that can strike
 - 43 spans have zero tree in each span that can strike



- * Spans.kmz
- Based on 2019 LiDAR
- Trees that can break 1/0 ACSR XLPE
 - 1 span have more than 15 trees in each span that can break the span
 - 27 spans have 6 to 15 trees in each span that can break the span
 - 65 spans have 1 to 5 trees in each span that can break the span
 - 74 spans have zero tree in each span that can break the span

- * Spans.kmz
- · Based on 2019 LiDAR
- Trees that can break 397.5 AAC XLPE
 - 0 spans have more than 15 trees in each span that can break the span
 - 18 spans have 6 to 15 trees in each span that can break the span
 - 69 spans have 1 to 5 trees in each span that can break the span
 - 80 spans have zero tree in each span that can break the span

