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1 Abbreviations, Definitions, and Conventions 
2021 - When appended to the name of something, typically a model or other analysis, 2021 refers to the first year for which 

the model or analysis results will inform planned or executed work. The models documented herein are the 2021 models - 

they are used to inform 2021 work plans. Note that the 2021 modeling and analysis work was performed during the 

calendar years 2019 and 2020. When the year is omitted, 2021 may be assumed. 

RaDA -The team that created the model is the Risk and Data Analytics team (RaDA). The team, and its models and 

computer code, have formerly been referred to as Distribution Asset Risk Management (DxARM) or Distribution Risk 

(DxRisk). 

IVlaxEnt - A Maximum Entropy model applied to spatial range estimation. The name given to a family of models that seek to 

maximize the information entropy1 (i.e. instead of the likelihood or some other optimization criteria) of the probability 

distribution associated with a given set of conditions - in this case, ignition probability, given environmental and asset 

characteristics. It can also be interpreted as finding the least unique distribution that fits the underlying data. 

IVlaxent - Name of the software used to perform MaxEnt modeling. 

WlVIP - Wildfire mitigation plan. The official expression of PG&E plans as designated by SB-901 to mitigation wildfire risk 

that includes (non-spatial) MAVF wildfire risk calculations. 

Raster data - "Pixelated" spatial data - for example wind speed, elevation, or conductor material - conforming to a well- 

defined map projection that assigns a geographic coverage area (i.e. a polygon on the surface of the globe) to each data 

pixel. Gridded weather data in the form of polygons with associated traits is a good example of raster data 

Vector data - Tabular data - for example asset IDs and attributes - associated with specific spatial geometries composed of 

points and lines and conforming to a well-defined map projection that assigns each point to a specific location on the 

surface of the earth. EDGIS contains vector data on grid assets. 

Information entropy is the average level of uncertainty inherent in an outcome derived from a set of variables or 

covariates 
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EPSG:32610 -The official projection of PG&E territory topography/geospatial area used for this project - WGS 84 / UTM 

zone 1ON -which has relatively little distortion over California (i.e. the distortion caused by projecting the 3D surface of the 

earth to 2D map data) and whose units are meters from a fixed spatial location. 

Asset attribute data - Data on the characteristics of grid assets. Examples include conductor size, materials, proximity to 

the coast, or splice counts. 

Grid pixels -The subset of raster locations that have grid assets within their boundaries. This modeling was performed 

using lOOm x lOOm grid pixels as the corpus of all locations for which input data is needed and predictions will be made. 

Fire-season -The period from June I to November 30 capturing the typical period of hot and dry weather in PG&E’s service 

territory. 

HFTDs - High Fire Threat Districts - Areas within California with elevated (Tier 2) and extreme (Tier 3) fire threat, as 

developed under CPUC rulemaking R.15-05-006 and adopted by the CPUCs Safety and Enforcement Division. All 2021 

modeling was restricted to ignitions and covariates within the HFTDs. 

Covariates -The data used as explanatory variables in the formulation of a MaxEnt model. They must be spatially resolved 

and available for every location for which a prediction will be made such as the number of trees or average precipitation. 

Ignition probability - Unless otherwise specified, the odds of at least one ignition within each lOOm x lOOm grid pixel per- 

fire season, estimated using MaxEnt as described in this document. Also known as the likelihood of risk event, or LORE. 

Ignition consequences -The spatial data set, based on Technosylva fire simulations under dangerous fire conditions and 

calibrated to be compatible with PG&E’s reported MAVF CoRE values, that multiplies the ignition probability (LORE) for each 

grid pixel to produce pixel-level wildfire risk. 

Ignition risk - Ignition probability x ignition consequence - balances the severity of an outcome against its 

likelihood to assess the overall danger associated with potential ignitions at a given locations. 

gridMET- A dataset of ~4kM resolution daily meteorological data (derived from satellite imagery), covering the contiguous 

USA from 1979 to the present.1 

RTMA - Real-Time Mesoscale Analysis. A NOAA hourly weather raster data product at 2.5kW resolution with hourly 

timesteps. RTMA has only been available since mid-2015.2 

MAVF - Stands for "Multi-Attribute Value Function" and refers to the utility-specific risk calculation methodology 

developed in accordance with principles established by the SMAP Settlement Agreement D.18.12.014 

MAVF Consequence Dimensions - The impacts of a risk event such as wildfire or other utility-related events that include 

damage to equipment, loss of service, and threats to public safety. MAVF captures risk consequences via Reliability, 

Financial, and Safety dimensions in natural units and converts these into a unitless risk score known as the Multi-Attribute 

Risk Score (MARS) as discussed in PG&E’s 2020 RAMP Report. We are primarily interested in the multi- 

attribute CoRE values for ignitions in this document. 

CoRE - Consequence of risk event used in the MAVF framework. CoRE is multi-attribute ignition consequence for 

our purposes and will often just be called "consequence" in our documentation. 

LoRE - Likelihood of risk event used in the MAVF framework. LoRE is the ignition probability for our purposes. 

EORM - Enterprise and Operational Risk Management - the department within PG&E responsible for identifying, 

quantifying and tracking risk at the enterprise level. EORM implements the company wide MAVF risk calculations. 

RAMP - Risk Assessment Mitigation Phase of the General Rate Case proceeding. PG&E filed its 2020 RAMP Report A.20-06- 

012 in June of 2020. 
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Red Flag Warnings - Red flag warnings (RFW) are issued by the National Weather Service when extreme fire weather 

(i.e. hot, dry, and windy) conditions are predicted. Red flag warnings are issued for specific geographies and time ranges. In 

the context of spatial consequence calculations, we are interested in the spatially differentiated expected count of red flag 

warnings for all area of the grid. 

Technos¥1va - Fire simulation software whose propagation and consequence outcomes are based on available fuels, 

topography, and weather data; as well as building structure and population data layers~ Technos¥1va simulation outputs are 

used as the source of spatially resolved fire severity data that is the primary input into the spatial consequence 

calculations. 

FireSim - Technosylva’s fire simulation model 

WRRM -The Wildfire Risk Reduction Model developed by Technosy Iva 

FBI -TechnosvIva’s Fire Behavior Index. A scale of :~-5 that captures fire severitv as a function of flame length (intensity of 

burn) and rate of spread. FBI of 3 or greater is expected to require aggressive suppression. 

CPZ - Circuit protection zone - the set of all assets protected by a specific protective device. Also referred to as Circuit 

Segment (CS). 

ACSR- aluminum conductor steel-reinforced 

AI - aluminum 

AWG - American Wire Gauge 

CPUC - California Public Utilities Commission 

Cu - copper 

EDGIS- Electric Distribution Geographic Information System 

K- Kelvin 

Km - kilometers 

kPa - kilopascals 

m - meters 

mm - millimeters 

NED- National Elevation Dataset 

PSPS - Public Safety Power Shutoff 

s - seconds 

SME - subject matter expert(s) 

TPI-Topographic Position Index 

USGS- United States Geological Survey 

ROC-AUC - receiver operator curve- the area under the curve, also referred to as "AUC", is a metric used to evaluate model 

performance. 
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2 Executive Summary/Overview 
Catastrophic wildfires have become an existential threat to the State of California and pose a significant threat to the safety 

and economic future of the State’s residents as a result of increasing population growth into the wildland urban interface 

(WUI) and changing climatological conditions. The frequency and severity of these catastrophic wildfire events has 

increased dramatically over the last 10 years. PG&E recognizes its electrical equipment has been associated with the 

ignition point for a number of these fires and is working to understand these catastrophic events to maximize planned risk 

reduction activities. However, PG&E recognizes that the historical methods for understanding and managing wildfire risk 

need to evolve given the heightened frequency and severity of wildfires. In order to meet this heightened wildfire risk, 

PG&E has developed a set of models to identify areas of highest potential for ignitions and consequence. PG&E is 

committed to improving its modeling capabilities as the available information and understanding of wildfires improves. 

This document provides a detailed overview of PG&E’s current wildfire risk modeling approach: the 2021 Wildfire 

Distribution Risk Model. This model supersedes the prior iteration of wildfire risk models developed in 2018 (the 2019-2020 

Wildfire Risk Model). Key objectives for the 2021 Wildfire Distribution Risk Model are: 

1. Provide situational awareness of risk, 

2. Enable risk-informed decision making and 

3. Enable PG&E to develop line-of-sight on risk reductions from wildfire risk mitigation initiatives. 

Recognizing that risk-informed decision making is desired for both asset investment workplans developed on an annual 

basis and operational decisions, such as PSPS, PG&E has and is developing models specific to the temporal needs of each 

situation. There are primarily two forms of models that can be used to address wildfire risk. First, planning models support 

annual workplans and are based on either worst-case conditions such as weather and fuels or cumulative probabilities of 

failure or ignition. The 2021 Wildfire Distribution Risk Model described herein is a planning model for the Electric 

Distribution system. Second, operational models, such as those used for PSPS events utilize real-time weather, fuels data, 

and asset conditions as reflected by maintenance tags or recently completed asset hardening. The Large Fire Probability 

Model (Distribution) or LFPD Model, is an example of an operational model. Given the respective application of planning 

and operational models, planning models are updated on an annual cadence while operational models are updated as 

frequently as weekly during fire season. 

Following the Electric Operations Risk Framework, outlined in section 2 that provides a systematic approach to risk 

assessment and mitigation, the 2021 Wildfire Distribution Risk Model seeks to quantify the risk of wildfire represented by 

the probability of electric grid infrastructure caused ignitions combined with the consequences if that ignition propagates to 

a wildfire. In its entirety, the 2021 Wildfire Risk Model is a set of models that represents failure modes, or risk drivers, 

underlying ignitions and the consequences of wildfire. These models comprise the components of the wildfire risk formula: 

Wildfire Risk = Ignition Probability x Wildfire Consequence 

For the first part of this formulation, the "Ignition Probability" portion of the 2021 Wildfire Distribution Risk Model is 

modeled according to the risk drivers identified in PG&E’s 2020 RAMP Report for wildfire risk. From these risk drivers, the 

2021 Wildfire Distribution Risk Model developed probabilities for vegetation and equipment failure caused ignitions as they 

represent 38% and 26% of the grid related ignitions respectively. Within equipment failures, the 2021 Wildfire Distribution 

Risk Model has developed probabilities for conductor failures. Future modeling efforts will add failure models for other 

drivers such as 3rd party contact and for other electric grid equipment such as poles and transformers. The modeling 

framework established with this model will accommodate the future addition of such models. 

The predictive power of these risk driver-based models has been greatly improved over the 2018 model in several areas. 

First, the 2018 model was trained on outages as a proxy for ignitions. Using advanced statistical techniques such as 
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separating the data in to training and test sets and supported by improved data and a more efficient algorithm, a true 

ignition probability model was developed, mproved data sets have also fueled an improvemen[ in model granularity from 

the circuit and circuit segment level to lO0-meter pixels along the electric distribution lines. Finally, a predictive algorithm 

called MaxEnt, (a modeling approach often used in biological and environmental application for the identification of species 

ranges by habitat) was utilized due to its compatibility with available data and modeling objectives. In particular, MaxEnt 

has the following characteristics: ability to work with spatially explicit inputs and outputs, support for presence/absence 

probability prediction, ability to work with uncertain location data (i.e. compensating for location uncertainties in historical 

ignition data), ability to work with relatively few "positives" (i.e. Ignition locations) in a sea of negatives, tendency to 

converge well with modest amounts of training data, and machine learning heritage which ensures prediction performance 

is prioritized over "in-sample" training data fit. 

The "Wildfire Consequence" portion of the 2021 Wildfire Distribution Risk Model focuses on fire impacts in natural units 

such as acres burned, number of structures impacted, and variables describing the nature of the fire such as flame length 

and rate of spread. The key improvement for the 2021 Wildfire Distribution Risk Model is tied to the advanced modeling 

capabilities of the Technosylva fire simulation tools. In the 2019-2020 Wildfire Risk Model, REAX Engineering provided 

simulations that relied heavily on the concentration of fuels (based on LANDFIRE 2014 data) to determine the potential for 

an ignition to propagate to a wildfire. While informative, the Technosylva simulation tool improves on this ca pability by 

firstly using an updated ground fuels dataset (LANDFIRE 2016 with fire disturbance updates) and also by modeling what fire 

science refers to as ladder fuels whereby an ignition will propagate from low fuels, such as grass and brush, to increasingly 

denser fuels leading to treetops (crowns), as well as updated buildings and population data layers. The result is a more 

accurate representation of the potential consequences of wildfire in the wildland urban interface and the broader Tier 2 

and Tier 3 HFTD areas modeled Future versions of the consequence model will consider additional areas in the ~G&E 

distribution system. 

Bringing the improvements to the both the ignition Probability and Wildfire Consequence portions of the model together, 

the 2021 Wildfire Distribution Risk Model now provides an updated and improved measure of wildfire risk. The 2019-2020 

Wildfire Risk Model provided a relativistic measure that was instructive for prioritizing circuits and circuit segments, but it 

did not allow for measuring the degree of risk between those segments. The 2021 Wildfire Distribution Risk Model provides 

this capability as the risk scores are absolute scaled units. As a result, risk values can now identify how much riskier a 

location is compared to another, risk can be more accurately compared across wildfire and PG&E’s other risk events, and 

the actual value of risk reduction is now more easily computed. 

Even as the predictive power of the 2021 Wildfire Distribution Risk Model has been greatly improved as compared to the 

2019-2020 Wildfire Risk Model, PG&E is continuing to develop and refine its risk modeling. The 2021 Wildfire Distribution 

Risk Model has several limitations; it does not include transmission facilities, has not yet been used to generate risk 

reduction scenarios matching mitigation plans, and for equipment-involved probability of ignition the model only includes 

conductors at this time. in 2021, PG&E intends to develop the 2022 Wildfire Distribution Risk Model which will include 

certain upgrades to the 2021 model and will include data on additional electrical equipment (e.g., poles). In 2021, PG&E is 

also working to develop a 2022 Wildfire Transmission Risk Model for its transmission facilities that will be similar to the 

2021 Wildfire Distribution Risk Model. Finally, PG&E is also working on a pilot Probabilistic Risk Assessment or "PRA" model. 

The PRA is still conceptual, but, if successfully developed, will integrate all models into a single electric system view of 

wildfire risk. PG&E is working to develop a reference model of the PRA in 2021 and potentially, depending on the 

effectiveness of the reference model, to use the PRAfor planning in 2022. Improved models will provide more actionable 

insights that will enable more effective and efficient workplans and allow PG&E to mitigate the risk of wildfire for the State 

of California and our customers. 
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3 Document Usage 
This document provides a comprehensive overview of all modeling activity that comprises the 202:~ Wildfire Distribution 

Risk Model for a general audience, with more detailed and technical appendices for all major topics. The complete set of 

topics covered are listed below in Table :~. The next few sections of this document provide a high-level overview of the 

motivations behind and context for the 202:~ risk modeling effort. It is intended to place the modeling work within its 

strategic and regulatory context and provide a high-level guide to all aspects of modeling performed with discussion of 

performance and applications. It can be used to understand the vision behind the risk modeling effort and the plans for 

future developments as well as to gain an executive summary level understanding of the modeling and results. 

Following the main body are appendices that cover the Vegetation Probability of Ignition Model and Equipment Probability 

of Ignition Model in greater detail. These tie to the vegetation and equipment risk drivers identified in the Wildfire risk 

discussed in PG&E’s RAMP Report. These appendices can also be used to understand the data utilized in each model, the 

relative influence of the different data sets, the precision of the model in predicting ignitions, and areas for future 

improvement. 

The modeling appendices are, in turn, supported by two additional appendices on key methods: Appendix 3: Ignition 

Probabilities Methods 202:~ provides details on the application of the MaxEnt algorithm to provide spatial distribution grid 

ignition probabilities; and Appendix 4: Ignition Consequence Methods 202:~ provides details on the application of the 

Technosylva simulation data to develop a consequence data set in the MAVF framework, referred to as MAVF CORE, that is 

calibrated to the MAVF system level and tranche level scores in the RAMP Report. 

In addition to these five written topics, several presentations were developed and used to conduct technical reviews 

internal and external to the company. These are also available as separate files that can aid in understanding the 202:~ 

modeling, but they were not created to directly support this document. 

TABLE 1 - INDEX OF 2021 WILDFIRE RtSK MODEL TOPtCS (APPENDIX TOPICS ARE CLICKABLE CROSS-REFERENCES) 

Section and Topic Description 

2021 Wildfire Distribution Risk Model Overview The main body of this document - summarizing the context for this 

work and providing a high-level overview of the approach and 

results. 

Appendix1: Vegetation-causedlgnition RiskModel Description of modeling vegetation-caused ignition probabilities 

2021 and related risk results used to inform 2021 EVM planning and 

prioritization. 

Appendix 2: Conductor-Involved Ignition Risk Model Description of modeling conductor-involved ignition probabilities 

2021 and related risk results used to inform System Hardening planning 

and prioritization. 

Appendix 3: Ignition Probabilities Methods 2021 Detailed coverage of the motivation behind and methods used to 

employ maximum entropy models to make spatial estimates of 

ignition probabilities (independent of specific applications) 

Appendix 4: Ignition Consequence Methods 2021 Detailed coverage of the methods and modeling behind the 

development of the MAVF-compatible spatial consequence data 

used in risk calculations based on the Technosylva model. 

EVM Risk Model2021 - Lunch n’Learn Presentation for a general (internal PG&E) audience on the EVM 

Risk model. 

EVM Risk Model 2021 - Utility Analytics conJ:erence Presentation for a Utility Analytics audience on the EVM risk model 

Conductor Risk Model 2021 - Lunch n’ Learn Presentation for a general (internal PG&E) audience on the 

Conductor Risk model. 
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4 Objectives, Framework 

4.1 Project Objectives 

The 2021 Wildfire Distribution Risk model project objectives were to develop a model that: 

1. Provides situational awareness of risk 

2. Enables risk-informed decision making 

3. Enables PG&E to develop line-of-sight on risk reductions from wildfire risk mitigation initiatives 

In the pursuit of these objectives, PG&E wildfire risk modeling maturity aimed to progress from relative risk models at the 

circuit level with system level risk reduction and RSE capabilities to automated quantitative wildfire risk models that include 

risk reduction and Risk Spend Efficiency (RSE) evaluations ultimately at the asset/structure level. The 2021 Wildfire Risk 

Model is the second iteration of risk models and is a significant step in improving PG&E’s wildfire risk modeling capabilities 

as measured by the CPUC Utility Wildfire Mitigation Maturity Survey (Maturity Survey). 

To accomplish the improvements from the 2019-2020 Wildfire Risk Model to the 2021 Wildfire Distribution Risk Model, a 

systematic Risk Modeling Framework was used to develop the capabilities identified in the Maturity Survey. 

4.2 Framework 

The following systematic Risk Modeling Framework has been adopted to develop the capabilities identified in the Maturity 

Survey. This general framework is shown in Figure ~. - Risk Modeling Framework. 

¯ Tie to EORM identified risks 
¯ Define problem 
¯ Define roles and responsibilities 
¯ Outline process steps 
¯ Outline desired outcomes 

¯ Verify completion of mitigations ¯ Document data sources 
¯ Track riskreduction ¯ Define data accuracy 
¯ Daily Riskdashboard ¯ Data Conditioning 

CPUC 

¯ Standard decision matrix template ~, ¯ Exploratory Data Analysis (EDA) 

Tools to tie scores to budgets ~ ¯ Root Cause- FMEA 
¯ Optimization routines to 

I’L~ ~" !~ :,i!i,~" :i~ ¯ 
Documentation of FMEA results 

Model Development 

Model Validation 

Develop risk scores 

Deveioping accuracy estimates 

Developing reduction scores for mitigation options 

Developing risk spend efficiency scores for mitigation options 

FIGURE 1 - R~SK MODELING FRAMEWORK 

The specific framework steps for the 2021 Wildfire Risk model development are outlined below, beginning with the model 

Scoping and working through the Data Intake, Risk Identification, Risk Assessment, Risk Management steps to conclude 

with Risk Mitigation and reporting. 
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Scoping - defining the problem and desired outcomes. Beginning with the Scoping step, the 2021 Wildfire Distribution Risk 

Model is tied to the wildfire risk bowtie and risk scores outlined by PG&E’s EORM department in our 2020 RAMP Report. 

Examples include the development of risk scores calibrated to the system MAVF scores and modeling failure modes for the 

identified wildfire risk drivers. During the scoping step, key desired capabilities were identified tying to the Maturity Survey, 

such as the improved level of granularity, the ability to aggregate risk scores to different levels such as circuit segments, and 

the comparability of risk scores to facilitate the development of risk reduction and RSE values. 

Data Intake - key data sets are identified and prepared for modeling. For the 2021 Wildfire Distribution Risk Model, 

vegetation data, ignition data, and asset data were critical data sets that were identified and prepared for modeling usage. 

As LiDAR data was not fully available at this stage, satellite-derived vegetation characteristics data was provided by one of 

our project partners, Salo Sciences. 

Risk ID - Failure Modes Effect Analysis (FEMA) and Exploratory Data Analysis (EDA) are employed to understand and 

identify the root cause and characteristics of the problem. From the identified risk drivers in the Wildfire risk bowtie, 

vegetation-contact and conductor-involved ignitions were the most frequent ignition drivers. Using a previously developed 

FMEA, EDA was conducted on the identified data sets in the Data Intake step. EDA begins the process of gaining insight 

from the data before formal modeling begins. This includes understanding the accuracy of the data, patterns including 

outliers and anomalies, as well as identification of potentially predictive relationships within and between data sets. 

Risk Assessment - development of the models and model features. In this step, the model algorithm is selected and 

trained on the ignition data to provide spatial probabilities of ignition. The Wildfire Consequence Model data was also 

developed from the Technosylva simulation model. To quantify the predictive power of the model, precision assessments 

were developed. These metrics informed iterative adjustments that were subsequently made to improve predictive ability. 

The resulting MAVF risk scores were then calibrated, and validation exercises were held with the Vegetation Management 

and Distribution Asset Strategy teams that would ultimately use the models to inform their 2021 workplans. At this point 

the 2021 Wildfire Distribution Risk Model was reviewed and approved by the Wildfire Risk Governance Steering Committee 

(WRGSC) which is led by PG&E’s Chief Risk Officer and made-up of a cross-functional officer team. 

Risk Management - insights from models are used to develop work plans. The modeling insights are combined with 

project factors and variables not incorporated in the models. For example, tree species data was not widely available 

enough to be fully incorporated in to the EVM Risk model. As a result, the Vegetation Management team applied species 

data as an overlay to the Vegetation Risk Model to produce the 2021 EVM workplan. With the Distribution Asset Strategy 

team, model data is combined with information on terrain, customers locations, and customer counts to identify the 

preferred mitigation alternative. Similar to the risk models, the resulting workplans are also reviewed and approved, as part 

of this step, by the WRGSC. 

Risk Mitigation - monitors and reports the drawdown of risk as work is performed. This is accomplished with model- 

assigned asset-level risk values as well as validating the model against actual system performance metrics. For example, 

ignition probability models are validated against actual annual ignitions to capture insights into future improvements. As 

modeling capabilities improve monitoring the risk drawdown can become a key operational metric. 

5 Modeling Methods: Estimating Risk 
The 2021 Wildfire Distribution Risk Model formulates risk in probabilistic terms in a manner that is similar to and 

compatible with the MAVF risk framework established by the SMAP Settlement Agreement. The fundamental concept is 

that the risk associated with an event, such as a fire ignition, can be expressed as the product of the probability of the event 

happening and the consequences if it does happen. The MAVF framework calls these the likelihood of risk event (LORE) and 

the consequence of risk event (CORE), respectively. In the 2021 Wildfire Distribution Risk Model, the notation P(ignition) for 

LoRE ignition probability and C(ignition) for the CoRE consequences of an ignition, is used, as shown below: 
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Risk = P(ignition) x C(ignition) 

The heart of the 2021 risk model is the effort to estimate ignition probabilities and ignition consequences for distribution 

grid locations in the Tier 2 and Tier 3 High Fire Threat Districts (HFTD). In our documentation we have separated out the 

more technical discussion of the methods used for estimating P(ignition) and C(ignition) from their application in 

vegetation-caused and conductors-involved risk models. This overview section discusses all of four of these topics in the 

sections that follow, but each topic also has a dedicated Appendix that provides significantly more detail on each topic. 

Methods: IgmtJon Probability 

To answer the question of where ignition events are likely to occur, spatially resolved fire season ignition probabilities have 

been estimated using maximum entropy models (MaxEnt). The MaxEnt model provides relative scores or, if properly 

calibrated, probabilities for fire-season ignitions per "pixel" of input data. VtaxEnt models take the set of locations of 

ignitions under study and rasterized (i.e., pixelated) data on environmental conditions and asset attributes as explanatory 

covadates for all locations with grid infrastructure as inputs and output rasterized maps of ignition probabilities. 

MaxEnt models have been successfully applied in ecology to the problem of estimating a species’ range (i.e., the physical 

extent of its suitable habitat), given a set of locations where members of that species have been observed and the 

corresponding environmental conditions at those locations and all candidate locations for the range. In that context, the 

modet assigns a score to every location that captures how similar the conditions at that location are to the locations where 

the species was observed. There is a correspondence between MaxEnt applied to species observations and ranges and 

ignition locations and at-risk locations -Iooki ng for the "range" of grid-caused wildfires - the environmental conditions and 

asset attributes associated with elevated wildfire probabilities. PG& E has applied MaxEnt methods to event occurrences 

and their proximate asset and environmental conditions contrasted with the background conditions everywhere else along 

the distribution grid to identify the locations most likely to experience similar events in the future. 

Special topic: Conceptual explanation of how MaxEnt models work 

For the 2021 Wildfire Distribution Risk Model, the objective is to identify which environmental conditions and 

asset attributes (collectively called the model covariates) are more common among =gnition locations than they 

are among all distribution grid locations. For example, tall trees are more common among vegetation-caused 

ignition locations than they are among typical Distribution grid locations. 

Metrics of dryness, HFTD tier assignments, conductor materials and size, and others, can el! be checked for such 

patterns. The ratio of covariate value prevalence at ignition locations to their prevalence across all grid locations is 

called the relative occurrence rate. MaxEnt provides a way of estimating the relative occurrence rate given a fairly 

modest number of ignition locations. The way it does this is to [it o statistical distribution of covariote values for 

ignition locations that is consistent with the values at known ignition locations, but otherwise as similar as 

possible to the distribution of values found everywhere else along the Distribution grid. 

The similarity criteria described above is enforced using a metric called the relative information entropy between 

the ignition locations and the Distribution grid locations, where the larger that metric is, the more similar the two 

distributions are. For this reason, the overall approach is referred to as a maximum entropy or MaxEnt estimation 

of the relative occurrence rate. 

When multiplied by the fraction of a~l grid locations that experience fire-season ignitions annually, the relative 

occurrence rate is normalized into a distribution that provides the annua~ probability an ignition will occur for e!! 

combinations of values of the covariates. This distribution can be used to look up (aka predict) annual ignition 

probabilities based on the covariate values found at each Distribution grid location. 
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5.1.1 Why MaxEnt models? 

Different modeling approaches have different strengths and weaknesses and there are always better and worse performing 

model specifications under any given approach. The selection of a MaxEnt approach was informed by the characteristics of 

available data and the spatial nature of the planning questions the model needed to address, with multiple specification 

evaluated to identify models with strong predictive power as well as the explanation of inputs. 

