PG&E WILDFIRE RISK MODELING

FEBRUARY 24, 2021

PGE-DIXIE-NDCAL-000006680

Safety				Meeting Agenda						
Earthq Duck, Cove	Earthquake Duck, Cover, & Hold Emergency Plan & Exit Strategy Have a plan for yourself and your household			Date: February 24, 2021 Operational Observer gains an in depth understanding of the 2021 Wildfire Distribution Risk model. • Operational Observer gains an in depth understanding of the 2021 Wildfire Distribution Risk model. Desired Outcomes: • Specifically, the MaxEnt algorithm and application of the Technosylva wildfire simulation, the predictive power of the models and how model views can be used to provide insights for the development of wildfire mitigation workplans. Meeting Agenda						
If you exper call 1-888-4 Wash your hands!	If you experience a work-related discomfort or injury, call 1-888-449-7787 and notify your supervisor.		1 2 4 5	Wild - Content Review Safety and meeting objectives Modeling objectives and methodology Ignition Probability Deep Dive Wildfire Consequence – Application of Technosylva		Who - Facilitator(s)				
California can stop the sprea	ad		6	Model Vie	ews	CONFIDENTIAL – FO	R INTERNAL DIS	CUSSION 2		

Ignition Modeling Approach using MaxEnt

Maximum Entropy (MaxEnt) Approach

Similarities between the conditions at ignition points are identified, and evaluated for commonality

Places where there are similar conditions across the examined area are given a probability of the event occurring based on similarity to other ignition locations and a level of uncertainty

CONFIDENTIAL - FOR INTERNAL DISCUSSION 6

Identifying the right data

Covariate	Category	Source	Spatial resolution
100 hour fuels	Meterological data	gridMET	~4km
1000 hour fuels	Meterological data	gridMET	~4km
Burn index	Meterological data	gridMET	~4km
Energy release	Meterological data	gridMET	~4km
Precipitation average	Meterological data	gridMET	~4km
Specific humidity	Meterological data	gridMET	~4km
Vapor pressure deficit avg	Meterological data	gridMET	~4km
lemperature max average	Meterological data	gridMET	~4km
Wind avg	Meterological data	RTMA	~2.5km
Nind max	Meterological data	RTMA	~2.5km
Windy summer day pct	Meterological data	RTMA	~2.5km
Gusty summer day pct	Meterological data	RTMA	~2.5km
Free height max	Tree data	Salo Sciences	100m
Free height average	Tree data	Salo Sciences	100m
mpervious	Surface condition	NLCD	100m
Unburnable Location	Surface condition	LANDFIRE 2016	100m
_ocal topography	Surface condition	NED Database	100m
Age	Asset data	EDGIS Conductors	100m
Materials	Asset data	EDGIS Conductors	100m
Size	Asset data	EDGIS Conductors	100m
Splice count	Asset data	EDGIS Conductors	100m
Coastal indicator	Asset data	EDGIS Conductors	100m

	Key Takeaways
	Potential drivers of ignition probability were identified and collected to improve the model efficacy
	Data sources with reliable and consistent information were identified for key factors for the analysis to maintain high input quality
	Temporal and Geospatial data was required to accurately investigate the various conditions that exist in PG&E operational region
	Where data was limited, such as portions of asset condition, proxies like age and material were used
	All data was validated and missing or incomplete datasets were assed and mitigated
	CONFIDENTIAL - FOR INTERNAL DISCUSSION

7

Right side overall impression about data Left side all the covariates

Pool A

Had outside vendors look at all of California to get data that could potentially impact fire behavior

How data was obtained

Consequence Approach								
	MODEL DETAIL	Ś	\$	TECHNOSYLVA BURN SIMULATION				
Methodology	 Understand how a fire spreads in varying weather conditions and environments along PG&E resources Results tied back to Ramp model with MAVF Scores Predict Fire spread along all HFTD assets with an ignition event 	 Technosylva simulation of 8-hour burn every 200m along HFTD lines Simulations conducted with weather data from 452 worst historical fire weather days Outputs key consequence metrics: acres burned, population and structures impacted, and fire behavior index (FBI) FBI score based no flame length (burn intensity metric) and rate of spread (ROS) 						
Approach	 Fire Spread simulations conducted at regular intervals along assets in HFTDs Utilize Technosylva Firesim – an industry standard for fire burn simulations taking into account environment and weather effects Consult with Fire Experts to review results 							
			FBI Class	Description				
		1	LOW	Fire will burn and will spread however it presents very little resistance to control and direct attack with firefighters is possible.				
Ignition Probability	Spread: via 8 hour burn simulation (Technosylva Firesim) Effect: via (1) Ignition Spread (Technosylva Firesim Acres Burned) (2) Rate of Spread (Technosylva Firesim FBI) (3) Burn Intensity (Technosylva Firesim FBI) (4) Buildings Impacted (Technosylva Firesim Structures Impacted)	2	MODERATE	Fire spreads rapidly presenting moderate resistance to control but can be countered with direct attack by firefighters.				
		3	ACTIVE	Fire spreads very rapidly presenting substantial resistance to control. Direct attack with firefighters must be supplemented with equipment and/or air support.				
(A)		4	VERY ACTIVE	Fire spreads very rapidly presenting extreme resistance to control. Indirect attack may be effective. Safety of firefighters in the area becomes a concern.				
		5	EXTREME	Fire spreads very rapidly presenting extreme resistance to control. Any form of attack will probably not be effective. Safety of firefighters in the area is of critical concern.				
				CONFIDENTIAL - FOR INTERNAL DISCUSSION				

The information from the Technosylva fire simulations feeds the destructive fire probability calculations and ultimate risk score

Ignition Simulation #	Acres Burned	Technos Buildings Destroyed	ylva FireSi FBI Score	m Results	Destructiv Designa	e Fire tion		
1	400	45	3		True 1	False 0		Key Takeaways
2	600	23	2		1	0		 The Destructive Fire Probability takes into account multiple
3	550	75	1		0	1		factors and outcomes from fire simulations and creates a
					•			singular usable score
452	300	- 40	1		0	1_		 Probability scoring for destructive and catastrophic fires allow for the calibration of
				Subtotal	85	340		the outcomes to RAMP values for easier comparison to other risks
A fire s Acres Burned Buildings Imp FBI > 2	imulation is > 300 AND acted > 50 ANE	considered des	structive if:		Destructive Probability	20%		
							co	NFIDENTIAL – FOR INTERNAL DISCUSSION 14