Model performance (and selection) should be determined quantitatively based on out-of-sample prediction accuracy for 

most planning purposes, but performance can only be assed for specific/well specified/narrow questions. In other words, 

there are no "silver bullet" models that perform well for all questions asked of them. The most important predictions we 

make using the MaxEnt models is the location-specific fire-season probability of ignitions based on patterns in ignitions 

from 2015-2018, measured against out-of-sample 2019 data. We have not had the bandwidth to mature all possible 

alternative model formulations for quantitative comparison to MaxEnt. However, it does perform well compared to earlier 

models and there are very good reasons we opted to employ it: 

(1) MaxEnt, in the lineage of usage we have adopted, is spatially explicit. It is used to answer, "where can I expect X to 

occur", which is the most common structure of the questions we’ve been asked to address. It takes spatial data 

inputs and outputs rasterized (aka pixelated) spatial results that can map directly over grid locations. 

(2) Our event data is uncertain around where exactly each ignition occurred and which specific device failed. Ignition 

locations are recorded in the field and captured where the data acquisition device was, not where the ignition 

began. Further, there can be GPS signal acquisition challenges in the field that result in location errors. The result is 

that the outage data associated with ignitions most consistently records their locations, but they are protective 

device locations, not exact ignition locations. Approaches that require direct assignments of ignition indicators to 

specific pieces of equipment or precise coordinates of the point of ignition are not viable with currently available 

data. MaxEnt works with spatially quantized data and is focused on comparing the distribution of conditions at 

ignition locations to all locations, so some imprecision can be tolerated as relatively small permutations in those 

distributions. 

(3) Unlike traditional "classification" methods, MaxEnt works with "presence only data", which means that you don’t 

need accurate labels for all ignitions or all non-ignitions. This is relevant to the Iocational imprecision noted above 

- we are assigning ignitions with some spatial uncertainty - but also allows us to side-step the technical modeling 

issues of the "imbalanced data set" with so few ignitions. 

(4) MaxEnt works with relatively small sets of presence data. Ignitions are mercifully rare - good for us all, but bad for 

statistical power. Any "data hungry" approach whose best performance requires thousands (or more) of data 

points to fit well, will not work with the reportable ignitions data set. 

(5) Under the hood, MaxEnt has similarities with logistic regression, which is a standard choice for "classification" 

problems like ignition occurrence. However, MaxEnt models are protected from overfitting to training data via 

regularization and make estimates with presence-only data. 

(6) The Maxent software we are using generates derived features from combinations of and breakpoints within the 

model covadates, accounting for things like covariate interactions, step changes in response, etc., and 

regularization, eliminating features that don’t improve predictive power. These are not unique to Maxent but are 

necessary to achieve good out of sample predictive performance. 

(7) The Maxent software used performs out of sample prediction testing, and reports modern/standard classification 

model performance metrics, like the ROC figures, ROC-AUC values, precision, recall, etc. These form the basis of 

our ability to objectively quantify its performance and compare to other approaches. While not unique to Maxent, 

these are required capabilities of any approach we would consider. 
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5.1.2 Data sources and preparation 

5.1.2.1 Ignition data 

CPUC reportable ignitions were selected as the training "event" data for the 2021 Wildfire Risk Model. The ignitions under 

study were filtered to have occurred between 2015 and 2018 (2019 data was used to test model predictive power), within 

HFTD Tier 2 or Tier 3, and to have occurred during the fire season (Jun. 1 - Nov. 30). Ignitions used to train the vegetation- 

caused ignition probability model had to additionally be labeled as caused by vegetation contact and those used to train the 

conductor-involved model had to be labeled with conductors as the asset that failed leading to the event. Note that those 

two sets of ignitions overlap in the case where vegetation damaged a conductor. 

Conductor-involved ignitions." There were just under 850 outages (whose locations we use as ignition locations) associated 

with reportable ignitions that involved conductors from 2015 through 2018. A little under 300 of those occurred in HFTD 

Tier 2 orTier 3. Just over 240 of the remaining ignition outages occurred during the fire season. Those events were the 

ones used to train to 2021 conductor-involved ignition probability model. 60% of those were vegetation-caused; 30% were 

caused by equipment failures, and the rest had a few miscellaneous causes, including animals and 3rd party contact (mostly 

car accidents). 

Vegetation-caused ignitions: There were just under 470 vegetation-caused ignitions from 2015 through 2018. Right around 

260 of those were found in HFTDs Tier 2 and Tier 3 and just over 220 additionally took place during the fire season. Those 

events were the ones used to train the 2021 vegetation-caused ignition probability model. Over 80% involved conductor 

damage and more than 75% were labeled as "wire down" events. 

5.1.2.2 Explanatory variables (aka covariates) 

To have a reportable ignition, fault current needs to be generated, the fault current creates an ignition, and the ignition 

needs to be viable enough to spread: utility has knowledge of the ignition, the fire travels greater than one linear meter 

from the ignition point, and the fire propagates beyond utility equipment. Thus, we understand reportable ignitions to be 

the product of assets interacting with their environment over time. 

As visualized in Figure 2, the three categories of data categories of data relevant to modeling that process are: (1) asset 

attributes (2) spatially varying environmental conditions, determined by location (3) spatio-temporal varying weather 

conditions, determined by location and time. We are limited by the data available in each category, so we have prepared as 

many potentially relevant covariates as we can identify and lay our hands on. 

(1) For asset attributes, we are interested in attributes that can be changed through mitigation and/or those that are 

expected to indicate or correlate with degradation. For example, age is expected to correlate with various forms of 

degradation, whereas, conductors’ size and materials determine the susceptibility to structural failure and 

corrosion, respectively. 

(2) For environmental covariates, we are interested in location-specific characteristics that impact vegetation, fuels, 

and asset health. For example, the coastal indicator is associated with marine laver salinity, a source of corrosion, 

climatic dryness determines the long-term viability of grass, chaparral, and trees, and terrain determines how 

sheltered or exposed a location is to wind. 

(3) For weather covariates, we are interested in the more proximate environmental causes of failures (like wind and 

gusts) and factors that influence ignition viability and spread (like ground cover, fuel moisture, and wind). 

However, we are evaluating these on the timescale of entire fire seasons, so covariates must reflect temporal 

aggregation, capturing the typical or extreme values of each or some cumulative count or "exposure" to dangerous 

conditions across the season(s). 

There is a detailed discussion of the "pool of variables" in the ignition probability methods appendix (Appendix 3: Ignition 

Probabilities Methods 2021). 
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FIGURE 2 - SCHEMATIC OF DATA FLOW THROUGH THE IV]AxENT MODEL 

5.1.2.3 Covariate selection 

Modelers us a term "parsimony" to capture the concept that models should be as simple as they can be while still 

explaining the underlying process. Parsimony is not objectively quantifiable but is not aesthetic either. Without parsimony, 

a model can overfit the training data, undermining its predictive power and the interpretation of any given covariate can be 

entangled with the contributions of others like it. We achieved parsimony through two mechanisms: (1) The Maxent 

modeling software we used "regularizes" model fit by dropping covariates that don’t contribute to performance gain when 

testing out of sample, thus decreasing the risk of overfitting and providing metrics we can evaluate to judge how well it has 

done. (2) When in possession of multiple covariates that contain similar information or covariates that are directly relevant 

to mitigation, we have made "editorial" decisions about which covariates to include or exclude while checking that overall 

performance is not degraded. 

5.2 Methods: Wildfire Consequence 

PG&E uses MAVF to calculate the consequence of an event. MAVF is a function for combining consequence impacts of the 

occurrence of a risk event and creating a single unit-less risk value, known at PG&E as MAVF or MARS. Some of its key 

features are: 

¯ It formalizes trade-offs between different dimensions of consequence attributes (Safety, Reliability and Financial). 

¯ It captures aversion or indifference over a range of outcomes based on the company’s risk management approach. 

¯ It allows comparisons of risk across the company using a common scoring metric. 

5.2.1 How MAVF Risk Scoring Works 

Figure 3 is the MAVF approved by PG&E’s Risk committee for use across company for risk scoring. 
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Consoquence of R~sk 

Event 
Un~tgess Measure 

Attributes Range Natural Units Weight Scaling Fur’~ction 

i~ Equwalent 
Safety 16 0- 100 

Fatalities 
50% 

12,000 
Customer 

Electric 
M,~/ 

Minutes 20% 
Reliability 38/ 

0- 4 Billion 
Interrupted 

(CMI) 

Gas . x, Customers 
Reliability f           0- 750,000 Affected 

5% .... 

Financial 2B i~ 0 - $5B $ 25% 

F~GURE 3 - MAVF 

The consequence attributes and their respective weights are: 

¯ Financial (25%) 

¯ Safety (50%) 

¯ Electric Reliability (20%) 

¯ and Gas Reliability (5%) 

Each outcome in the Consequence model is assigned a score for these categories which is then aggregated to calculate the 

consequence score. 

The consequence values assigned to each simulated fire come from these existing MAVF consequence scores. MAVF divides 

wildfire risk events into severity categories, modeling each category as a separate set of inputs (think tabulations/counts of 

historical ignitions that fit into each severity category) and consequence outcomes. 

Because the inputs come from multiple sources into the central risk event calculation and then fan back out to the Safety, 

Reliability, and Financial risk categories, each category is called a risk "bow tie" after what it looks like when diagrammed. 

The risk bow tie methodology is a structured way of conceptualizing, representing risk across many types of events. It 

allows for the risk event to be broken down into the causes, or drivers, of a risk event and the consequences resulting from 

the risk event. Groupings of drivers or outcomes can be considered as separate tranches and the consequences of the risk 

event can be calculated for each of these tranches. Tranches segment a system of assets into "like" risk groups because 

different parts of a system face different hazards, are susceptible to those hazards to different degrees and can result in 

different consequences given the same event. For instance: 

¯ Material: plastic is not threatened by corrosion compared to metal 

¯ Location: Earthquake in Oakland vs Santa Cruz 

¯ Ambient Conditions: Proximity to vegetation. (combustible material) 

A bow tie (Figure 4) quantifies relationships between drivers and outcomes. 
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What is the risk event 
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What are the adverse 
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risk event to happen? 

event when it happens? 

FIGURE 4 - BOW TIE STRUCTURE 

Under the hood, there are as many bow ties as there are tranches (Figure 5). 

I 

FIGURE 5 - TRANCHES 

Figure 6 below provides an example wildfire bow tie. 

Risk Score = Frequency x CoRE 

Subddver Driver Risk Event Outmme Attributes �oR E 
Safety 

Reliability 

~ Financial 

Reliability 

Financial 

Safety 

Reliability 

Financial 

Reliability 

Financial 

Event CoRE = Weishted Average of Outcome CoRE 

Risk Score = 440 x 55 = 24,200 (0.4% x 12,000, 8% x 2 . 0.1% x 12,000,91% x 2) 

FIGURE 6 - EXAMPLE WILDFIRE BOW TIE 
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5.2.2 Deriving Spatial MAVF CoRE Values 

What matters for our purposes is that each bow tie produces CoRE consequence values specific to the categories of events 

that feed into it and these can become a lookup table for consequence of simulated wildfires as long as they can be 

mapped into the same categories. 

For the 2021 Wildfire Distribution Risk Model effort, which was designed from the ground up to deliver spatially resolved 

results, the challenge was to map MAVE CoRE values onto a spatial grid. Historically, risk assessments using MAVE scoring 

have been performed at the enterprise-level without spatially explicit data or models. In other words, the risks are 

computed in terms of the expected count and severity of "risk events" but not at their specific locations. The purpose of the 

2021 Wildfire Distribution Risk Model is to model the spatial variation in risk so that wildfire mitigation efforts can prioritize 

higher risk assets and locations for mitigation. The development of corresponding spatial MAVE CoRE consequence metrics 

required mapping the characteristics of every "grid pi×el" in the HETD areas to the categories used to assign ignitions to 

tranches of consequence already in use in the MAVE framework. These categories include HETD areas, red flag warning 

conditions, and fire severity 

Thus, the spatial consequence values for the 2021 model required spatial estimates of: 

1. A simple spatial indicator of whether a given location is within the HFTDs 

2. The probability that a location will be under red flag warning at the time of an ignition 

3. A spatial breakdown of the likelihood that an ignition would lead to a small, large, destructive, or catastrophic 

wildfire, given its starting location 

Given such estimates, the existing MAVF CoRE values from corresponding bowtie tranches could be applied to each 

location. The first is very straight forward. We have geo-spatial shape files of the HFTD, so any given location can be 

assigned an "HFTD indicator". The second was more challenging, but there are also shape files available for every red flag 

warning called. By stacking those shapes on top of one another, the count of red flag warnings per-fire-season at every 

location was calculated and rendered into a probability of a red flag warning for any given day. 

The fire severity calculation was by far the most complex component of wildfire consequence to estimate (and the most 

significant in determining the MAVF CoRE values). Technosylva fire simulations under extreme fire weather conditions were 

used to estimate the likelihood of ignitions growing into fires of Small, Large, Destructive, or Catastrophic extent (these are 

PG&E specific MAVF wildfire categories), based on Technosylva’s fire characteristics, including: 

1. The burn area in acres 

2. The number of structures within the burn area 

3. Technosylva’s Fire Behavior Index, assigned on a scale of 1-5 based on the combination of simulated flame length 

(a metric of burn intensity) and rat of spread (see Figure 7 below for FBI details) 

PG&E Internal Information © 2021 PG&E Corporation. All rights reserved. Page 18 of 133 

P G E -D IXI E -N D CAL-000006564 



2021 Wildfire Distribution Risk Model Overview 

The different values of FBI vary from 1 (Low) to S (Extreme) as shown in the next table. 

Toble 11. FBI clot~ descriptions. 

Oescription 

ACTIVE Fire spreads very rapidly presenting substantial resistance to control. Direct attack with 

flreflghters must be supplemented with equipment and/or air support. 

Figure 7: Technosylva’s Fire Behavior Index components and description 

These characteristics were then used to lookup existing MAVF CoRE values for corresponding tranches and used to 

compute fire severity assignments for each of the hundreds of simulations conducted per-location. Then the consequence 

for each simulation outcome could be averaged across all days simulated into averages (and other statistical summaries) of 

the consequence values for every grid location in the HFTDs areas. 

The detailed recipe for using Technosylva simulations and their metrics to create calibrated MAVF CoRE consequence 

values is: 

(1) Assign ignition simulation locations at regular (200m) spacing along all grid locations within HFTDs Tier 2 and Tier 

3. 

(2) Tabulate the 452 worst historical fire weather days using historical weather data. 

(3) For all locations, run a separate 8-hour fire spread simulation for each day of weather data, recording burn area, 

flame length, impacted structures and FBI on a scale of I to 5 for each simulation. 

(4) Using pre-existing MAVF consequence scores calculated for all combinations of fire severity (Small, Large, 

Destructive, Catastrophic), an HFTD indicator, and a red flag warning indicator rendered into a location-specific 

probability of a red flag warning, assign each simulation output a consequence score. 

(S) The rules developed for assigning MAVF fire size to each Technosylva simulation result are: 

a. Small Fire (area < 300 acres) 

b. Large Fire (area > 300 acres) 

c. Destructive Fire (area > 300 acres & 50+ structures impacted) 
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d. Catastrophic Fire (assigned by ratio of Catastrophic to Destructive fires historically) 

(6) Compute statistical extracts of consequence scores for all available simulations at each location -most 

downstream usage is based on the mean~ but variance and others can also be useful. 

(7) Assign the resulting mean consequence to each ignition location, 

(8) EnSure that simulations can be mapped to all HFTD Tier 2 and Tier 3 grid locations. To do this, simulation output 

metrics are associated with a 20Ore x 2OOm raster pixel with the ignition point in the center, so the results can be 

assigned spatially to any locations within each pixel, 

The details of the spatial consequence modeling methods are found in Appendix 4: Ignition Consequence Methods 202i 

Application: Vegetation-Caused Ignitions fbr EVM 

All vegetation-caused CPUC reportable fire: season ignitions from 2025 to 2018 wit hin th e H FTD area s were used to model 

the risk addressed bythe EVM program~. PG&E withheld 2019 ignition data for use in testing and validating the out of 

sample predictive power of the model. A MaxEnt model was used to estimate spatial ignition probabilities based on tho~ 

ignitions, This work was informed by data on vegetation, weather and other environmental conditions. The ignition 

probabilities were combined with the MA~F CoRE values from the spatial ignition consequence data set to produce $OOm x 

$OOm grid-pixe!-Ieve! risk scores. The pixelated risks were aggregated within each circuit segment (also called Circuit 

Protection Zone or CPZ) in the H~D areas to produce the risk summaries provided as inputs used to inform EVM planning 

and prioritization. 

A deta iled account of the EVM risk modeling is fou nd in Appendix 2: Vegetation.~aused Ignition Risk Model 202~ as well as 

slides from a presentation on the :modeling for a general audience ale found in the document named: EVM Risk Model 202~ 

- Lunch n’ Leorn presented 202~21 as well as a separate conference presentation found in the document named: EVM 

Risk Model 202i- Utility Anolytics conference presented 2020 ~0 29. 

Ignition likelihood for vegetation in 2022 was determined based on a probabiliW analysis predicting ignitions in $OOm x 

$OOm pixels: The Vegetation Probability of Ignition Model was trained on vegetation ignitions limited ~e fires season events 

and CPUC reportable ignitions from 2025 to 2028 and tested usin~ the 2019 ignitions. This data set includes all vegetation 

related outages that resulted in an ignition. The modeling technique used was a maximum entropy model w:hich provides a 

way of estimating the relative occurrence rate given a fairly modest number of ignition locations. The principle of maximum 

entropy states that ~he probabiliW distribution which best represents ~he current state of knowledge is the one with the 

largest entrepy~ in the context of precisely s~ated prior data. 

$O0m pixel representation of P(ignition) o~tpu~ from the Vegetation Probability of !gnition Model for the North Bayis 

shown in Figure 8 below - red is higher, blue is iower~ non-HFTD conductors are shown in dark grey. 

Note that vegetation~caused conductorqnvolved ignitions were also modeled by the conductor model, 
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Ignition probability 

Figure 8-IGNITION PROBABILITY PER PIXEL FOR THE NORTH BAY - RED IS HIGHER, BLUE IS LOWER COLORED GRID PIXELS 

ARE WITHIN HFTDS, DARK GRAY GRID PIXELS ARE NOT. 

Examples based on the model results rolled up to CPZ summaries are presented below. Interestingly, there are fewer trees 

(based on the database of known trees maintained by vegetation manai~ement} in areas of high consequence" Figure 9 

shows scatter plots of per-CPZ data for all 3,000 CPZS analyzed where the y-axis is the count of trees in each CPZ and the x- 
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axis is MAVF CoRE consequence. It shows that higher tree counts tend to be associated with lower consequence values - in 

other words, there are fewer trees in locations with elevated fire consequences. 
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FIGURE 9 - SCATTER PLOT OF CPZs BY CONSEQUENCE AND TREE COUNT 

Figure 10 Shows there is not as strong a relationship between P(ignition) and VMD tree density. But the highest 

P(ignition) values are generally associated with CPZs with fewer trees. This is likely due to the fact that reportable ignitions 

require dry fuels to grow to reportable proportions (1 m in extent) and areas with fewer trees tend to be hotter and dryer. 
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F~GURE 10 - SCATTER PLOT OF CPZS BY P(IGNITION) AND TREE COUNT 

Risk is equal to P(ignition) x C(ignition) but we can see that the resulting scores are heavily dominated by Consequence 

values. Figure 11 plots the Risk score on the y-axis and the two components of that risk calculation (Consequence on the 

left and P(ignition) on the right) on the x-axes. From these, it can be verified that the Risk score is highly correlated with the 

Consequence (MAVF CORE) and less correlated with the P(ignition). This has a lot to do with the fact that the Consequence 

values range over more orders of magnitude than the P(ignition) values. If you are prioritizing directly by Risk, you are 

largely prioritizing by Consequence, or the ability for a given location to host a catastrophic wildfire. 
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Variables in the model included meteorology data, PG&E asset data, and remote sensing data from government and private 

third parties. A metric called "permutation importance" can be used to quantify how sensitive the model’s predicted 

outputs are to random fluctuations in the given variable’s (aka covariate’s) input values. The permutation importance of the 

covariates used in the Vegetation-caused Ignition Probability Model are included below in Table 2. The Pool of ¢ovariates 

section of the MaxEnt ignition probability estimation methods appendix provides detailed information on the meaning and 

data source of each of the covariates named below. 
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TABLE 2: VARIABLES IN THE VEGETATION-CAUSED IGNITION PROBABILITY MODEL 

1 tree-height-max Satellite derived tree height estimates - highest m 26.1 

tree per-raster pixel 

2 lO0-hour-fuels- standard fire modeling metric of fuel dryness for % 24.1 

avg fuels about 1-3" in diameter, mean over season 

3 vapor-pressure- vapor pressure deficit, mean over season kPa 21.6 

deficit-avg 

4 gusty-summer- The percentage of days with sustained hourly % 6 

day-pct wind speeds over 20 mph 

5 HFTD High Fire Threat District (2 or 3) 4.2 

6 precipitation-avg Seasonal daily average precipitation mm 3.1 

7 Impervious NLCD imperviousness product- represent urban % 2.8 

impervious surfaces as a percentage of 

developed surface 

8 specific- Seasonal average specific humidity kg/kg 2.4 

humidity-avg 

9 burn-index-avg National Fire Danger Rating System (USNFDRS) 2.3 

Burning Index (BI) 

10 wind-max Annual 99th percentile hourly wind speed at lOm m/s 1.9 

11 temperature-avg Average of daily maximum temperature in Kelvin K 1.6 

12 windy-summer- The percentage of days with sustained hourly % 1 

day-pct wind speeds over 15 mph 

13 local-topography The topographic position index (TPI) extracted 0.8 

from the USGS national elevation dataset 

14 tree-height-avg Satellite derived tree height estimates - average m 0.8 

per-raster pixel 

15 lO00-hour-fuels- standard fire modeling metric of fuel dryness for 0.6 

avg fuels about 3-8" in diameter, mean over season 

16 energy-release- USNFDRS Energy Release Component (ERC) 0.4 

avg 

Using these variables, a probability of ignition was assigned for each lOOm x lOOm grid. These probabilities were indexed 

and calibrated to the total expected ignition frequency. 

Updates to this model are planned on an annual basis. In 2021, PG&E aims to incorporate LiDAR informed tree species data 

so that the predictive power of vegetation caused ignition probabilities will be enhanced to better inform mitigation 

programs. 
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5.3.1 EVM modelvalidation 

The dataset used to train the model achieved an AUC score of 0.73. The 2019 dataset was used as an out-of-sample test 

dataset to evaluate the model fit and achieved a score of 0.64 but a randomly withheld test sample from several years 

achieved a score of 0.72. The minimal reduction in AUC score between the training and testing datasets gives confidence 

that the model is not overfitting to the training dataset but also raises the possibility that the spatial pattern and other 

characteristics of 2019 vegetation-caused ignitions deviated slightly from 2015-2018. See the dedicated model validation 

section, Discussion: Model Validation and Comparison to Previous Work for more discussion of model validation. 

5.3.2 EVM model insights and applications 

Insights 

Vegetation-caused ignitions quite obviously require the presence of fall-in trees close enough and tall enough to contact 

the overhead circuit. Along similar lines, we expect that all else being equal, dryer and windier conditions will favor both 

branch failures and fire viability and spread. This explains the sensitivity of the model to tree presence and height data and 

to metrics of fuel dryness, gustiness, and vapor pressure deficit. However, there are also some counter-intuitive 

relationships that have emerged from the modeling efforts. 

First and foremost, tall trees do not tend to be found under either consistently windy or consistently dry conditions. For the 

most part, they prefer more benign habitats, but also, their presence lowers local temperatures, increases local humidity 

and moisture, and lowers local wind speeds. Dryness and wind are major contributors to wildfire risk, but only when they 

are somewhat anomalous compared to prevailing conditions. 

The above relationships contribute to another somewhat counter intuitive result - the areas of highest ignition probability 

are not the areas of highest ignition consequence. Fires burning in forested areas with mature tall trees are indeed very 

dangerous, but ignitions start small and often start on the ground. They are more viable as fires that spread to forested 

areas when they originate under conditions that offer a mix of smaller and larger fuels that are drier and more open to wind 

than heavily forested areas. Such areas include both man-made and natural transitions from more open or mixed ground 

cover to more heavily forested areas - and the man-made ones are guaranteed to be proximate to people and structures. 

Taking a concrete example from the 2021 modeling effort, fire consequences were found to be higher in the Sierra foothills 

than in higher elevations hosting unbroken forests whereas the ignition probabilities were often found to be higher in 

within the forests. The recognition of elevated "downhill" consequence is a significant development and improvement 

compared to earlier modeling. 

It is also clear from first principles and confirmed by arborists that not all trees are equally dangerous. Tree species and 

individual tree health as well as other natural phenomena like pine beetles and plant pathogens like the oak death fungus 

can all alter the odds and type (branch, trunk, or root) of tree failures. The vegetation management team maintains high 

quality databases of tree characteristics in general and failed trees in particular based on field observations. However, those 

data sets are not (yet) comprehensive enough to support full coverage predictions for all grid locations. Field observations 

combined with remote sensing from lidar and satellite-based surveys hold the promise to improve our understanding and 

ability to model these relationships in the future. 

Applications 

The proximate purpose of the vegetation-caused wildfire risk modeling effort was to support risk-informed planning of EVM 

activities. The 1+ million pixelated spatial risk results were aggregated into representative values for several thousand grid 

segments called protection zones, with ignition probabilities, consequences, and risk values all reported. 

The results were not just delivered in complete form at the end of the modeling effort. Rather, several iterations of the 

work were produced via ongoing collaborative discussion of the work with the Vegetation Management team. These 
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discussions included regular modeling updates and discussions as well as broader team review of the geography of risk 

produced by the modeling runs compared to the on the ground working knowledge of risk from division experts. The 

discussions revealed the distinction between the probability of ignition and ignition consequences- EVM manages the 

p ro bability of ignition for the most part-a nd the im porta nce of t ree species a nd health to risk a nd the ch oi:ces a rborists 

ma ke in the field. !t a!so revealed the insufficiency of data sets on hand (gathered for other purposes)to support grid-wide 

predictions based on species or individual tree health. Thus~ it was determined that such conside[ations would be applied 

by vegetation management experts on top of the model results and that the mode! team would pursu:e more 

comprehensive sources of related data for future use. 

Application: Ignitions for System HaFdening 

All conductor.involved CPUC reportable fire season ignitions from 2015 to 20!8 (2019 was held back for testing predictive 

power) w th n the HFTDs were used to model the r sk addressed bythe System Hardening program:3 A MaxEnt model was 

used to estimate spatial ignition probabilities based on those ignitions, The ign tion probabilities were combined with the 

MAVF CoRE values from the spatial ignition con:sequence data set to produce lOOm x 500m grid,pixel, level risk scores. This 

work was informed by data on conductor materials and size~ proximity to the coast, a nd the location of splices, Prior work 

within PG&E informed our interest in these data fields. The pixelated risks were aggregated within each ¢ircui:~ segment in 

the HFTD areas to produce the risk summaries provided as inputs used to inform system hardening planning and 

prioritization:~ 

A detai ed account of the Conductors Risk modeling is found in Appendix 2: Conductor-involved Ignition Risk Model 2021 

and slides from a presentation on the mode ng for a general audience are found in the document named: Conductor Risk 

Model 2021. Lunch n’ Learn presented 2020 lO 28 

ignition likelihood for equipment in 2021 was determined based on a probability analysis predicting ignitions in lOOm x 

:lOOm pixels. The Equipment Probability of Ignition Model was trained on conductor failure related ignitions limited to fire 

season events and CPUC reportable ignitions from 2055 to 2018 and tested using the 2019 ignitions. The mode!in8 

technique used w:as a maximum entropy model which provides a way of estimating the relative occurrence rate given a 

fairly modest number of ignition locations. The principle of maximum entropy states that the probability distribution which 

best rep resents the curren t state of knowledge is the o ne wit h the largest e ntropy, in the con text of precisely stated prior 

data. 

Figure ~2 shows that probably and consequence of conductor, involved ignitions are: not highly correlated. Locations with 

elevated likelihood of ign ition typica ily have a small consequence value:. This makes mitigation work prioritization more 

difficult beca use there: are: no~ a clear cluster of locations with high consequence and high probability. 
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Pixel-level Probability vs Consequence shaded by Risk 
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FIGURE 12 - SCATTERPLOT OFTHE PIXEL-LEVEL PROBABILITY OF IGNITION ON THE X-AXIS AND MAVF CONSEQUENCE 

ON THE Y-AXIS WITH SHADING BASED ON THE MAVF RISK VALUES 
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,20:Zl Wiidfire Distribution Risk Model ~erview 

The dominance of consequence can further be demonstrated in the comparison of the ignition probability image and the 

ignition risk image in the Sonoma area (Figure 13). The locations with a higher likelihood of ignition in the probability image 
are shown as lower risk areas in the risk image, It may be beneficial to scale ~he consequence values ~o ~ain more influence 

from ~he likelihood of an i~nition even~ occurring. 

FIGURE 13: COMPARISON OF PROBABILITY AND RISK PIXEL-LEVEL RESULTS IN THE SONOMA AREA. OBSERVE THAT THE AREAS WITH A 

HIGHER LIKELIHOOD OF IGNITION IN THE PROBABILITY IMAGE (LEFT) ARE SHOWN AS LOWER RISK AREAS IN THE RISK IMAGE (RIGHT). THIS 

IS THE INFLUENCE FROM THE CONSEQUENCE DATASET. 

A range of variables were included in the initial modeling. These included meteorology data, PG&E asset data, and remote 

sensing data from government and private third parties. A metric called "permutation importance" can be used to quantify 

how sensitive the model’s predicted outputs are to random fluctuations in the given variable’s (aka covariate’s) input 
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va!ues~, The permutation importance of the covariates used in the Conductorqnvolved Ignition Probability Model are 

identified below in Table 3, The Pool of �ova[lares section of the MaxEnt methods appendix provides detailed information 

on the meaning and data source of each of the covariates named below. 

Rank Model Feature Feature Description Units Permutation 

Importance 
t U nburnable non=burnable area % 30.8 

2 precipitation~ave daily p~e~ipitafi0n~ mean m~ 2918 

3 conductor~material_acsr conductor material: ACSR % 9.7 

4 estimated~age estimated conductor age years 8.9 

5 tree_height_max max tree height m 4~3 

6 splic~record~exists Reliability Program splice % 4.3 

7 vaporcpressure defici~ave Vapor pressure deficit, mean kPa 4,0 

8 conductor~size=2 conductor size: 2 % 3.4 

9 conductor~size~ conductor size: 4 % 1.6 

10 100~hour_~uels~ave iO0-hour fuel moisture, % 1~1 

mean 

11 max,temperature~ave ma:~ temperature, mean K 1,0 

12 wind_ave wind speed, mean m/s 0.9 

13 Iocal~opography TPI % 0,2 

14 conductor~size~6 conductor size: 6 % O.1 

15 conductor~material_al conductor material: AI % ~0 

16 conductor~material~cu conductor material; Cu % ~0 

17 coastal coastal % ~0 

18 specific_humidity_ave specific humidi~y~ mean % 

Using these variables, a probability of ignition w:as assigned for each lOOm x lOOm grid. These probabilities were indexed 

and calibrated to the total expected ignition frequency. 

Give:n the: amou nt of time required to develop a nd ~est new models, PG&E wa s only able: to include in the Cond uctor- 

involved Probability of Ignition Model results in the 202I Wildfire Distribution Risk assessment- these are the most 

common and riskiest among the equipment,involved ignitions. Updates to this model are planned on an annual basis. In 

2021, we aim to model equipment-caused risk from pole and transformer failures, and to add maintena nce tag and asset 

data in the (renamed)combined Equipment-caused ignition Probability Model. These additional equipment models will 

combine with an update to the conductor fai!ure model to improve the predictive power of equipment caused ignition 

probabilities will be enhanced to better inform mitigation programs. 

� According to Phillips (2006)~ "l-he contribution for each variable is determined by randomly permuting the values of that 

variable among the training points (both presence and background) and measuring the resulting decrease in training AUC. A 

large decrease indicates that the model depends heavily on that variable, ~alues are normalized to give percentages." 
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5.4.1 Conductor model validation 

The dataset used to train the model achieved an AUC score of 0.76. The 2019 dataset was used as an out-of-sample test 

dataset to evaluate the model fit and achieved a score of 0.74. The minimal reduction in AUC score between the training 

and testing datasets gives confidence that the model is not overfitting to the training dataset and is able to maintain 

performance when introduced to new data. See the dedicated model validation section, Discussion: Model Validation and 

Comparison to Previous Work for more discussion of model validation. 

5.4.2 Conductor model insights and applications 

First and foremost, the majority of conductor-involved ignitions are due to contract from vegetation. A significant portion of 

the model fit has to do with either the location of trees or the suitability of local fuels to sustain a fire. The prominence of 

"unbumable", which is a very specific data set used widely in the fire modeling community that is derived from the 

LANDFIRE surface fuel model, may appear to be a completely obvious realization of the fact that sparks on truly unburnable 

surfaces don’t start fires. However, if unburnable is excluded from the model it is replaced by tree height as the #1 ranked 

covariate. This underscores the fact that unbumable is capturing Iocational information about where vegetation-caused 

outages are possible along with where ignitions are viable. 

The contribution to the model fits made by conductor asset attributes, including size, material, and age, are relatively 

modest individually, but significant collectively. They are consistent with known patterns, like copper corrosion in marine air 

near the coast, that smaller conductors are structurally weaker, and that older equipment is more likely to suffer from 

degradation, but all of these are also complicated by our ability to model correlation but not cause and effect. For example, 

different equipment standards have been in place at different times and equipment that fails often can be expected to see 

more repair work. Thus there are spatial patterns in equipment attributes governed by when and why equipment was 

installed where the attributes of the equipment are not the cause of failures. It is also worth noting that vegetation contact 

with enough force to bring a line down (for example due to trunk failures) will often hit with enough force to bring down 

even the most robust conductor hardware. 

The conductor model results shared a similar outcome with the vegetation-caused model with ignition probabilities and 

consequence values displaying low correlation. With so many conductor-involved ignitions being caused by vegetation, 

many of the same explanations for that pattern offered in the vegetation-caused model discussion apply here as well: 

vegetation moderates wind, dryness, and other conditions of fire spread. However, among the other failure modes, we do 

observe wind-driven equipment failures. Since wind plays a prominent role in fire spread, future work will focus greater 

attention on isolating and modeling the causes of such events. 

5.5 Discussion: Model Validation and Comparison to Previous Work 

As part of the Risk Assessment step in the Risk Modeling Framework, models are reviewed and validated. Validation is 

conducted on several Quality Assurance (QA) and Quality Control (QC) levels. Two QA methods are employed. First, 

following good data science and software development practice, data scientists conduct code reviews on each other’s work. 

Second, model runs include test automation code that checks model outputs to catch erroneous values and quantify 

performance. The primary ignition probability model performance metrics are based on the accuracy of classification of 

ignition and non-ignition locations. The standard metrics of classification performance include recall, precision, visualization 

of the receiver operator curve, and the calculation of the area under that curve. 

A number of QC steps are also employed both internal and external to PG&E. Within PG&E, the EORM team reviews the 

modeling methodology and results to provide feedback and signal their acceptance of the models for use in measuring risk. 

Next, PG&E groups that use the risk models to develop mitigation work plans test the model with their subject matter 

expertise. The PG&E Internal Audit group also has conducted in depth reviews of model methods, results and the 
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application in developing mitigation workplans. Finally, PG&E uses outside expertise to review and validate model methods, 

code and model results. PG&E is currently contracted Energy and Environmental Economics, Inc. to perform a review and 

validation of the modeling methodology, code, model results and application to be completed in the Spring 2021. 

5.5.1 Performance metrics 

Because MaxEnt predictions are based on smoothly varying ignition scores, we can choose a value of the scores that defines 

the threshold between low and high ignition probability. The lower the threshold, the more ignition locations are predicted 

(true positive) - the percentage of ignitions predicted is called the recall and the remaining percentage of un-predicted 

ignitions are called the omission rate. However, a lower threshold will also result is a greater proportion of non-ignition 

locations getting classified as at elevated risk (false positives). We seek a model that can achieve high recall while 

minimizing the number of associated false positives. 

The receiver-operating curve (ROC) (Figure 14) is a curve with the true positive rate on the y-axis and the false positive rate 

on the x-axis for all possible omission rates. Each point along the curve represents the tradeoff between making the model 

omission rate more generous to predict more "true positives" (higher on the y-axis) vs. having that generous omission rate 

falsely predict ignitions that didn’t occur (further right on the x-axis). Any given point along the ROC tells you what fraction 

of non-ignitions are falsely predicted as ignitions as the "cost" of achieving a given true positive rate for all true positive 

rates. Along the ROC curve then, predicting only non-ignitions is shown in the lower left corner to predicting only ignitions 

in the upper right corner. Random guessing will produce a diagonal ROC, whose area would be 0.5. A perfect model would 

produce an ROC that immediately rises to 100% true positive without any false positives, whose area would be 1. The AUC- 

ROC is the area under the ROC curve that ranges between 0.5 and I and captures how well the model avoid false positives 

as it captures true positives. 

1.0 

¯ 0.6 
> 

o 
~- 0.4 

I- 0.2 / ,,"          --- Random chances 

ROC curve 

0,0      0,2 0,4      0.6      0.8 1.0 
False posiLive rate 

FIGURE 14 - ILLUSTRATION OF A RECEIVER OPERATOR CURVE (ROC) WITH THE ROC-AUC AREA UNDER THE CURVE 

SHADED 

5.5.2 Contribution from each covariate 

"Jackknifing" is a modeling term of art for the practice of evaluating a model with and without some element whose impact 

on results you want to quantify. In our case, we have jackknifed each covarlate of our MaxEnt models to compare (a) model 

performance with all covariates except the one studied and (b) model performance with only the one studied to the 

performance of the full ensemble of covariates in the "official" model. 
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This is the best method for answering "how important is X to model performance?" where X is one of the covariates. For 

this work, the metric of model performance was the regularized training gains - the higher the better. 

Jackknife of regularized training gain for ignition_equipment_summer 

Without variable ¯ 
100-hour-fuels-avg ~ With only variable ¯ 

coastal | 
With allvariables ¯ 

conductor-material-acsr 

conductor-mat erial-al 
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conductor-size-2 

conductor-size-4 

conductor-size-6 

estimated-age 

local-topography 

max-temperature-avg 
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tree-height-max 

unburnable 
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wind-av( 
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regularized training gain 

FIGURE 15: CONDUCTOR-INVOLVED IGNITION PROBABILITY MODEL JACKKNIFE RESULTS 

s "The gain is defined as the average log probability of the presence samples, minus a constant that makes the uniform 

distribution have zero gain. At the end of the run, the gain indicates how closely the model is concentrated around the 

presence samples; for example, if the gain is 2, it means that the average likelihood of the presence samples is exp(2) = 7.4 

times higher than that of a random background pixel." - 

https://biodiversityinformatics.amnh.or~/open source/maxent/Maxent tutoria12017.pdf 
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Jackknife of regularized training gain for veg._ignition_summer 
Without variable ¯ 
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FIGURE 16: VEGETATION-CAUSED IGNITION PROBABILITY MODEL JACKKNIFE RESULTS 

5.5.3 Comparison to previous work 

The modeling that the 2021 Wildfire Risk Model replaced was produced to support planning for 2019, and is therefore 

referred to as the 2019 model. That model made estimates of ignition propensities that were not constructed as formal risk 

calculations. The 2021 model building upon and expands the earlier work with the following improvements: 

¯ Risk score for measurement and prioritization - improved statistical and machine learning methods along with 

data sets that better describe factors attributed to ignitions and fires 

¯ Wildfire consequence model that better predicts historical destructive wildfires 

¯ Model granulariW - base level is lO0-meter pixel level that can be aggregated to circuit protection zones or circuits 

or higher 

¯ Risk score is calibrated to the Svstem MAVF risk scores developed in the RAMP Report 

Although the 2019 model did not document a performance metric and appeared to relv purelv on in-sample goodness of 

fit, assessment of true and false positives from that model were nevertheless still possible. The construction of an ROC 

curve and corresponding AUC measure was calculated using the actual 2019 ignitions compared to predictions. Similar 

curves and metrics were computed for 2019 ignitions using the 2021 model (recall that it was trained on 2015-2018 data). 

Comparing the 2019 on the left to the 2021 results on the right, model improvements have resulted in a marked 

improvement in predictive capabiliW. Without a focus on predictive performance, the 2019 model barelv out-performed 

random chance, whereas the 2021 model tuns in better performance bv a wide margin. The interpretation of the ROC 

curves can be thought of in terms of the fraction of non-ignition locations Vou would need to harden (x-axis) to ensure that 

VOU harden some fraction of ignition locations (v-axis), thus avoiding them. The steeper the curve, the lower the overhead 
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of work done that doesn’t avoid ignitions. The circled areas of each figure demonstrate that following the 2019 model to 

address 50% of locations that will have ignitions would require also addressing roughly 50% of sites that would not have 

them, whereas the conductor-involved model could be used to address 50% of ignition locations while addressing just over 

20% of non-ignition locations and the vegetation-caused ignition model could do the same with addressing around 30% of 

non-ignition locations. With billions of dollars being applied to hardening the grid, such performance can yield significant 

gains in the risk performance of dollars spent. 

2019 model predicting 2019 2021 model predicting 2019 
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FIGURE 17: RECEIVER OPERATOR CURVES (ROC) FOR OUT-OF-SAMPLE PREDICTION OF 2019 IGNITION LOCATIONS, 2019 MODEL 

(PANEL A) VS 2021 CONDUCTOR-INVOLVED (PANEL B) AND VEGETATION-CAUSED (PANEL C) 

5.5.4 Discussion: Overlapping Risk Between the Two Models 

The Vegetation-caused Ignition Risk Model, with detailed documentation found under Appendix 1: Vegetation-caused 

Ignition Risk Model 2021 and the Conductor-involved Risk Model, with detailed documentation found under Appendix 2: 

Conductor-Involved Ignition Risk Model 2021 are similar in philosophy and implementation. It is natural to ask how risk 

results from each model could be combined to capture a more comprehensive profile of risk informed by both vegetation- 

caused and conductor-involved ignitions. However, it is important to bear in mind that the models were developed 

separately in the service of EVM planning efforts within Vegetation Management and Asset Hardening planning efforts 
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within Asset Management and their training data sets of ignitions data overlap. The Vegetation-caused Ignition model 

was trained using ignition events that were known to be caused by vegetation. The Conductor-involved Ignition Risk Model 

was trained using ignition events that involved conductors. Therefore, the models share the set of ignitions that are both 

vegetation-caused and involve conductors. Indeed, vegetation-caused ignitions involving conductors - wires down in 

particular - are the vast majority of ignition events used to train both models. For this reason, simply adding the risk values 

from both models together without re-calibrating the result would double-count ignition risks (or mitigations applied to 

prevent them). 

The problem of double counting is illustrated by the Venn diagram (Figure 18) depicting the ignition data used for the EMV 

Risk Model and the Conductor Risk Model. Vegetation-caused ignitions that impacted conductors are found in the inputs to 

both models, so the P(ignition) and E[ignition] (expected number of ignitions) values for each model cannot be cleanly 

"added" into a bigger picture view. 

EVM model: Ignitions Conductors model: Ignitions 

caused by vegetation involving conductor failures 

Veg; not Veg; Not veg; 

conductors conductors conductors 

FIGURE 18 - VENN DIAGRAM COMPARING EVM AND CONDUCTOR MODELS 

The solution to the double-counting described above is to break the ignitions into the three categories revealed by the 

Venn diagram and model each separately, using the "sum" of those results to guide planning and risk mitigation across each 

category. Exactly that type of model is under development under the name "Composite Model". See the Future Work 

section for more details. 

6 Maturity Survey Areas of Improvement 
Key improvements with the 2021 Wildfire Risk Model have advanced capabilities in three CPUC Utility Wildfire Mitigation 

Maturity Survey areas and laid the groundwork for two others. 

6.1 Key Improvements 

Ignition Risk Estimation. Ignition probabilities are now based on a quantitative model for two of the failure modes 

identified in the RAMP wildfire risk bowtie. These ignition models are developed at the 100-meter pixel granularity that can 

be aggregated to circuit segment and circuit level views. As additional models are added to represent more failure modes 
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the modeling of ignitions will be become more complete. Precision metrics to measure the predictive power of the model 

have also been developed to track this improvement over time. 

Estimation of Wildfire Consequences on Communities. Wildfire consequence is now produced at the 100-meter pixel 

granularity based on acreage and structures. Based on an 8-hour Technosylva simulation, the consequence scoring is 

developed with fire spread acreage, structure, rate of spread and flame length. 

Estimation of Wildfire and PSPS Risk Reduction Impact of Initiatives. The quantitative wildfire risk values produced with 

the ignition probability and wildfire consequence models now allow for calculation of the risk reduction provided by 

mitigation alternatives. Prior risk model risk scores only provided a relative ranking but lacked quantitative ability to 

measure risk. By applying both Subject Matter Expert and data informed effectiveness values for each mitigation 

alternative, risk reduction for mitigation alternatives can be estimated. As data is collected on the performance of wildfire 

mitigations, such as system hardening, risk reduction values will be determined based on quantitative models. 

6.2 Future Improvements 

Risk-Based Grid Hardening and Cost Efficiency. Building on the quantitative risk values, future model improvements will 

enable the development of RSE values for mitigation alternatives. 

Portfolio-Wide Initiative Allocation Methodology. MAVF calibrated risk scores provide the framework for the development 

of risk scores representing the portfolio of risks. In the future, a grid location or circuit segment would have a wildfire risk 

score but also a public safety risk score or a reliability risk score. These values will enable a portfolio-wide allocation of risk 

mitigation plans tuned to most efficiently reduce risk. 

7 Future Work 
The risk modelling team has already initiated work on the 2022 Wildfire Risk Models. The key area for improvement in the 

2022 model is to enable the combination and comparison of risk scores for individual risk drivers. For this reason, the 2022 

model is often referred to as the Composite Model as it will assemble the vegetation and conductor equipment failure risk 

models into a risk model framework which will allow for a granular composite risk score. This risk score will allow for the 

identification of high-risk circuits segments but also insights in to whether vegetation or equipment risk is the predominant 

driver. Coupled with improved abilities to measure risk reduction for mitigation alternatives and the 2022 model will allow 

comparison of the effectiveness of vegetation mitigations with equipment mitigations. 

Planned additional improvements include: 

¯ additional equipment failures models for poles and pole mounted transformers 

¯ inclusion of LiDAR data and tree species data 

¯ inclusion of inspection and repairs tag data 

¯ inclusion of PSPS consequence dimensions to assess holistic mitigation effectiveness 

¯ re-introduction of a new egress model to complement the wildfire consequence data set 

The aim with these improvements is to further mature PG&E’s wildfire risk modeling capabilities and the effectiveness of 

mitigation workplans. As these aims are realized, risk models will provide ever more actionable insights that will enable 

PG&E to more effectively target and deploy wildfire mitigations for the benefit of the State of California and its residents. 

For the two models documented herein, the composite solution would be to model the three areas of the Venn diagram 

(see Figure 18 above) separately and composite their results as needed into representations suitable for EVM or asset 

hardening. Figure 19 below illustrates that separation. 
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3 1 2 

Veg; not Veg; Not veg; 

conductors conductors conductors 

EVM=I+3 
Asset hardening = 1 + 2 

FIGURE 19 -- COMPOSITE MODEL SUBSET CATEGORIES FOR VEGETATION-CAUSED AND CONDUCTOR-INVOLVED IGNITIONS 
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8 Project Team 
PG&E’s 2021 Wildfire Risk Model is a collaborative effort bringing together internal PG&E risk teams and external experts in 

risk and data science lead by the Risk and Data Analytics team within PG&E’s Electric Operations Asset Management group. 

The team consists of the following external and internal groups and individuals. 

Convergence Data Anal~ics (lead contractor) - Led by~PhD, UC Berkeley. Convergence Data Analytics was 

founded out of the Stanford Sustainable Systems Lab and specializes in bridging data science and analytics insights from 

academia into the utility industry.~has a background in software development, consulting, and data-driven modeling 

and has provided technical leadership and oversight for the model development. Their company website is: 

http://www.convergenceda.com/ 

Individual consultant members of the CDA team with expertise in asset failure modeling, meteorological and ecosystem 

data preparation, event classification and arrival process modeling and data engineering. 

~- PhD, UC Berkeley, is a Data Scientist and Engineering specializing in Electric Power Systems and risk and 

decision analysis. 

~- PhD, UC Berkeley, is an expert on plant distribution modeling with specialization in Plant Biogeography and 

Fire Ecology. 

~PhD, University of Kentucky and former staff scientist at Lawrence Berkeley National Lab, is an expert in 

statistical modeling including Bayesian modeling, statistical sampling and validation methods. 

Salo Sciences -~ PhD Stanford, and ~ PhD Michigan, and their team bring expertise in remote 

sensing of forests, application of machine learning to predicting utility-caused ignition. His team provided the early 

technical implementation of the Maximum Entropy algorithm.~ leads model development for the California 

Forest Observatory. Their company website is: https://salo.ai 

Presence Product Group-~ MBA Kellogg School of Management, is a Product Manager with expertise in 

software project management and execution. He provides project management, development of custom tooling for data 

engineering and data science, and technical support for the project’s team of data scientists and analysts. 

https://presencepg.com/ 

~- Information Software Architect Sciences, 

~- Full stack Software Engineer 

PG&E Strategic Data Science Team - Led by--Director and the following team members: 

~PhD, UC Santa Barbara - Expert Data Scientist 

~PhD, University of Illinois at Urbana-Champaign - Expert Data Scientist 

PG&E Risk Management and Safety Team - Led by--Senior Manager and the following team members: 

~- Expert Data Scientist 

PG&E Risk and Data Analytics Team - Led by~ PE, Senior Manager and the following team members: 

~ PE - Senior Data Scientist 

~- Principal Manager Product 

~- Expert Data Analyst 
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Appendix 1: Vegetation-caused Ignition Risk Model 2021 

9 Executive Summary 

The PG&E Risk and Data Analytics (RaDA) team developed this Vegetation Risk Model to estimate the risk posed by fire 

season (Jun. :~ - Nov. 30) ignitions caused by vegetation interacting with overhead conductor segments of the distribution 

grid within the high fire threat district (HFTD) Tier 2 & 3 areas. The model predictions inform the Vegetation Management 

team of the locations to be at elevated risk from vegetation-caused ignitions in a typical, or planning, year. 

The Vegetation Risk Model (also referred to simply as "the model" in this document) is based on the definition of Risk = 

(probability of ignition) x (consequence of ignition) at all locations along the grid. More specifically, it is based on the 

conditional probability that a vegetation-caused CPUC-reportable ignition will occur within a fire season period within a 

given :~OOm by :~OOm pixel location containing overhead conductors in HFTD tiers 2 and 3 multiplied by a spatial rendering 

of EORM’s MAVF CoRE values from tranches related to wildfire. The ignition probabilities were estimated using a maximum 

entropy algorithm (described in detail in Appendix 3: Ignition Probabilities Methods 2021) and the consequence values 

were derived using a spatially gridded set of fire simulations to determine expected fire severity (described in detail in 

Appendix 4: Ignition Consequence Methods 2021). Model features (also referred to as variables or covariates) include 

high-spatial-resolution environmental and meteorological data. The key features driving predicted probabilities and risk are 

tree height, vegetation dryness, and atmospheric dryness. 

As is typical of risk models, risk is calculated by multiplying probability by consequence. To model the probability of ignition 

and the consequence separately, both calculations look at a variety of environmental conditions and asset data that may or 

may not influence these two quantities. A data driven approach can expose which environmental conditions have actual 

influence. The conditions under which consequence is high need not be the same for which ignition probability is high. This 

applies to both time and location considerations. 

Risk results were calculated at each 100m by 100m pixel and aggregated to larger segments of the distribution system, 

called circuit protection zones (CPZs). A spreadsheet of results for each CPZ, and geospatial files of the results, were 

developed and provided to the Vegetation Management (VM) team to enable the use of probability, consequence, and risk 

results to inform the planning of EVM mitigations that are intended to reduce the risk of vegetation-caused wildfires. 

The conditions for ignition spread, including hot dry weather, small dry fuels mixed in with more substantial fuels to "ladder 

into6", and significant winds are partially at odds with the conditions found within forested areas, which tend to be more 

moist, lower temperature, and less windy than more open areas. This tension manifests in the results, were the densest 

stands of tall trees tend to feature elevated ignition probabilities, but do not feature the most extreme fire spread and 

consequence values. More open areas with mixed vegetation types tend to be the locations with significant ignition 

probabilities and significant consequences due to spread. 

In a nutshell and very broadly speaking, ignitions near but not deep within forested areas are found to be the "riskiest" 

However, the consequence data tends to dominate over the ignition probabilities in the risk value calculations (risk 

correlates more strongly with consequence), as consequence values range over more orders of magnitude than the 

probability of ignition values. If you are prioritizing directly by risk, you are largely prioritizing by consequence, suggesting 

that a region with attributes that have high potential for catastrophic results (i.e. large or intense spread after an ignition) is 

sufficient cause for prioritization of work. 

~ In fire science ladder refers to the ability of a fire to progress from one fuel source to another 
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Another potentially counter-intuitive finding is that prevailing wind speeds are not found to be strongly predictive of 

annualized ignition probabilities. Our ignition probability model pools data from several fire seasons into a single ignitions 

data set to discern the difference in environmental conditions and asset characteristics associated with ignition locations. 

Due to these data requirements, the environmental conditions are shared by all ignitions - they are not drawn from the 

weather at the time of the ignitions, but rather from the typical climate in the location of the ignitions. The variability they 

capture is spatial, not temporal. With that context, we observe that winds tend to be stronger near the coast, where other 

contributors to fire risk, like heat and dryness, tend to be muted. We also observe that vegetation in windy areas tends to 

be shorter and stouter or at least more robust to wind. Finally, we note that forested areas are a form of "surface 

roughness" that disrupts and slows winds. In other words, tall/dense stands of trees tend to be negatively correlated with 

wind. 

The primary method used to evaluate the predictive algorithm’s goodness-of-fit was the receiver operator curve - the area 

under the curve (ROC-AUC) metric. The ROC curve measures the ratio of true positives rate to the false positive rate. The 

area under the ROC curve of 0.5 represents random chance and 1.0 represents perfect prediction. The full ignition dataset 

used to train the model achieved an AUC score of 0.737. Using a random split of the ignition dataset into separate train 

(75%) and test (25%) subsets (selected at random from all ignition inputs), the model achieved an AUC of 0.727 when 

evaluated against the training data, and an AUC of 0.716 when evaluated against the testing data, close enough to affirm 

good out-of-sample predictive power. Yet another out-of-sample evaluation, of the model trained on the entirety of the 

2015-2018 dataset of ignitions, against some ignition data from 2019, yielded an AUC of 0.64. 

10 Introduction 

10.1 Background 

Wildfires are an increasing problem in California with larger fires occurring more frequently (Figure 20). Before PG&E began 

conducting Public Safety Power Shutoff (PSPS) events to prevent vegetation from causing ignitions that could lead to a 

catastrophic wildfire, there were 476 vegetation-caused ignitions from 2015 through 2018 within our service territory. 405 

of those occurred during the June through November period commonly recognized as the period most likely for ignitions to 

grow into wildfires and 222 occurred within HFTDs, nearly all of which damaged conductors. Because vegetation caused 

ignitions have historically been a significant contributor to ignitions within PG&E territory, PG&E’s current commitment to 

reduce the likelihood (probability) and consequence of catastrophic wildfires makes it imperative that we understand the 

risks associated with vegetation-caused ignitions and use that information to inform the prioritization of mitigation through 

EVM. 
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Number of acres burned per year (in millions) 

SOURCE CAL FIRE 

FIGURE 20 - TOTAL ACRES BURNED IN CALIFORNIA PER YEAR FROM 1950 TO 2017 

PG&E conducts a vegetation management program to manage the risk of nearby vegetation contributing to electric grid- 

caused catastrophic wildfires within the service territory. For example, routine vegetation management work requires 

clearance of 4 feet around power lines in high fire-threat areas, with a recommended minimum clearance of 12 feet or 

more at time of prune to ensure compliance year-round. Hazardous vegetation such as dead or dying trees that pose a 

potential risk to the lines are also removed. 

In response to the increasing wildfire threat the state of California faces, PG&E started an Enhanced Vegetation 

Management (EVM) program in 2019 that applies more stringent criteria. For example, overhanging limbs and branches 

directly above the lines are removed. Additionally, the condition of all trees tall enough to strike the lines, is also evaluated 

for is assessed to determine which require mitigation work7. 

10.2 Project 

PG&E’s system has approximately 25,000 miles of electric distribution grid lines in the high fire threat district (HFTD). The 

EVM program can work approximately 1,800 miles of distribution grid lines per year (based on approximate mileage worked 

see https://www.p~e.com/en US/safety/emer~ency-preparedness/natural-disaster/wildfires/ve~etation- 

ma na~ement.pane 

PG&E Internal Information © 2021 PG&E Corporation. All rights reserved. Page 41 of 133 

P G E -D IXl E -N D CAL-000006587 



in 2019). To enable PG&E to not only reduce wildfire risk, but to reduce it quickly, the EVM program needs to differentiate 

between locations with comparatively higher and lower risk within HFTD areas. To this end, PG&E created a vegetation- 

caused ignition risk model to support the EVM team’s process of risk-based planning and prioritization of their work. 

As is typical is risk modeling projects, risk equals the probability of an event times the consequence of that event. The need 

to differentiate risk by location necessitates a modeling approach that captures how local conditions determine the 

probability of and consequences from an event. 

Ignition events were modeled, and specifically, those ignitions that met the CPUC reporting requirement. A model of 

consequences is employed, described in Appendix 4: Ignition Consequence Methods 2021and focus here on describing a 

model for the probability of a vegetation-caused ignition. 

A maximum entropy (MaxEnt) model is used for the probability, described in Appendix 3: Ignition Probabilities Methods 

202l and combine it with the consequence. This document also includes a discussion of the resultant risk profile from 

vegetation, and the manner in which it can inform EVM work. 

As stated above, the model described in this document was built to support planning across one to many years of EVM 

effort. Our results are expected risk per-fire-season, inclusive of all weather conditions experienced during each fire season. 

For risk calculations, the model first makes localized predictions of fire-season ignition probabilities, given environmental 

conditions and asset attributes. We make these estimates usin,~ a spatial model that works with $O0m x lO0m "grid f~ixels". 

Then the ignition f%obabilities are multiplied through by fire consequence data8, based on worst-fire-weather simulation 

outcomes for the same $O0m pixel locations. Thus.. the model computes risk-per-pixel values across all modeled grid pixels - 

every lO0m square containing distribution grid infrastructure within the HFTDs in this case. 

The model then assigns the computed "pixel risk" across all trees in the vegetation management database (VMD) found 

within each pixel. The risk associated with each tree can then be aggregated to provide risk data at the circuit protection 

zone (CPZ)level. 

10.3 Document Usage 

This appendix is intended for both technical and non-technical audiences to explain the purpose of the model, summarize 

the methodology used to develop the model, and highlight the performance of the model. 

Additional sections are referenced, and should be consulted to gain a full understanding of the model and process, the 

context in which this work was performed, and closely related work- these include: 

¯ Section 2- Summarizes the regulatory, management, and analytical context in which the work described in these 

documents was performed, introduces the team and related work. 

¯ Appendix 3: Ignition Probabilities Methods 2021 - Details MaxEnt modeling and Circuit Protection Zone (CPZ) 

aggregation. 

Appendix 4: Ignition Consequence Methods 2021- Details modeling of wildfire consequence. 

o Spatial Wildfire Consequence 2021 - Lunch n’ Learn presented 2020_10_16 (PG&E EORM, 2020) - PG&E 

internal presentation. 

o Spatial Wildfire Consequence 2021 - Lunch n’ Learn presented 2020_10_16 (PG&E EORM, 2020) - PG&E 

internal presentation. 

8 Spatial fire consequence data is based on MAVF framework tranche categories and values mapped to specific locations 

using historical data on Red Flag Warning Locations and fire spread simulations at points separated by 200m all along the 

distribution grid in H FTD tiers 2 a nd 3- see "Methods- Spatial Consequence 2021" for details. 

PG&E Internal Information © 202! PG&E Corp0#ati0n, All rights reserved, Page 42 of 133 

PG E-DIXI E-N DCAL-000006588 



~ Pacific G~s and 
Electric Company" 

2021 Wildfire Distribution Risk Model Overview 

¯ EVM Risk Model 2021 - Lunch n’ Learn presented 2020 10 21 (PG&E Risk and Data Analytics, 2020) - PG&E 

internal presentation related to this document. 

¯ EVM Risk Model 2021 - Utility Analytics conference presented 2020 10 29 (PG&E Risk and Data Analytics, 2020) 

- Utility Analytics conference presentation related to this document. 

¯ Appendix 2: Conductor-Involved Ignition Risk Model 2021 - Details a model similar to that described herein, but 

focused on wildfire risk related to conductor failure. 

o Conductor Risk Model 2021 - Lunch n’ Learn presented 2020 10 28 (P(3&E Risk and Data Analytics, 

2020)- PG&E internal presentation 

10.4 Applications 

The predicted risk values for each CPZ can be used to inform EVM planning decisions to reduce wildfire risk. The VM team 

can use the risk predictions to identify those CPZs with elevated risk of an annual ignition event involving vegetation when 

developing wildfire mitigation workplans. 

This tool is also intended to provide a method for quantifying the risk reduction achieved through planned and executed 

EVM work. 

11 Vegetation Ignition Probability Model 
This section summarizes the most important characteristics of the vegetation-caused ignition risk modeling performed by 

highlighting data and methods adopted through an iterative and consultative process of engagement between RaDA and 

Vegetation Management staff. 

11.1 Modeling Framework 

The Vegetation Model is a classification model that identifies the likelihood of at least one ignition per year at a given :~OOm 

by :~OOm pixel location. More specifically, the Vegetation Model models the conditional probability that a reportable 

ignition will occur within a given year within a given pixel location. 

The model was fit using a presence-only maximum entropy (MaxEnt) algorithm. The algorithm is based on the assumption 

that the most unique characteristics of locations that have experienced ignitions in the past will predict the locations that 

experience ignitions in the future. This algorithm is explained in more detail in Section 22.2. 

The model was trained using reportable ignitions, as defined by the California Public Utilities Commission (CPUC) and 

outlined in Section 22.2. The ignitions were filtered for ignition events associated with an vegetation interacting with grid 

assets, as identified during the follow-up investigation. The ignitions were also filtered by date, using only ignition events 

that occurred during the fire season (Jun. :~ - Nov. 30). Ignitions data ranged from 20:~5 to 20:~9, and 20:~9 ignitions data 

were withheld from the model training dataset to use as a test dataset. 

11.2 CPUC-Reportable Ignitions 

CPUC reporting requirements are limited to reportable fire events that meet the following criteria: 

¯ A self-propagating fire of material other than electrical and/or communication facilities, 

¯ The resulting fire traveled greater than one linear meter from the ignition point, and 

¯ The utility has knowledge that the fire occurred 

Fires that caused damage to utility facilities and whose ignition is not associated with utility facilities are excluded from this 

reporting requirement (CPUC, 2014) 
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11o3 Model Assumptions 

Risk that can be addressed by the EVM program (computed per-pixel) is assumed to exist only in those pixels where the 

vegetation management database (VMD) has recorded trees~ To be clear, the probability and consequence components of 

risk are computed for all grid pixels within the HFTDs but can only be assigned to trees that are known to the VM team. 

¯ Some fraction of risk is assumed non-addressable through EVM. This could be due to imperfect information (trees 

that look healthy but aren’t}, practical constraints (landowners refusing to allow tree work), fluke events (trees not 

deemed close enough or tall enough to hit the lines contacting them anyway during storm events - we hear reports 

of branches blown uphill for example), or future growth that could lead to impact over the risk planning horizon. 

¯ Tree work is assumed to change the probability of an ignition (by reducing the likelihood that the tree contacts and 

harms a Distribution line), but not change the consequence of ignitions, so risk reduction from EVM can be 

expressed in terms of a lower P(ignition). 

11o4 Model Features 

Model covariates includes to following, which are described in detail in the "Pool of Covariates" section of Appendix 3: 

Ignition Probabilities Methods 2021: 

¯ local-topography - whether the local areas is uphill or downhill from its surroundings 

¯ precipitatiomavg- annual average precipitation 

¯ specific-humidity-avg- annual average humidity 

¯ tern perature-avg- annual average temperature 

¯ tree-height-avg- average of remote sensed tree height within each lOOm x lOOm pixel 

¯ tree-height-max- maximum of remote-sensed tree height within each lOOm x lOOm pixel 

¯ vapor-pressure-deficit-avg- annual average VPD, where VPD is a metric of dryness 

¯ gusty-summer-day-pct- the percentage of all summer days with hourly gusts over 20 mph 

¯ windy-summer-day-pct - the percentage of all summer days with sustained hourly wind speeds over 15 mph 

¯ wind-avg - hourly average wind speed at lOm, averaged from 2016 to 2018 

¯ wind-max- annual 99th percentile hourly wind speed at !Om, assessed over 2016 to 2018 

¯ $O0-hour-fuels-avg - the G RIDMET variable use is known as fm-lO0, and is a standard fire modeling metric of fuel 

dryness for fuels about 1-3" in diameter- intermediate sized fuels, averaged for 2014-2056 

¯ :lO00-hour-fuels-avg - GRIDMET fm-lO00, as defined above, but for 3-8" in diameter, averaged for 2014-20!6 

¯ burn-index-avg - the US, the National Fire Danger Rating System (USNFDRS) Burning Index (BI), averaged for 2014- 

2016 

¯ energy-release-avg- USNFDRS Energy Release Component (ERC), averaged for 20!4-2016 

¯ hftd - categorical variable identifying tiers 2 and 3 

¯ impervious - NLCD imperviousness products represent urban impervious surfaces as a percentage of devel~ ped 

surface over every 30-meter pixel in the United States, scaled to 100m 

¯ Outage data is drawn from ILlS and vegetation-caused outage reports; ignition data is drawn from 2015-2018 CPUC 

re portable ignitions. 2019 data used for out of sample performance testing. 

¯ Only ILlS entries and ignitions flagged as "vegetation caused" are used; and 

¯ Only fire season (Jun. 1 - Nov. 30)outages and ignitions are used. 

¯ Weather and environmental covariates are drawn from public data sources, like gridMET, RTMA, the National 

Elevation Database - NED, the National Land Cover Database - NLCD. 

Tree cover and height drawn from Salo Science proprietary data derived from satellite imagery using computer 

vision algorithms. 
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¯ Vegetation-caused ignitions from 2015-2018 within HFTDs used as "presence data" inputs for MatEnt model. 

¯ Rasterized weather, environmental, and tree data for just HFTD grid pixels used as covariates for MaxEnt model. 

¯ Model outputs calibrated via tau calibration (see Methods - Ignition Probability Modeling 2021) into probability of 

ignition for every HFTD grid pixel. 

¯ Ignition probability pixel values paired with corresponding pixel values of spatial wildfire consequence and 

multiplied to produce per-pixel risk. 

¯ Risk values mapped spatially to trees in the VMD. 

¯ Risk values and supporting metadata rolled-up to CPZ-level summaries, delivered as official model results. 

11.4.1 EVM 2019 Trees 

A list of trees worked in 2019 by the EVM program from the Oracle EVMG IS database is utilized as a reference scenario of 

EVM work, but not as a source of tree locations (see VMD 2019 candidate trees for that source). The tree data was filtered 

as follows: 

¯ The tree work date (TW_WORK_DATE) was in 2019; 

¯ The tree work was completed; and 

¯ The tree diameter at breast height was at least 4 inches. 

¯ The tree data is not from LiDAR, but rather inspections 

The tree diameter at breast height criterion was provided by VM staff as a criterion to distinguish between tree work where 

branches or the entire tree is removed, versus brush clearing. Brush is lower vegetation that does not pose a risk for 

interacting with live wire or causing a pole to fall, but rather pose a danger by providing ignitable fuel for a fire. 

This data represents the entirety of the trees that have undergone EVM work in 2019. There are 133,666 tree records in our 

data extract - all of them record latitude/longitude coordinates. VM confirms that the number of records is a good 

approximation of the number of trees worked per year. 

11.4.2 VMD 2019 candidate trees 

The data set is the source of tree presence/absence and species used for the Vegetation Risk modeling work. The risks are 

calculated for all grid pixels in the HFTDs but are applied to the EVM 2019 trees and summarized per-CPZ for the purposes 

of quantifying "work" per CPZ for prioritization and planning. 

Vegetation work at PG&E is informed by inspections that cover the entirety of every circuit on the grid every year. The 

inspections are recorded in the VMD SQL-SERVER database. Each inspection records a number of trees, some tagged as 

requiring work, others tagged as not. 

We take the set of trees tagged in the VMD as requiring work during 2019 to represent the set of trees that are candidates 

for having EVM work performed on them (at the time of the modeling effort, 2020 inspections were not completed). 

Much like the EVM data pull, we consider only trees where the diameter of the tree at breast height (DBH) is at least 4 

inches. This is done to ignore brush clearing instances. Further, we consider only maintenance inspections since we were 

informed that they are the only inspections that are comprehensive. These considerations are made to cover the entire tree 

population presenting risks to the grid. 

Tree inspections can happen several times a year in the same location. We pick the first inspection of 2019 for each location 

to get the set of trees closest to what it was at the start of 2019. 

¯ 3.9M VMD 2019 candidate trees, aka trees inspected in 2019 
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¯ 2.3M of those are within HFTD tiers 2 and 3 

¯ 804k of those are trees considered EVM regional priority species 

11.5 Model Evaluation 

The primary method used to evaluate the model’s goodness-of-fit, and therefore the suitability for using as a prediction 

tool, was the ROC-AUC (Receiver-Operator Curve- Area Under the Curve) metric. 

The receiver-operator curve based on the prediction of the training data for the model is depicted in Figure 21 below. A few 

performance metrics like the area under the ROC curve, precision and recall are listed beneath it. 

Sensitivity vs. i - Specificity for veg._ignition_summer 

Training data (AUC = 0.737) ¯ 
1.0                                                                 Random Prediction (AUC = 0.5) ¯ 

0.9 

0.1 

0.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
1 - Specificity (Fractional Predicted Area) 

F~GURE 21 - ROC CURVE FOR THE IGNITION PROBABILITY MODEL RESULTS. DEPICTS THE TRADEOFF BETWEEN "TRUE 

POSITIVE" FRACTION ON THE Y-AXIS (THE FRACTION OF ALL IGNITIONS IN PREDICTED BY THE MODEL) VS. THE 

FALSE POSITIVE FRACTION (THE FRACTION OF NON-IGNITIONS PREClTED 

ROC-AUC: 0.737 (the area under the ROC curve 0.5 is random guessing; 1.0 is perfect prediction) 

precision: 0.00038 (the fraction of all predicted high ignition risk locations at 0.95 recall that experienced an ignition) 

recall: 0.960 (the fraction of all ignition identified by the model when using an omission rate of 0.95) 

Note that the threshold where the logistic is interpreted as a 1 is theoretically tuned to recall 0.95 of the events. Thus, with 

this model’s recall, we are looking for a number close to 0.95 to confirm that the expected behavior is seen empirically. 

A separate run that trained on 75% of the ignitions data, selected at random and tested on the other 25% achieved an in- 

sample AUC of 0.727 and test sample AUC of 0.716, so we do not believe that the model is significantly over-fitting the 

training data and is suitable for use in a predictive setting. 
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11.5.1 Permutation Importance (of Covariates) 

The permutation importance (sensitivity of the model to the values in the underlying training data) is defined to be the 

decrease in a model score (a chosen performance metric) when a single feature value is randomly increased or decreased. 

The contribution for each variable is determined by randomly permuting the values of each variable among the training 

points (both presence and background) and measuring the resulting decrease in training gain - a metric of model 

performance. This technique benefits from being model-agnostic and can be calculated many times with different 

permutations of the feature. We can use permutation importance to identify which of the variables studied has the 

greatest predictive effect upon ignition probability. As seen below, tree-height-max, lO0-hour-fuels-avg, and vapor- 

pressure-deficit-avg are the covariates whose values the model predictions are most sensitive to. In other words, the model 

finds the presence of tall trees in dry areas to be most predictive of vegetation-caused ignitions. 

The complete description of all input variables is described in the "Pool of covariates" section in Appendix 3: Ignition 

Probabilities Methods 2021. The permutation importance of each model parameter is displayed below: 

TABLE 4 - PERMUTATION IMPORTANCE OF MODEL FEATURES 

1 tree-height-max 26.1 

2 100-hour-fuels-avg 24.1 

3 vapor-pressure-deficit-avg 21.6 

4 gusty-summer-day-pct 6 

5 hftd 4.2 

6 precipitation-avg 3.1 

7 impervious 2.8 

8 specific-humidity-avg 2.4 

9 burn-index-avg 2.3 

lO wind-max 1.9 

11 temperature-avg 1.6 

12 windy-summer-day-pct 1 

13 local-topography 0.8 

14 tree-height-avg 0.8 

15 1000-hour-fuels-avg 0.6 

16 energy-release-avg 0.4 

17 wind-avg 0.2 

11.5.2 Jackknifed Model Results 

A model’s "jackknifed" performance is computed by systematically excluding each covariate (one at a time) and re-running 
the model to determine the decrease in model performance absent the missing covariate - the greater the decline in 

performance, the more important that covariate is to the overall model. 

This technique can also establish how well each covariate explains the results (i.e. vegetation caused ignitions) when it is 

the only covariate in the model. Figure 22 below depicts the jackknifed performance (training gain is a metric of model 

performance - the higher the better) of the ignition probability model, with the turquoise bars representing the model 
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performance when each covariate is left out and the dark blue bars representing the model performance when each 

covariate is the only explanatory variable. Both of these categories can be compared to the model performance of the full 

set of covariates at the bottom in red. From this we can see that "tree-height-max" is the best single covariate as well as the 

one whose absence most degrades the model performance. With all other variables intact, the loss of vapor pressure deficit 

degrades model performance by the second greatest amount, despite not performing that well by itself. One can also verify 

that HFTD and impervious ground cover (i.e. non-flammable) are particularly important to the model’s final performance. 

Jackknife of regularized training gain for veg._ignition_summer 

Without variable ¯ 
100-hour-fuels-avg With only variable ¯ 

1000-hour-fuels-avg With all variables ¯ 

burn-index-avg 

energy-release-avg I                 I        I I I 
gusty-summer-clay-pet | 

hftd 

impervious ¯ 

local-topography 

precipitation-avg 

specific-humidity-avg 

temperature-avg 

tree-heig ht-avg 

tree-height-max 

vapor-pressu re-d eric it-avg 

wind-avg I 

wind-max 

windy-summer-day-pct 

0.00     0.05     0.10     0.15     0.20     0.25 
regularized training gain 

FIGURE 22 - JACKKNIFE OF REGULARIZED TRAINING GAIN FOR VEGETATION IGNITION MODEL 

12 Methodology 
For risk determination purposes, we identify probabilities of ignition for each lOOm x lOOm grid pixel in the HFTDs and 

multiply them by spatially resolved consequence data for each pixel to determine pixel-specific risk, then aggregate risk to 

CPZs to determine the CPZ- specific ignition risks across the HFTD area. 

12.1 Circuit Protection Zones (or Circuit Segments) 

Circuit Protection Zones (CPZ) were selected as the appropriate segmentation of the grid to report risk results because they 

are the most granular scale at which outages are reliably captured by the system protective devices- and outages are an 
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im porta nt factor fo r m odel training. Fu rtherm o re, the pre decessor 2028 model u tilized CPZs as the sma!lest aggregat io n of 

risk, so for compariso n pu rposes, the 2021 m ode! utilized the same ap proa ch of aggregating to CPZs. 

For the Vegetation Risk Model 2022 documented herein, a mid-2018 CPZ vintage was requested by stakeholders. This 

vintage selected facilitated comparison to the predecessor 202:8 model but made more challenging comparison to the: 

Conductor Risk Model 202:1, whose stakeholders selected a more modern CPZ vintage. 

More information about CPZs, their vintages, and their challenges and limitations is in Section 31. 

12.2 Estimating ProbabiLity(ignition) using MaxEnt 

Our goal is to produce high spatial resolution predictions of risk. To achieve this, we employ a Maximum Entropy (MaxEnt) 

modeling approach to train models to predict the probability of ignitions over the time frame of a single wildfire season in 

200m x lOOm pixels on a map grid. 

Our model is an instance of supervised machine learning and therefore requires learning from examples of actual events 

that occurred. We train our model on 4 wildfire seasons of ignitions, 2025 through 2018 inclusive, these are the first 4 years 

for which reportable ignitions were tracked and this approach saves the 2029 data for out of sample validation. Wildfire 

season is defined as Jun. 2 - Nov. 30, inclusive. Incidents accumulate over time, but what matters for risk assessment is the 

rate at which veg-caused failures (ignitions caused by vegetation) occur, so our model is calibrated to predict annual counts 

of fire-season veg ignition events. 

MaxEnt modeling is useful for our modeling purposes since it assigns similar probabilities of events to different locations 

experiencing similar conditions. To predict veg-caused failures in the distribution grid, we make the reasonable assumption 

that such failures likely occur in locations with conditions that are similar to those where past failures occurred. 

Comprehensive details on the modeling approach (but not the exact set of covariates we used, which are documented 

herein) can be found in Appendix 3: Ignition Probabilities Methods 2021, 

12.3 Consequence 

Wildfire consequence estimates the resulting damage if an ignition event occurs at a specific location. For this model, the 

multi-attribute value function (MAW) consequence of risk event (CORE) dataset was usea, a consequence dataset provided 

by the Enterprise and Operational Risk Management (EORM) team at PG&E that combines safety, financial, and reliability 

types of damages. More information about MAVF CoRE consequence is included in Appendix 4: Ignition Consequence 

Methods 2021. 

12,4 Risk 
As is typical in risk modeling, we define risk as: 

Risk(event) = P(event) * C(event) 

where P(event) is the probability of the event occurring and C(event) is the consequence of the event occurring. 

Since we are working with event probabilities derived from MaxEnt models for every 200m pixel along the grid, we use 

consequence data with the same spatial resolution to produce "risk per-pixel" values. 

Then we can produce an aggregate risk across a given Circuit Protection Zone (CPZ) by summing or averaging the risk values 

across the pixels within that CPZ (see Methods - Ignition Probability Modeling 2021 (PG&E Risk and Data Analytics, 2020) 

for more details on CPZs), 
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= * Consequen 
RiSkpixeI P(ignition)pixel Cepixel 

Riskcpz = ~ RiSkpixel 

FIGURE 23 - A DIAGRAM OF HOW PIXELS ARE AGGREGATED TO CPZS 

13 Risk Results 
Risk results are mapped below, with the results broken into two areas north and south of San Francisco spanning two pages 

to allow a higher "zoom level" of CPZ level risk scores. 
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FIGURE 24 - PER-CPZ RISK - RED IS HIGHER, BLUE IS LOWER 

13.1 Maxent Model Results 

Maxent is the name of the software used to run our MaxEnt models. Maxent computes on a pixel-by-pixel basis, The blue 

"grid pixels" in Figure 25 below are the grid locations (including both primary and secondary conductors) that were 

modeled in Maxent. Only grid locations are modeled, because modeling wildfire risk from PG&E assets makes no sense 

where there are no such assets. Tiers 2 and 3 are filled with orange and red shading respectively, and non-HFTD areas are 

grey. The darker grey grid pixels indicate locations of the grid, but because they are outside of HFTD 2 and 3, they were not 

modeled in this analysis. 
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HFTD 2&3 conductor locations 

FIGURE 25 - CONDUCTOR PIXELS IN BLUE, HFTD 3 IN DEEPER RED, HFTD 2 IN LIGHTER ORANGE, FOR THE COASTAL 

AREA INCLUDING SANTA CRUZ AND THE LOWER SAN FRANCISCO PENINSULA 
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2021 Wildfire Distribution Risk Model Ove~iew 

The figures below present two example Maxent raster covariates that are combined with other data in the modeling: per- 

pixel maximum tree height (Figure 26) and average wind speed (Figure 27) for the southern San Francisco Peninsula, 

including Big Basin and Santa Cruz. Note that all covariates are masked to HFTD areas (meaning non-HFTD areas are filtered 

out) because this analysis considered only those areas. 

tree height max 

FIGURE 26 - PER-PIXEL MAXIMUM TREE HEIGHT- RED IS HIGHER, BLUE IS LOWER 
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2021 Wildfire Distribution Risk Model Overview 

wind speed (long term average) 

FIGURE 27 - PER POLAR-ORBITING METEOROLOGY SATELLITES (POMS) CELL LONG TERM AVERAGE WIND SPEED - 

RED IS HIGHER, BLUE IS LOWER 

The resulting model output, the probability of vegetation-caused fire season ignitions for the same area, is depicted in 

Figure 28 below with highest ignition probabilities colored red and lowest colored blue. 
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Ignition probability 

FIGURE 28 -IGNITION PROBABILITY RESULTS PER PIXEL, RED IS HIGHER, BLUE IS LOWER. GREY LINES ARE GRID- 

PIXELS OUTSIDE HFTDS, TRANSLUCENT ORANGE AND RED AREAS ARE HFDTTIERS 2 AND 3 RESPECTIVELY. 
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lOOm pixel representation of P(ignition) output from Maxent model for North Bay is shown in Figure 29 below - red is 

higher, blue is lower, non-HFTD conductors are shown in dark grey, 

Igni~on probability 

FIGURE 29 -- IGNITION PROBABILITY PER PIXEL FOR THE NORTH BAY - RED IS HIGHER, BLUE IS LOWER COLORED GRID 

PIXELS ARE WITHIN HFTDS, DARK GRAY GRID PIXELS ARE NOT. 
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2021 Wildfire Distribution Risk Model Overview 

13.2 CPZ-level Aggregate Tree and Risk Metrics 

The "official results" from this modeling effort were rolled-up to summaries at the Circuit Protection Zones (CPZ) level. See 

section 31 for details of the CPZs to which we aggregate model results. 

Because the VMD 2019 trees data set is a list of trees, the tree locations can be used to read out their P(ignition) and 

consequence values and then those values along with tree attributes, including their risk scores can be rolled up, or 

aggregated, to CPZ-level summaries. Those summaries cover approximately 3,000 CPZs in HFTDs 2 and 3 and can be used 

for exploring tree risks and prioritizing EVM work. 

This model covers approximately all CPZs in HFTD 2 and 3, as they existed in approximately mid-2018. This mid-2018 CPZ 

vintage was requested by stakeholders to facilitate comparison to CPZ-specific model results from the predecessor 2018 

EVM risk model. 

Figure 30 below provides a normalized histogram and density curve of the count of trees within each CPZ. Counts are 

widely varied, with most CPZs including few trees, but some CPZs include thousands of trees. 

0005 

0004 

0003 

0002 

0001 

0000 , -- ~ 
0 1000 2000 3000 4000 

I:rzorlty_tree_count 

FIGURE 30 - COUNT OF TREES PER CPZ: Y-AXIS IS THE PROBABILITY DENSITY (THE AREA UNDER THE CURVE IS 1) AND 

THE X-AXIS IS THE NUMBER OF PRIORITY TREES FOUND WITHIN EACH CPZ 

There are fewer trees in areas of high consequence: Figure 31 below shows scatter plots of per-CPZ data for all 3,000 CPZs 

analyzed where the y-axis is the count of trees in each CPZ and the x-axis is MAVF core consequence. It shows that higher 

tree counts tend to be associated with lower consequence values - in other words, there are fewer trees in locations with 

elevated fire consequences. This is as true for fire burn area as it is. For metrics like structures burned that related to 

settlement patterns (and presumably tree removal). This could be due to the fact that fire spread more readily in grasslands 

and chaparral than in forests - fire fighters talk about fuel ladders that allow fires to burn up into forest canopies (but the 

ladder doesn’t start there). Here, and in the plots to follow, we are looking at Risk, P(ignition), and Consequences all 

averaged per pixel, so that different CPZs can be compared in a fair way, despite having a variety of sizes. 
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FIGURE 31 - SCATTER PLOT OF CPZS BY CONSEQUENCE AND TREE COUNT 

Figure 32 Shows there is not as strong a relationship between P(ignition) and VMD tree density. But the highest 

P(ignition) values are generally associated with CPZs with fewer trees. This is likely due to the fact that reportable ignitions 

require dry fuels to grow to reportable proportions (1 m in extent) and areas with fewer trees tend to be hotter and dryer. 
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F~GURE 32 - SCATTER PLOT OF CPZS BY PROBABILITY(IGNITION) AND TREE COUNT 

Risk scores are dominated by consequence values. Figure 33 below plot the Risk on the y-axis and the two components of 

that risk calculation (Consequence on the left and P(ignition) on the right) on the x-axes. From these, it can be verified that 
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the Risk score is highly correlated with the Consequence and not particularly correlated with the P(ignition), although the 

areas of highest ignition probabilities are all considered lower Consequence. This has a lot to do with the fact that the 

Consequence values range over more orders of magnitude than the P(ignition) values. If you are prioritiziniI directly by 

Risk, you are largely prioritizing by Consequence, or the ability for a I~iven location to host a catastrophic wildfire. 
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F~GURE ~ - SCATTER PLOTS PER-CPZ RISK CORR£LAT£D ~ITH CONSEQUENCE {LEFT) AND IGNITION ~ROBABILITY 

(RnGHT) 

Figure 34 below illustrates the locations of relatively high and low consequence, by CPZ: It is a map of the Sierra foothills, 

depicting the CPZ per-pixel average values of the MAVF CoRE consequence metric. Consequence tends to be highest further 

west/downslope in grassy and scrubby areas at the western edge of the Central Valley. 
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FIGURE 34 - CONSEQUENCE BY CPZ - DEEPER BLUE INDICATE HIGHER VALUES, WHITE INDICATE LOWER VALUES 

Fil~ure 35 depicts P(il~nition) and Fil~ure 36 depicts tree count. Both metrics tend to increase to the east of the Central 

Valley, but they are not perfectly alil~ned. 
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mean_ignition_probability 

Tahoe 

FIGURE 35 - MEAN PROBABILITY(IGNITION) - DEEPER RED INDICATE HIGHER VALUES, WHITE INDICATE LOWER 

VALUES 
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priority_tree_count 

Tahoe 

FIGURE 36 TREE COUNT - DEEPER GREEN INDICATE HIGHER COUNTS, WHITE INDICATE LOWER COUNTS 
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14 Validation 
Risk results were reviewed by SMEs within PG&E with expertise in veg management and wildfire risk analysis. Feedback 

from these SMEs supported the adoption of the Technosylva-derived consequence dataset (Reax consequence data was 

used in the 2018 risk model) and updates to improve the delineation of CPZs within the HFTD areas. The pixel level results 

were imported into the Google Earth platform to enable a desktop analysis review of the pixel-level results along a CPZ. A 

field assessment to verify model results along two high risk CPZs was conducted. 

A governance committee was established to verify that this 2021 model was a continuous improvement when compared to 

the previous 2018 model used for veg management planning. The committee approved the 2021 model. 

As documented in the modeling sections, model performance from in-sample and out of sample runs was tabulated. The 

ROC plot from that test is reproduced below. The fact that the curves for Test data and Training data align so well and the 

AUC values are so close supports the interpretation that the model predicts well out of sample. 

Sensitivity vs, 1 - Specificity for veg._ignition_summer 

Training data (AU¢ = 0.727) ¯ 
1.0                                                       ~ 

Test data (AUC = 0.716) ¯ 
Random Prediction (AU¢ = 0.5) ¯ 
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F~GURE 37 IN AND OUT OF SAMPLE MAXENT MODEL PERFORMANCE 

Model Limitations 
¯ There is additional tree data derived from LiDAR surveys of trees in HFTD. Incorporation of LiDAR tree survey data 

was not feasible on the timeline of this 2021 model. In the coming months we hope to incorporate LiDAR data in 

the 2022 iteration of the work described in this report. LiDAR data offers a complete picture of all the trees present 

in the vicinity of the electric grid assets within HFTD, in contrast to the VMD tree data which is known to be 

incomplete. Detailed and complete information about the trees that could possibly interact with the grid, is 

expected to improve the predictive performance of our model. 
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¯ Worst case fire simulation consequence data is not technically the correct consequence data to apply to all 

ignitions because ignitions take place over a wide range of mostly low-risk weather conditions, but it is 

conservative in that it considers all ignitions under dangerous fire conditions. 

¯ In reality Vegetation Management has multiple categories of EVM work - especially branch work vs. tree removal 

based on avoiding different failure modes - branch failures, trunk failures, and root failures. We have modeled all 

vegetation-caused ignitions together, but in the future, modeling each cause category separately would allow 

Vegetation Management to better prioritize each specific categorv of work thev do. 

¯ No VM activity is permanent. Trees grow. Therefore, both the costs and benefits of VM work require careful 

consideration of the planning time frame and work repetition cadence involved. EVM work is maintained in 

subsequent vears under the maintenance program. 

o Questions: Should maintenance costs be part of the risk-spend calculations? If not, should the risks be 

modeled as increasing over time as the trees grow back? 

o For this work we are onlv looking at a single year of EVM and the associated near-term (~E vear) risk 

reduction where regrowth is not an important consideration. 

15.1 Overhead Branches vs. All EVM 
EVM covers several areas of activity, but species selection as conceived by the VM team is primarily focused on trimming 

overhead branches, and thus on the mitigation of branch-failure-caused outages and ignitions. However, some trees whose 

branches need to be worked are removed instead if the branch work would effectively destroy the tree. Unfortunately, the 

EVM DB records the outcome, not the motivation, so only approximate estimates of branch-motivated effort are available. 

Rough estimates are that up to 20% of "removal" outcomes are due to branch concerns. For our initial modeling pass, we 

have not differentiated types of EVM and tree failure types and therefore have implicitly assumed that all categories of 

EVM work benefit from species selection in the same manner. 

16 FAQ 
What is the relationship between tree count/density and ignition risk? Why doesn’t tree count play a more explicit role 

in the model? 

To model the probabilities of vegetation-cased ignitions, and the mitigation caused by EVM, you must model trees. The 

question becomes what data sets on trees are available. This modeling effort relied on two different sources of tree data: 

(1) satellite-sensed data on tree canopy heights (and presence/absence) without the ability to resolve individual trees and 

(2) Individual tree records in vegetation management’s VM database (aka the VMD). VM is clear that their database is not a 

comprehensive survey of all trees and they caution against using that data as ground truth for tree counts, so neither 

source provides an accurate count. We built predictive models using only the remote-sensed tree data and compared them 

to models that also incorporated VMD-based metrics of tree density. We found evidence that the VMD-derived tree density 

metric was leading to over-fitting on the training sample, with significant degradation of performance of out-of-sample 

prediction. Over -fitting is a situation where the trained model corresponds too closely or exactly to a particular set of data 

and may therefore fail to predict future observations reliably. The essence of overfitting is to have unknowingly extracted 

some of the residual variation (i.e. the noise) as if that variation represented underlying model structure. With indications 

that the model was over-fitting and knowing that the counts were imperfect to begin with, we opted to exclude them from 

the "official" 2020 ignition probability model. 

Further, when both VMD species outage scores and counts are included (experimentally) in the model, it is the species 

outage scores and not the counts that have higher explanatory power. As we’ve learned from VM, species matter quite a bit 

to the probability of outages and ignitions. Resources such as the Pacific North-West tree failure database (Pacific North 
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West Tree Failure Database, n.d.) and the Western Tree Failure Database (Western Tree Failure Database, n.d.) record tree 

failure data and demonstrate the different propensity of failure various tree species have. Additionally, significant research 

has been on-going regarding the mechanical properties of trees, and how it may differ depending on tree species (primer 

on trees interacting with wind, n.d.; Smiley, Matheny, & Lilly, 2012; Matheny & Clark, 2009). All this leads us to believe that 

tree density is not as significant as tree species in predicting ignitions. 

Finally, recall that we are predicting ignitions, not outages and not locations where fires spread to. Our other strong 

predictors, VPD and 100-hour fuel moisture, relate to dryness. Here is where you can get some counter-intuitive results - 

dense tree settlement requires moisture, shade and leaf litter are better at retaining moisture, and evapotranspiration 

increases humidity. Also, dense tree settlement tends to diffuse wind, lowering its impact compared to more open spaces. 

Taken all together, it is harder to get a reportable ignition within dense tree cover than in areas with dryer conditions. 

Those areas will tend to be more open, so the relationship between trees and ignitions is not simply a function of tree 

density. 

The pattern of P(ignition) presents evidence that there is tension between the count of VMD trees and the 

dryness/exposure to wind required to produce a reportable ignition. The CPZs with highest P(ignition) do not tend to be 

those with the highest count of VMD trees. 

Separate from the ignition probabilities, trees and other land cover are also included as inputs in the simulation models of 

fire spread used to compute MAVF core consequences. There is a general pattern of fires spreading more quickly in more 

"open" land cover where flame lengths (a metric of fire intensity) tend to be longer, so fires can "ladder" up from grass and 

scrub to denser fuels. Again, there is a trade-off between tree density and the early viability and spread of the fires. 

Why doesn’t wind play a more prominent explanatory role in the model? 

The model we’ve been asked to build assesses spatial differences in ignition likelihoods rather than temporal ones and 

treats all ignitions equally, with downstream conseo uences for each ignition calculated using fire simulations whose input 

weather is drawn from more than 400 of the worst fire weather days in the last 30 years. Wind covariates do help to 

explain the location of ignitions, but ignitions from wind event days make up a small minority of all ignitions and therefore 

wind event weather data does not play a prominent role in our model (unlike the PSPS model, which is entirely focused on 

short term weather). 

The model described in this document was built to support planning across one-to-many years of effort. Our results are 

expected risk per-fire-season, inclusive of all-weather conditions experienced during each fire season. The expectation 

value realized by the model’s ignition probabilities are scaled to reproduce the average annual count of vegetation-caused 

fire-season ignitions used to train the model -- and those probabilities are differentiated spatially, with weather covariates 

aggregated temporally (i.e. averages, mins, and maxes) across fire seasons. In other words, entire seasons of weather data 

are pooled together to answer the question "where is the probability oJ: ignitions relatively high and relatively !ow, over 

planning timeframes?’. 

If we had been asked to build a model that predicts the likelihood of outages given a specific weather pattern, both wind 

speed and direction would play a significant role in the predictions. However, when modeling all ignitions over longer 

periods of time, prevailing wind speeds and directions play a different role. The EVM model is built on the assumption that 

past events predict future outcomes. As long as there are a similar number of wind events in similar locations over time, the 

model is already accounting for wind impacts on annual ignitions. However, the majority of ignitions are not caused by wind 

at all and 95% of outages do not occur during NE wind event days. 

In that context, a consistent number of dangerous wind events can be presumed to occur each season in any given location, 

so it turns out that tree chara cteristics - especially height and proximity to conductors - are better predictors of the 

locations of high outage and ignition probabilities than seasonal wind summaries. This is largely due to the self-evident fact 
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that trees incapable of contacting lines does not cause trouble, but can only be modeled because we have utilized a state of 

the art remote sensed tree height data layer that makes it possible to include such specific information in our model. 

Prevailing wind conditions do also help to explain where events occur, but the tree data is a stronger predictor. One way to 

interpret our results is that they assume more outages are occurring during dangerous wind conditions than other days, but 

that all else being equal, you can rely on a similar number of such events in the future as have occurred in the past. 

What have we learned about seasonal wind and outages/ignitions for our modeling? 

(1) Prevailing wind speeds (average daily maximum gust speed, for example) are poor predictors of events. Consistent wind 

"harvests" limbs over time and impact the strength and morphology of trees, a fact that complicates the relationship 

between prevailing wind speed and vegetation contact. Also, consistent winds are also fairly common along the coasts, and 

therefore correlated with cooler temperatures and higher humidity. 

(2) Dangerous wind conditions are dangerous in part due to their novelty. If elevated wind speeds from a particular 

direction are unusual for a given location, they are more likely to contact trees with limbs that have not yet been teste& 

We find that the percentage of days with high wind gusts has predictive power on top of prevailing speeds, but the 

relationship appears to predict more incidents in areas where high gusts are less common. 

(3) In exploratory work, the locations of outages differ significantly according to wind direction. If we isolate NE or NW wind 

days, we see a very different pattern in where outages occur, and this is consistent with the interpretation that "untested" 

trees are more likely to drop limbs and that topological interactions with wind can produce different outcomes depending 

on wind direction. 

(4) ignitions that start under hot/dry/wind conditions are more dangerous than others. Areas of high consequence are 

determined by fire simulations using worst historical fire conditions, especially NE wind events. So that portion of the risk is 

captured outside of the ignition probability modeling that we’ve been discussing but is very much integrated into the risk 

scores we report. 

(5) We have just kicked off work on the next generation of our modeling- the so-called "composite model" that will be able 

to model subsets of events, like events during NE wind days, separately and do the proper bookkeeping to combine them 

into total counts. That model will allow for closer inspection of the causes and conditions associated with the 5% of outages 

that occur during NE wind events and, if needed, will allow for them to be weighted with greater importance than others in 

contr buting to overall risk. However, there are significant data, software, and methodological problems that need to be 

solved before the composite model is fully operational. 
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Appendix 2: Conductor-Involved Ignition Risk Model 2021 

18 Executive Summary 
The PG&E Risk and Data Analytics (RaDA) team developed this Conductor-involved Risk Model to estimate the risk posed by 

fire season (Jun. :t - Nov. 30) ignitions involving primary overhead conductor segments of the distribution grid within the 

high fire-threat district (HFTD) Tier 2 & 3 areas. The model predictions inform the Asset Strategy - Grid Design team of the 

locations the model has identified to be at elevated risk of an ignition event involving a conductor failure occurring in a 

given planning year. 

The Conductor Risk Model (the "model") uses a maximum entropy algorithm to predict the conditional probabiliW that a 

CPUC-reportable ignition will occur within a fire season period within a given :rOOm by :rOOm pixel location containing 

primary overhead conductors. Model features (also referred to as variables or covariates) include high-spatial-resolution 

environmental data, meteorological data, and characteristics of the primary overhead conductors. The key features driving 

predicted probabilities are percentage un-burnable ground cover, average daily precipitation, conductor age, and 

conductor material. 

The primary method used to evaluate the predictive algorithm’s goodness-of-fit was the receiver operator curve - the area 

under the curve (ROC-AUC) metric. The area under the ROC curve of 0.5 represents random chance and :t.O represents 

perfect prediction. The dataset used to train the model achieved an AUC score of 0.76 and the 20:t9 out-of-sample test 

dataset achieved an AUC score of O.74. 

As is typical of risk models, risk is calculated by multiplying probability by consequence. Risk results were calculated at each 

100m by 100m pixel and aggregated to larger segments of the distribution system, called circuit protection zones (CPZs). A 

spreadsheet of results for each CPZ, and geospatial files of the results, were developed and provided to the Asset Strategy 

team to enable the use of probability, consequence, and risk results to inform the planning of system hardening mitigations 

that are intended to reduce the risk of conductor-involved wildfires. 
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19 Introduction 

19.1 Background 

Wildfires are an increasing problem in California with larger fires occurring more frequently (Figure 38). Before PG&E began 

conducting Public Safety Power Shutoff (PSPS) events to prevent conductor contacts or failures from causing ignitions that 

could lead to a catastrophic wildfire, there were, on average, 60 conductor involved ignitions per year within the HFTD 

areas. Roughly 85% of those occurred during the June through November period commonly recognized as the period most 

likely for ignitions to grow into wildfires. Because conductor failure - whether caused by internal weakness, high wind 

loading, or a vegetation contact - has historically been a significant contributor to ignitions within PG&E territory, PG&E’s 

current commitment to reduce the likelihood (probability) and consequence of catastrophic wildfires makes it imperative 

that we understand the risk of conductor involved ignitions when considering prioritization of wildfire mitigation projects. 

Number of acres burned per year (in millions) 

FIGURE 38. NUMBER OF ACRES BURNED PER YEAR IN CALIFORNIA FROM 1950 TO 2017 

19.2 Project 

The PG&E Risk and Data Analytics (RaDA) team developed the Conductor Model to estimate the probability of a fire season 

ignition occurring across segments of the overhead distribution grid within the high fire-threat district (HFTD) Tier 2 & 3 

areas (Error! Reference source not found.37). To identify a risk output, the RaDA team combined the probability of ignition 

with the consequence of wildfire to calculate wildfire risk for each lOOm by lOOm pixel associated with primary overhead 

conductors across PG&E’s distribution system. The pi×elated risk values were aggregated to larger segments of the 

distribution system, called circuit protection zones (CPZs). 
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FIGURE 39 MAP OF THE CPUC HIGH FIRE-THREAT DISTRICTS (HFTD) 

19.3 Usage 

This section is intended for both technical and non-technical audiences to explain the purpose of the model, summarize the 

methodology used to develop the model, highlight the performance of the model, and discuss the risk results. 

19.4 Applications 

The predicted risk values of conductor failure and risk of ignition for each CPZ can be used to inform system hardening 

mitigation planning decisions to reduce wildfire risk. The Asset Strategy- Grid Design team can use the risk predictions to 

identify those CPZs with elevated risk of an annual ignition event involving a conductor failure when developing wildfire 

mitigation workplans. 

This tool is also intended to provide a method for quantifying the risk reduction achieved through the wildfire mitigation 

work related to minimizing conductor failures that can lead to ignitions. 
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19.5 Model Limitations 

While the model has improved performance in predicting ignition locations when compared to the previous model, the 

model does not: 

¯ Prescribe the type of mitigation that should be performed to reduce risk along a CPZ. 

¯ Predict the likelihood of conductor failure. This model predicts the likelihood of an ignition where the ignitions are 

filtered specifically for conductor-involved events. 

¯ Indicate the root cause of conductor failures. While the features in the model help predict where conductor- 

related ignitions are expected to occur and may give limited insight into causes of conductor failures, it does not 

indicate that the feature is causing conductor-failures. 

¯ Provide the tradeoff risk for alternative mitigation types. Currently, the training dataset used for the vegetation 

risk model has some overlap with the training dataset used for this model. This means that the risk values cannot 

be compared between the models. 

20 Conductor Ignition Probability Model 

20.1 Model Framework 

The Conductor Model is a classification model that identifies the likelihood of at least one ignition per year at a given :~00m 

by :~O0m pixel location. More specifically, the Conductor Model models the conditional probabiliW that a reportable ignition 

will occur within a given year within a given pixel location. 

The model was fit using a presence-only maximum entropy (MaxEnt) algorithm. The algorithm is based on the assumption 

that the most unique characteristics of locations that have experienced ignitions in the past will predict the locations that 

experience ignitions in the future. This algorithm is explained in more detail in Section 2:L2. 

The model was trained using reportable ignitions, as defined by the California Public Utilities Commission (CPUC) and 

outlined below. The ignitions were filtered for ignition events associated with an overhead conductor failing, as identified 

during the follow-up investigation. The ignitions were also filtered by date, using only ignition events that occurred during 

the fire season (Jun. :~ - Nov. 30). Ignitions data ranged from 20:~5 to 20:~9, and 20:~9 ignitions data were withheld from the 

model training dataset to use as a test dataset. Available full-season ignitions data ranged from 20:~5 to 20:~9, and 20:~9 

ignitions data were withheld from the model training dataset to use as a test dataset. 

20.1.1 CPUC-Reportable Ignitions 

CPUC reporting requirements are limited to reportable fire events that meet the following criteria: 

¯ A self-propagating fire of material other than electrical and/or communication facilities, 

¯ The resulting fire traveled greater than one linear meter from the ignition point, and 

¯ The utiliW has knowledge that the fire occurred 

Fires that caused damage to utiliW facilities and whose ignition is not associated with utiliW facilities are excluded from this 

reporting requirement (CPUC, 20:~4) 

20.2 Model Assumptions 

The following assumptions were made when developing this model: 

CPUC-reportable ignitions do not consider the resulting fire area or volume other than meeting the minimum size 

threshold for the CPUC reportable ignition. 

PG&E Internal Information © 2021 PG&E Corporation. All rights reserved. Page 72 of 133 

PG E-D IXl E-N D CAL-000006618 



2021 Wildfire Distribution Risk Model Overview 

2. The model does not consider the mitigation effect of PSPS events that started occurring in 2019 and may 

overpredict the annual number of ignitions as a result. 

3. The model drew upon conductor attribute data of recent vintage. Those attributes were used for all modeling, 

despite the fact that some ignitions studied occurred five years prior to the attribute snapshot. 

20.3 Model Features 

A combination of high-resolution environmental data, meteorological data, and conductor characteristics related to 

elevated failure rates were used as feature inputs to the model (Figure 40). Fach feature dataset is discussed in more detail 

in the following subsections, and the importance of the features are discussed in the following Model Fvaluation section 

(20.4). Data sets were selected based on availability. As highlighted in the Future Improvements section (7.0) future models 

will continue to work to incorporate more data sources to improve predictive power. 

¯ Un-burnable areas ¯ Precipitation ¯ Age 

¯ Tree height ¯ Temperature ¯ Material (AI, Cu, ACSR) 

¯ Dead fuel moisture ¯ Vapor pressure deficit ¯ Size (2, 4, 6) 

¯ Coastal areas ¯ Specific humidity ¯ Splices 

¯ Wind speed 

FIGURE 40 - CATEGORIES OF DATASETS USED AS INPUTS, OR FEATURES, IN THE MODEL 

20.3.1 Environmental Data 

20.3.1.1 Un-burnable 

The "un-burnable" feature is a land surface descriptor similar to imperviousness that includes surfaces that typically don’t 

ignite when a spark occurs. The feature was derived from the designated non-burnable land use types within the 2016 

LANDFIRE surface fuel model (USGS, 2016). The model feature is the portion of the lOOm x lOOm pixel identified as un- 

burnable. The LANDFIRE model’s designated non-burnable spatial layers over-layed to create the composite spatial feature 

include: 

¯ urban 

¯ perennial snow/ice 

¯ agriculture 

¯ water, and 

¯ barren. 

20.3.1.2 Tree height 

Tree height data were obtained from a third-party vendor, Salo Sciences, and the "tree-height-max" feature was developed 

by calculating the maximum tree height, in meters, for each lOOm x lOOm pixel area along the distribution grid, according 

to the processed satellite data provided by Salo. The satellite imagery was collected in November 2019. 

The mean tree height was tested as a feature in the model and removed because it did not notably contribute to the 

prediction power. 
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20.3.1.3 Dead fuel moisture 

The dead fuel moisture data were obtained from GRIDMET, and the "lO0-hour-fuels" feature was included in the model. 

The GRIDMET dataset used is a standard fire modeling metric of fuel dryness. 

The lO00-hour dead fuel moisture data were also tested as a feature in the model and removed because it did not 

contribute to the prediction power. 

20.3.1.4 Coastal 

Coastal areas were identified using a binary feature in the model. Conductor geometries are tagged with a coastal indicator 

field in EDGIS. Coastal marine layer weather conditions are a known factor in driving conductor corrosion. 

20.3.1.5 Topography 

The relative topography of the area was also used as a feature in the model. The topographic position index (TPI) was 

extracted from a United States Geological Survey (USGS) national elevation dataset (NED) at lO0-meter resolution. The TPI 

compares the cell elevation to the mean elevation for the local neighboring area (positive values are above the mean and 

negative values are below the mean) (The Nature Conservancy) 

20.3.2 Meteorological Data 

Gridded Surface Meteorological dataset (GRIDMET) (University of California, Merced) meteorological data was retrieved via 

Google Earth Engine at a resolution of 2.5 arc minutes, or roughly 4-kilometer resolution. This data is adapted, subsequently 

up-sampled to the 100 meterlOOm x lOOm grid pixel units the model utilizes. The dataset included daily meteorological 

measurements for the full 3-year time period from 2014 to 2016. The maximum entropy algorithm is purely a spatial model 

and does not include a temporal variable. For this reason, the daily values were averaged over the full time period to use as 

features representing the local climate of a location in the model. Since maximum entropy utilizes the spatial variation 

between locations to identify areas with similar characteristics, the time period gives sufficient coverage to identify areas 

with similar climate characteristics. Future improvements to the model include the migration to internal PG&E 

meteorological data. 

20.3.2.1 Precipitation 

The average daily precipitation was calculated from the GRIDMET dataset. The daily total precipitation, in millimeters (mm), 

was averaged from 2014 to 2016. 

20.3.2.2 Vapor Pressure Deficit 

The average vapor pressure deficit was calculated from the GRIDMET dataset. The daily average, in kPa, was averaged from 

2014 to 2016. 

20.3.2.3 Specific Humidity 

The average specific humidity was calculated from the GRIDMET dataset. The daily average, in %, was averaged from 2014 

to 2016. 

20.3.2.4 Temperature 

The average maximum temperature was calculated from the GRIDMET dataset. The daily maximum, in units of Kelvin, was 

averaged from 2014 to 2016. 
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20.3.2.5 Wind 

The hourly average wind velocity and gust velocity at a height of lO-m was calculated from the Real-Time Mesoscale 

Analysis (RTMA) dataset at a resolution of 2.5-km. The daily mean values of each, in meters-per-second, were averaged 

from 2016 to 2018 to create the wind ave feature. 

The average daily maximum values were also calculated and tested as a feature in the model, but it was removed because it 

did not notably contribute to the prediction power. 

20.3.3 Conductor Attributes 

The characteristics of conductors are particularly important model features because they help explain why a conductor 

breaks and can therefore help quantify the effectiveness of wildfire mitigation work. 

For example, the reduction in the ignition probability when a segment of smaller diameter size 6 copper conductors is 

replaced with larger diameter size 2 aluminum conductor steel reinforced (ACSR) conductors can be quantified by the 

model, holding all other environmental variables constant. In this mitigation scenario, the conductor material, conductor 

size, and conductor age attributes would all change in the model. The conductor attribute features included in the model 

were identified by outages subject matter experts (SMEs) to be associated with elevated conductor failure rates (Figure 41). 

Conductor Annual Wire-Down Rate 

(2015 - 2019 Equip Failure Related) 

2.00 

1.60 

0.871100 Miles 

1.20 

1.00 
0.85 

0.81 
0.58 ~ 0.60 

o.4o 

0.20 

ACSR ACSR Aluminun’=         Aluminum         Alun;inum          Copper Copper Copper 

4 2 4/O 397 715 6 4 2 

~Annual WD per I00 Circuit Miles System Ave 

FIGURE 41 - 2015 - 2019 CONDUCTOR ANNUAL WIRE-DOWN RATES AS SHOWN IN THE 2021 ASSET MANAGEMENT 

PLANS (PG&E ELECTRIC OPERATIONS, 2020) 

20.3.3.1 Conductor Age 

The estimated conductor age (the "estimated-age") was calculated as the number of years since the installation year, as 

listed in EDGIS. If the installation date was missing or invalid, then the estimated age in the STAR model dataset was used 

(as extracted from the primary conductor dataset in the Foundry platform). The installation date was determined to be 

invalid if: 
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1. It fell within the 1986 to 1990 time period, an unreliable default value in the dataset, 

2. It was greater than the current date, or 

3. It was less than 1901. 

The STAR model estimated the conductor age using the average age of the poles associated with the conductor or, if pole 

age could not be calculated, the average age of the conductors in the service territory (PG&E Digital Catalyst, 20:1.9). 

The response chart shown in Figure 42 is an output from the model and shows that conductors less than 15-years-old or 

more than 100-years-old increase the model ignition probability. This corresponds to the concept of a "bathtub curve" 

(Figure 43) for equipment failure rates, where young equipment tends to fail at higher rates due to defectiveness and older 

equipment tends to fail at higher rates due to wear- out. However, conductor age warrants additional investigation to 

identify the conductor age as a driver of, rather than correlated to, increased ignition probability. For example, the newest 

conductors may have been replacements made after the 2015-2018 ignitions, possibly as a result of fire, rather than the 

other way around. 

xl03 Response of conductor_ignitions_fireseason to estimated-age 
1.2 
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estimated-age 

F~dURE 42 - RESPONSE CHART FROM THE MODEL OUTPUT FOR CONDUCTOR AGE, IF ONLY TI-IAT FEATURE WERE 

INCLUDED IN THE MODEL 
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20.3.3.2 Conductor Material 

The type of co nductor mater!a! was split into one-hot e ncoded o r d um my varia bles, which identified co:ndu cto r m ate rials 

~CO r " J " aluminum (AI), copper (Cu), and ACSR ( nducto ~mater!a ,al , ~conductor, material~cu", and ~conductor, mater al~acsr", 

respectively) as binary model features. As shown in Fisure 4:1, SMEs have identified that the Cu conductor material is 

corre ated e evated w re,down rates compared to ACSR and AI The response chart for the ACSR feature shown in Figure 

44 sup po rts that condu ctors n o t of ACS R material increased the isnition proba bility. However, th e resp on se ch a rts also 

show that the AI feature slishtly increased the i~n tion probability and the Cu feature had minimal effect on the i~nition 

probability. See model Im ration sect ons 
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FIGURE 44 - RESPONSE CURVES FROM THE MODEL OUTPUT FOR ACSR, AL, AND CU, IF ONLY THAT CONDUCTOR 
MATERIAL FEATURE WERE INCLUDED IN THE MODEL 

20.3.3.3 Conductor Size 

The conductor size dataset was split into one-hot encoded dummy variables, which identified conductor size 2, 4, and 6 

("conductor-size-2", "conductor-size-4", and "conductor-size-6", respectively) as binary model features. Conductor sizes are 

defined using the American Wire Gauge (AWG) standardized wire gauge system (Figure 45) and smaller cross-sectional 

areas are associated with larger size numbers (in other words, the smaller the gauge number, the thicker the wire). 
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FIGURE 45 - WIRE SIZES AND TYPICAL MAXIMUM AMPERAGE - SOURCE 

HTTPS://COMMONS,WIKIMEDIA,ORG/WlKI/FILE:WIRE_SIZE_GROUNDING_CONDUCTORS,PNG 

As shown in Figure 41, SMEs have identified that smaller diameter conductor sizes (size 6) are correlated to elevated wire- 

down rates compared the larger diameter sizes (size 2 and size 4). The response charts shown in Figure 46 support that 

conductors with smaller diameters (i.e. conductor size 6, conductors not of size 2, and conductors not of size 4) increased 

the ignition probability. 
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F~GURE 46- RESPONSE CURVES FROM THE MODEL OUTPUT FOR CONDUCTOR SIZE 2, 4, AND 6, IF ONLYTHAT 

CONDUCTOR SIZE FEATURE WERE INCLUDED IN THE MODEL 

20.3.3.4 Splices 

Splices were identified from the splices database table (Emili Scaief, 2020). In order to prevent splice locations from 

introducing bias to the model, only the Reliability Program splice records were used, which only included spans with more 

than three per phase. Other splice record programs focused specifically on fire areas or outage events, which cannot be 

used as an input to a model predicting where these events occur. The splices database only includes the latitude and 

longitude of the splice and the circuit name. Splices were mapped to conductors using a spatial join and then validated 

using the circuit name. Nearly half of the 50,000 splice records could not be spatially mapped to a conductor and more than 
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3,500 splice records were removed from the dataset because they did not pass the circuit name data validation step when 

mapped to a conductor, meaning the circuit name in the splices table did not match the circuit name in EDGIS. 

A binary feature was created (called "splice-record-exists") based on whether a splice record existed for a conductor. As 

shown in the response chart in Figure 47, conductors without a splice record were associated with increased ignition 

probability. For example, the mapping issues described above could have biased the data. Also, the vintage of the splice 

data is 2020, so lines that were replaced between 2015 and 2020 would register as not having splices even if they 

historically had them. Alternately, the splices feature could be helping the model differentiate 3-phase spans from 1- and 2- 

phase spans, where ignitions are more likely to occur on 1- and 2-phase spans. In other words, the model is not identifying 

splices as a driver of increased ignition probability, as would be expected. This is not surprising given the small coverage of 

recorded splices across the distribution grid. Obtaining a different source of data for location and number of splices per 

conductor may improve how the model uses splices to predict ignition probability. 
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FS6URE 47 - RESPONSE CHART FROM THE MODEL OUTPUT FOR SPLICE RECORD IF ONLY THAT FEATURE WERE 

INCLUDED IN THE MODEL 

The total splice count was also tested as a feature in the model and removed because it did not contribute to the prediction 

power. 

20.3.4 Feature Correlation 

The correlation between features is displayed as a heatmap in Figure 48. Strong correlation is observed between 

conductor_material_cu and conductor_size_6 as well as conductor_material_acsr and conductor_material_cu. However, 

these features are important to include in the model in order to consider how the mitigation of replacing these conductors 

affects the likelihood of ignition. As shown in the ’Permutation Importance’ scores in Table 5, the model automatically 

deprioritized the conductor_material_cu feature, and the correlation of this feature to the other conductor attributes is 

planned to be addressed as the modeling matures in future iterations. 

There are also strong correlations observed between the following meteorological variables, which are all characteristics of 

the dryness of the climate where a conductor is located: 

¯ specific humidity (specific_humidity_ave), 
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¯ lO0-hour dead fuel moisture content (lO0_hour_fuels_ave), 

¯ vapor pressure deficit (vapor_pressure_deficit_ave), and 

¯ a coastal indicator (coastal). 

The Maxent program automatically selects the best features to use when optimizing the model for regularized training gain, 

and the coastal indicator and specific humidity features were deprioritized in the model, as demonstrated by the 

’Permutation Importance’ scores in Table 5. 
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FIGURE 48 - HEATMAP OF PEARSON CORRELATION COEFFICIENT BETWEEN EACH FEATURE 
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20.4 Model Evaluation 

20.4.1 Feature Importance 

Feature importance scores are output by the model and included in Table 5. The features are listed in the table by rank 

according to their permutation importance score. A jackknife chart demonstrating regularized training gain for each feature 

is shown as Figure 49. As demonstrated in the table and figure, the unburnable feature and mean daily precipitation feature 

were the primary drivers for ignition prediction. The unburnable feature gives the model information about where a spark 

is not likely to lead to an ignition due to the type of ground surface (e.g. a paved surface). The precipitation feature shows 

correlation to the maximum tree height feature and may be an indicator of where trees are located that can fall into a 

conductor, but this would require further investigation to confirm. 

Secondary drivers of prediction were the conductor attributes: conductor material, estimated conductor age, conductor 

size, and splices as well as the maximum tree height and mean daily vapor pressure deficit. As discussed in Section 20.3.3, 

the conductor characteristics give information about the vulnerability of a conductor to failure. The tree height gives the 

model information about where vegetation can fall into a conductor. The vapor pressure deficit gives the model 

information about how dry the climate is surrounding a conductor. 

TABLE 5. RANKED FEATURE IMPORTANCE SCORES 

1 unburnable non-burnable area % 30.8 

2 precipitation_ave daily precipitation, mean mm 29.8 

3 conductor material acsr conductor material: ACSR % 9.7 

4 estimated_age estimated conductor age years 8.9 

5 tree_height_max max tree height m 4.3 

6 splice_record_exists Reliability Program splice % 4.3 

7 vapor_pressure deficit_ave vapor pressure deficit, mean kPa 4.0 

8 conductor size 2 conductor size: 2 % 3.4 

9 conductor size 4 conductor size: 4 % 1.6 

10 lO0_hour_fuels_ave lO0-hour fuel moisture, mean % 1.1 

11 max_temperature_ave max temperature, mean K 1.0 

12 wind_ave wind speed, mean m/s 0.9 

13 local_topography TPI % 0.2 

14 conductor size 6 conductor size: 6 % 0.1 

15 conductor material al conductor material: AI % ~0 

16 conductor material cu conductor material: Cu % ~0 

17 coastal coastal % ~0 

18 specific_humidity_ave specific humidity, mean % ~0 
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Jackknife of regularized training gain for ignition_equipment_summer 
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F~GURE 49- MODEL OUTPUT OF A IACKKN IFE CNART OF REGULARIZED TRAINING GAIN BY FEATURE 

20.4.2 Metrics 

The primary method used to evaluate the goodness-of-fit was the ROC-AUC metric, which is described in detail in Appendix 

3: Ignition Probabilities Methods 2021. 

The dataset used to train the model achieved an AUC score of 0.?6 (Figure 50). As displayed in Figure 51, the 2019 dataset 

was used as a test dataset to evaluate the model fit and achieved a score of 0.?4. The minimal reduction in AUC score 

between the training and testing datasets gives confidence that the model is not oveffitting to the training dataset and is 

able to maintain performance when introduced to new data. 
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Sensitivity vs, 1 - Specificity for ignition_equipment_summer 
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F~GURE 50 - THE ROC CURVE FOR THE PIXEI. TRAINING DATASET 
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FIGURE 51 - THE ROC CURVE FOR THE TEST DATASET (2019 CPUC-REPORTABLE IGNITIONS) 

PG&E Internal Information © 2021 PG&E Corporation. All rights reserved. Page 85 of 133 

P G E-D IXl E-N DCAL-000006631 



~ Pacific G~s and 
Electric Company" 

2021 Wildfire Distribution Risk Model Overview 

21 Methodology 
The following sections describe the methodology used to predict the likelihood of an ignition, the consequence dataset 

used, and the calculation of risk. 

21.1 Circuit Protection Zones 
Considering the topology of the grid was important when segmenting the distribution system into units of work for the 

mitigation planning process. CPZs were selected as the appropriate segmentation of the grid to report risk results because 

they are the most granular scale at which outages are reliably captured by the system protective devices. Furthermore, the 

predecessor 2018 model utilized CPZs as the smallest aggregation of risk, so for comparison purposes, the 2021 model 

utilized the same CPZ aggregation technique. 

For the Conductor Risk Model 2021 documented herein, a mid-2020 CPZ vintage was requested by stakeholders. This 

vintage selection caused results of this model to fairly closely align with the current (as of late-2020) as-designed 

configuration of the grid, but caused the 2021 model results to be challenging to compare to the predecessor 2018 model 

results, because CPZs had changed so much in the interim. 

More information about CPZs, vintages, and related challenges and limitations is in section 31. 

21.2 Estimating Probability using MaxEnt 

This model was fit using a presence-only maximum entropy (MaxEnt) algorithm, which is a supervised machine learning 

algorithm that requires learning from historical events (i.e. "training" the model). The model was trained on four wildfire 

seasons of ignitions, 2015 through 2018 inclusive. Wildfire season was defined as Jun. i through Nov. 30. The algorithm 

essentially assigns similar probabilities of events to locations with similar conditions (or features). In other words, to predict 

conductor-involved ignitions along the distribution grid, the model reasonably assumes that such events are likely to occur 

in locations with conditions that are similar to those where past events occurred. 

Comprehensive details on the modeling approach can be found in Appendix 3: Ignition Probabilities Methods 2021. 

21.3 Consequence 

Wildfire consequence estimates the resulting damage if an ignition event occurs at a specific location. For this model, the 

multi-attribute value function (MAVF) consequence of risk event (CORE) dataset was used, a consequence dataset provided 

by the Enterprise and Operational Risk Management (EORM) team at PG&E that combines safety, financial, and reliability 

types of damages. More information about MAVF CoRE consequence is included in Appendix 4." Ignition Consequence 

Methods 2021. 

Risk is calculated by combining the likelihood of an event occurring with the consequence of that event (i.e. probability * 

consequence). For the current model, risk is calculated at a scale of lOOm x lOOm pixels associated with primary overhead 

conductors across the distribution system. Then, the pixel risk is aggregated for each CPZ by calculating the mean and sum 

of the pixel risk values (The advantage of the mean aggregation technique it is less influenced bythe number of pixels in, or 

the size of, the CPZ. The advantage of the summed aggregation technique is that it captures all risk within a CPZ.) 
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Riskpixe = P(ignition)pixe  * Consequencepixe 

. 
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Riskcpz = ~ Riskpixel 

FIGURE 52 A DIAGRAM OF HOW PIXELS ARE AGGREGATED TO CPZS 

22 Risk Results 

22.~1 Pixel-level Results 

Risk results were calculated at the lOOm x lOOm pixel-level and are summarized in Table 6 below. The probability, 

consequence, and risk values are all unitless and follow a Iognormal distribution with many low values and a few very high 

values. As listed in the table, the ignition probability values sum to 60, meaning that the model expects 60 conductor- 

related reportable ignitions to occur in a given year within the HFTD Tier 2 & 3 areas. This value is an external calibration 

input to the model that was calculated using the mean number of ignitions for the 4-years of training data. The (arbitrary 

units) consequence values sum to over 730 million, and future iterations of the model will scale the consequence values so 

that the consequence dataset is calibrated to the per-event risk values for the relevant tranche type of ignitions modeled 

(i.e. conductor involved) reported through documents like the WMP. This will allow for the consequence and risk values to 

align between different wildfire risk models and higher-level reported enterprise risk values. 

TABLE 6. SUMMARY OF PIXEL-LEVEL PROBABILITY~ CONSEQUENCE~ AND RISK VALUES 

mean 0.992 x 10-4 1,198.79 0.0858 

standard deviation 0.970 x 10-4 2,229.97 0.1975 

minimum 0.004 x 10-4 0.06 2 x 10-8 

25% quartile 0.461 x 10-4 0.07 6 x 10-6 

50% quartile 0.718 x 10-4 23.93 0.0022 

75% quartile 1.190 x 10-4 1,188.99 0.0828 

maximum 28.778 x 10-4 10,554.31 7.2126 

sum 60 730,438,270 52,317 
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Figure 53 shows that probably and consequence are not positively correlated. Locations with elevated likelihood of ignition 

typically have a small consequence value. This makes mitigation work prioritization more difficult because there are not a 

clear cluster of locations with high consequence and high probability. The figure also shows that the highest probability 

values do not have an elevated risk value while the highest consequence values do have an elevated risk value (risk is shown 

in the figure with shading). This is due to the scale of the consequence values (0.06 to 10,554) compared to the scale of the 

probability values (0.004"10-4 to 28.8"10-4), which cause the consequence values to dominate the risk result. The 

dominance of consequence can further be demonstrated in the comparison of the ignition probability image and the 

ignition risk image in the Sonoma area (Figure 54). The locations with a higher likelihood of ignition in the probability image 

are shown as lower risk areas in the risk image. It may be beneficial to scale the consequence values to gain more influence 

from the likelihood of an ignition event occurring. 

Pixel-level Probab,lity vs Consequence shaded by Risk 
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FIGURE 53 - SCATTERPLOT OFTHE PIXEL-LEVEL PROBABILITY OF IGNITION ON THE X-AXIS AND MAVF CONSEQUENCE 

ON THE Y-AXIS WITH SHADING BASED ON THE MAVF RISK VALUES 
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Probability Risk 

FIGURE 54 - COMPARISON OF PROBABILITY AND RISK PIXEL-LEVEL RESULTS IN THE SONOMA AREA. OBSERVE THAT 

THE AREAS WITH A HIGHER LIKELIHOOD OF IGNITION IN THE PROBABILITY IMAGE (LEFT) ARE SHOWN AS LOWER 

RISK AREAS IN THE RISK IMAGE (RIGHT). THIS IS THE INFLUENCE FROM THE CONSEQUENCE DATASET. 
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22.2 CPZ-Ievel Results 

The pixel values were aggregated to CPZs and results delineated by CPZ are summarized in Table 7 below. A spreadsheet of 

results for each CPZ was developed to enable stakeholders to utilize probability and risk results in the planning process. 

TABLE 7. SUMMARY OF CPZ-LEVEL PROBABILITYn CONSEQUENCEn AND RISK VALUES 

mean 0.01680 202,665 14.47 

standard deviation 0.02071 512,137 32.10 

minimum 0.00001 0.07 1 * 10-6 

25% quartile 0.00297 430 0.04 

50% quartile 0.00971 15,912 1.42 

75% quartile 0.02312 140,372 12.44 

maximum 0.28516 7,738,686 445.38 

sum 60 728,378,770 51,998 
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23 Validation 
Risk results were reviewed by SMEs within PG&E with expertise in asset management and wildfire risk analysis to verify that 

locations the model identified as high risk were locations that SMEs intuitively believed to be at high wildfire risk. Feedback 

from these SMEs resulted in the selection of a new consequence dataset and updates to improve the delineation of CPZs 

within the HFTD areas. The pixel-level results were imported into the Google Earth platform to enable a desktop analysis 

review of the pixel-level results along a CPZ. A field assessment to verify model results along two high risk CPZs was also 

conducted. 

A governance committee was established to verify that this 2021 model was a continuous improvement when compared to 

the previous 2018 model used for system hardening planning. The committee approved the 2021 model. 

24 Future Improvelnents 
In order to get past some of the limitations the model currently has and to improve the model performance, the following 

potential improvements have been identified: 

1. Develop a composite probability model that can assign risk reduction impacts to various types of mitigation work. 

2. Investigate whether the splice locations collected from the overhead inspections improve how the model uses the 

splices feature. 

3. Back-test the model to see if its predictions correlate to the locations of actual line breaks and line hits (damages 

and hazards) over the past few years of PSPS and pre-PSPS, irrespective of ignitions. 

4. Transition to Pd&E internal meteorology data that covers the entire modeled time period, including testing and 

validation years. 

5. Research and test methods for handling risk reduction due to mitigation work completed within the model 

algorithm. 

6. Include locations where system hardening mitigation work, like covered conductors, has been completed. 

7. Consider methods for improved handling of the imbalanced ignitions dataset. Potential methods include: 

a. Utilize an algorithm that predicts the probability of an ignition when an outage event occurs (i.e. 

P(ignition I outage ) ). This allows the use of outage data, which is much less imbalanced than the 

ignitions dataset. 

b. Experimenting more with reguladzation and alternative model metrics. 

8. Consider how to handle the reduced ignitions due to PSPS events. Potential methods include: 

a. Consider PSPS as a type of mitigation 

b. Incorporate the identified failures during post-PSPS as outage failures in a model that predicts ignitions 

given an outage. 

9. Test an algorithm that can handle time-series data and, if the imbalance problem can be remediated, model at 

finer time scales (e.g. quarters or months). 

10. Test an algorithm that can better handle missing data, such as a tree-based algorithm 
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Appendix 3: Ignition Probabilities Methods 2021 

PG&E Internal Information © 2021 PG&E Corporation. All rights reserved. Page 94 of 133 

P G E -D IXI E -N D CAL-000006640 



~ Pacific G~s and 
Electdc Company 

2021 Wildfire Distribution Risk Model Overview 

26 Executive Summary / Overview 

26.1 Section Usage 
This section was written to explain the technical motivation for, and methods involved in applying the principle of 

maximum entropy to spatial probabilities of grid-caused fire-season wildfire ignitions. This approach was used to estimate 

ignition probabilities for both the 2021 Vegetation-caused risk model and the 2021 Conductor-involved risk model. Instead 

of repeating the technical motivation and methods of training such models in the documentation specific to each model, 

this section has been separated out to explain the maximum entropy approach in technical detail. It should be read as a 

technical companion to the risk modeling sections but is not required to read and understand them. 

The other component of wildfire risk is the expected consequence of an ignition, given that it is ignited under dangerous 

fire conditions. The technical motivation and methods associated with the derivation of ignition consequence, also known 

as the MAVF CoRE values, are detailed in a separate methods section that is also intended to serve as an optional technical 

companion to the 2021 EVM and Conductor risk models. 

27 Introduction 
In support of risk-based Electric Operations planning, PG&E has developed distribution asset risk models, designed to 

quantify wildfire risks from the distribution system at planning and situational awareness timescales, support risk-based 

decision making, and enable reporting of risk reduction activities to regulators and the public. To do this, PG&E 

characterizes wildfire risk as risk=ignition probability x wildfire consequence. Both the likelihood and the consequences of 

an ignition are conditioned, to a degree, on the environmental factors (for example wind and gust speeds, temperature, 

vegetation structure, and topography) experienced by distribution assets and their age and other physical characteristics. 

To-date, multiple teams within PG&E have characterized the roles of specific environmental conditions that precede 

ignitions. For example, the meteorological team has developed fire weather indices, and the vegetation management team 

has identified the locations of hazard trees. This work seeks to build on that understanding to rigorously quantify the 

degree to which multiple environmental and asset covariates interact to determine the probability of ignitions at both fine 

and system levels. 

To answer the question of where ignition events are likely to occur, we have estimated fire season ignition probabilities 

using maximum entropy models (MaxEnt) pioneered in the modeling of ecological ranges of species. These models are 

trained on ignition (or outage) locations and gridded spatial (raster) environmental and asset attribute data. The data can 

draw from a specific time period, but the model itself is dedicated to spatial, not temporal, patterns. The Maxent model 

provides relative scores or, if properly calibrated, probabilities for fire-season ignitions per "pixel" of input data. 

The principle of maximum entropy (MaxEnt) refers to the expectation that all things being equal, systems will tend to be 

found with the macroscopic properties that can arise from the greatest number of underlying micro-scale configurations - a 

system’s information entropy is closely related to the number of micro-scale configurations. That is to say that, information 

entropy is higher when a system’s macro-state is consistent with a higher number of micro-scale states or configurations. In 

other words, the characteristics of high entropy systems can be captured by relatively few statistical variables. For the 

wildfire risk model application, the aim is to identify the simplest characterization of the envelope of environmental and 

asset attributes within which the maximum number of ignitions is found. Just as some models, i.e. regression, can be 

estimated by selecting parameters that offer the maximum likelihood solution, MaxEnt models are solved by tuning their 

parameters to maximize information entropy. In essence, MaxEnt applies a mathematical analog to Ocham’s razor: the 

least unique solution is the most likely one. 
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For the Wildfire Risk Model, the objective is to identify which environmental conditions and asset attributes (collectively 

called the model covariates) are more common among ignition locations than they are among all distribution grid locations. 

For example, tall trees are more common among vegetation caused ignition locations than they are among typical 

Distribution grid locations. Metrics of dryness, HFTD tier assignments, conductor materials and size, and others, can all be 

checked for such patterns. The ratio of covariate value prevalence at ignition locations to their prevalence across all grid 

locations is called the relative occurrence rate. MaxEnt provides a way of estimating the relative occurrence rate given a 

fairly modest number of ignition locations. The way it does this is to fit a statistical distribution of covariate values for 

ignition locations that is consistent with the values at known ignition locations, but otherwise as similar as possible to the 

distribution of values found everywhere else along the Distribution grid. The similarity criteria are enforced using a metric 

called the relative information entropy between the ignition locations and the Distribution grid locations, where the larger 

that metric is, the more similar the two distributions are. For this reason, the overall approach is referred to as a maximum 

entropy or MaxEnt estimation of the relative occurrence rate. When multiplied by the fraction of all grid locations that 

experience ignitions annually, the relative occurrence rate is normalized into an estimate of the annual probability an 

ignition will occur for all values of the covariates. This can be used to look up (aka predict) annual ignition probabilities 

based on the covariate values found at each Distribution grid location. 

MaxEnt models have been successfully applied in ecology to the problem of estimating a species’ range (i.e. the physical 

extent of its suitable habitat), given a set of locations where members of that species have been observed and the 

corresponding environmental conditions at those locations and all candidate locations for the range. In that context, the 

model assigns a score to every location that captures how similar the conditions at that location are to the locations where 

the species was observed. The correspondence between MaxEnt applied to species observations and ranges and 

outage/ignition locations and at-risk locations is fairly obvious - we are looking for the "range" of grid-caused wildfires - the 

environmental conditions and asset attributes associated with elevated wildfire probabilities. We have applied MaxEnt 

methods to event occurrences and their proximate asset and environmental conditions contrasted with the background 

conditions everywhere else along the distribution grid to identify the locations most likely to experience similar events in 

the future. 

28 Ignition Probability Model 
The objective of this work is to specify a model for characterizing the probability of an ignition, given what is known about 

the environment and the condition of the grid. These probabilities are to be coupled with fire spread models to describe 

the consequences of an ignition should it occur. The primary application for the model will be to examine how different grid 

hardening measures can mitigate wildfire risks that are inherent to operating the grid. 

In light of these requirements, relevant models must provide several capabilities: 

¯ Data-driven estimates describing the probability of an ignition; 

¯ Temporally and spatially explicit estimates of when and where ignitions are likely to occur; 

¯ Characterization of causal factors that give rise to ignition; 

¯ Model structure suitable for inferring how mitigation measures reduce the probability that an ignition will occur. 

The usage of MaxEnt addresses these criteria in the following ways: 

1. MaxEnt provides spatially explicit estimates of ignition probabilities 

2. Those estimates are based on a regularized fit to environmental and asset derived covariate data, meaning the 

contribution of each factors can be evaluated individually 

3. The strength of parameter fit to each covariate allows prediction for outcomes with changed asset attributes and 

environmental conditions 
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Figure 55 below illustrates the data inputs and outputs of the MaxEnt estimation. Note: the software package used to train 

MaxEnt models is called Maxent (lowercase "e"), and the use of a lowercase "e" in referring to the model should invoke the 

specific software implementation we have adopted. 
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FIGURE 55 - SCHEMATIC OF DATA FLOW THROUGH THE MAXENT MODEL 

28.1 What makes this a hard problem 

The model described here constitutes the current state of the art in probabilistic risk modeling for wildfire mitigation. The 

current report provides a mathematical framework for quantifying these risks. It is well documented in the literature, 

however, that accurate parameterization of rare events such as wildfire ignition is a notoriously challenging problem to 

solve. Here, we summarize why the characteristics of the problem and the requirements of such models make this problem 

challenging to solve. 

28.1.1 Sparse/lmbalanced Data 

The tools that are most used to fit and evaluate machine learning models are predicated on the assumption that the data 

are sufficient to train a model. These assumptions may break down when data are inaccurate or when observations are 

sparse. If observations are too sparse to capture the full range of outcomes that could occur, it is possible to arrive at an 

interpretation of the data that is blind to these outcomes. As a corollary, the prediction of ignition vs. non-ignitions must 

recognize that non-ignitions are the norm on most days in most locations. In other words, you’d be right almost all the time 

if you predicted "no ignition" yet doing so would be entirely useless in addressing the task at hand. Any viable approach 

must recognize that ignitions for an imbalanced data set, where the positive class is both rare and extremely important to 

predict. MaxEnt models are trained based on the comparison between covariate values associated with presence data vs. 

covariates associated with the background of all data. As such, they can be described as presence-only models that do not 

require or assume balanced data sets. 
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28.1.2 Zero Inflation 

Problems where there are substantially more observations of non-events than there are observations of events suggests 

that most of the data describe conditions that could be completely irrelevant to characterizing the sensitivities that are of 

interest. Zero inflation describes a property of certain random variables where it is not always possible for a particular 

outcome to occur. For example, wildfire ignitions are not viable under wet conditions or on paved parking lots. A model 

trained on zero-inflated data can yield parameter estimates more heavily influenced by conditions of little interest than by 

those conditions that are indeed problematic, thereby masking sensitivities to conditions that pose the most severe risks. 

To address the possibility of zero inflation, our models seek to filter out locations and conditions under which ignitions are 

impossible for all practical purposes. Our models are restricted to grid pixel locations within HFTDs and the ignition data is 

restricted to fire season only. We further condition our estimates using covariates that describe the degree to which land 

surface is burnable and the presence and height of nearby trees. 

28.1.3 Characterizing Probabilities 

Characterizing probabilities is an inherently statistical undertaking. Elevated risk offers no guarantee that a particular 

outcome will occur, and there are undoubtedly instances in the data where ignitions did not occur despite relatively higher 

risk. The current work describes a mathematical basis for estimating the probability that a particular outcome will occur, 

and documents methods for training, tuning, and testing the model using event data from the past. However, it is 

worthwhile to note that the true probability distributions that give rise to the data can never be exactly known and the 

assessment of the accuracy of spatially localized predicted probabilities to high precision would require ignition observation 

for all grid locations- more ignition data that accrues in decades of grid operations. 

28.2 Model Framework 

We used a spatially-explicit maximum entropy model, MaxEnt9, to link statewide maps of environmental patterns to the 

locations of PG&E distribution assets and ignition events (Figure 56) in order to predict the probability of an ignition for 

each asset as conditioned by environmental conditions (Figure 5?). Vegetation data and other environmental covariates 

were spatially matched to the distribution and ignition data and used to predict the probability of vegetation contact-driven 

ignitions across the distribution grid. Vegetation data were provided by Salo Sciences. 

9 Elith et al. 2010; estimation software available at at this link., 
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FIGURE 56 - THE LOCATIONS OF PG&E DISTRIBUTION LINES AND IGNITION LOCATIONS. IGNITION DATA PROVIDED BY PG&E TO THE 

CPUC, DISTRIBUTION DATA PROVIDED THROUGH PG&E 
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FIGURE 57 - MAXIMUM TREE HEIGHT 

The guiding principle behind this approach is that, for environmentally driven failures, the probability of failure can be 

calculated by comparing the range of environmental conditions at failure sites to the range of environmental conditions 

experienced by all similar assets. This is formulated mathematically as: 

Pr(y=llz)=f~(z) Pr(y=l) / f(z) (1) 

Where y represents an ignition event, y = i are locations where an ignition occurred, z is a vector of environmental 

covariates,]~(z) is a probability distribution of non-linear feature transformations derived from the vector of covariates 
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across all distribution assets, fl(z) is a probability distribution of features derived from the covariates at ignition locations, 

and Pr(y = 11z)is the probability that an ignition occurs at a point on the landscape as conditioned by environmental 

conditions. In our framework, this formulates that we can calculate the probability of an environmentally-driven ignition 

(Pr(y = 1 Iz)) as the conditional probabilities of environmental conditions experienced at ignition locations ~l(z) ¯ Pr(y = 1)) 

divided by the conditional probabilities of environmental conditions experienced by all distribution assets (f(z)). The math 

behind the MaxEnt model is similar to logistic regression with linear, piecewise, and interaction covariate terms, aiming to 

maximize the information entropy of the predicted ignition probabilities. 

In plain English, MaxEnt assesses the relative probabilities that events occur across a landscape. In this case, we use point 

locations where ignitions occur to predict the probability of ignitions across all distribution assets. The guiding principle 

behind this approach is that the probability of ignition can be calculated by comparing the range of environmental 

conditions at failure sites to the range of environmental conditions experienced by all assets. 

Distribution lines are subject to a range of environmental conditions. Wind speeds and temperatures vary across lines. 

Some are exposed on hilltops. Others are near vegetation. This range of variation can be described according to a statistical 

distribution: the majority of lines are not in proximity to vegetation, a small portion with some small trees overhanging 

lines, and a much smaller proportion with very tall trees overhanging. However, when we examine the subset of lines 

where ignitions from various causes have occurred, we find that the statistical distributions are shifted. For example, there 

is a higher proportion of tall trees near sites of vegetation-caused ignitions. Comparing these distributions, you can infer 

that assets fail more often due to vegetation contact when lines are surrounded by tall trees. For that particular cause, the 

model will calculate high probabilities for areas surrounded by tall trees, moderate probabilities for areas surrounded by 

small trees, and zero probability when there are no trees. 

This spatially-explicit ignition modeling approach relies on three key datasets: 1) the geographic locations of all operating 

assets exposed to the conditions that cause ignitions, 2) records of where and when ignitions occurred, and 3) a set of 

environmental predictor data that we expect to determine the probability of ignition. In our model formulation, these can 

be re-framed as 1) the landscape of analysis (L), 2) locations where failures have been observed (y = 1), and 3) a vector of 

environmental covariates (z). 

If we definer(z) to be the background probability density of covariates across L, f~(z) to be the probability density of 

covariates across L where failures occurred, andflz) where failures did not occur. The quantity that we wish to estimate is 

the probability of failure, conditioned on environment: Pr(y = 1 Iz). Strictly presence-only (i.e., failure-only) data only allow 

us to modelf~(z), which on its own cannot approximate probability of presence. Presence/background data allows us to 

model both f~(z) and f(z), and this gets to within a constant of Pr(y = llz), as Bayes’ rule gives equation (1). 

28.2.1 Scaling probability scores 

MaxEnt first estimates the ratiof~(z)/f(z), which is referred to as the "raw" output. This is the core calculation, giving insight 

about what features are important and estimating the relative likelihood of ignition in one place or another. Because 

prevalence data are not typically available for calculating the conditional probability of occurrence in MaxEnt models (i.e. 

the true population of a species whose range is being studied), MaxEnt estimates occurrence probabilities using what is 

called the "logistic" output. This treats the log of the output: O(z) = Iog(f~(z)/f(z)) as a Iogit score, and calibrates the intercept 

so the implied probability of presence at sites with "typical" failure conditions (where O(z) = the average value of O(z) under 

f~) is a parameter r, as in 

Pr(y = l = + (2) 

Knowing r solves the non-identifiability of prevalence; without that, MaxEnt arbitrarily sets r = 0.5. This log transformation 

is monotone (order preserving) with the raw output. For our work, the true number of ignitions is well tracked, so we 

calculated the prevalence score by computing the average rate of failure such that the expected count of ignitions per-fire- 
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season based on Pr(y=l Iz) match the annual average observed in the underlying model training data. We refer to this 

normalization step as ~-calibration. 

28.2.2 Feature selection 

MaxEnt fits models to features--an expanded set of transformations of the original covariates. Fitted functions are defined 

over many features, resulting in more features than covariates. There are six feature classes: linear, product, quadratic, 

hinge, threshold and categorical. Products include all possible pairwise combinations of covariates, fitting simple 

interactions. Threshold features allow "steps" in the fitted function. Hinge features allow changes in the gradient of the 

response. Multiple threshold or hinge features can be fit for one covariate, generating complex functions. Hinge features 

alone create a model akin to a GAM: an additive model with nonlinear fitted functions of varying complexity but without 

sudden steps from thresholds. In this analysis, we included just product and hinge features. This combination captures 

interaction terms between covariates (e.g., between wind speeds and tree height) and fits nonlinear functions in a 

piecewise but continuous fashion. The features generated through interaction and hinge functions are then evaluated 

during the model fitting process, which seeks to maximize regularized gain, so only the features that improve the model fit 

without over-fitting to training data are kept in the final model formulation. 
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213.2.3 Inferring Causality 

Ignitions result from complex interactions between weather, ecosystems, and grid assets. These dynamics are not perfectly 

understood and often are monitored only indirectly. The number of splices on a particular span, for example, does not tell 

us about the condition that those splices are in. While we may find correlations to suggest that certain attributes of the 

system contribute to elevated risk, it may not be possible to infer causal relationships. This poses a challenge to quantifying 

risk reduction associated with mitigation measures. 

The current work describes an approach that uses expert judgement to inject assumptions about how mitigation measures 

will alter correlations observed in the data. To develop robust statistical methods for doing "causal inference" typically 

requires randomized controlled trials or other managed interventions rather than the "natural experiment" of past 

outcomes this work is based on. 

28.3 Event data "presence" observations 
The pool of all ignition data is the starting point for "presence" data used to train MaxEnt. These models perform better if 

they are trained on data that is as specific as possible to the conditions under which you want to predict the outcomes. The 

ignitions are typically filtered by cause (e.g. vegetation-caused vs. equipment failure), equipment involved (e.g. conductors 

vs. poles), date range (e.g. 2015-2018), fire season (Jun. 1 - Nov. 30) and occurrence in HFTD tiers 2 and 3. 

Filtering criteria are a result of the combination of model client needs, model limitations, and data source limitations. Client 

needs are things like "We need to know the risk posed by conductor failures that occur during fire season" - in which case, 

training data would be filtered to only those events involving conductor failures that occurred during fire season. Model 

limitations include things like "The model is not currently able to correctly interpret the change in outages and ignitions that 

occurred in 2019 and 2020 due to Public Safety Power Shutoff (PSPS) events" - in which case, training data would be 

filtered to exclude events from 2019 and 2020. Data source limitations are things like "Consequence data is available only 

for HFTD 2 and 2, locations (thus, no Risk can be calculated for non-HFTD 2 and 2, locations)" - in which case, training data 

would be filtered to exclude non-HFTD 2 and 2, locations. 

The locations of the resulting set of filtered ignitions (constituting a specific sub-category of all ignitions) are used to lookup 

the values of environmental, weather, and asset data that share the same grid pixels. The distributions of those covariate 

values constitute the presence distribution which will be compared to the background distribution of values associated with 

all grid pixels. Model predictions will produce higher probabilities under conditions unique to the presence distribution 

when compared to the background. 

28.z  Pool of covariates 

The following table summarizes the pool of raster covariates developed to date for use in MaxEnt model runs. 

Covariate Category Source Spatial resolution Units Descriptions 

Unless otherwise noted, all GRIDMET data 
aggregated from 2014 to 2016. The dead fuel 

moisture data were obtained from GRIDMET, 

and the "lO0-hour-fuels" feature was 

included in the model. The exact GRIDMET 

variable use is known as fm-lO0, and is a 
standard fire modeling metric of fuel dryness 

lO0-hour Meterological for fuels about 1-3" in diameter - 

fuels data gridMET ~4km % intermediate sized fuels. 
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tO00,hour Meterological fm-$OO0~ as defined above~ but for 3-8’ in 
fuels data gridMET ~4km % diameter, 

Meterological the US~ the National Fire Danger Rating 

burn index data gridMET ~4km System (USNFDRS) Burning Index (BI) 

energy Meterological 

release data gridM ET ~4kin USN FDRS Energy Release Component (ERC) 

precipitat!on Meterological 

average data gridM ET ~4km mm Daily precipitation average 

specific Meterological 

humidity data gridMET ~4km kg/kg Specific humidity 

Measu re how m uch water is in the air 
compared to how much it could hold at the 

vapor given temperature, VPD drives 

pressure Meterological evapotranspiration and is the mechanism for 

deficit avg data gridM ET "~4km kPa fuels drying out during fire season. 

temperature Meterological Average of daily maximum temperature in 

max average data gridM ET ~4km K Kelvin (recall that it is sensed vi:a satellite) 

Meterological Hourly average wind speed at !Om, averaged 

wind avg data RTMA ~2,5km m/s from 2016 to 2018 

M eterological An n ua 1 99th perce ntile h ou r ly wind speed at 

wind max data RTMA ~2.Skm mis lOm assessed over 2016 to 2018 

windy 

summer day Meterologi~al The percentage of days with sustained hourly 

pct data RTMA ~2.Skm wind speeds over I5 mph 

gusty 

summer day Meterological The percentage of days with sustained hourly 

pct data RTMA ~2.Skm wind speeds over 20 mph 

Tree height data were obtained from a third- 

party vendor, Salo, a nd the "tree,height, m 

feature was developed by calculating the 

maximum tree: height; in meters, for each 

lOOm X lOOm pixel area along the 

distribution grid, according to the processed 

tree height satellite data provided by Salo. The satellite 

max Tree data Salo Sciences iOOm imagery was collected in November 20i9. 

tree height Same as above but taking the pixel average 

average Tree data Salo Sciences 100m height, 

NLCD imperviousness products represent 

urban impervious surfaces as a percentage of 

Surface devel~ped surface over e~ery 3O, meter pi~el 
impervious condition NLCD ~OOm % in the United States~ scaled to 100m. 
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The "un-burnable" feature is a land surface 

descriptor similar to imperviousness that 

includes surfaces that typically don’t ignite 

when a spark occurs. The feature was derived 

from several land use types within the 2016 

LANDFIRE surface fuel model (USGS, 2016) 
and is the percentage of the 100m x lOOm 

pixel identified as un-burnable. The land use 

types considered "un-burnable" in the 

LANDFIRE composite spatial layer include: 

Surface 2016 Surface urban, snow/ice, agriculture, water, and 

unburnable condition Fuels Model 100m % barren. 

The relative topography of the area was also 

used as a feature in the model. The 

topographic position index (TPI) was 

extracted from a USGS national elevation 

dataset (NED) at 100-meter resolution. The 
TPI compares the cell elevation to the mean 

NED elevation for the local neighboring area 

National (positive values are above the mean and 

local Surface Elevation negative values are below the mean) (The 

topography condition Database lOOm Nature Conservancy). 

Categorical variable that is i for non-HFTD 

hftd HFTD CPUC 100m locations, 2 for Tier 2 and 3 for Tier 3~ 

The estimated conductor age (the 

"estimated-age") was calculated as the 

number of years since the installation year, as 

listed in ED-GIS. If the installation date was 

EDGIS missing or invalid, then the estimated age in 

Age Asset data Conductors lOOm the STAR model dataset was used 

The type of conductor material was split into 

one-hot encoded dummy variables, which 

identified conductor materials aluminum (AI), 
copper (Cu), and ACSR ["conductor-material- 

al .... conductor-material-cu", and "conductor- 

EDG IS material-acsr", respectively) as binary model 

Materials Asset data Conductors lOOm features. 

The conductor size dataset was split into one- 

hot encoded dummy variables, which 

identified conductor size 2, 4, and 6 
"co s"     " " o o "ze " ( nductoF-Ize-2 , c nduct r-s~ -4, and 
"conductor-size-6", respective y) as binary 

EDGIS model features. Lower numbers correspond 

Size Asset data Conductors lOOm with larger diameters. 

Splices were identified from the splices 

database table (Emili Scaief, 2020). In order 

to prevent splice locations from introducing 

bias to the model, only the Reliability 

EDGIS Program splice records were used, which only 

Splice count Asset data Conductors 100m included spans with more than three per 
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phase. 

Coastal areas were identified using a binary 

feature in the model. Coastal areas within 

PG&E service territory were mapped 

Coastal EDGIS internally in PG&E and conductors are tagged 

indicator Asset data Conductors    lOOm with a coastal indicator field in ED-GIS. 

29 Assessing Results 

As described above, the Maxent software we use performs feature selection on covariates under a regularization protocol 

designed to avoid over-fitting (the condition where a model is so optimized to fit the training data that it loses predictive 

power). It also computes model sensitivity to random perturbations in both input data (permutation importance) and the 

resulting ~ fit parameters (percent contribution) and quantifies the model gain via jackknifing (Figure 58) for all leave-one- 

out and include-only-one permutations of model covariates, capturing the individual explanatory power and the unique 

explanatory power of each covariate. These metrics are computed for all "official" model runs. 

Jackknife of regularized training gain for veg._ignition_summer 

Without variable ¯ 
100-hour-fuels-avg With only variable ¯ 

lO00-hour-fuels-avg With all variables ¯ 

burn-index-avg 

energy-release-avg 

gusty-summer-day-pet | 

hftd 
J~ 
to impervious ¯ 
to 

> local-topography 

precipitation-avg 

specific-humidity-avg 

temperature-avg 

tree-height-avg 

tree-height-max 

vapor-pressu re-deficit-avg 

wind-avg 

wind-max 

windy-summer-day-pct 

0.00      0.05      0.10      0.15      0.20     0.25 

regularized training gain 

FIGURE 58 - JACKKNIFE TABLE 
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We also report two model performance metrics: recall scores and the area under the receiver operator curve (AUC). To 

compute recall scores, we set a threshold of >5 on the omission rate that maps approximately to a 95% confidence inte~al 

for predicting, in a binary sense, locations where ignitions are likely and where ignitions are unlikely. We computed recall 

scores asthe number of ignitions in the test data located within at-risk areas (true positives) divided by the total number of 

ignitions in the test data (i.e~, TP /(TP ÷ FN))~ If this score is near 95%i then the predicted ignitions at the omission rates 

accurately constrains the extent where ignitions could occu:~. 

~ABkE ~o ~O~US~ON ~A~ ~OU~ P~ED~CTI©~ ©UT~©~ES ~O~¢] A BINARY P~ED~C~IO~ O~ |~NI~tO~ LtKELIHO©Do 

Predicted to be at-risk 

True False 

I 

True True Positive ~) False Negative 
Ignition obse~ed 

i 
False False Positive (~) True Negative (~) 

Our second model performance metric, AUC, estimates separability. In concrete terms, the AUC is the ROC-AUC, or area 

under the receiver-operating curve (ROC) - see Error! Reference source not found.S9. The ROC is a curve with the true 

positive rate on the y-axis and the false positive rate on the x-axis. Each point along the curve represents the tradeoff 

between making the model omission rate more generous to predict more "true positives" (higher on the y-axis} vs. having 

that generous omission rate falsely predict ignitions that didn’t occur (further right on the x-axis). Any given point along the 

ROC tells you what fraction of non-ignitions are falsely predicted as ignitions as the "cost" of achieving a given true positive 

rate for all true positive rates. Along the ROC curve then, predicting only non-ignitions is shown in the lower left corner to 

predicting only ignitions in the upper right corner. Random guessing will produce a diagonal ROC, whose area would be 0.5. 

A perfect model would produce an ROC that immediately rises to 100% true positive without any false positives, whose 

area would be i. The AUC-ROC is this a metric between 0.5 and i that captures how well the model avoid false positives as 

it captures true positives. 
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FIGURE 59 ILLUSTRATION OF A RECEIVER OPERATOR CURVE (ROC) WITH THE ROC-AUC AREA UNDER THE CURVE 
SHADED 

In our case, an AUC score of 0.7 can be interpreted as a 70% chance that the model will be able to distinguish between 

where ignitions are and are not likely to occur. 

Finally, we evaluate model predictive performance by splitting the ignitions data into two groups, training on one set and 

testing predictions on the other. Since the model is not trained on the test sample, its prediction performance on that 

sample are more accurate metrics of model performance in a planning context. One logical formulation for a test sample is 

to use one or more entire fire seasons. Our initial modeling was based on a training set of ignitions from 2015-2016 and a 

test set from 2017-2018. However more recently we’ve been using 2015-2018 to train the model and 2019 to test. 

However, there is significant variability in ignition activity from year to year, so a model trained on several years’ worth of 

data can be expected to predict for a typical year, not necessarily the test year. To isolate potential over-fitting from the 

question of year-over-year variability in ignitions, a purely random test sample can be taken instead. The AUC for those test 

predictions can be more unambiguously interpreted as a metric of how well the model will predict out of sample in general. 

30 Model Limitations 
MaxEnt models are structured around resolving spatial differences in the likelihood of an event occurring, like an ignition or 

a siting of a specific species. However, for rare events like wildfire ignitions, they require data spanning a significant passage 

of time to achieve statistical significance. This, in turn, means that MaxEnt results are not particularly well informed by 

temporally varying conditions. They tend to require pre-filtering of data to a specific set of conditions/location relevant to a 

given question. For example, studying just north easterly wind events would require filtering all event and time varying 

input data to the subset of days when such conditions occurred and then fitting a MaxEnt model using those inputs. 

However, it is not always possible to slice the data so finely and still maintain enough statistical power to get a predictive 

fit. 

MaxEnt models are also tethered to providing rasterized predictions. One has to be careful when attributing the risk within 

a given raster pixel across several assets that are located within that pixel. Other model Wpes are better tuned to modeling 

specific assets directly. However, it should be noted that outage and ignition data are not very well resolved spatially. The 

former is reported with the location of the protective device that triggered, the later have locations captured in the field, 
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but often at some distance from the ignition. The result is that there are limits to how specifically either can be assigned to 

specific assets. 

MaxEnt models are also "presence only" models. They do not require or take into account fully labeled data (i.e. where the 

non-ignitions are also labeled). This causes complications related to estimating ignition probabilities in that they need to be 

calibrated against expected ignition counts. Classification models of other types would more directly estimate probabilities. 

However, it is important to consider whether all ignition are actually observed and the extent to which spatial uncertainty 

prevents clean binary labeling at the asset level. 

31 Circuit Protection Zones (CPZ) 
Circuit Segments referred to as Circuit Protection Zones (CPZ) were selected as the appropriate segmentation of the grid to 

report risk results because they are the most granular scale at which outages are reliably captured by the system protective 

devices - and outages are an important factor for model training. Furthermore, the predecessor 2018 model utilized CPZs 

as the smallest aggregation of risk, so for comparison purposes, the 2021 model utilized a similar approach of aggregating 

assets and risk to CPZs. 

Circuit Protection Zones (CPZs - also referred to as distribution shutoff zones and circuit segments, and related to, but 

different from, protection zones and zones of protection) are a term used at PG&E - but the term had not previously been 

clearly defined. Furthermore, no canonical source data that lists CPZs was found to be available - thus the RaDA team 

created a data processing pipeline that allocates distribution grid assets to CPZs, lists and assigns identifiers to CPZs, adds 

various metadata to the list of CPZs, and characterizes the spatial extent of each CPZ by mapping the grid assets that belong 

to each CPZ. 

CPZs are defined here as the smallest non-overlapping sections of the distribution grid that can be de-energized by circuit 

breakers and line reclosers (including trip savers and fuse savers) that are typically in the closed position at the time of 

aggregation (see the Vintage section below). While there are numerous other types of protection and de-energization 

devices, including interrupters, sectionalizers etc, we do not "split" circuits into CPZs at those devices - we split only at 

circuit breakers and line reclosers. 
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FI6URE 60 CPZ NAMING - LR = LINE RECLOSER, CB = CIRCUIT BREAKER 
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As of mid-2020, there were approximately 10,800 circuit breakers and line reclosers with an associated CPZ in the 

distribution grid. In HFTD there were approximately 3,800 circuit breakers and line reclosers with an associated CPZ. 

CPZs are determined for the "normal" or "as built" configuration of the grid. Automated and manual switching may cause 

the grid to reconfigure temporarily or persistently, however we ignore those configurations in favor of the default 

configuration intended by circuit designers and as defined in our source data (trace tables mapped to asset data in EDGIS). 

The as-built configuration is the designed structure of the grid and is the most appropriate way to think about the grid for 

planning purposes over many years. 

CPZs are referred to by circuit protection zone identifiers (CPZ ID). In this analysis, CPZ IDs are formed by concatenating the 

circuit or feeder name with the equipment identifiers of the protecting devices at the upstream point, or "start", of each 

circuit protection zone. Each CPZ terminates at "downstream" protection device(s) - or, for zones that terminate only at 

service points (eg. houses, businesses, etc), they terminate at those service points. CPZs that start at the "start" of a circuit 

are named with the protection device that controls the circuit. 

31.1 Vintage 

CPZs are defined by the "normal" or "as built" configuration of the grid at a specific point in time. The point in time is 

referred to as the "vintage" of the CPZ aggregation. RaDA has created two CPZ vintages- one each for each of the EVM Risk 

Model 2021 and the Conductor Risk Model 2021. 

An additional vintage is expected to be created for 2022 models, unless a replacement for CPZs is implemented by that 

time. 

31.2 Challenges and Limitations 

CPZs are aggregations of the grid as defined by certain protective devices. Both the grid extent, and the location of these 

protective devices, change over time. In particular, hundreds of new protective devices have been installed in HFTD areas in 

20:[9 and 2020, motivated primarily by the desire to be able to shut off power to smaller sections of the grid during PSPS 

events. 

These changes produce changes in the shapes, CPZ IDs, and asset "contents" of CPZs that make year-over-year model result 

comparisons challenging. For example, the Conductor Risk Model 202:[ results included ~800 CPZs that had no direct 

equivalent in the predecessor 20:[8 model results. Virtually all of the distribution assets in these ~800 "new" CPZs existed 

previously, but the addition of new protective devices caused new CP7s to come into existence when aggregation of assets 

to CPZs was performed to create a new CPZ vintage for the Conductor Risk Model 202:[. 

CPZs are thus a sub-optimal unit of grid and risk aggregation if year-over-year comparisons are desired, as is typically the 

case when considering wildfire risk models. However, no suitable replacement has been proposed and accepted by the 

many stakeholders of this work. 
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32.1 Example ignition vs. background covariate distributions 

The following distributions (Figure 61) were created during the initial phase of development of the model of vegetation- 

caused ignitions. They are included here to illustrate the differences between environmental conditions at ignition locations 

vs. the entire grid. The greater the difference between ignition locations (pink) and all distribution grid locations (grey), the 

more definitive the MaxEnt predictions can be. 

First are distributions related to the per-pixel average vs. maximum tree height, as estimated by Salo Sciences using 

computer vision algorithms on satellite imagery. It is easy to verify that however it is quantified, the presence of taller trees 

is much more common at locations of vegetation caused ignitions. 

Dx-lines 

Ignitions 

-- Ignitions 

0 5 i0 15 20 o 5 lO 15     20     25     30 35 40 
Average tree height Maximum tree height 

(m) 

FIGURE 61 - TREE HEIGHT DISTRIBUTIONS 
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Next are distributions of multi-year average wind speed metrics based on GRIDMET (Figure 62) - daily average and daily 

maximum wind speeds. These appear to run counter to the intuition that dangerous fires are propelled by high winds and 

that vegetation failures are caused by high winds, but what they actually illustrate is important to understanding what is 

being modeled and how in our spatially-explicit model. First, it should be said that these figures are showing minimal 

differences between annual average wind conditions (for both daily average or maximum values) across ignition locations 

and the background. There is more discussion of wind and its role in Appendix 1: Vegetation-caused Ignition Risk Model 

2021, but as an illustration of how to makes sense of a potentially count-intuitive result: 

(1) Note that we are not modeling dangerous ignitions. We are modeling (and predicting) all ignitions- vegetation 

cause in this case. The majority of vegetation-caused ignitions are not associated with extreme winds (even though 

the most dangerous ones are). 

(2) We are not modeling the moment of ignition - we are modeling the typical fire season. Our ignition data spans 

multiple years and the corresponding covariates must do the same. All of the wind speed variability in those 

distributions is spatial, not temporal. 

(3) Recall that coastal areas, with relatively low ignitions risk due to higher moisture and humidity, are consistently 

windy. 

(4) Note that consistently windy environments stunt and shape trees or event select for certain species that can 

handle the wind. 

(5) Note that forested areas tend to break the wind, lowering wind speeds compared to more open spaces. 

(6) For there to be trees with weak limb and trunks that haven’t failed (yet) at a given site, that site has to have 

experienced only moderate winds up to the time of their eventual failure. In many cases, it will be because the 

winds are unusual for a given location that they "harvest" limbs. 

(7) Other modeling approaches focused on question of when assets fail rather than where they fail do find more 

prominent role for wind in explaining some ignitions and the find that windy days have elevated probabilities of 

both outages and ignitions. MaxEnt models span entire fire-seasons and they expect the typical number of 

extreme wind days will occur in each location as they have in the past. Metrics related to wind gusts do have 

additional explanatory power (see below). 

I DX lines                                                                            I DX lines 

Average wind speed Maximum wind speed 

(mls) {mls) 

FIGURE 62 - WIND SPEED DISTRIBUTIONS 
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Finally, we look at gust speeds (left) and average temperatures (Figure 63). The gust speed metric presented comes from 

RTMA data and is the average of the daily maximum hourly wind gust speed. Here we can see that sites with ignitions do 

have a longer tail of gust speeds that background locations, a fact consistent with high gusts being a prominent mechanism 

that breaks branches. And finally, average temperatures at vegetation-caused ignition locations are cooler in larger 

numbers than background locations. At first glance, this might be counter intuitive due to the relationship between high 

temperatures, dryness, and ignitions. However, it is important to recall that the hottest locations with grid infrastructure 

lack trees and are therefore highly unlikely to experience vegetation-caused outages. The prevalence of lower temperatures 

among vegetation-caused ignition locations is most likely due to the fact that areas with trees tend to be cooler and moister 

- both because trees prefer such habitat, and their shade, leaf litter, and evapotranspiration all serve to make their 

surrounding cooler and more humid than they would otherwise be. 

9 I0 11 12 13 14 15 16 20.0 22.5 25.0    27.5     30.0    32.5 35.0 37.5 
Maximum gust speed Average temperature 

(m/s) (C) 

FIGURE 63 - GUST AND TEMP DISTRIBUTIONS 
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32.2 Example spatial covariates 
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Weather patterns 
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Weather pat-terns 
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Appendix 4: Ignition Consequence Methods 2021 

33 Executive Summary / Overview 
This appendix explains the methods, assumptions, inputs, and outputs of the calculation of ignition consequence for the 

2021 risk models. Recall that risk = ignition probability x ignition consequence, or alternately in the terminology of the 

MAVF framework, risk = LoRE x CORE, where LoRE and CoRE are the likelihood and consequence of a risk event, 

respectively. It is intended as a technical methods companion to Appendix 1: Vegetation-caused Ignition Risk Model 

2021and Appendix 2: Conductor-Involved Ignition Risk Model 2021 and is therefore intended for readers who want to 

understand the modeling process in more technical detail. The most important concept of this appendix is that the 2021 

models require a version of consequence data that expresses spatially varying patterns in expected wildfire consequence. 

This appendix describes the derivation of "spatial consequence" values that are consistent with the risk methodology (and 

value totals) found in PG&E’s existing wildfire mitigation plans (WMP). 

Additional sections and documents are referenced, and should be consulted to gain a full understanding of the model and 

process, the context in which this work was performed, and closely related work. 

34 Introduction 
PG&E is developing a Wildfire Consequence Model, which will enable mapping of Wildfire Consequence to lOOm x lOOm 

PG&E grid pixels. 

Catastrophic wildland fires have become a major threat throughout the state of California and pose significant threat to the 

safety and economic future of the state. PG&E recognizes our electrical equipment has been the ignition point for a number 

of these fires and is working to understand these catastrophic events to maximize planned risk reduction activities. 

Enterprise risks are calculated, reported, and managed through the MAVF framework developed at the CPUC. Historically 

enterprise-level MAVF calculations have been performed without spatially explicit data or models. In other words, the risks 

are computed in terms of the expected count and severity of "risk events" but not their locations. The frequency and 

severity of these catastrophic fire events has increased dramatically over the last 10 years. The historical methods for 

quantifying fire risk need to evolve to manage the increasing population in the wildland urban interface and California’s 

warming and drying climate. 

The purpose of the 2021 risk models is to model the spatial variation in risk so that wildfire mitigation efforts can prioritize 

higher risk assets. This appendix explains the development of the new spatially explicit MAVF CoRE consequence metrics 

(generally referred to simply as consequence herein and in related documentation) that are consistent with the enterprise- 

wide risk numbers reported in the most recent Wildfire Mitigation Plan (WMP). 

35 Methods 
The PG&E Meteorology team worked with fire simulation vendor Technosylva to create fire spread simulation every 200m 

along the PG&E network within HFTD regions. Under this agreement, fire simulations using the worst historical days of fire 

weather (compiled from in-house historical weather data by the meteorology team) are performed for every location. By 
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leveraging the TechnosvIva fire spread modeling outputs and historical Red Flag Warning shapefiles, the Wildfire 

consequence model was developed to distinguish the consequence within the HFTD tranche at lOOm x lOOm grid level. 

The basic recipe for using these simulations to create calibrated MAVF CoRE consequence values is: 

(1) Assign ignition simulation locations at regular (20Ore) spacing along all grid locations within HFTDs 2 and 3. 

(2) Tabulate the 452 worst historical fire weather davs using historical weather data. 

(3,) For all locations, run a separate 8-hour fire spread simulation for each dav of weather data, recording burn area, 

flame length, impacted structures and FBI on a scale of I to 5 for each simulation. 

(4) Using pre-existing MAVF "bow tie" consequence scores calculated for all combinations of fire severity (Small, 

Large, Destructive, Catastrophic), an HFTD indicator, and a red flag warning indicator rendered into a location- 

specific probability of a red flag warning, assign each simulation output a consequence score. 

(5) The rule for assigning fire size are: Small Fire (area < 3,00 acres), Large Fire (area > 300 acres), Destructive Fire (area 

> 300 acres & 50+ Structures destroved), Catastrophic Fire (assigned bv ratio of Catastrophic to Destructive fires 

historicallv) 

(6) Compute statistical extracts of consequence scores for all available simulations at each location - most 

downstream usage is based on the mean, but variance and others can also be useful. 

(7) Assign the resulting mean consequence to each ignition location. 

(8) Ensure that simulations can be mapped to all HFTD 2 and 3, grid locations. To do this, simulation output metrics are 

associated with a 200m x 200m raster pixel with the ignition point in the center, so the results can be assigned 

spatially to any locations within each pixel. 

(9) Save a GeoTiff with derived consequence for every lOOm x lOOm grid pixel with a value assigned through the 

above steps. 

36 Fire simulation 
Figure 64 provides a summary of the history of fire simulation models from the 1970s. The basic formula is that fires spread 

according to available fuels, local topography, and winds, but the field is still young in many ways. Fire modelers are racing 

to learn how to model complex interactions driving modern wildfires. Areas of research and improvement include the rapid 

and long distance spread of fire through wind-driven embers, fires that are self-propelled and accelerated by convection 

driven winds, the fuel effects as drought- and beetle-killed trees (estimated at more than 150 million in the state) begin to 

decompose and fall over, and the impacts of an ever hotter and dryer climate as predictions stretch into the future. 
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¯ Fire moclellngtocuses on tl~e 

study of all aspects of fire, from 1970 

understanding of fuels, spread, ,2 Fire Propagation and Surface 

to the consequence and impacts fuel models (Rothermel 1972 
Crown fire model (Van 

~ 
and Albini 1976) ¯ Given the growth of destructive Wagner 1977) 198 

fires in the past decade, the 
research activities have been 
grown significantly Crown fire model (Van 

Wagner 1989) 1990 
¯ Wildland fires are incredibly 

complex and incorporate 
numerous geospatial datasets -~ Crown fire model (Finney 1998) 

presenting a challenge to model 200( 

and forecast this behavior ÷ Surface fuel models (Scott & 
Burgan 2005) 

¯ Wildland fire modeling came 
into its current form in the High definition wind model ~- 2010 
1970s, with further refinement 

(Forthoffer 2009) 
¯ 2 Time Evaluation model 

occurring through present day as Evacuation / Exposure models ~- (Monedero, Ramirez 2011) 

understanding continues to (Monedero 2015) 2020 
-~ Urban Encroachment model 

improve. ¯ ¯ (Monedero 2016) 

Figure 64 - SUMMARY OF THE HISTORY OF WILDFIRE MODELING TECHNIQUES 

Technosylva provides a product named, FireSim to offer real time insights into potential catastrophic fires and the Wildfire 

Risk Reduction Model (WRRM) which supports asset management across the organization in developing risk reduction 

programs. 

When fires occur, either caused by asset equipment failure, or more commonly through other ignition sources, it is 

important to quickly understand where the fire is going and what it will impact. FireSim provides an on-demand capability 

to create a spread prediction and obtain detailed information on potential impacts based on topology, meteorology, and 

fuels type and condition from updated satellite imagery. Impact analysis includes population, buildings and company assets. 

Figure 65 below illustrates simulation outputs from FireSim. 
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FIGURE 65 - EXAMPLE VISUALIZATIONS OF TECHNOSYLVA FIRESIM RESULTS, MODELING THE EXPECTED EXTENT OF A 

MODELED FIRE AND THE INTENSITY OF BURN 

The primary simulation output relevant to this work is the analysis of fires modeled from ignition locations at regularly 

spaced points along the entire set of grid infrastructure within HFTDs 2 and 3. These 8-hour simulations, conducted using 

weather data from 452 worst historical fire weather days at each location provide key consequence metrics summarizing 

burn area, structures impacted, and fire behavior index (FBI) for each simulation run. The criteria for FBI assignment, based 

on flame length (a metric of burn intensity) and rate of spread (ROS) and a description of each FBI class are illustrated in 

Figure 66 below. 
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The different values of FBI vary from 1 (Low) to 5 (Extreme) as shown in the next table. 

Toble 11. FBI �loss descriptions. 

Description 

Fire spreads very rapidly presenting substantial resistance to control. Direct attack with 

flreflghters must be supplemented with equipment end/o~ air support. 

FIGURE 66 - FIRE BEHAVIOR INDEX COMPONENTS AND DESCRIPTION 

37 Existing MAVF "bow tie" Consequences 
PG&E uses a Multi Attribute Variable Function (MAVF) to calculate the consequence of an event. MAVF is a tool for 

combining potential consequences of the occurrence of a risk event and creating a single quantification of risk values. Some 

of its key features are: 

¯ It formalizes trade-offs between different dimensions of consequence attributes (Safety, Reliability and Financial). 

¯ It captures aversion or indifference over a range of outcomes based on the company’s risk management 

preference. 

¯ It allows comparisons of risk across the company using a common metric. 

Figure 67 is the MAVF approved by PG&E’s Risk committee for use across company for Risk scoring. 
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Consequence of R~sk 

Event ~CoRE/, 
Unit-less Measure 

Attributes Range Natural Units Weight Scaling Function 

i~ Equivalent 
Safety 16 0- 100 Fatalities 50% 

~"~ ...... 12,000 
Customer 

Electric 

~.~ 

Minutes 
Reliability ~ 38M 0- 4 Billion 

Interrupted 20% 

(CMI) 

Gas ’ . ""~ Customers 
Reliability ~.-//           0 - 750.000 Affected 

5% ~, 

Financial 2B J~ 0 o $5B $ 25% 

FIGURE 67 - MAVF 

The consequence attributes and their respective weights are: 

¯ Financial (25%) 

¯ Safety (50%) 

¯ Electric Reliability (20%) 

Each outcome in the Consequence model is assigned a score for these 3 categories which is then aggregated to calculate 

the consequence score. 

The consequence values assigned to each simulated fire come from these existing MAVF consequence scores. The main 

idea is that MAVF divides wildfire risk events into severity categories, modeling each category as a separate set of inputs 

(think tabulations/counts of historical ignitions that fit into each severity category) and consequence outcomes. Because 

the inputs come from multiple sources into the central risk event calculation and then fan back out to the Safety, Reliability, 

and Financial risk categories, each category is called a "bow tie" after what it looks like when diagrammed. 

The bow tie methodology is a structured way of conceptualizing, representing risk across many types of events. It breaks 

down the causes of a risk event into separate tranches and calculates the adverse consequences of the risk event for each 

of these tranches. Tranches segment a system of assets into "like" risk groups because different parts of a system face 

different hazards, are susceptible to those hazards to different degrees and can result in different consequences given the 

same event. For instance: 

¯ Material: plastic is not threatened by corrosion compared to metal 

¯ Location: Earthquake in Oakland vs Santa Cruz 

¯ Ambient Conditions: Proximity to vegetation. (combustible material) 

A bow tie (Figure 68) quantifies relationships between drivers and outcomes. 
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What is the risk event 

of interest? 

What are the adverse 
What might cause that 

consequences of the risk 
risk event to happen? 

event when it happens? 

FIGURE 68 - BOW TIE STRUCTURE 

Under the hood, there are as many bow ties as there are tranches (Figure 69). 

I 

FIGURE 69 - TRANCHES 

Figure 70 below provides an example wildfire bow tie. 

Risk Score = Frequency x CoRE 

Subddver Driver Risk Event Outmme Attributes �oR E 
Safety 

Reliability 

~ Financial 

Reliability 

Financial 

Safety 

Reliability 

Financial 

Reliability 

Financial 

Event CoRE = Weishted Average of Outcome CoRE 

Risk Score = 440 x 55 = 24,200 (0.4% x 12,000, 8% x 2 . 0.1% x 12,000,91% x 2) 

FIGURE 70 - EXAMPLE WILDFIRE BOW TIE 
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What matters for our purposes is that each bow tie produces CoRE consequence values specific to the categories of events 

that feed into it and these can become a lookup table for consequence of simulated wildfires as long as they can be 

mapped into the same categories. Table 8 below provides the actual MAVF CoRE values for wildfire-relevant bow tie and 

consequence categories. 

TABLE 8 - MAVF CORE VALUES 

Tranche HFTD_Flag RFW_Flag Attribute Catastrophic_Fire Oestructive_Fire Large_Fire Small_Fire 

O D~str~but~on HFTD non-RFW Multi-Attribute CoRE 12869.082010 7126.980790 5.814084 0~066432 

1 Distribution HFTD non-RFW Electric Reliabihty CoRE 65,988904 67.178585 0.997295 0.024027 

:2 D=stribut~on HFTD non-RFW F~nanc=al CoRE 6878.223258 7059.802205 2.384944 0001631 

3 Distribution HFTD non-RFW Safety CoRE 5924.869844 0,000000 2.431845 0.040774 

12 Oistribut=on non-HFTD non-RFW Mult~-Attr=bute CoRE 12874.703590 7096,303795 5,783937 0065147 

13 Distribution non-HFTD non-RFW Electric Rel=abihty CoRE 66.904781 71.134239 0.987922 0.023333 

14 O=str=bution non-HFTD non-RFW F=nanc=al CoRE 702Z915712 7025169557 2.396905 0.001561 

16 Distribution non-HFTD non-RFW Safety CoRE 5779.883094 0.000000 2.399110 0.040253 

24 O=str~but~on HFTD RFW Mult=-Attf~bute CoRE 12825424060 7110.203687 5.859909 0066294 

25 Distribution HFTD RFW Electric Reliabihty CoRE 73.998797 63.578658 0.988533 0.024091 

26 O~stribut~on HFTD RFW F=nanc~al CoRE 6900.435849 7046.625029 2.453427 0001587 

27 Dtstr=bution HFTD RFW Safety CoRE 5850.989414 0.OO0000 2.417948 0.040616 

36 D=stribut~on non-HFTD RFW Mult=-Attr=bute CoRE 12954.244730 6915.401762 5.777651 0.066242 

37 Distribution non-HFTD RFW Electric Reliability CoRE 58.667192 66.189169 0.989483 0.024309 

38 D~str~but~on non-HFTD RFW F=nanc=al CoRE 7006.787142 6849.212593 2.380729 0.001593 

39 Distribution non-HFTD RFW Safety CoRE 5888.790399 0.000000 2.407439 0.040340 

38 Mapping Consequence Values onto Spatial Locations 
To derive spatial consequence values for each simulated fire, each location is classified by its HFTD, red flag warning, and 

fire severity attributes. This classification identifies which row of data to use for the consequence score data for each 

simulated fire. 

Specifically, FireSim outputs are used to distribute the Historical MAVF Consequence values at the Tranche Level to the 

lOOm pixel level. Instead of uniformly distributing the consequence value within the Tranche, FireSim outputs are used to 

allocate the consequence values at each location. 

I-IFTD is a pure function of location that is either True or False, so that assignment can just be looked up spatially using the 

official CPUC HFTD shape file. 

Red flag warnings IRFWl are time and location specific, so the scores used for them are a weighted average of the 

probability that each location will be under a Red Flag warning on any given day during the fire season. These are calculated 

using Red Flag Warning shape files from 2025-2019, with probabilities rendered to lOOm x lOOm spatial pixels. 

Fire severity is the most complicated to assign but is still deterministically based on simulated fire metrics for each 

simulation. The rules for fire severity assignment for each simulation are: 

¯ Small Fire (< 300 acres) 
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¯ Large Fire (> 300 acres) 

¯ Destructive Fire (> 300 acres & 50+ Structures destroyed OR FBI >= 3) 

¯ Catastrophic Fire {Destructive & at least a serious injury) 

As serious injuries are not an output f[om the TechBosy!Va data, Catastrophic Fire p~obabilJ~y cannot be de~ermJned 

directly, Instead, ~he p~obabilj~ies ig Table 9a~e derived ~rom CaiFJre dataset, consis~en~ wi~h ~he numbers used in the 

wildfire bow tie m o del. 

T~L~ 9 ~ CATASTrOPhiC F~E COnDiTiOnaL P~O~AB~L~TY 

HFTD RFW P~b(Ca~strophiclDest~ctive) 

TRUE TRUE 86% 

TRU£ FALSE 63% 

FALSE TRUE 14% 

FALSE FALSE l% 

In other words, 86% of destructive fires within the H~Ds under RFW conditions are expected to be catastro phic, whereas 

just ~% of those outside the HFTDs and not under RFW conditions are. 

Once each simulated outcome has an HFTD assignment, a RFW probability, and a severity probability, the bow tie 

consequence values (for all 3 consequence categories and their sum) for each category are assigned with the appropriate 

probability weights. Then the probability weighted average consequence is computed for all weather days simulated for 

each ignition location, yielding the spatial MAVF consequence scores. For reasons discussed in the next section, these 

scores require a final calibration step to tie together with the total risk values reported in the most recent WMP. The results 

prior to the final calibration are called the pre-calibrated consequence data. 

The key modeling steps of this calculation are illustrated below~ with fire size and RFW probabilities derived from their 

relevant input data and fire size, RFW, and H FTD (not visualized) combined to lookup bow tie consequence values, averaged 

into pre-calibrated values across weather days and rendered to ~OOm x lOOm raster data: 
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Th e two maps below illust rate m ea n bu rn a rea (Figu re 71) and F BI (Fig ure 72)val ue s from t he Tech n osyiva fire si mulations 

for the North Bay. These are key inputs into the fire severity classification calculation. 
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,20Z~1 Wildfire Distribution Risk Model Ove~ieW 
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FIGURE 71 - TECHNOSYLVA MEAN BURN AREA IN ACRES 
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2021 Wildfire Distribution Risk Model Overview 

Technosylva mean FBI 
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FIGURE 72 - TECHNOSYLVA MEAN FBI 
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,202~1 Wildfire Di~r~bu~ion Risk M~del Overview 

Figure 73 below maps the spatial consequence values for the North Bay/with HFTDs highlighted in translucent orange and 

red and all grid pixels in light grey. The influence of burn area and FBI on the final result can be verified via cross comparison 

of the maps. 

Spatial MAVF CoRE 

FIGURE 73 - PER-PIXEL CONSEQUENCE VALUES, RED IS HIGHER, BLUE IS LOWER 

PG&E Internal Information © 2021 PG&E Corporation. All rights reserved, Page 130 of 133 

PG E-DIXI E-N DCAL-000006676 



~ Pacific G~s and 
Electric Company" 

2021 Wildfire Distribution Risk Model Overview 

39 Consequence calibration 
The derived consequence scores are consistent with the bow tie MAVF CoRE values, assumptions and methods, but risk is 

ultimately a function of the number of ignitions. To ensure that our work is consistent with the risk values computed using 

the standard bow tie models, the consequence data needs to be calibrated. As we are calculating the Technosylva fire 

spread modeling using worst weather conditions, pre-calibrated CoRE overestimates the consequence and data does not 

match with wildfire bow tie model results, which is using last S years historical ignitions data. We can calibrate the CoRE by 

matching uncalibrated Risk per event to the weighted average CoRE from the wildfire bow tie model. By applying uniform 

calibration factor across all pi×els, this method preserves the relative consequence difference between lOOm pi×els. 

Specifically, to calibrate MAVF CoRE consequence data we follow these steps: 

(1) For each ignition cause and impacted equipment type, lookup the total risk reported in the WMP. This is the risk 

associated with all ignitions from that combination of characteristics. 

(2) Note that the risk is the product of the per-event risk and the count of events in that category. 

(3) By dividing the total risk by the count of events in its category associated with the WMP calculations, we obtain a 

per-event risk for each cause/equipment type risk category from the WMP. These values were 101.7 for vegetation 

cause ignitions and 59.7 for conductor involved ignitions for the 2021 risk models. 

(4) Compute uncalibrated risk using the MaxEnt ignition probabilities as LoRE x pre-calibrated CORE, sum across all 

grid pixels to compute total risk, and divide by the expected count of ignitions predicted by the ignition 

probabilities (aka the sum(LoRE)) to get the uncalibrated risk per-event. 

(5) Take the ratio of the WMP risk per-event and the uncalibrated risk per-event (Calibration factor = Calibrated Risk 

per Event / Uncalibrated Risk per Event) and use it to multiply the CoRE values (Calibrated CoRE = CoRE * 

Calibration factor). Note that this multiplicative scaling does not change the rank order of any results - it simply re- 

scales the values so they add to the WMP values. 

(6) The total risk associated with calibrated CoRE will now equal the risk associated with the WMP for the same 

number of risk events. 

40 Validation 
Figure 74 below illustrates the consequence scores for major named fires when simulated via Technosylva to consequence 

scores from Reax, the simulation software used for prior wildfire consequence assessment. For this comparison the score 

for the most destructive simulation for each location was plotted. Technosylva, along the x-axis, more consistently 
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2021 Wildfire Distribution Risk Model Overview 

associates elevated consequence with these destructive real-world high-risk fires. 

MAVF CoRE vs Reax Structures (IOkm Max) of destructive fires 
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Technosylva Score 

FIGURE 74 - COMPARISON OF REAX AND TECHNOSYLVA SCORES FOR NOTABLE WILDFIRES 

Reax Score 

¯ Previous risk models used the REAX wildfire consequence model. 

¯ Relies on fuels as a main parameter to determine wildfire spread, however fuels data for the Reax runs performed 

pre-dates significant update from the fire modeling community. 

¯ Uses census tract population to compute structures impacted, which can distort the locations of highest damage. 

¯ REAX scores just a portion of destructive historical fires high 

Technosylva Consequence Score 

¯ Uses the Technosylva model which models ladder effect of fire moving from grass to scrub to treetops. 

¯ Includes more current fuels data and more accurate structures data. 

¯ Consequence scores most historical catastrophic fires high. 

41 Model Limitations 
¯ Technosylva fire spread simulations are done only within in HFTD Tiers 2 and 3 and only using high risk (worst) 

weather conditions. 
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Simulations model the first 8 hours of a fire as a proxy for the destructive potential of the fire. The Technosylva 

simulations used in this analysis were for 8 hours. 

Destructive Fire Probability is sensitive to the parameter values we chose for FBI, Acres and Buildings. 

Fire simulation models are not capable of modeling the most active and destructive wildfires we experience in 

California. Work on wind driven ember transport, positive convective wind feedback loops, and the very significant 

standing fuels from drought and beetle damage is ongoing. 

Fires are (fortunately) too rare to empirically validate predictions with high statistical confidence. 

MAVF tranches and the function itself have several free parameters whose values reasonable people might 

disagree on. 

Wildfire risk appears to be an emergent outcome of climate change characterized by non-linear response to 

conditions due to threshold crossing and feedbacks. This makes it difficult to model or calibrate based on empirical 

data (i.e. from the past). 

Firefighting has a significant impact on how large fires grow and how destructive they are. Fire simulations do not 

account for suppression activity and can therefore make unrealistic spread predictions. 
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